NO136463B - - Google Patents
Download PDFInfo
- Publication number
- NO136463B NO136463B NO1433/72A NO143372A NO136463B NO 136463 B NO136463 B NO 136463B NO 1433/72 A NO1433/72 A NO 1433/72A NO 143372 A NO143372 A NO 143372A NO 136463 B NO136463 B NO 136463B
- Authority
- NO
- Norway
- Prior art keywords
- approx
- reaction zone
- catalyst
- steam
- rudder
- Prior art date
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 26
- 239000003054 catalyst Substances 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 229930195733 hydrocarbon Natural products 0.000 claims description 15
- 150000002430 hydrocarbons Chemical class 0.000 claims description 15
- 239000007858 starting material Substances 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 238000000629 steam reforming Methods 0.000 claims description 12
- 238000002309 gasification Methods 0.000 claims description 10
- 239000004215 Carbon black (E152) Substances 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000012876 carrier material Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 239000000047 product Substances 0.000 description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 235000013844 butane Nutrition 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- SXKJCXWNWBRZGB-UHFFFAOYSA-N chromium copper manganese Chemical compound [Mn][Cr][Cu] SXKJCXWNWBRZGB-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- IXWIAFSBWGYQOE-UHFFFAOYSA-M aluminum;magnesium;oxygen(2-);silicon(4+);hydroxide;tetrahydrate Chemical compound O.O.O.O.[OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Si+4].[Si+4].[Si+4].[Si+4] IXWIAFSBWGYQOE-UHFFFAOYSA-M 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- -1 berrylium Chemical compound 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000010742 number 1 fuel oil Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/26—Fuel gas
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Description
Foreliggende oppfinnelse angår reforming av hydrocarbon-materialer i nærvær av damp, under dannelse av lavtkokende produkter. Nærmere bestemt angår oppfinnelsen dampreforming av hydrocarboner under dannelse av et methanrikt gassformig produkt som er spesielt godt egnet til anvendelse som en syntetisk naturgass (SNG), ofte kaldt "lysgass". Fremgangsmåten utføres katalytisk, fortrinsvis ved bruk av en reaksjonssone med et fast katalysator-skikt, gjennom hvilken de forskjellige reaktanter føres. The present invention relates to the reforming of hydrocarbon materials in the presence of steam, with the formation of low-boiling products. More specifically, the invention relates to steam reforming of hydrocarbons while forming a methane-rich gaseous product which is particularly well suited for use as a synthetic natural gas (SNG), often cold "light gas". The process is carried out catalytically, preferably using a reaction zone with a solid catalyst layer, through which the various reactants are passed.
Det er velkjent at dampreforming av hydrocarboner hvor It is well known that steam reforming of hydrocarbons where
der anvendes normalt gassformig materiale eller normalt flytende nafthafraksjoner, kan anvendes effektivt for fremstilling av gassformige produkter som er egnet til kjemiske synteser eller forbrenning som lysgass. Flere ting av interesse er nylig frem-kommet innen området luftforurensning resulterende fra forbren- where normally gaseous material or normally liquid naphtha fractions are used, can be used effectively for the production of gaseous products that are suitable for chemical syntheses or combustion as light gas. Several things of interest have recently come to light in the area of air pollution resulting from combustion
ning av forskjellige brennstoffer. Faktisk har resultatet ført til en gradvis, men økende ulyst overfor bruk av svovelholdige kull- og brenselsoljer. Der settes nu mere lit til anvendelse av methanrik naturgass. Det stadig økende krav efter større mengder naturgass har ført til en kritisk og rask utnyttelse av de natur- ning of different fuels. In fact, the result has led to a gradual but growing reluctance to use sulphurous coal and fuel oils. There is now more reliance on the use of methane-rich natural gas. The ever-increasing demand for larger quantities of natural gas has led to a critical and rapid utilization of the natural
lige ressurser. En opprettholdelse av det nuværende forbruk av naturgass vil, selv om der observeres at forbruket er stadig øk- equal resources. Maintaining the current consumption of natural gas will, even if it is observed that consumption is constantly increasing
ende, resultere i en total utnyttelse av den naturlige gassreser- end, result in a total utilization of the natural gas reser-
ve innen en periode på fra 7 til 10 år. ve within a period of from 7 to 10 years.
For å unngå en slik kritisk situasjon forutsettes der In order to avoid such a critical situation, it is assumed that
at f ler og f ler petroleumraf f inierier, såvel som gassf remstille-r re,vil gå over til den relativt gamle dampreformingsteknologi av hydrocarboner. that more and more petroleum refineries, as well as gas producers, will switch to the relatively old steam reforming technology of hydrocarbons.
Det ville følgelig være meget ønskelig å ha en forbed- Consequently, it would be highly desirable to have a
ret prosess ved hydrocarbondampreforming som kunne tillate utfø-relse av slike prosesser på en mer økonomisk og effektiv måte. direct process by hydrocarbon steam reforming which could allow such processes to be carried out in a more economical and efficient manner.
Et prinsipalt mål ved foreliggende oppfinnelse er å forbedre effektiviteten til en fremgangsmåte for utførelse av dampreforming av hydrocarboner. Et naturlig mål ligger i å øke driftsperioden ved hvilken prosessen funksjonerer akseptabelt og økonomisk, og å minske carbonavleiringen på den anvendte katalysator i en hydrocarbondampreformingsprosess. A principal aim of the present invention is to improve the efficiency of a method for carrying out steam reforming of hydrocarbons. A natural goal is to increase the operating period during which the process functions acceptably and economically, and to reduce the carbon deposit on the catalyst used in a hydrocarbon steam reforming process.
Der er ved foreliggende oppfinnelse tilveiebragt en fremgangsmåte ved fremstilling av en methanrik gass ved dampreforming av et hydrocarbon, "ved hvilken hydrocarbonet og damp omsettes i nærvær av en katalysator i en første forgasningsreaksjonssone til produkter med lavere molekylvekt, hvilken fremgangsmåte er karakterisert ved at fra 3 til 50 mol% av de lavere molekylære produkter omsettes i en andre katalysatorholdig reaksjonssone under dannelse av hydrogen, som tilføres til innløpet av første forgasningssone. The present invention provides a method for the production of a methane-rich gas by steam reforming of a hydrocarbon, in which the hydrocarbon and steam are reacted in the presence of a catalyst in a first gasification reaction zone to products with a lower molecular weight, which method is characterized in that from 3 to 50 mol% of the lower molecular products are reacted in a second catalyst-containing reaction zone with the formation of hydrogen, which is supplied to the inlet of the first gasification zone.
Andre mål og utførelsesformer for oppfinnelsen vil ty-deliggjøres av den medfølgende beskrivelse av prosessen. I en slik utførelsesform føres damp inn i den annen reaksjonssone i blanding med mengden av avløp fra første sone. Other aims and embodiments of the invention will be made clear by the accompanying description of the process. In such an embodiment, steam is introduced into the second reaction zone in mixture with the amount of effluent from the first zone.
Den prinsipale funksjon til foreliggende prosess er fr.emstilling av normalt gassformige materialer, og spesielt et methanrikt sluttprodukt. Egnede utgangsmaterialer fra hvilke storé utbytter av methan kan erholdes, innbefatter normalt gassformige komponenter slike som ethån, propan og butan, en normalt flytende lett naftha med et sluttkokepunkt på ca. 121 - 149°C, og en tung naftha med et utgangskokepunkt på ca. 121 - 149°C og et sluttkokepunkt på ca. 204 - 232°C. Et annet egnet utgangsmateriale ville være en blanding av både normalt gassformige og normalt flytende bestanddeler, f.eks. en lett direktedestillert naftha inneholdende ethan, propan og butan. The principal function of the present process is the production of normally gaseous materials, and in particular a methane-rich end product. Suitable starting materials from which large yields of methane can be obtained include normally gaseous components such as ethane, propane and butane, a normally liquid light naphtha with a final boiling point of approx. 121 - 149°C, and a heavy naphtha with an initial boiling point of approx. 121 - 149°C and a final boiling point of approx. 204 - 232°C. Another suitable starting material would be a mixture of both normally gaseous and normally liquid components, e.g. a light straight-distilled naphtha containing ethane, propane and butane.
Som kjent er en større del av en egnet gassreformings-katalysator følsom overfor nærvær av svovelforbindelser og er kjent for å deaktiveres hurtig. I den efterfølgende diskusjon er det derfor forutsatt at utgangsmaterialet for foreliggende fremgangsmåte har vært underkastet en eller annen form for hydro-behandling eller hydroraffinering for å omdanne de svovelaktige forbindelser til hydrogensulfid og hydrocarboner, og at det resulterende hydrogensulfid er blitt fjernet før hydrocarbonet innføres i foreliggende prosess. Egnede utgangsmaterialer for foreliggende prosess skal inneholde mindre enn ca. 25 ppm (basert på vekt) svovelaktige forbindelser, og fortrinsvis mindre enn 10 ppm, beregnet som elementært svovel. En spesielt egnet hydroraffineringsforbehandling innbefatter bruk av en kobolt-molybdenkatalysator ved en maksimal katalysatortemperatur på ca. 316 - 454°C. Andre driftsbetingelser innbefatter et trykk på ca. 18 - 103 atm, en væskeromshastighet pr. time av utgangsmaterialet ved 15°C pr. volumenhet av katalysatoren, LHSV på 0,1 - 10,0 og en hydrogenkonsentrasjon på ca. 18 - 270 volumer H20 ved. 15°C, 1 atm pr. volum olje ved 15°C, V/V (100 - 1500 SCFB). Det resulterende hydrogensulfid kan fjernes på en hvilken som helst egnet måte innbefattet stripping eller adsorpsjon over en sinkoxydad-sorbent. Det skal forståes at hydroraffineringsforbehandlingen ikke utgjør noen vesentlig del av foreliggende oppfinnelse, og en hvilken som helst egnet teknikk for nedsettelse av svovelinn-holdet til mindre enn ca. 25 ppm (vektbasis) vil kunne anvendes. As is known, a major portion of a suitable gas reforming catalyst is sensitive to the presence of sulfur compounds and is known to deactivate rapidly. In the following discussion, it is therefore assumed that the starting material for the present process has been subjected to some form of hydro-treatment or hydrorefining to convert the sulphurous compounds into hydrogen sulphide and hydrocarbons, and that the resulting hydrogen sulphide has been removed before the hydrocarbon is introduced into the present process. Suitable starting materials for the present process must contain less than approx. 25 ppm (based on weight) sulfur-like compounds, and preferably less than 10 ppm, calculated as elemental sulfur. A particularly suitable hydrorefining pretreatment involves the use of a cobalt-molybdenum catalyst at a maximum catalyst temperature of about 316 - 454°C. Other operating conditions include a pressure of approx. 18 - 103 atm, a liquid space velocity per hour of the starting material at 15°C per volume unit of the catalyst, LHSV of 0.1 - 10.0 and a hydrogen concentration of approx. 18 - 270 volumes H20 at. 15°C, 1 atm per volume of oil at 15°C, V/V (100 - 1500 SCFB). The resulting hydrogen sulfide can be removed by any suitable means including stripping or adsorption over a zinc oxide sorbent. It should be understood that the hydrorefining pre-treatment does not form any significant part of the present invention, and any suitable technique for reducing the sulfur content to less than approx. 25 ppm (weight basis) can be used.
Det hovedsakelig svovelfrie utgangsmateriale blandes med damp i en mengde som gir et forhold damp/carbon på ca. 1,1:1 til ca. 6,0:1, og fortrinsvis ca. 1,3:1 til 4,0:1. Blandingen føres inn i en dampreformingsreaksjonssone eller forgasningssone ved en temperatur slik at den maksimale katalysatorskikttempera-tur er ca. 427 593°C, og fortrinsvis ca. 441 - 538°C. Dampreforming sreaksjonene utføres ved et trykk på ca. 18 - 103 atm, og fortrinsvis ca. 28 - 69 atm. Et stort spekter av dampkatalysa-torer er kjent. Vanligvis inneholder disse katalysatorer metal-liske bestanddeler valgt fra gruppen VI B og jerngruppen i det periodiske system, innbefattet krom, molybden, wolfram, nikkel, jern og kobolt. Der er også kjent de fordeler som oppnåes ved å anvende aktivatorer valgt fra alkali og jordalkalimetaller, innbefattet lithium, natrium, kalium, rubidium, berrylium, magnesi-um, kalsium, strontium og barium. Disse katalysatorer kombineres vanligvis med en egnet tungtsmeltelig uorganisk oxydbærer, engen fremstillet syntetisk eller naturlig forekommende. Egnede tungtsmeltelige uorganiske oxydmaterialer er kieselguhr, kaolin, The mainly sulphur-free starting material is mixed with steam in an amount which gives a steam/carbon ratio of approx. 1.1:1 to approx. 6.0:1, and preferably approx. 1.3:1 to 4.0:1. The mixture is fed into a steam reforming reaction zone or gasification zone at a temperature so that the maximum catalyst layer temperature is approx. 427,593°C, and preferably approx. 441 - 538°C. The steam reforming reactions are carried out at a pressure of approx. 18 - 103 atm, and preferably approx. 28 - 69 atm. A wide range of steam catalysts is known. Typically, these catalysts contain metallic constituents selected from group VI B and the iron group of the periodic table, including chromium, molybdenum, tungsten, nickel, iron and cobalt. There are also known the advantages obtained by using activators selected from alkali and alkaline earth metals, including lithium, sodium, potassium, rubidium, berrylium, magnesium, calcium, strontium and barium. These catalysts are usually combined with a suitable low-melting inorganic oxide carrier, either synthetically produced or naturally occurring. Suitable hard-melting inorganic oxide materials are kieselguhr, kaolin,
attapulgusleire, aluminiumoxyd, siliciumoxyd, zirconiumoxyd, attapulgus clay, aluminum oxide, silicon oxide, zirconium oxide,
hafniumoxyd og boroxyd og blandinger derav. En spesielt egnet hafnium oxide and boron oxide and mixtures thereof. A particularly suitable one
og foretrukken dampreformingskatalysator er en bærer av kieselguhr og en katalytisk aktiv nikkelbestanddel aktivert gjennom bruk av et kobber-krom eller kobber-krom-mangankompleks, og kan eller kan ikke være ytterligere aktivert ved tilsetnign av et jordalkalimetalloxyd. Denne katalysator foretrekkes siden den synes å utvise en usedvanlig høy grad av svoveltoleranse. Reak-sjonssoneutløpet, som hovedsakelig omfatter methan, carbonmonoxyd, carbondioxyd, hydrogen og damp kjøles til en temperatur på ca. 204 - 427°C, fortrinsvis under ca. 343°C. En del av det avkjølte produktavløp, vanligvis ca. 3 - 50 mol%, og fortrinsvis opp til ca. 20 mol%, omledes til en annen reaksjonssone som funksjonerer ved hovedsakelig samme trykk, en temperatur på ca. 593 - 816°C. and the preferred steam reforming catalyst is a support of kieselguhr and a catalytically active nickel component activated through the use of a copper-chromium or copper-chromium-manganese complex, and may or may not be further activated by the addition of an alkaline earth metal oxide. This catalyst is preferred since it appears to exhibit an exceptionally high degree of sulfur tolerance. The reaction zone outlet, which mainly comprises methane, carbon monoxide, carbon dioxide, hydrogen and steam is cooled to a temperature of approx. 204 - 427°C, preferably below approx. 343°C. A portion of the cooled product effluent, usually approx. 3 - 50 mol%, and preferably up to approx. 20 mol%, is diverted to another reaction zone which functions at essentially the same pressure, a temperature of approx. 593 - 816°C.
I en foretrukken utførelsesform blandes damp, ekvivalent med ca. 50 % av det friske utgangsmateriale med mengden av avløpet som omledes til den annen reaksjonssone. In a preferred embodiment, steam, equivalent to approx. 50% of the fresh starting material with the amount of effluent diverted to the second reaction zone.
Katalysatoren i den annen reaksjonssone kan være den samme som er avsatt i den første reaksjonssone, og er vanligvis valgt fra de katalysatorer som her er beskrevet. Fortrinsvis er imidlertid' den katalysator som anvendes i den hydrogenfremstillende reaksjonssone et jern-gruppemetall kombinert med et tungtsmeltelig uorganisk oxyd slik som et materiale av aluminiumoxyd og-"siliciumoxyd. Ved de strenge driftsbetingelser utføres de hydrogenfremstillende reaksjoner med det resultat at hydrogen-konsentrasjonen økes fra ca. 20 mol% til 40 - 60 mol% på hovedsakelig tørr basis. Den hydrogenanrikede gassfase resirkuleres derefter til å kombineres med utgangsmaterialet før innløpet til den første reaksjonssone. En methanrik gass fraskilles og utvin-nes fra den gjenværende del av avløpet fra første reaksjonssone. Et spesielt foretrukket system for gjenvinning av det ønskede sluttprodukt er vist i den vedlagte tegning. The catalyst in the second reaction zone can be the same as that deposited in the first reaction zone, and is usually selected from the catalysts described here. Preferably, however, the catalyst used in the hydrogen-producing reaction zone is an iron-group metal combined with a poorly melting inorganic oxide such as a material of aluminum oxide and silicon oxide. Under the strict operating conditions, the hydrogen-producing reactions are carried out with the result that the hydrogen concentration is increased from about 20 mol% to 40 - 60 mol% on a substantially dry basis. The hydrogen-enriched gas phase is then recycled to combine with the feedstock prior to the inlet to the first reaction zone. A methane-rich gas is separated and recovered from the remaining portion of the effluent from the first reaction zone A particularly preferred system for recycling the desired end product is shown in the attached drawing.
Den vedlagte tegning skal beskrives i forbindelse med dampreforming av en lett, direktedestillert naftha inneholdende propan, butan og pentan. Utgangsmaterialet, strømsammensetnin-ger, driftsbetingelser, separatorer, reaktorer og lignende er utelukkende angitt av illustrative grunner og kan varieres vidt uten å avvike fra oppfinnelsens ramme. The attached drawing must be described in connection with steam reforming of a light, direct-distilled naphtha containing propane, butane and pentane. The starting material, flow compositions, operating conditions, separators, reactors and the like are indicated exclusively for illustrative reasons and can be varied widely without deviating from the scope of the invention.
Tegningen vil beskrives i forbindelse med en prosessenhet i teknisk målestokk beregnet på å behandle ca. ^1,5 m pr. time av lett direktedestillert naftha. Utgangsmaterialet inneholder 1,^-6 m^ pr. The drawing will be described in connection with a process unit on a technical scale intended to process approx. ^1.5 m per hour of light straight-distilled naphtha. The starting material contains 1.^-6 m^ per
time propan, ^,02 m- 5 pr. time butaner, 8,^7 m^ pr. time pentaner og 27,6 m- 5 pr. time av hexaner og tyngre normaltflytende hydrocarboner. Utgangsmaterialet inngår i prosessen gjennom ror 1, og blandes der hour propane, ^.02 m- 5 per hour butanes, 8.^7 m^ per hour pentanes and 27.6 m- 5 per hour of hexanes and heavier normally flowing hydrocarbons. The starting material enters the process through rudder 1, and is mixed there
med 3,1^-0 kg mol pr. time av damp, fra ror 2, som resulterer i et forhold mellom damp og carbon på 1,6:1. Blandingen fortsetter gjennom ror 1 inn i oppvarmer 3, °g oppvarmes slik at reaktorinnlopstemperaturen er ca. Lt-99°C. Den oppvarmede strom fores gjennom ror og blandes med en hydrogenrik resirkulasjonsstrom fra ror 5, hvis kilde skal sen-ere beskrives, og blandingen fores videre gjennom ror •+ inn i reaktor 6. Reaktor 6 inneholder ca. 28,6 m^ av en katalysator med en tilsyne-latende spesifikk vekt på ca. 0,98 g pr.cm^. Katalysatoren omfatter et bærermateriale av kieselguhr, ca. 38,0 vekt$ av en nikkelbestanddel (beregnet som elementært nikkel), ca. 9,0 vekt% magnesiumoxyd og ca. 7,5 vekt% kobber-krom-manganbestanddel i hvilke molforholdet mellom kobber og krom og mangan er 1:1:0,1. Trykket i reaktor 6 er ca. hl atm som målt ved innlopet. with 3.1^-0 kg mol per hour of steam, from rudder 2, which results in a ratio between steam and carbon of 1.6:1. The mixture continues through stirrer 1 into heater 3, °g is heated so that the reactor inlet temperature is approx. Lt-99°C. The heated stream is fed through rudder and mixed with a hydrogen-rich recirculation stream from rudder 5, the source of which will be described later, and the mixture is further fed through rudder •+ into reactor 6. Reactor 6 contains approx. 28.6 m^ of a catalyst with an apparent specific gravity of approx. 0.98 g per cm^. The catalyst comprises a carrier material of kieselguhr, approx. 38.0 wt$ of a nickel component (calculated as elemental nickel), approx. 9.0% by weight magnesium oxide and approx. 7.5% by weight copper-chromium-manganese component in which the molar ratio between copper and chromium and manganese is 1:1:0.1. The pressure in reactor 6 is approx. hl atm as measured at the inlet.
Avlopet fra reaksjonssone 6 meddrives gjennom ror 7 og innfores The effluent from reaction zone 6 is entrained through rudder 7 and introduced
i kondensator 8, kjoles til ca. 271°C og meddrives gjennomror 9. Det totale produktavlop fra reaksjonssone 6 har den omtrentlige sammensetning som er angitt i den etterfølgende tabell I: in condenser 8, dress to approx. 271°C and driven through tube 9. The total product effluent from reaction zone 6 has the approximate composition indicated in the following table I:
Ca. 30,0 mol% av det avkjolte produktavlop fra ror 9 fjernes gjennom ror 2^f, komprimeres ved ikke viste anordninger til ca. 52 atm og sendes gjennom ror 2h inn i oppvarmer 25- Materialet oppvarmes til ca. 6^9°C og går inn i reaktor 27 gjennom ror 26. Reaktor 27 About. 30.0 mol% of the cooled product effluent from rudder 9 is removed through rudder 2^f, compressed by devices not shown to approx. 52 atm and sent through stirrer for 2h into heater 25- The material is heated to approx. 6^9°C and enters reactor 27 through rudder 26. Reactor 27
inneholder katalysator basert på 15, 0% jern, beregnet som elementært jern, kombinert med et materiale bestående av 63 vekt% aluminiumoxyd contains catalyst based on 15.0% iron, calculated as elemental iron, combined with a material consisting of 63% aluminum oxide by weight
og 37,0 vekt$ siliciumoxyd. Avlopet fra reaktor 27 meddrives gjennom ror 5 og kombineres med det oppvarmede utgangsmateriale og dampen i ror <*>+. ;Den gjenværende del av produktavlopet i ror 9 fortsetter gjennom dette inn i skiftomvandler 10, ved en temperatur på ca. 271°C og hovedsakelig ved det samme trykk. Produktavlopet fra skiftomvandler 10, ;ved en temperatur på ca. 3l6°C meddrives gjennom ror 11, og innfores i kondensator 12 og kjoles til ca. 266°C. Det avkjolte materiale innfores deretter i en annen skiftomvandler ik- gjennom ror 13. Skift-omvandlerene. 10 og ih- minsker konsentrasjonen av hydrogen i produktavlopet av forgasningsreaktor 6... Hydrogenet omsettes med carbondioxyd og carbonmonoxyd under dannelse av ytterligere methan og vann. Denne spesielle omvandling er anfort i den folgende tabell II: ;;Produktavlopet fra skiftreaktor 1<*>+, ved en temperatur på ca. 271°C og et trykk på ca. 36 atm, meddrives' gjennom ror 15 inn i kondensator 16 og avkjoles. Avkjolt avlop innfores gjennom ror 17 inn i separator 18, fra hvilken kondensert vann fjernes fra prosessen gjennom ror 19. Avlopet fra skiftreaktor 1^, nå hovedsakelig fritt for vann, innfores gjennom ror 20 inn i carbondioxydfjerningssystem 21. Carbondioxyd fjernes gjennom ror 22, mens metharirik produktgass ut-vinnes gjennom ror 23. and 37.0 wt% silica. The effluent from reactor 27 is entrained through rudder 5 and is combined with the heated output material and the steam in rudder <*>+. ;The remaining part of the product effluent in rudder 9 continues through this into shift converter 10, at a temperature of approx. 271°C and essentially at the same pressure. The product effluent from shift converter 10, at a temperature of approx. 3l6°C is driven through rudder 11, and introduced into condenser 12 and cooled to approx. 266°C. The cooled material is then introduced into another shift converter through pipe 13. The shift converters. 10 and reduces the concentration of hydrogen in the product effluent of gasification reactor 6... The hydrogen reacts with carbon dioxide and carbon monoxide to form further methane and water. This particular conversion is shown in the following table II: ;;The product effluent from shift reactor 1<*>+, at a temperature of approx. 271°C and a pressure of approx. 36 atm, is driven through rudder 15 into condenser 16 and cooled. Cooled effluent is fed through pipe 17 into separator 18, from which condensed water is removed from the process through pipe 19. The effluent from shift reactor 1^, now mainly free of water, is fed through pipe 20 into carbon dioxide removal system 21. Carbon dioxide is removed through pipe 22, while Methane-rich product gas is extracted through rudder 23.
I en foretrukket utfijrelsesform som her angitt, omledes damp fra ror 2 gjennom ror 28, for å blandes med avlopet fra forste reaksjonssone i ror 2h. I denne utforelsesform kombineres damp, - ekvivalent med ca. 20% av det friske utgangsmateriale i ror 1, med reaktor 6 -avlopet som inntrer i oppvarmer 25. In a preferred embodiment as indicated here, steam from rudder 2 is diverted through rudder 28, to be mixed with the effluent from the first reaction zone in rudder 2h. In this embodiment steam is combined, - equivalent to approx. 20% of the fresh starting material in rudder 1, with the reactor 6 effluent entering heater 25.
Carbondioxyd i system 21 kan fjernes ved en hvilken som helst kjent fremgangsmåte innen faget. En vanlig fremgangsmåte innbefatter monoethanolaminadsorp sjon. En annen adsorpsjonstype anvender varm kaliumcarbonat, mens en annen egnet teknikk anvender et katalytisk reaksjonssystem som gjor bruk av vanadiumpentoxyd som katalysator. Det methanrike gassaktige sluttprodukt 1 ror 23 har en sammensetning som angitt i den etterfølgende tabell III: Carbon dioxide in system 21 can be removed by any method known in the art. A common method involves monoethanolamine adsorption. Another type of adsorption uses hot potassium carbonate, while another suitable technique uses a catalytic reaction system that makes use of vanadium pentoxide as a catalyst. The methane-rich gaseous end product 1 ror 23 has a composition as indicated in the following table III:
Den prinsipale fordel ved foreliggende oppfinnelse ligger i The principal advantage of the present invention lies in
den okning i molekylarhydrogenkonsentrasjon i det totale utgangsmateriale til forgasningsreaktor 6. Når den ovenfor beskrevne fremgangsmåte sammenlignes med en behandling av det samme nafthautgangsmateriale uten bruk av den andre (hydrogenproduserende) reaksjonssone men under betingelser som produserer et hovedsakelig ekvivalent produkt, ble det funnet at foreliggende fremgangsmåte oket katalysatorens ledetid med 25 - ^ 5%. Andre fordeler innbefatter en mindre utgangsmaterialopp-varmer 3, betydelig mer effektiv totalt varmeforbruk og en mer iso-termisk forgasningsreaktor. the increase in molecular hydrogen concentration in the total starting material of gasification reactor 6. When the above-described method is compared with a treatment of the same naphtha starting material without the use of the second (hydrogen-producing) reaction zone but under conditions that produce a substantially equivalent product, it was found that the present method increased the catalyst's lead time by 25 - ^ 5%. Other advantages include a smaller feedstock heater 3, significantly more efficient total heat consumption and a more isothermal gasification reactor.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13749571A | 1971-04-26 | 1971-04-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
NO136463B true NO136463B (en) | 1977-05-31 |
NO136463C NO136463C (en) | 1977-09-07 |
Family
ID=22477687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO1433/72A NO136463C (en) | 1971-04-26 | 1972-04-25 | PROCEDURE FOR STEAM REFORM OF HYDROCARBONES. |
Country Status (27)
Country | Link |
---|---|
US (1) | US3744981A (en) |
AT (1) | AT357256B (en) |
AU (1) | AU459133B2 (en) |
BE (1) | BE782300A (en) |
BG (1) | BG25652A3 (en) |
BR (1) | BR7202552D0 (en) |
CA (1) | CA960460A (en) |
CS (1) | CS167980B2 (en) |
DD (1) | DD98533A5 (en) |
DE (1) | DE2219949B2 (en) |
EG (1) | EG10931A (en) |
ES (1) | ES401940A1 (en) |
FI (1) | FI55046C (en) |
FR (1) | FR2134471B1 (en) |
GB (1) | GB1379498A (en) |
HU (1) | HU167538B (en) |
IL (1) | IL39255A (en) |
IT (1) | IT952766B (en) |
NL (1) | NL7205538A (en) |
NO (1) | NO136463C (en) |
PH (1) | PH9982A (en) |
PL (1) | PL84598B1 (en) |
RO (1) | RO64680A (en) |
SE (1) | SE387100B (en) |
SU (1) | SU434660A3 (en) |
YU (1) | YU35374B (en) |
ZA (1) | ZA722626B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518964B2 (en) * | 1971-10-07 | 1976-03-23 | ||
JPS5320002B2 (en) * | 1972-01-14 | 1978-06-24 | ||
JPS5550080B2 (en) * | 1972-11-28 | 1980-12-16 | ||
US3992166A (en) * | 1972-12-28 | 1976-11-16 | Japan Gasoline Co., Ltd. | Low temperature steam reforming process for hydrocarbons |
US4000987A (en) * | 1973-02-03 | 1977-01-04 | Japan Gasoline Co., Ltd. | Low-temperature steam reforming process for hydrocarbons |
US4000988A (en) * | 1973-06-20 | 1977-01-04 | Japan Gasoline Co., Ltd. | Low-temperature steam reforming process for hydrocarbons |
US3904744A (en) * | 1973-10-01 | 1975-09-09 | Exxon Research Engineering Co | Process for the production of hydrogen-containing gases |
US4160649A (en) * | 1978-08-25 | 1979-07-10 | Uop Inc. | Substituted natural gas via steam reforming of kerosene |
BRPI0609771A2 (en) * | 2005-03-21 | 2011-10-18 | Univ Ben Gurion | process for producing a liquid fuel composition, diesel fuel composition, and, mixed fuel composition |
GB201000097D0 (en) * | 2010-01-05 | 2010-12-29 | Johnson Matthey Plc | Apparatus and process for treating natural gas |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1392474A (en) * | 1963-08-02 | 1965-03-19 | Gas Council | Process for preparing gas mixtures from a petroleum distillate |
NL6804705A (en) * | 1967-04-03 | 1968-10-04 |
-
1971
- 1971-04-26 US US00137495A patent/US3744981A/en not_active Expired - Lifetime
-
1972
- 1972-04-18 ZA ZA722626A patent/ZA722626B/en unknown
- 1972-04-19 BE BE782300A patent/BE782300A/en unknown
- 1972-04-20 IL IL39255A patent/IL39255A/en unknown
- 1972-04-20 ES ES401940A patent/ES401940A1/en not_active Expired
- 1972-04-21 PH PH13476A patent/PH9982A/en unknown
- 1972-04-21 CA CA140,271A patent/CA960460A/en not_active Expired
- 1972-04-22 EG EG162/72A patent/EG10931A/en active
- 1972-04-24 YU YU1083/72A patent/YU35374B/en unknown
- 1972-04-24 NL NL7205538A patent/NL7205538A/xx not_active Application Discontinuation
- 1972-04-24 IT IT49835/72A patent/IT952766B/en active
- 1972-04-24 GB GB1886872A patent/GB1379498A/en not_active Expired
- 1972-04-24 AT AT360472A patent/AT357256B/en not_active IP Right Cessation
- 1972-04-24 DE DE2219949A patent/DE2219949B2/en not_active Withdrawn
- 1972-04-25 SU SU1778632A patent/SU434660A3/en active
- 1972-04-25 PL PL1972154975A patent/PL84598B1/pl unknown
- 1972-04-25 DD DD162570A patent/DD98533A5/xx unknown
- 1972-04-25 FI FI1172/72A patent/FI55046C/en active
- 1972-04-25 SE SE7205442A patent/SE387100B/en unknown
- 1972-04-25 HU HUUI190A patent/HU167538B/hu unknown
- 1972-04-25 NO NO1433/72A patent/NO136463C/en unknown
- 1972-04-25 FR FR727214583A patent/FR2134471B1/fr not_active Expired
- 1972-04-26 RO RO7270711A patent/RO64680A/en unknown
- 1972-04-26 BR BR2552/72A patent/BR7202552D0/en unknown
- 1972-04-26 CS CS2843A patent/CS167980B2/cs unknown
- 1972-04-26 BG BG020333A patent/BG25652A3/en unknown
- 1972-04-26 AU AU41537/72A patent/AU459133B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
YU35374B (en) | 1980-12-31 |
RO64680A (en) | 1980-01-15 |
IT952766B (en) | 1973-07-30 |
SE387100B (en) | 1976-08-30 |
SU434660A3 (en) | 1974-06-30 |
HU167538B (en) | 1975-10-28 |
NL7205538A (en) | 1972-10-30 |
ES401940A1 (en) | 1975-03-01 |
PL84598B1 (en) | 1976-04-30 |
FI55046B (en) | 1979-01-31 |
FR2134471A1 (en) | 1972-12-08 |
AU4153772A (en) | 1973-11-01 |
DD98533A5 (en) | 1973-06-20 |
EG10931A (en) | 1976-10-31 |
FR2134471B1 (en) | 1974-07-26 |
YU108372A (en) | 1980-06-30 |
GB1379498A (en) | 1975-01-02 |
FI55046C (en) | 1979-05-10 |
ATA360472A (en) | 1979-11-15 |
IL39255A (en) | 1975-05-22 |
BE782300A (en) | 1972-08-16 |
BG25652A3 (en) | 1978-11-10 |
AT357256B (en) | 1980-06-25 |
CA960460A (en) | 1975-01-07 |
AU459133B2 (en) | 1975-03-20 |
IL39255A0 (en) | 1972-06-28 |
US3744981A (en) | 1973-07-10 |
PH9982A (en) | 1976-07-13 |
DE2219949A1 (en) | 1972-11-16 |
ZA722626B (en) | 1973-01-31 |
CS167980B2 (en) | 1976-05-28 |
NO136463C (en) | 1977-09-07 |
BR7202552D0 (en) | 1973-05-24 |
DE2219949B2 (en) | 1979-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5149516A (en) | Partial oxidation of methane over perovskite catalyst | |
US9089832B2 (en) | Catalysts for oxidative coupling of hydrocarbons | |
US8816137B2 (en) | Efficient and environmentally friendly processing of heavy oils to methanol and derived products | |
US3765851A (en) | Gas production | |
US3252774A (en) | Production of hydrogen-containing gases | |
NO136463B (en) | ||
US4010008A (en) | Substituted natural gas via hydrocarbon steam reforming | |
GB1431540A (en) | Production of methane | |
NO780801L (en) | PREPARATION OF PUREED SYNTHESIS GAS AND CARBON MONOXIDE | |
US2137275A (en) | Process of reconstituting and dehydrogenating heavier hydrocarbons and making an antiknock gasoline | |
NO133970B (en) | ||
RU2458966C1 (en) | Method of processing organic material (versions) | |
US4483693A (en) | Reforming of hydrocarbons in the presence of sulfur | |
CN111111762B (en) | Catalyst composition for directly preparing low-carbon olefin by carbon dioxide hydrogenation and application thereof | |
US3942957A (en) | Production of combustible gases | |
Bai et al. | Oxidative dehydrogenation of ethane to ethylene over metal oxide catalysts using carbon dioxide | |
SU701529A3 (en) | Method of producing ethane ano/or ethylene | |
CN100430347C (en) | Process to make a sulphur containing steam cracker feedstock | |
US11479728B2 (en) | Process for preparing liquid hydrocarbons by the Fischer-Tropsch process integrated into refineries | |
NO802333L (en) | PROCEDURE FOR THE CONVERSION OF COAL OR POWDER FOR HYDROCARBONES | |
Kriz | Some effects of carbon monoxide in hydroprocessing of heavy feedstocks | |
NO131335B (en) | ||
US2132855A (en) | Production of valuable liquid products from distillable carbonaceous materials | |
US5004856A (en) | Process for upgrading methane to higher hydrocarbons | |
AU644294B1 (en) | Partial oxidation of methane |