NO145081B - PROCEDURE FOR EXECUTION OF A BURNING AND BURNER FOR EXECUTION OF THE PROCEDURE - Google Patents

PROCEDURE FOR EXECUTION OF A BURNING AND BURNER FOR EXECUTION OF THE PROCEDURE Download PDF

Info

Publication number
NO145081B
NO145081B NO743677A NO743677A NO145081B NO 145081 B NO145081 B NO 145081B NO 743677 A NO743677 A NO 743677A NO 743677 A NO743677 A NO 743677A NO 145081 B NO145081 B NO 145081B
Authority
NO
Norway
Prior art keywords
combustion chamber
main combustion
burner
annular
swirling
Prior art date
Application number
NO743677A
Other languages
Norwegian (no)
Other versions
NO743677L (en
NO145081C (en
Inventor
Robert Parrow Lohmann
Stanley Joseph Markowski
Original Assignee
United Aircraft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Aircraft Corp filed Critical United Aircraft Corp
Publication of NO743677L publication Critical patent/NO743677L/no
Publication of NO145081B publication Critical patent/NO145081B/en
Publication of NO145081C publication Critical patent/NO145081C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Gas Burners (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

Den foreliggende oppfinnelse vedrører en fremgangsmåte The present invention relates to a method

til utførelse av en forbrenning, hvor varme gasser føres fra et styreforbrenningskammer inn i et hovedforbrenningskammer, for carrying out a combustion, where hot gases are led from a control combustion chamber into a main combustion chamber,

et hvirvlende oksydasjonsmiddel føres inn i de varme gasser i hovedforbrenningskammeret og brennstoff innføres i blandingen av varme gasser og oksydasjonsmiddel som er antennbar ved den resulterende temperatur i blandingen. a swirling oxidizer is introduced into the hot gases in the main combustion chamber and fuel is introduced into the mixture of hot gases and oxidizer which is ignitable at the resulting temperature of the mixture.

Oppfinnelsen vedrører også en brenner for utførelse av fremgangsmåten, omfattende en anordning for dannelse og føring av hvirvlende luft inn i brennerens hovedforbrenningskammers oppstrømsende og en anordning for innføring av brennstoff i hovedforbrenningskammeret for blanding med varme gasser og den hvirvlende luft i hovedforbrenningskammeret. The invention also relates to a burner for carrying out the method, comprising a device for creating and guiding swirling air into the burner's main combustion chamber's upstream end and a device for introducing fuel into the main combustion chamber for mixing with hot gases and the swirling air in the main combustion chamber.

Et patentskrift som vedrører hvirvelforbrenning er US-patentskrift 3.701.255. Hvirvelforbrenning beskrives også i US-patentskrift 3.675.419. A patent document relating to swirl combustion is US patent document 3,701,255. Vortex combustion is also described in US patent 3,675,419.

Blanding av to forskjellige fluider kan bedres vesentlig eller økes ved at grenseflaten mellom disse fluider gjøres in-stabil overfor sentrifugalkrefter. En slik ustabil grenseflate kan frembringes ved at de to fluider får strømme i konsentrisk hvirvelstruktur hvorved strømmenes aerodynamiske egenskaper Mixing of two different fluids can be significantly improved or increased by making the interface between these fluids unstable against centrifugal forces. Such an unstable interface can be produced by allowing the two fluids to flow in a concentric vortex structure, whereby the aerodynamic properties of the flows

2 2 2 2

velges slik at forholdet j> vt ytre<jsvt indre oppfylles. I is chosen so that the relationship j> vt outer<jsvt inner is fulfilled. IN

denne definisjon er jO tettheten, og vt betyr den tangentielle hastighet av strømmen, mens indre og ytre vedrører den radielle stilling av den spesielle strøm i forhold til grenseflaten. this definition is jO the density, and vt means the tangential velocity of the flow, while inner and outer relate to the radial position of the particular flow in relation to the interface.

Det er tydelig at betingelsen for denne økning av blan-dingstrinnet ved anvendelse av sentrifugalkrefter også kan oppfylles dersom J) vt <2>for den ytre strøm var null, dvs. at strukturen er en hvirvlende stråle som omgis av en strøm av et annet fluidum. It is clear that the condition for this increase of the mixing stage by the application of centrifugal forces can also be fulfilled if J) vt <2> for the external flow was zero, i.e. that the structure is a swirling jet surrounded by a flow of another fluid .

Ved å forme ett av de deltakende fluider til en strøm av varme gasser og dét andre som luft og med egnete organer for innføring av brennstoff, virker den varme strøm som en styre-strøm og gir en tenningskilde for forbrenning i luftstrømmen. Forbrenningsprosessen som foregår adderes til den sentrifugalt drevne blandingsprosess slik at det foregår en meget hurtig prosess. By shaping one of the participating fluids into a flow of hot gases and the other as air and with suitable means for introducing fuel, the hot flow acts as a control flow and provides an ignition source for combustion in the air flow. The combustion process that takes place is added to the centrifugally driven mixing process so that a very fast process takes place.

Fremgangsmåten ifølge oppfinnelsen kjennetegnes ved The method according to the invention is characterized by

at oksydasjonsmidlet innføres i form av individuelle hvirv- that the oxidizing agent is introduced in the form of individual vortex

lende søyler som har en hastighetskomponent i nedstrømsretning bort fra styreforbrenningssonen. leaning columns that have a velocity component in the downstream direction away from the control combustion zone.

Brenneren er kjennetegnet ved at anordningen for dan- The burner is characterized by the device for

nelse og føring av den hvirvlende luft inn i hovedforbrenningskammerets oppstrømsende omfatter et antall rør som er innrettet til å føre et antall hvirvlende luftstrømmer. neling and guiding the swirling air into the upstream end of the main combustion chamber comprises a number of pipes which are arranged to carry a number of swirling air streams.

Ifølge oppfinnelsen er det frembrakt en brenner som optimaliserer forbrenningsbetingelsene for å minske NOx, som muliggjør at samtlige restreaksjoner løper til ende og redu-serer vesentlig CO og uforbrente hydrokarboner, mens even- According to the invention, a burner has been developed which optimizes the combustion conditions to reduce NOx, which enables all residual reactions to run to completion and significantly reduces CO and unburnt hydrocarbons, while even

tuelle spor av røk minskes kraftig. tual traces of smoke are greatly reduced.

Oppfinnelsen vil bli beskrevet nærmere i det etter-følgende under henvisning til de medfølgende tegninger, hvori: Fig. 1 viser et riss av en gassturbinmotor hvor for-brenningskammerets stilling er vist. Fig. 2 viser et forstørret snitt av en forbrenningsseksjon med forbrenningskammer i denne. The invention will be described in more detail below with reference to the accompanying drawings, in which: Fig. 1 shows a diagram of a gas turbine engine where the position of the combustion chamber is shown. Fig. 2 shows an enlarged section of a combustion section with a combustion chamber in it.

Fig. 3 viser et snitt etter linjen 3-3 i fig. 2. Fig. 3 shows a section along the line 3-3 in fig. 2.

Fig. 4 viser en modifikasjon av det bakre parti av forbrenningskammeret i fig. 2. Fig. 5 viser en modifikasjon av det fremre parti av forbrenningskammeret i fig. 2. Fig. 4 shows a modification of the rear part of the combustion chamber in fig. 2. Fig. 5 shows a modification of the front part of the combustion chamber in fig. 2.

Fig. 6 viser en modifikasjon av forbrenningskammeret. Fig. 6 shows a modification of the combustion chamber.

Fig. 7 viser et snitt etter linjen 7-7 i fig. 6. Fig. 7 shows a section along the line 7-7 in fig. 6.

Fig. 8 viser en annen modifikasjon av forbrenningskammeret. Fig. 8 shows another modification of the combustion chamber.

I fig. 1 vises det en turbojetmotor 2 som omfatter en kom-pressorseksjon, en forbrenningsseksjon, en turbinseksjon samt en utløpsseksjon. Motoren 2 er av den konvensjonelle type som beskrives mer detaljert i US-patentskrift 2.747.367. In fig. 1 shows a turbojet engine 2 which comprises a compressor section, a combustion section, a turbine section and an outlet section. The engine 2 is of the conventional type described in more detail in US patent 2,747,367.

I fig. 2 vises det en brenner 4 som er montert i et kammer 6 som er utformet mellom et indre hylster 8 og et ytre hylster 10. Kammeret 6 er ringformet og ved sin fremre ende, mellom de fremre stillinger for det indre og det ytre hylster, koplet til kom-pressorseksjonens utgang. Kammerets 6 nedstrømsende er koplet til en ringformet utgangsledning 12 som inneholder et antall turbininnløpsskovler 14. Det indre hylster 8 og det ytre hylster 10 er utstyrt med ringformete flenser henholdsvis 16 og 18 som løper henholdsvis utad og innad til den ringformete utgang 12 slik at det ringformete kammers 6 bakre parti om-sluttes. In fig. 2 shows a burner 4 which is mounted in a chamber 6 which is formed between an inner casing 8 and an outer casing 10. The chamber 6 is annular and at its front end, between the front positions for the inner and outer casing, connected to the output of the compressor section. The downstream end of the chamber 6 is connected to an annular outlet line 12 which contains a number of turbine inlet vanes 14. The inner casing 8 and the outer casing 10 are equipped with annular flanges 16 and 18, respectively, which run respectively outwards and inwards to the annular outlet 12 so that the annular the rear part of chamber 6 is closed.

Selv om ifølge fig. 1 forbrenningsseksjonen er utformet som et antall individuelle kar mellom det indre og det ytre hylster 8 og 10, kan brenneren utformes som en enkel ringformet brenner som er stort sett symmetrisk om motorens senterlinje og som befinner seg innenfor det indre og det ytre hylster 8 Although according to fig. 1 the combustion section is designed as a number of individual vessels between the inner and outer casings 8 and 10, the burner can be designed as a simple annular burner which is largely symmetrical about the centerline of the engine and which is located within the inner and outer casings 8

og 10. For enkelhetsskyld beskrives brenneren med utgangspunkt i karvarianten. Selv om et antall av disse brennerkar befinner seg om det ringformete kammer 6 vil bare et av disse kar bli beskrevet i det etterfølgende idet alle er like. and 10. For the sake of simplicity, the burner is described based on the vessel variant. Although a number of these burner vessels are located around the annular chamber 6, only one of these vessels will be described in the following, as they are all the same.

En brenner 4 omfatter et styreforbrenningskammer 20 og A burner 4 comprises a control combustion chamber 20 and

et hovedforbrenningskammer 22. Styreforbrenningskammeret 20 vises som et konvensjonelt, hvirvelstabilisert forbrenningskammer med en ringformet åpning 24 om enden av en brennstoff-dyse 26 som befinner seg i den fremre ende av styreforbrenningskammeret slik som ved konvensjonell utforming av brennere. a main combustion chamber 22. The control combustion chamber 20 is shown as a conventional, vortex-stabilized combustion chamber with an annular opening 24 around the end of a fuel nozzle 26 which is located at the front end of the control combustion chamber as in conventional designs of burners.

Hvirvelskovler 28 er anordnet i den ringformete åpning 24. Hvirvelstrømmen som kommer inn i seksjonen for styreforbrenningskammeret 20 er bare innrettet til å stabilisere tilbake-sirkuleringsområdet i en styreforbrenningssone 30, og den tangentielle bevegelse er stort sett opphørt på dette tids-punkt når strømmen forlater styreforbrenningskammeret 20 i brenneren 4. Brennstoffdysen 26 er av vanlig type og via* en ledning 32 koplet til et egnet, ytre samlingsrør 23 og brennstoff-kontrollerende organer 25. Et tenningsorgan 27 gir tenning av blandingen i styreforbrenningskammeret 20. Swirl vanes 28 are arranged in the annular opening 24. The swirl flow entering the control combustion chamber section 20 is only designed to stabilize the recirculation region in a control combustion zone 30, and the tangential movement has largely ceased at this point as the flow leaves the control combustion chamber. 20 in the burner 4. The fuel nozzle 26 is of the usual type and via* a line 32 is connected to a suitable, outer collection pipe 23 and fuel-controlling devices 25. An ignition device 27 ignites the mixture in the control combustion chamber 20.

Fig. 3 viser et frontriss av en av røkbrennerne 4 av kartype innenfor det indre hylster 8 og det ytre hylster 10. Hovedforbrenningskammeret 22 vises som en forlengelse av styreforbrenningskammeret 20, og fra dets bakre ende fører dets utløp innad i den ringformete utgangsledning 12 tvers over turbinens innløpsskovler 14. Den fremre ende av hovedforbrenningskammeret 22 er koplet til den bakre ende av styreforbrenningskammeret 20. Det fremre parti av hovedforbrenningskammeret 22 omfatter et traktformet, utoverragende overgangselement 34. Hovedforbrenningskammerets 22 bakre parti omfatter et bakoverragende overgangselement 36. Idet dette er av konstruksjonen som omfatter et antall forbrenningskar er overgangselementet 36 dannet av et antall sirkelrunde, fremspringende deler 38 som danner en ringformet, bakre ende 40, som er koplet til den ringformete utgangsledning 12. En mellomliggende, stort sett sirkelrund seksjon 42 av hovedforbrenningskammeret 22 kopler elementets 34 bakparti til det fremre parti av elementet 36. Elementene 34 og 36 samt seksjonen 42 har en spjelkonstruksjon for å be-virke kjøling av brennerens vegger. Åpninger 44 styrer kjøle-luft innad i spjeldene. Det bør noteres at samme type konstruksjon anvendes for styreforbrenningskammerets 20 vegg. Åpninger 45 styrer utspedningsluft inn i seksjonene for hovedforbrenningen. Fig. 3 shows a front view of one of the vessel-type smoke burners 4 within the inner casing 8 and the outer casing 10. The main combustion chamber 22 is shown as an extension of the control combustion chamber 20, and from its rear end its outlet leads into the annular outlet line 12 across the turbine's inlet vanes 14. The front end of the main combustion chamber 22 is connected to the rear end of the control combustion chamber 20. The front part of the main combustion chamber 22 comprises a funnel-shaped, protruding transition element 34. The rear part of the main combustion chamber 22 comprises a rear-projecting transition element 36. As this is of the construction which comprises a number of combustion vessels, the transition element 36 is formed by a number of circular, protruding parts 38 which form an annular, rear end 40, which is connected to the annular outlet line 12. An intermediate, generally circular section 42 of the main combustion chamber 22 connects the rear part of the element 34 to the front part of the element 36. The elements 34 and 36 as well as the section 42 have a damper construction to effect cooling of the burner's walls. Openings 44 direct cooling air into the dampers. It should be noted that the same type of construction is used for the control combustion chamber 20 wall. Openings 45 direct dilution air into the sections for the main combustion.

Et antall hvirvelrør 50 som hvert omfatter hvirvelskovler 52 ved deres fremre ender er anordnet om omkretsen for hovedforbrenningskammeret 22 i det traktformete overgangselement 34. Disse rør danner et antall små hvirvelstråler som avgis innad A number of swirl tubes 50 each comprising swirl vanes 52 at their front ends are arranged around the circumference of the main combustion chamber 22 in the funnel-shaped transition element 34. These tubes form a number of small swirl jets which are emitted inwards

i kammeret 22 for hovedforbrenningen og er innrettet til å sam-virke med den varme styrestrøm. En dyseanordning 33 som omfatter et samlingsrør 35 og en dyse 37 leverer brennstoff til den varme styrestrøm som kommer inn i hovedforbrenningskammeret 22. Et brennstoff-kontrollorgan 29 leverer brennstoff til sam-lingsrøret 35 via ledningen 31. Strømningen fra styreforbrenningskammeret og den hvirvlende strålestrøm fra rørene 50 frem-bringer strømningssplittelsen mellom disse som følge av den relative størrelse av styreforbrenningskammerets innløpskanal 24 i forhold til hvirvelrørene 50. Denne deling burde dikteres av energimengden som kreves for å initiere forbrenningen i den hvirvlende strålestrømning og skulle vanligvis innbefatte at strålestrømningene som oppviser fra 70 til 80% av den totale luft som eksisterer når resten passerer gjennom styreforbrenningskammeret. Vinkelmomentet for de individuelle stråler for-svinner når den totale strømning kommer inn i turbinen, slik at netto tilbakeholdelse av strømningen heller ikke forekommer på dette punkt, og den hvirvlende beskaffenhet begrenses bare til den umiddelbare nærhet hvor den benyttes for å akselerere forbrenningsprosessen. in the chamber 22 for the main combustion and is designed to cooperate with the hot control flow. A nozzle device 33 comprising a manifold 35 and a nozzle 37 delivers fuel to the hot pilot stream entering the main combustion chamber 22. A fuel control device 29 delivers fuel to the manifold 35 via line 31. The flow from the pilot combustion chamber and the swirling jet stream from the tubes 50 produces the flow splitting between these as a result of the relative size of the control combustion chamber inlet channel 24 in relation to the swirl tubes 50. This splitting should be dictated by the amount of energy required to initiate combustion in the swirling jet flow and should usually include that the jet flows exhibiting from 70 to 80% of the total air that exists when the rest passes through the steering combustion chamber. The angular momentum of the individual jets disappears when the total flow enters the turbine, so that net retention of the flow does not occur at this point either, and the swirling nature is limited only to the immediate vicinity where it is used to accelerate the combustion process.

Ifølge den modifikasjon som vises i fig. 2 kommer ca. 20% av brennstoffet inn i dysen 26, mens 80% kommer inn via dyse-anordningen 33. Når det gjelder luftstrømmen så kommer ca. 10% inn i den ringformete åpning 24, ca. 30% kommer inn i rørene 50, ca. 30% kommer inn i utspedningshullene 45 og ca. 30% kommer inn i kjølehullene 44. According to the modification shown in fig. 2 comes approx. 20% of the fuel enters the nozzle 26, while 80% enters via the nozzle device 33. As for the air flow, approx. 10% into the annular opening 24, approx. 30% enters the tubes 50, approx. 30% enters the dilution holes 45 and approx. 30% enters the cooling holes 44.

En alternativ konstruksjon vises i fig. 4. Denne kan om-fatte innføring av sekundært brennstoff i hovedforbrennings-luften innen denne passerer gjennom hvirvlene. På% denne måte foreligger det strømning som kommer inn i hovedforbrenningskammeret i form av hvirvlende, forblandet brennstoff-luft-blanding. Den instabilitet som oppstår ved den ytre grense av disse stråler muliggjør at de omgivende styregasser virker som en tenningskilde for å opprettholde hovedforbrenningsprosessen. An alternative construction is shown in fig. 4. This can include the introduction of secondary fuel into the main combustion air before it passes through the swirlers. In this way, there is a flow that enters the main combustion chamber in the form of a swirling, premixed fuel-air mixture. The instability that occurs at the outer boundary of these jets enables the surrounding pilot gases to act as an ignition source to maintain the main combustion process.

I fig. 4 vises forandringene sammenliknet med fig. 2 av forholdet mellom hvirvelrørene 50B og brennstoffdyseanordningen 33B. Hvirvelrørene 50B har samtidig som de er koplet til hovedforbrenningskammeret 22 sine fremre ender bøyd til et punkt som befinner seg radialt utad fra og like bak samlingsrøret 35B In fig. 4 shows the changes compared to fig. 2 of the relationship between the vortex tubes 50B and the fuel nozzle device 33B. The swirl tubes 50B, while being connected to the main combustion chamber 22, have their front ends bent to a point located radially outward from and just behind the header 35B

hos brennstoffdyseanordningen 33. Brennstoffdysen 37B løper innad i de bøyde, fremre ender av hvirvelrørene 50B og er ved sine fremre ender koplet til samlingsrøret 35B. Brennstoffdysene 37B behøver ikke befinne seg i hvert hvirvelrør 5OB. at the fuel nozzle device 33. The fuel nozzle 37B runs inside the bent front ends of the vortex tubes 50B and is connected at its front ends to the collection tube 35B. The fuel nozzles 37B do not need to be in each vortex tube 5OB.

Den ønskete brennstoffmengde kan f.eks. føres gjennom et vil-kårlig annet hvirvelrør 50B. The desired amount of fuel can e.g. is passed through an arbitrarily different vortex tube 50B.

En alternativ konstruksjon vises i fig. 5 hvor det fremre parti av styreforbrenningskammeret formes med styrebrennstoffet innsprøytet av brennstoffdysene 26C i den luft som kommer inn i styreforbrenningskammeret og der den senere passerer gjennom en flammeholder 41C med perforert plate. An alternative construction is shown in fig. 5 where the front part of the control combustion chamber is formed with the control fuel injected by the fuel nozzles 26C into the air that enters the control combustion chamber and where it later passes through a flame holder 41C with a perforated plate.

I en testet konstruksjon bevirket flammeholderen 41C regulering av luftmengden som kommer inn i styreforbrenningssonen og stabiliserer også flammen i styreforbrenningskammeret. Styreforbrenningskammerets funksjon er å frembringe en vel strupt, varm gasstrøm, og for en fagmann på området er det klart at det finnes andre organer for å oppfylle dette formål. In a tested design, the flame holder 41C effected regulation of the amount of air entering the control combustion zone and also stabilized the flame in the control combustion chamber. The function of the control combustor is to produce a well throttled, hot gas flow, and to one skilled in the art it is clear that there are other means to fulfill this purpose.

Fig. 6 viser en modifikasjon av forbrenningsseksjonen hvor en brenner 4A er montert i et kammer 6A som er dannet mellom et ikke vist indre hylster og et ytre hylser 10A. Kammeret 6A er ringformet og ved sin fremre ende koplet til kompressor-seksjonens utgang. Kammerets 6A nedstrømsende er koplet til en ringformet utgangsledning som inneholder et antall turbin-innløpsskovler slik som vist i fig. 2. Fig. 6 shows a modification of the combustion section where a burner 4A is mounted in a chamber 6A which is formed between an inner sleeve (not shown) and an outer sleeve 10A. The chamber 6A is annular and connected at its front end to the output of the compressor section. The downstream end of the chamber 6A is connected to an annular outlet line which contains a number of turbine inlet vanes as shown in fig. 2.

Også i dette tilfelle er et antall brennere 4A utformet som individuelle kar, men en brenner kan også like godt utformes som en enkel, ringformet brenner. Som ovenfor nevnt, Also in this case, a number of burners 4A are designed as individual vessels, but a burner can also be designed as a simple, ring-shaped burner. As mentioned above,

og også dersom et antall av disse forbrenningskar befinner seg om det ringformete kammer 6A, vil bare en av disse kar bli beskrevet nedenfor idet alle er like. Brenneren 4A omfatter et styreforbrenningskammer 20A og et hovedforbrenningskammer 22A. Ifølge denne modifikasjon er styreforbrenningskammeret 2OA utstyrt med en ringformet styreforbrenningssone 30A som er dannet mellom ytre og indre vegger 60 og 62. Den ytre vegg 60 er koplet til og atskilt fra det ytre hylster 10A med et antall stag 64. Innerveggen 62 er koplet til og atskilt fra et senterlegeme 68 ved hjelp av et antall stag 70 som danner en ringformet kanal 72. and also if a number of these combustion vessels are located around the annular chamber 6A, only one of these vessels will be described below, all being the same. The burner 4A comprises a control combustion chamber 20A and a main combustion chamber 22A. According to this modification, the control combustion chamber 2OA is equipped with an annular control combustion zone 30A which is formed between outer and inner walls 60 and 62. The outer wall 60 is connected to and separated from the outer sleeve 10A by a number of struts 64. The inner wall 62 is connected to and separated from a central body 68 by means of a number of struts 70 which form an annular channel 72.

Den ytre vegg 60 strekker seg fremad i en ringformet kanal 66, omtrent ved dennes sentrum, utformet av senterlegemets 68 vegger og det ytre hylster 10A. Veggen 60 er bøyet bakover ved sin fremre ende 61 og danner en strømningsfordeler for strømlinjen for innløpsluft fra kompressorseksjonen. Senterlegemet 68 er utstyrt med en fremre åpning 69 for å muliggjøre innføring av innløpsluft fra kompressorseksjonen. The outer wall 60 extends forward in an annular channel 66, approximately at its center, formed by the walls of the central body 68 and the outer sleeve 10A. The wall 60 is bent backwards at its forward end 61 and forms a flow divider for the stream line of inlet air from the compressor section. The center body 68 is equipped with a front opening 69 to enable the introduction of inlet air from the compressor section.

Den indre vegg 62 er atskilt ca. halvveis mellom den The inner wall 62 is separated approx. halfway between it

ytre vegg 60 og senterlegemets 6 8 vegg. Veggens 6 2 fremre ende er bøyet utover og bakover ved 6 3 og danner en mindre ringformet innløpskanal 65 for tilførsel av luft i den ringformete kanal som er utformet mellom senterlegemet 68 og den ytre vegg 60 for å inngå i styreforbrenningssonen 30A. Den bakre ende av dette bakoverbøyde parti smalner innover ved 6 7 og danner en inngangskanal til en flammeholder 74 som befinner seg mellom den ytre vegg 60 og den indre vegg 6 2 for å holde flammen på dette punkt i styreforbrenningskammeret. Styreforbrenningskammeret styres fra et kontrollorgan 76 til et samlings-rør 78. Brennstoffet føres fra samlingsrøret via et antall ledninger 32A til brennstoffdysene 26A. Dysene 26A befinner seg i den ringformete kanal 65. En tenner 80 gir tenning ved 82 like bak flammeholderen 74. Sekundært brennstoff leveres av kontrollorganet 83 til et samlingsrør 35A. Dette brennstoff outer wall 60 and the central body's 6 8 wall. The front end of the wall 6 2 is bent outwards and backwards at 6 3 and forms a smaller annular inlet channel 65 for the supply of air in the annular channel which is formed between the central body 68 and the outer wall 60 to enter the control combustion zone 30A. The rear end of this backward-bent portion tapers inwards at 6 7 and forms an entrance channel to a flame holder 74 which is located between the outer wall 60 and the inner wall 6 2 to hold the flame at this point in the control combustion chamber. The control combustion chamber is controlled from a control device 76 to a collection pipe 78. The fuel is led from the collection pipe via a number of lines 32A to the fuel nozzles 26A. The nozzles 26A are located in the annular channel 65. An igniter 80 provides ignition at 82 just behind the flame holder 74. Secondary fuel is supplied by the control member 83 to a collection pipe 35A. This fuel

føres fra samlingsrøret 35A via et antall ledninger til et antall brennstoffdyser 37A der det rettes inn i seksjonen for styreforbrenningskammeret, slik at det kan føres med de varme gasser fra forbrenningssonen, hvorved det dannes en varm, brennstoffrik blanding ved utgangen 84 som befinner seg mellom den ytre vegg 60 og den indre vegg 62. is led from the manifold 35A via a number of lines to a number of fuel nozzles 37A where it is directed into the section for the control combustion chamber, so that it can be led with the hot gases from the combustion zone, whereby a hot, fuel-rich mixture is formed at the outlet 84 located between the outer wall 60 and the inner wall 62.

Senterlegemet 68 løper i medstrøm om endene av de ytre og indre vegger 60 og 62, og det parti som løper bakover derfra, omfatter ribber 86 med kjøleåpninger 88 og en bakre åpning 90 for utløp av luft derfra. Et senternav 92 befinner seg i åpningen 90 mens hvirvelskovler 9 4 løper om denne. En fast plate kan anvendes istedenfor navet 92 og hvirvelskovlene 94. The center body 68 runs cocurrently around the ends of the outer and inner walls 60 and 62, and the part which runs backwards from there comprises ribs 86 with cooling openings 88 and a rear opening 90 for the outlet of air therefrom. A center hub 92 is located in the opening 90 while swirl vanes 9 4 run around this. A fixed plate can be used instead of the hub 92 and the swirl vanes 94.

En mellomliggende vegg 96 befinner seg mellom den ytre vegg 60 og det ytre hylster 10A. Denne vegg er atskilt fra ytterveggen 60 med stort sett samme avstand som senterlegemets 6 8 vegg er atskilt fra den indre vegg 62, slik at det dannes en ringformet kanal 97. Denne konstruksjon danner også en ringformet kanal 98 mellom veggen 96 og det ytre hylster 10A, og denne kanal gjør det mulig for kjøle- og utspedningsluft å passere om hovedforbrenningskammeret 22A. Veggen 9 6 løper i medstrøm som angitt ovenfor til en ringformet utgangsledning, fig. 2, med veggen utformet som ribbeseksjoner med kjølehuller og utspedningslufthull. An intermediate wall 96 is located between the outer wall 60 and the outer sleeve 10A. This wall is separated from the outer wall 60 by roughly the same distance as the wall of the central body 68 is separated from the inner wall 62, so that an annular channel 97 is formed. This construction also forms an annular channel 98 between the wall 96 and the outer sleeve 10A , and this channel enables cooling and dilution air to pass around the main combustion chamber 22A. The wall 9 6 runs co-currently as stated above to an annular outlet line, fig. 2, with the wall designed as rib sections with cooling holes and dilution air holes.

Hvirvelrør 50A som omfatter hvirvelskovler 5 2A befinner seg ved det bakre parti av de ringformete kanaler 97 og 72 en kort avstand fra den bakre ende av de ytre og indre vegger 60 og 62. Hvert hvirvelrør 50A har sine hvirvelskovler 52a festet til dets indre, og de løper innad til et mindre senterrør 53A. Hvert rør 50A avgir således en hvirvelstang av luft om en rettlinjet senterstang av luft. Denne konstruksjon er innrettet til å opprettholde den hvirvlende luftstang i dens stangform i et lengre tidsrom. Som det fremgår av fig. 7 befinner hvirvelrørene 50A seg i par om omkretsen av den ringformete kanal 9 7 og den ringformete kanal 72. Paret av hvirvelrør 50A et atskilt for å gjøre det mulig for glidebaner 102 å plasseres medstrøms om disse og ikke interferere på skadelig måte med strømningen fra rørene. Glidebanene er innrettet til å dele en del av de varme styregasser i luftregionene mellom parene av hvirvelrør 50A. Parene av hvirvelrør 50A i begge de ringformete kanaler 72 og 97 har sine skovler 52A rettet slik at fluidum hvirvler i motsatte retninger når det føres gjennom disse, dvs. at luft hvirvles i retning med solen gjennom et hvirvelrør 50A, mens luften hvirvles i retning mot solen i parets tilstøtende hvirvelrør 50A. Vortex tube 50A comprising vortex vanes 52A is located at the rear portion of the annular channels 97 and 72 a short distance from the rear end of the outer and inner walls 60 and 62. Each vortex tube 50A has its vortex vanes 52a attached to its interior, and they run inside to a smaller center tube 53A. Each tube 50A thus emits a vortex bar of air around a rectilinear center bar of air. This construction is designed to maintain the swirling air rod in its rod shape for an extended period of time. As can be seen from fig. 7, the vortex tubes 50A are located in pairs around the circumference of the annular channel 97 and the annular channel 72. The pair of vortex tubes 50A are separated to enable slides 102 to be placed downstream of them and not to interfere in a harmful manner with the flow from the tubes . The glide paths are arranged to share a part of the hot pilot gases in the air regions between the pairs of vortex tubes 50A. The pairs of vortex tubes 50A in both of the annular channels 72 and 97 have their vanes 52A oriented so that fluid swirls in opposite directions when it is passed through them, i.e. air is swirled in the direction of the sun through a vortex tube 50A, while the air is swirled in the direction of the sun in the pair's adjacent vortex tube 50A.

Blokkeringsorganer 104, 106, 108 er anordnet for å hindre strømning i å passere om hvirvelrørene 50A. I den ringformete kanal 72 er blokkeringsorganer 110, 112 anordnet for samme formål. Blocking means 104, 106, 108 are provided to prevent flow from passing around the vortex tubes 50A. In the annular channel 72, blocking means 110, 112 are arranged for the same purpose.

I en konstruksjon av anordningen som er vist i fig. 6 syntes det som om ca. 4% av luften burde komme inn i den fremre åpning 69 av senterlegemet 68, ca. 17% burde komme inn i den ringformete kanal 72, ca. 10% i kanalen 65, ca. 17% burde komme inn i den ringformete kanal 97 og ca. 52% av luften burde passere om hovedforbrenningskammeret 22A, mens ca. 30% burde komme inn i utspedningshullene og ca. 22% gjennom ribbe-kjølehullene under drift. Det ble også konstatert at ca. 20% In a construction of the device shown in fig. 6 it seemed that approx. 4% of the air should enter the front opening 69 of the center body 68, approx. 17% should enter the annular channel 72, approx. 10% in channel 65, approx. 17% should enter the annular canal 97 and approx. 52% of the air should pass around the main combustion chamber 22A, while approx. 30% should enter the dilution holes and approx. 22% through the fin cooling holes during operation. It was also established that approx. 20%

av den totale brennstoffmengde bør komme inn gjennom brennstoffdysene 26A. Konstruksjonen ble bygget stort sett med samme forhold som i fig. 6, slik at tolv par hvirvelrør 50A ble an-vendt, idet hvert av dem hadde diameter på ca. 25,4 mm, om den ringformete kanal 97, hvorved det ble oppnådd 24 hvirvelrør, mens syv par hvirvelrør 50A med omtrent samme diameter ble plas-sert om kanalen 72 slik at det ble oppnådd totalt fjorten hvir-velrør. Hvirvelrørene 50A i kanalen 97 befinner seg i samme transversalplan som hvirvelrørene 50A i den ringformete kanal 72. of the total amount of fuel should enter through the fuel nozzles 26A. The construction was built largely with the same conditions as in fig. 6, so that twelve pairs of vortex tubes 50A were used, each of them having a diameter of approx. 25.4 mm, about the annular channel 97, whereby 24 vortex tubes were obtained, while seven pairs of vortex tubes 50A of approximately the same diameter were placed about the channel 72 so that a total of fourteen vortex tubes were obtained. The vortex tubes 50A in the channel 97 are located in the same transverse plane as the vortex tubes 50A in the annular channel 72.

Fig. 8 viser en modifikasjon av konstruksjonen ifølge Fig. 8 shows a modification of the construction according to

fig. 6, hvor en brenner 4D er vist montert i et kammer 6D som er utformet mellom et ikke vist indre hylster og et ytre hylster 10D. Kammeret 6D er ringformet og ved sin fremre ende forbundet med utgangen av kompressorseksjonen. Kammerets 6D ned-strømsende er forbundet med den ringformete utgangsledning som inneholder et antall turbininnløpsskovler som vises i fig. 2. fig. 6, where a burner 4D is shown mounted in a chamber 6D which is formed between an inner sleeve, not shown, and an outer sleeve 10D. The chamber 6D is annular and connected at its front end to the outlet of the compressor section. The downstream end of the chamber 6D is connected to the annular outlet line which contains a number of turbine inlet vanes shown in FIG. 2.

Også i dette tilfelle gjelder det at selv om et indivi-duelt kar vises, kan en motor av enkel, ringformet type anvendes. Et av disse individuelle kar beskrives i det etterfølgende. Brenneren 4D omfatter et styreforbrenningskammer 20D og et hovedforbrenningskammer 22D. Ifølge denne modifikasjon er styreforbrenningskammeret 20D utformet med en ringformet styreforbrenningssone 30D som er dannet mellom ytre og indre vegger 60D og 62D. Den ytre vegg 60D er koplet til og atskilt fra det ytre hylster 10D ved hjelp av et antall stag 64D. Den indre vegg 62D Also in this case it applies that even if an individual vessel is shown, a motor of a simple, ring-shaped type can be used. One of these individual vessels is described below. The burner 4D comprises a control combustion chamber 20D and a main combustion chamber 22D. According to this modification, the control combustion chamber 20D is designed with an annular control combustion zone 30D formed between outer and inner walls 60D and 62D. The outer wall 60D is connected to and separated from the outer casing 10D by means of a number of struts 64D. The inner wall 62D

er koplet til og atskilt fra et kort, fremre senterlegeme 68D is connected to and separated from a short front center body 68D

som er utstyrt med et antall stag 70D. Stagene 70D kopler det korte senterlegeme til veggen 60D. Styreforbrenningskammeret er utformet på samme måte som i fig. 6 med styreforbrennings-stoffet, anordningene for tenneren og det sekundære brennstoff stort sett som beskrevet. Ved den bakre ende av veggene 6OD which is equipped with a number of struts 70D. The rods 70D connect the short central body to the wall 60D. The control combustion chamber is designed in the same way as in fig. 6 with the control fuel, the devices for the igniter and the secondary fuel largely as described. At the rear end of the walls 6OD

og 62D finnes det to store ribbeforlengelser 120 og 122 som gjør styreforbrenningskammeret fullstendig. Et ringformet flenselement 124 løper utover og bakover fra organets 120 bakre ende, og et ringformet flenselement 126 løper innover og bak- and 62D there are two large rib extensions 120 and 122 which make the steering combustion chamber complete. An annular flange element 124 runs outwards and backwards from the rear end of the body 120, and an annular flange element 126 runs inwards and backwards

over fra enden 122. Hvirvelrør 50D er montert om hver flens 124 og 126 slik at hvirvelrørene er rettet innover under en vinkel i retning mot hverandre. Hvirvelrørene 50D befinner seg om flensene på stort sett samme måte som vist i fig. 7. Hovedforbrenningskammeret 22D løper bakover fra flensens 124 ytterkant, og et kort senterlegeme løper bakover fra flensens 128 indre ende. Dette senterlegeme 128 er utformet som den bakre seksjon av senterlegemet 68 i fig. 6. above from end 122. Swirl tube 50D is fitted around each flange 124 and 126 so that the swirl tubes are directed inwards at an angle towards each other. The vortex tubes 50D are located around the flanges in much the same way as shown in fig. 7. The main combustion chamber 22D runs rearward from the flange 124 outer edge, and a short center body runs rearward from the flange 128 inner end. This central body 128 is designed as the rear section of the central body 68 in fig. 6.

I det tilfelle konstruksjonen for et ringformet kar ifølge fig. 6 og 8 anvendes med en enkel og ringformet brenner, bør ikke senterlegemet avkortes som vist, men løpe bakover slik at det virker som innervegg i den ringformete innløpskanal til turbinen samtidig som ytterveggen på hovedforbrenningskammeret vil danne ytterveggen av den ringformete innløpskanal til turbinen. In that case, the construction for an annular vessel according to fig. 6 and 8 are used with a simple and annular burner, the central body should not be shortened as shown, but run backwards so that it acts as an inner wall in the annular inlet channel to the turbine at the same time as the outer wall of the main combustion chamber will form the outer wall of the annular inlet channel to the turbine.

Claims (4)

1. Fremgangsmåte til utførelse av en forbrenning, hvor varme gasser føres fra et styreforbrenningskammer (20,20A,20D) inn i et hovedforbrenningskammer (22,22A,22D), et hvirvlende oksydasjonsmiddel føres inn i de varme gasser i hovedforbrenningskammeret og brennstoff innføres i blandingen av varme gasser og oksydasjonsmiddel som er antennbar ved den resulterende temperatur i blandingen, karakterisert ved1. Method for carrying out a combustion, where hot gases are fed from a control combustion chamber (20,20A,20D) into a main combustion chamber (22,22A,22D), a swirling oxidizing agent is fed into the hot gases in the main combustion chamber and fuel is introduced into the mixture of hot gases and oxidizing agent which is ignitable at the resulting temperature in the mixture, characterized by at oksydasjonsmidlet innføres i form av individuelle hvirvlende søyler som har en hastighetskomponent i nedstrømsretning bort fra styreforbrenningssonen.that the oxidizer is introduced in the form of individual swirling columns which have a velocity component in the downstream direction away from the control combustion zone. 2. Brenner for utførelse av fremgangsmåten ifølge krav 1, omfattende en anordning for dannelse og føring av.hvirvlende luft inn i brennerens hovedf6rbrenningskammers<oppstrømsende og en anordning (37,37A,37B) for innføring av brennstoff i hovedforbrenningskammeret for blanding med varme gasser og den hvirvlende luft i hovedforbrenningskammeret, karakterisert ved at anordningen for dannelse og føring av den hvirvlende luft inn i hovedforbrenningskammerets oppstrømsende omfatter et antall rør (50,50A,50D) som er innrettet til å føre et antall hvirvlende luftstrømmer, som hver hvirvlér om sin egen akse, inn i hovedforbrenningskammeret ■og som er skråttstilt eller rettét i retning nedstrøms bort fra styreforbrenningskammeret. 2. Burner for carrying out the method according to claim 1, comprising a device for creating and guiding swirling air into the burner's main combustion chamber upstream and a device (37, 37A, 37B) for introducing fuel into the main combustion chamber for mixing with hot gases and the swirling air in the main combustion chamber, characterized in that the device for forming and guiding the swirling air into the upstream end of the main combustion chamber comprises a number of pipes (50, 50A, 50D) which are arranged to carry a number of swirling air currents, each of which swirls around its own axis, into the main combustion chamber ■and which is inclined or straightened in a direction downstream away from the control combustion chamber. 3. Brenner i samsvar med krav 2, karakterisert ved at rørene (50,50A,50B,50D) er festet til hovedforbrenningskammeret (22,22Å,22D) ved dettes oppstrømsende, og at de er utstyrt med hvirvelskovler (52,52A) som er innrettet til å frembringe roterende bevegelse i luft som passerer gjennom rørene. 3. Burner in accordance with claim 2, characterized in that the pipes (50,50A,50B,50D) are attached to the main combustion chamber (22,22Å,22D) at its upstream end, and that they are equipped with swirl vanes (52,52A) which is designed to produce rotary motion in air passing through the pipes. 4. Brenner i samsvar med krav 3, karakterisert ved at det inne i rørene (50 , 50A,50B) er anordnet mindre rør (53,53Å) for frembringelse av en rettlinjet luftstrøm i sentrum av den hvirvlende luftstrøm, og at de mindre rør blir holdt i stilling av hvirvelskovlene (52,52A).4. Burner in accordance with claim 3, characterized in that inside the pipes (50, 50A, 50B) smaller pipes (53, 53Å) are arranged for producing a straight air flow in the center of the swirling air flow, and that the smaller pipes is held in position by the swirl vanes (52,52A).
NO743677A 1973-10-15 1974-10-14 PROCEDURE FOR EXECUTION OF A BURNING AND BURNER FOR EXECUTION OF THE PROCEDURE NO145081C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US406771A US3872664A (en) 1973-10-15 1973-10-15 Swirl combustor with vortex burning and mixing

Publications (3)

Publication Number Publication Date
NO743677L NO743677L (en) 1975-06-02
NO145081B true NO145081B (en) 1981-09-28
NO145081C NO145081C (en) 1982-01-06

Family

ID=23609397

Family Applications (1)

Application Number Title Priority Date Filing Date
NO743677A NO145081C (en) 1973-10-15 1974-10-14 PROCEDURE FOR EXECUTION OF A BURNING AND BURNER FOR EXECUTION OF THE PROCEDURE

Country Status (11)

Country Link
US (1) US3872664A (en)
JP (1) JPS5858563B2 (en)
CA (1) CA1004481A (en)
CH (1) CH585373A5 (en)
DE (1) DE2449084C2 (en)
FR (1) FR2247674B1 (en)
GB (1) GB1482145A (en)
IL (1) IL45684A (en)
IT (1) IT1022870B (en)
NO (1) NO145081C (en)
SE (1) SE400348B (en)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1454280A (en) * 1972-11-28 1976-11-03 Nissan Motor Combustible mixture supply system
US3974646A (en) * 1974-06-11 1976-08-17 United Technologies Corporation Turbofan engine with augmented combustion chamber using vorbix principle
US3974647A (en) * 1974-08-26 1976-08-17 United Technologies Corporation Combustion instability reduction device having swirling flow
JPS5129726A (en) * 1974-09-06 1976-03-13 Mitsubishi Heavy Ind Ltd
US3973395A (en) * 1974-12-18 1976-08-10 United Technologies Corporation Low emission combustion chamber
US4058977A (en) * 1974-12-18 1977-11-22 United Technologies Corporation Low emission combustion chamber
US3973390A (en) * 1974-12-18 1976-08-10 United Technologies Corporation Combustor employing serially staged pilot combustion, fuel vaporization, and primary combustion zones
US4045956A (en) * 1974-12-18 1977-09-06 United Technologies Corporation Low emission combustion chamber
US3937008A (en) * 1974-12-18 1976-02-10 United Technologies Corporation Low emission combustion chamber
DE2511171C2 (en) * 1975-03-14 1984-03-15 Daimler-Benz Ag, 7000 Stuttgart Film evaporation combustion chamber
US3993449A (en) * 1975-04-07 1976-11-23 City Of North Olmsted Apparatus for pollution abatement
DE2524319C2 (en) * 1975-06-02 1984-03-08 Société Nationale d'Etude et de Construction de Moteurs d'Aviation, 75015 Paris Combustion chamber with a stepped flame tube
US4052844A (en) * 1975-06-02 1977-10-11 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Gas turbine combustion chambers
US4012904A (en) * 1975-07-17 1977-03-22 Chrysler Corporation Gas turbine burner
JPS5944491B2 (en) * 1975-10-27 1984-10-30 日産自動車株式会社 Gas turbine engine Niokel Nenshiyouki
US4204402A (en) * 1976-05-07 1980-05-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reduction of nitric oxide emissions from a combustor
DE2629761A1 (en) * 1976-07-02 1978-01-05 Volkswagenwerk Ag COMBUSTION CHAMBER FOR GAS TURBINES
JPS5824695B2 (en) * 1977-03-14 1983-05-23 トヨタ自動車株式会社 Gas turbine engine combustor structure
JPS53143815A (en) * 1977-05-23 1978-12-14 Mitsubishi Heavy Ind Ltd Gas turbine combustion
US4145879A (en) * 1977-12-15 1979-03-27 United Technologies Corp. Modified vorbix burner concept
US4145878A (en) * 1977-12-15 1979-03-27 United Technologies Corp. Vorbix augmenter configuration
US4339924A (en) * 1978-08-02 1982-07-20 Solar Turbines Incorporated Combustion systems
GB2098720B (en) * 1979-01-12 1983-04-27 Gen Electric Stationary gas turbine combustor arrangements
US4420929A (en) * 1979-01-12 1983-12-20 General Electric Company Dual stage-dual mode low emission gas turbine combustion system
EP0019022B1 (en) * 1979-05-18 1983-10-12 Robert Storey Babington Liquid fuel burners
US4292801A (en) * 1979-07-11 1981-10-06 General Electric Company Dual stage-dual mode low nox combustor
GB2073400B (en) * 1980-04-02 1984-03-14 United Technologies Corp Fuel injector
US4590769A (en) * 1981-01-12 1986-05-27 United Technologies Corporation High-performance burner construction
JPS57154852U (en) * 1981-03-18 1982-09-29
JPS59153028A (en) * 1983-02-18 1984-08-31 Hitachi Ltd Combustor of gas turbine
JPS60105576A (en) * 1983-11-15 1985-06-11 Tokyo Electric Co Ltd Printer
US4628694A (en) * 1983-12-19 1986-12-16 General Electric Company Fabricated liner article and method
JPS60109949U (en) * 1983-12-28 1985-07-25 東芝テック株式会社 dot printer
EP0193029B1 (en) * 1985-02-26 1988-11-17 BBC Brown Boveri AG Gas turbine combustor
DE3606625A1 (en) * 1985-03-04 1986-09-04 Kraftwerk Union AG, 4330 Mülheim Pilot burner with low NOx emission for furnace installations, in particular of gas turbine installations, and method of operating it
JPS6238164U (en) * 1985-08-28 1987-03-06
US4784600A (en) * 1986-10-08 1988-11-15 Prutech Ii Low NOx staged combustor with swirl suppression
CH672366A5 (en) * 1986-12-09 1989-11-15 Bbc Brown Boveri & Cie
US4891936A (en) * 1987-12-28 1990-01-09 Sundstrand Corporation Turbine combustor with tangential fuel injection and bender jets
US4928481A (en) * 1988-07-13 1990-05-29 Prutech Ii Staged low NOx premix gas turbine combustor
US5284019A (en) * 1990-06-12 1994-02-08 The United States Of America As Represented By The Secretary Of The Air Force Double dome, single anular combustor with daisy mixer
US5197278A (en) * 1990-12-17 1993-03-30 General Electric Company Double dome combustor and method of operation
US5406799A (en) * 1992-06-12 1995-04-18 United Technologies Corporation Combustion chamber
DE4316474A1 (en) * 1993-05-17 1994-11-24 Abb Management Ag Premix burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or a combustion system
DE59605505D1 (en) * 1995-03-08 2000-08-03 Rolls Royce Deutschland AXIAL STAGE DOUBLE RING COMBUSTION CHAMBER OF A GAS TURBINE
DE59808754D1 (en) * 1997-12-19 2003-07-24 Mtu Aero Engines Gmbh Premix combustion chamber for a gas turbine
US6405523B1 (en) * 2000-09-29 2002-06-18 General Electric Company Method and apparatus for decreasing combustor emissions
GB2398375A (en) * 2003-02-14 2004-08-18 Alstom A mixer for two fluids having a venturi shape
EP1660818A2 (en) * 2003-09-05 2006-05-31 Delavan Inc. Pilot combustor for stabilizing combustion in gas turbine engines
US7093441B2 (en) * 2003-10-09 2006-08-22 United Technologies Corporation Gas turbine annular combustor having a first converging volume and a second converging volume, converging less gradually than the first converging volume
US20070119183A1 (en) * 2005-11-28 2007-05-31 General Electric Company Gas turbine engine combustor
US7665309B2 (en) 2007-09-14 2010-02-23 Siemens Energy, Inc. Secondary fuel delivery system
US7886539B2 (en) * 2007-09-14 2011-02-15 Siemens Energy, Inc. Multi-stage axial combustion system
US8387398B2 (en) * 2007-09-14 2013-03-05 Siemens Energy, Inc. Apparatus and method for controlling the secondary injection of fuel
EP2107310A1 (en) * 2008-04-01 2009-10-07 Siemens Aktiengesellschaft Burner
EP2107312A1 (en) * 2008-04-01 2009-10-07 Siemens Aktiengesellschaft Pilot combustor in a burner
US8176739B2 (en) * 2008-07-17 2012-05-15 General Electric Company Coanda injection system for axially staged low emission combustors
EP2349961B1 (en) * 2008-10-13 2016-11-23 Blue Cube IP LLC Process for the production of chlorinated and/or fluorinated propenes
US20100223930A1 (en) * 2009-03-06 2010-09-09 General Electric Company Injection device for a turbomachine
JP4797079B2 (en) * 2009-03-13 2011-10-19 川崎重工業株式会社 Gas turbine combustor
US8689559B2 (en) * 2009-03-30 2014-04-08 General Electric Company Secondary combustion system for reducing the level of emissions generated by a turbomachine
US8667800B2 (en) * 2009-05-13 2014-03-11 Delavan Inc. Flameless combustion systems for gas turbine engines
EP2485997B1 (en) 2009-10-09 2015-09-09 Dow Global Technologies LLC Process for the production of chlorinated and/or fluorinated propenes and higher alkenes
US8558041B2 (en) * 2009-10-09 2013-10-15 Dow Global Technologies, Llc Isothermal multitube reactors and processes incorporating the same
EP2485996B1 (en) * 2009-10-09 2016-06-15 Blue Cube IP LLC Process for the production of chlorinated and/or fluorinated propenes
EP2485833A2 (en) * 2009-10-09 2012-08-15 Dow Global Technologies LLC Adiabatic plug flow reactors and process for producing a chlorinated and/or fluorinated propene and higher alkene
RU2506499C2 (en) * 2009-11-09 2014-02-10 Дженерал Электрик Компани Fuel atomisers of gas turbine with opposite swirling directions
RU2534189C2 (en) * 2010-02-16 2014-11-27 Дженерал Электрик Компани Gas turbine combustion chamber (versions) and method of its operation
US8752386B2 (en) 2010-05-25 2014-06-17 Siemens Energy, Inc. Air/fuel supply system for use in a gas turbine engine
US9068748B2 (en) * 2011-01-24 2015-06-30 United Technologies Corporation Axial stage combustor for gas turbine engines
EP2714631B1 (en) 2011-05-31 2020-05-13 Blue Cube IP LLC Process for the production of chlorinated propenes
CA2836493A1 (en) 2011-05-31 2012-12-06 Max Markus Tirtowidjojo Process for the production of chlorinated propenes
US8601820B2 (en) 2011-06-06 2013-12-10 General Electric Company Integrated late lean injection on a combustion liner and late lean injection sleeve assembly
BR112013031230A2 (en) 2011-06-08 2017-01-31 Dow Agrosciences Llc process for the production of chlorinated and / or fluorinated propenses
US9222674B2 (en) * 2011-07-21 2015-12-29 United Technologies Corporation Multi-stage amplification vortex mixture for gas turbine engine combustor
US9297534B2 (en) 2011-07-29 2016-03-29 General Electric Company Combustor portion for a turbomachine and method of operating a turbomachine
US8919137B2 (en) 2011-08-05 2014-12-30 General Electric Company Assemblies and apparatus related to integrating late lean injection into combustion turbine engines
US9010120B2 (en) 2011-08-05 2015-04-21 General Electric Company Assemblies and apparatus related to integrating late lean injection into combustion turbine engines
CN103717559A (en) 2011-08-07 2014-04-09 陶氏环球技术有限责任公司 Process for the production of chlorinated propenes
JP6166261B2 (en) 2011-08-07 2017-07-19 ブルー キューブ アイピー エルエルシー Method for producing chlorinated propene
US20140238034A1 (en) * 2011-11-17 2014-08-28 General Electric Company Turbomachine combustor assembly and method of operating a turbomachine
JP6050372B2 (en) 2011-11-21 2016-12-21 ブルー キューブ アイピー エルエルシー Method for producing chloroalkane
CA2856545A1 (en) 2011-12-02 2013-06-06 Dow Global Technologies Llc Process for the production of chlorinated alkanes
CN104024187B (en) 2011-12-02 2017-04-12 蓝立方知识产权有限责任公司 Process for the production of chlorinated alkanes
US9194586B2 (en) 2011-12-07 2015-11-24 Pratt & Whitney Canada Corp. Two-stage combustor for gas turbine engine
US9416972B2 (en) 2011-12-07 2016-08-16 Pratt & Whitney Canada Corp. Two-stage combustor for gas turbine engine
US9243802B2 (en) 2011-12-07 2016-01-26 Pratt & Whitney Canada Corp. Two-stage combustor for gas turbine engine
JP6170068B2 (en) 2011-12-13 2017-07-26 ブルー キューブ アイピー エルエルシー Method for producing chlorinated propane and propene
EP2794528B1 (en) 2011-12-22 2020-02-26 Blue Cube IP LLC Process for the production of tetrachloromethane
WO2013096706A1 (en) 2011-12-23 2013-06-27 Dow Global Technologies, Llc Process for the production of alkenes and/or aromatic compounds
US9140455B2 (en) 2012-01-04 2015-09-22 General Electric Company Flowsleeve of a turbomachine component
US20130213046A1 (en) * 2012-02-16 2013-08-22 General Electric Company Late lean injection system
EP2897932A1 (en) 2012-09-20 2015-07-29 Dow Global Technologies LLC Process for the production of chlorinated propenes
WO2014046970A1 (en) 2012-09-20 2014-03-27 Dow Global Technologies, Llc Process for the production of chlorinated propenes
EP2900364B1 (en) 2012-09-30 2018-06-13 Blue Cube IP LLC Weir quench and processes incorporating the same
CA2887559A1 (en) 2012-10-26 2014-05-01 Dow Global Technologies Llc Mixer and reactor and process incorporating the same
CA2893841C (en) 2012-12-18 2018-07-24 Dow Global Technologies Llc Process for the production of chlorinated propenes
JP6251286B2 (en) 2012-12-19 2017-12-20 ブルー キューブ アイピー エルエルシー Method for the production of chlorinated propene
WO2014134233A2 (en) 2013-02-27 2014-09-04 Dow Global Technologies Llc Process for the production of chlorinated propenes
CN105026348A (en) 2013-03-09 2015-11-04 蓝立方知识产权有限责任公司 Process for the production of chlorinated alkanes
US9228747B2 (en) * 2013-03-12 2016-01-05 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
US9400114B2 (en) 2013-03-18 2016-07-26 General Electric Company Combustor support assembly for mounting a combustion module of a gas turbine
US9383104B2 (en) 2013-03-18 2016-07-05 General Electric Company Continuous combustion liner for a combustor of a gas turbine
US9316155B2 (en) 2013-03-18 2016-04-19 General Electric Company System for providing fuel to a combustor
US9322556B2 (en) 2013-03-18 2016-04-26 General Electric Company Flow sleeve assembly for a combustion module of a gas turbine combustor
US9316396B2 (en) * 2013-03-18 2016-04-19 General Electric Company Hot gas path duct for a combustor of a gas turbine
US10436445B2 (en) 2013-03-18 2019-10-08 General Electric Company Assembly for controlling clearance between a liner and stationary nozzle within a gas turbine
US9360217B2 (en) 2013-03-18 2016-06-07 General Electric Company Flow sleeve for a combustion module of a gas turbine
US9631812B2 (en) 2013-03-18 2017-04-25 General Electric Company Support frame and method for assembly of a combustion module of a gas turbine
US11143407B2 (en) 2013-06-11 2021-10-12 Raytheon Technologies Corporation Combustor with axial staging for a gas turbine engine
US9303871B2 (en) 2013-06-26 2016-04-05 Siemens Aktiengesellschaft Combustor assembly including a transition inlet cone in a gas turbine engine
US20150052905A1 (en) * 2013-08-20 2015-02-26 General Electric Company Pulse Width Modulation for Control of Late Lean Liquid Injection Velocity
WO2015108583A2 (en) * 2013-10-24 2015-07-23 United Technologies Corporation Circumferentially and axially staged annular combustor for gas turbine engine combustor
EP3060851B1 (en) * 2013-10-24 2019-11-27 United Technologies Corporation Circumferentially and axially staged can combustor for gas turbine engine
US20150159877A1 (en) * 2013-12-06 2015-06-11 General Electric Company Late lean injection manifold mixing system
US9976743B2 (en) * 2014-07-03 2018-05-22 United Technologies Corporation Dilution hole assembly
CN107076416B (en) 2014-08-26 2020-05-19 西门子能源公司 Film cooling hole arrangement for acoustic resonator in gas turbine engine
US10060629B2 (en) * 2015-02-20 2018-08-28 United Technologies Corporation Angled radial fuel/air delivery system for combustor
US20170284675A1 (en) * 2016-03-30 2017-10-05 Siemens Energy, Inc. Injector assembly and ducting arrangement including such injector assemblies in a combustion system for a gas turbine engine
JP6822868B2 (en) * 2017-02-21 2021-01-27 三菱重工業株式会社 Combustor and gas turbine
US11255543B2 (en) * 2018-08-07 2022-02-22 General Electric Company Dilution structure for gas turbine engine combustor
US11287134B2 (en) * 2019-12-31 2022-03-29 General Electric Company Combustor with dual pressure premixing nozzles
US11828467B2 (en) 2019-12-31 2023-11-28 General Electric Company Fluid mixing apparatus using high- and low-pressure fluid streams
US11371709B2 (en) 2020-06-30 2022-06-28 General Electric Company Combustor air flow path
US11333360B2 (en) * 2020-09-25 2022-05-17 General Electric Company Fuel injector for a turbomachine
RU2757705C1 (en) * 2021-01-13 2021-10-20 Роман Лазирович Илиев Double-layer vortex countercurrent flow burner
US11725824B2 (en) * 2021-04-08 2023-08-15 Raytheon Technologies Corporation Turbulence generator mixer for rotating detonation engine
US20220364729A1 (en) * 2021-05-14 2022-11-17 General Electric Company Combustor dilution with vortex generating turbulators
US11566790B1 (en) * 2021-10-28 2023-01-31 General Electric Company Methods of operating a turbomachine combustor on hydrogen
CN114353121B (en) * 2022-01-18 2022-12-20 上海交通大学 Multi-nozzle fuel injection method for gas turbine
US11578871B1 (en) * 2022-01-28 2023-02-14 General Electric Company Gas turbine engine combustor with primary and secondary fuel injectors
CN116658932A (en) * 2022-02-18 2023-08-29 通用电气公司 Combustor liner with dilution openings having swirl vanes
US20230408098A1 (en) * 2022-05-25 2023-12-21 General Electric Company Combustor with secondary fuel nozzle in dilution fence

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1601607A1 (en) * 1951-01-28 1970-08-27 Lucas Industries Ltd Burners for gas turbines
DE1074920B (en) * 1955-07-07 1960-02-04 Ing habil Fritz A F Schmidt Murnau Dr (Obb) Method and device for regulating gas turbine combustion chambers with subdivided combustion and several pressure levels
GB854135A (en) * 1958-03-05 1960-11-16 Rolls Royce Improvements in or relating to combustion equipment
US3134229A (en) * 1961-10-02 1964-05-26 Gen Electric Combustion chamber
US3338051A (en) * 1965-05-28 1967-08-29 United Aircraft Corp High velocity ram induction burner
US3643430A (en) * 1970-03-04 1972-02-22 United Aircraft Corp Smoke reduction combustion chamber
US3788065A (en) * 1970-10-26 1974-01-29 United Aircraft Corp Annular combustion chamber for dissimilar fluids in swirling flow relationship
JPS4724483Y1 (en) * 1970-12-22 1972-08-02
US3703259A (en) * 1971-05-03 1972-11-21 Gen Electric Air blast fuel atomizer
JPS5326481Y2 (en) * 1973-06-05 1978-07-06

Also Published As

Publication number Publication date
IL45684A (en) 1976-11-30
IL45684A0 (en) 1974-12-31
AU7329574A (en) 1976-03-18
DE2449084C2 (en) 1984-09-06
SE400348B (en) 1978-03-20
FR2247674A1 (en) 1975-05-09
JPS5858563B2 (en) 1983-12-26
US3872664A (en) 1975-03-25
SE7412667L (en) 1975-04-16
GB1482145A (en) 1977-08-03
FR2247674B1 (en) 1980-05-23
IT1022870B (en) 1978-04-20
DE2449084A1 (en) 1975-04-17
JPS5065708A (en) 1975-06-03
CA1004481A (en) 1977-02-01
NO743677L (en) 1975-06-02
CH585373A5 (en) 1977-02-28
NO145081C (en) 1982-01-06

Similar Documents

Publication Publication Date Title
NO145081B (en) PROCEDURE FOR EXECUTION OF A BURNING AND BURNER FOR EXECUTION OF THE PROCEDURE
US4348170A (en) Dual register, split stream burner assembly with divider cone
US5408943A (en) Split stream burner assembly
SU578019A3 (en) Burner
DK165138B (en) BURNER FOR COMBUSTION OF LIQUID OR GASFUL FUEL
JPH0820047B2 (en) Low NOx short flame burner
US4400151A (en) Controlled flow, split stream burner assembly
US5407347A (en) Apparatus and method for reducing NOx, CO and hydrocarbon emissions when burning gaseous fuels
US4220444A (en) Gas burner for flame adherence to tile surface
US5011400A (en) Controlled flow split steam burner assembly with sorbent injection
JP5734358B2 (en) Multi-cone premix burner for gas turbine
US6145450A (en) Burner assembly with air stabilizer vane
RU2352864C1 (en) Method and device for burning fuel
NO143590B (en) BURNER, SPECIFICALLY FOR LIQUID FUEL
KR102256318B1 (en) Mixed-combustion burner device
CA1254444A (en) Controlled flow split stream burner assembly with sorbent injection
EP3078910B1 (en) Gas burner with staged combustion
US5738508A (en) Burner
US4519322A (en) Low pressure loss burner for coal-water slurry or fuel oil
US4201539A (en) Flame forming burner
JP6732960B2 (en) Method for burning fuel and boiler
JP6502462B2 (en) Mixed combustion burner device and boiler
SU787800A1 (en) Burner for burning gaseous fuel
RU2052718C1 (en) Furnace
GB2079925A (en) Dual register, split stream burner assembly