NO127285B - - Google Patents

Download PDF

Info

Publication number
NO127285B
NO127285B NO05100/68A NO510068A NO127285B NO 127285 B NO127285 B NO 127285B NO 05100/68 A NO05100/68 A NO 05100/68A NO 510068 A NO510068 A NO 510068A NO 127285 B NO127285 B NO 127285B
Authority
NO
Norway
Prior art keywords
catalyst
oxidation
olefins
uranium
arsenic
Prior art date
Application number
NO05100/68A
Other languages
Norwegian (no)
Inventor
Robert Karl Grasselli
Wilfrid Garside Shaw
Harleyfoch Hardman
Original Assignee
Standard Oil Co Ohio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co Ohio filed Critical Standard Oil Co Ohio
Priority to NO57573A priority Critical patent/NO128101B/no
Priority to NO57473A priority patent/NO128100B/no
Publication of NO127285B publication Critical patent/NO127285B/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8432Arsenic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8871Rare earth metals or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B41/00Obtaining germanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

Foreliggende oppfinnelse vedrører oksydasjonskatalysatorer omfattende oksyder av uran og arsen, eventuelt også inneholdende aktivatorer, og som er anvendbare for den katalytiske oksydasjon av olefiner til umettede aldehyder og syrer, og for oksyderende dehydrogenering av olefiner til konjugerte diener, og videre for den katalytiske amm-oksydasjon av olefiner til umettede nitriler. Det her anvendte uttrykk "amm-oksydasjon" Skal forståes å om-fatte en oksydasjon ved nærvær av ammoniakk. Som eksempler på katalytiske oksydasjonsreaksjoner skal nevnes oksydasjon av propylen til akrolein og akrylsyre, oksydasjonen av isobutylen til metakrolein, oksydehydrogeneringen av et olefin med 4-8 karbonatomér, som f-.-eks oXsydéhydrogenering av buten-1•eller buten-2 til butadien-1,3, amm-oksydasjonen av propylen til akrylnitril og amm-oksydasjonen av isobutylen til metakrylnitril. The present invention relates to oxidation catalysts comprising oxides of uranium and arsenic, optionally also containing activators, and which are applicable for the catalytic oxidation of olefins to unsaturated aldehydes and acids, and for the oxidative dehydrogenation of olefins to conjugated dienes, and further for the catalytic ammonia oxidation of olefins to unsaturated nitriles. The expression "ammonia oxidation" used here shall be understood to include an oxidation in the presence of ammonia. Examples of catalytic oxidation reactions include the oxidation of propylene to acrolein and acrylic acid, the oxidation of isobutylene to methacrolein, the oxydehydrogenation of an olefin with 4-8 carbon atoms, such as, for example, the oxydehydrogenation of butene-1•or butene-2 to butadiene- 1,3, the amm oxidation of propylene to acrylonitrile and the amm oxidation of isobutylene to methacrylonitrile.

Basiskatalysatoren ifølge foreliggende oppfinnelse er en blanding av oksyder av uran og arsen-. Forholdet mellom mengdene av elementene i basiskatalysatoren kan variere innen vide grenser. Foruten oksyder av basiselementene uran og arsen, kan imidlertid katalysatoren inneholde mer begrensede mengder av oksyder av andre elementer, som fremmer-katalysatorens virkning, og som i det foreliggende kalles aktivatorer. -Basiskatalysatoren og dens sammensetning såvel som aktivatorelementene vil finnes nærmere angitt i kravene. The basic catalyst according to the present invention is a mixture of oxides of uranium and arsenic. The ratio between the amounts of the elements in the base catalyst can vary within wide limits. Besides oxides of the basic elements uranium and arsenic, the catalyst can however contain more limited amounts of oxides of other elements, which promote the catalyst's effect, and which are called activators in the present. - The basic catalyst and its composition as well as the activator elements will be found in more detail in the requirements.

Det foretrukne atomforhold mellom uran og arsen i basiskatalysatoren er fra 6:1 til 1:6. I katalysatoren ifølge oppfinnelsen kan valensen av uran variere fra 4 til 6, og valensen av molybden kan variere fra 2 til 6. Det antaes at i det minste en del. av oksydene i foreliggende katalysatorer er tilstede som et aktivt katalytisk oksyd-kompleks. Katalysatoren ifølge oppfinnelsen utmerker seg ved et ubetydelig tap av aktivitet og selektivitet over lengere tidsrom, til tross for de relativt høye reaksjons-tempe raturer som kommer i betraktning ved de katalytiske prosesser som katalysatoren kan anvendes i.. The preferred atomic ratio of uranium to arsenic in the base catalyst is from 6:1 to 1:6. In the catalyst according to the invention, the valence of uranium may vary from 4 to 6, and the valence of molybdenum may vary from 2 to 6. It is assumed that at least a part. of the oxides in the present catalysts are present as an active catalytic oxide complex. The catalyst according to the invention is distinguished by an insignificant loss of activity and selectivity over longer periods of time, despite the relatively high reaction temperatures that come into consideration in the catalytic processes in which the catalyst can be used.

Skjønt katalysatoren ifølge oppfinnelsen gir gode resultater Although the catalyst according to the invention gives good results

uten anvendelse av en bærer, så inneholder en foretrukket katalysator fra 5 til 95 vekt% av en eller annen kjent katalysator-bærer, som fortrinnsvis er kiselsyre. without the use of a carrier, then a preferred catalyst contains from 5 to 95% by weight of some known catalyst carrier, which is preferably silicic acid.

Ved fremstillingen av basiskatalysatoren kan oksydene av elementene blandes sammen, eller de kan fremstilles særskilt og derpå blandes, eller de fremstilles særskilt eller sammen in situ. In the production of the base catalyst, the oxides of the elements can be mixed together, or they can be prepared separately and then mixed, or they can be prepared separately or together in situ.

Ved fremstillingen av basiskatalysatoren foretrekker man å anvende vannoppløselige salter av katalysatorelementene. En foretrukket kilde for uran er således uranylnitrat, for arsen orto-arsensyre og for molybden ammoniumheptamolybdat.. In the production of the base catalyst, it is preferred to use water-soluble salts of the catalyst elements. A preferred source for uranium is thus uranyl nitrate, for arsenic ortho-arsenic acid and for molybdenum ammonium heptamolybdate.

Det vil forståes av fagfolk på området at forskjellige andre salter, oppløselige i det minste i en viss grad i vann, kan anvendes for å danne oppløsningene, som ved behandling som nærmere beskrevet nedenfor vil gi de ønskede oksyder for basiskatalysatoren. På lignende måte vil det være klart at katalysatoren også kan fremstilles ved sam-utfelling av oksydene eller av salter som danner oksyder ved varmebehandling og impregnering av ett eller flere av metallene som ved varmebehandling resulterer i oksyder. It will be understood by those skilled in the art that various other salts, soluble at least to a certain extent in water, can be used to form the solutions, which when treated as described in more detail below will give the desired oxides for the base catalyst. In a similar way, it will be clear that the catalyst can also be produced by co-precipitation of the oxides or of salts that form oxides by heat treatment and impregnation of one or more of the metals that result in oxides by heat treatment.

Uansett den fremgangsmåte som anvendes for å innføre katalysator-komponentene i basiskatalysatoren, har det vist seg at komponentene som er tilstede innenfor de angitte områder, oppviser uventede og i høy grad ønskelige egenskaper for utførelse av den foran angitte fremgangsmåte. Regardless of the method used to introduce the catalyst components into the base catalyst, it has been shown that the components that are present within the indicated areas exhibit unexpected and highly desirable properties for carrying out the above-mentioned method.

Den katalytiske aktivitet av basiskatalysatoren økes ved oppheting av katalysatoren til en forhøyet temperatur. Fortrinnsvis tørkes katalysatorblandingen og opphetes ved en temperatur på 260-595°C, fortrinnsvis ved 315-425°C, i 2-24 timer. Hvis aktiviteten er utilstrekkelig, kan katalysatoren ytterligere varmebehandles ved en temperatur over ca. 425°C, men under en temperatur som er skadelig for katalysatoren, fortrinnsvis i området 425-760°C i 1-48 timer i nærvær av oksygen eller en oksygenholdig gass, f.eks. luft. The catalytic activity of the base catalyst is increased by heating the catalyst to an elevated temperature. Preferably, the catalyst mixture is dried and heated at a temperature of 260-595°C, preferably at 315-425°C, for 2-24 hours. If the activity is insufficient, the catalyst can be further heat-treated at a temperature above approx. 425°C, but below a temperature which is harmful to the catalyst, preferably in the range 425-760°C for 1-48 hours in the presence of oxygen or an oxygen-containing gas, e.g. air.

Det har også vist seg at en del av de foreliggende katalysatorer kan aktiveres ytterligere ved at den varmebehandlede katalysator utsettes for en reduserende atmosfære i 4-48 timer ved en temperatur innen området 205-540°C. Denne reduserende behandling utføres hensiktsmessig ved å la en reduserende gass, som ammoniakk, hydrogen e.l. strømme over katalysatoren. Det viste seg at katalysatorer behandlet med en reduserende gass ga en høyere grad av omdannelser etter en kort tidsperiode, enn når det i samme tid ble anvendt de samme katalysatorer som ikke var utsatt for den reduserende behandling. It has also been shown that some of the present catalysts can be further activated by exposing the heat-treated catalyst to a reducing atmosphere for 4-48 hours at a temperature within the range 205-540°C. This reducing treatment is suitably carried out by letting a reducing gas, such as ammonia, hydrogen etc. flow over the catalyst. It turned out that catalysts treated with a reducing gas gave a higher degree of conversions after a short period of time, than when the same catalysts that were not subjected to the reducing treatment were used at the same time.

De aktivatorer som med fordel kan anvendes, er forskjellige metalloksyder fra gruppene I-A, I-B, II-A, II-B, III-B, IV-A, IV-B, V-B, VI-B, VII-B og VIII i det periodiske system. Særlig effektive er oksydene av molybden, bor, vanadium, tinn,, nikkel, vismut, krom, jern, mangan, sink og wolfram i en mengde svarende til mindre .enn 1 atomekvivalent av enten uran eller arsen. Aktivåtoroksydene kan innføres i basiskatalysatoren ved inn-blanding i slammet eller gelen før kalsineringen, eller ved inn-blanding i den ovnstørkede basiskatalysator før kaMneringen. The activators that can be advantageously used are various metal oxides from the groups I-A, I-B, II-A, II-B, III-B, IV-A, IV-B, V-B, VI-B, VII-B and VIII in the Periodic Table. Particularly effective are the oxides of molybdenum, boron, vanadium, tin, nickel, bismuth, chromium, iron, manganese, zinc and tungsten in an amount corresponding to less than 1 atomic equivalent of either uranium or arsenic. The activator oxides can be introduced into the base catalyst by mixing it into the sludge or gel before calcination, or by mixing it into the oven-dried base catalyst before calcination.

En foretrukket måte til å innføre aktivatorelementet er å frem-stille' én vandig oppløsning av dettes salt, blande denne opp-løsning med oppløsningene av salter av basiskatalysatorens elementer og omrøre mens det kontinuerlig opphetes inntil opp-løsningen gelerer. Gelen føres ved hjelp av en skje over til skåler og ovnstørkes ved 120°C over natten. Den tørkede katalysator kalsineres derpå ved 425°C. En ytterligere kalsinering ved en høyere temperatur kan også anvendes for å øke aktiviteten av katalysatorkomplekset. A preferred way to introduce the activator element is to prepare an aqueous solution of its salt, mix this solution with the solutions of salts of the base catalyst elements and stir while continuously heating until the solution gels. Using a spoon, the gel is transferred to bowls and oven-dried at 120°C overnight. The dried catalyst is then calcined at 425°C. A further calcination at a higher temperature can also be used to increase the activity of the catalyst complex.

Oksydasjon av olefiner med 3 karbonatomer i en rett kjede ut-føres ved et reaktortrykk i områo det fra 0,3 til 7 kg/cm 2, en reaktortemperatur i området fra 260 til 595°C og tilsynelatende kontakttider som kan variere fra 0,1 til 50 sekunder. Et mol-forhold av oksygen til olefin nellom 0,5:1 til 5:1 gir tilfreds-stillende resultater. Oxidation of olefins with 3 carbon atoms in a straight chain is carried out at a reactor pressure in the range from 0.3 to 7 kg/cm 2 , a reactor temperature in the range from 260 to 595°C and apparent contact times that can vary from 0.1 to 50 seconds. A molar ratio of oxygen to olefin between 0.5:1 and 5:1 gives satisfactory results.

Olefiner med 3 karbonatomer i en rett kjede kan omdannes til nitrilene under lignende betingelser som beskrevet foran, med unntagelse av at ammoniakk innføres i reaktoren sammen med oksygen. Et ønsket ammoniakk-til-olefin-forhold er ca. 1:1, da det har vist seg at generelt uønskede, olefinisk umettede oksyderte produkter dannes når dette forhold er i omradet over 0,15:1 til 0,75:1. Vann dannes som et reaksjonsprodukt og ytterligere vann kan tilsettes både for å forbedre omdannelsen og også for å regulere de termiske forhold i reaktoren. Olefins with 3 carbon atoms in a straight chain can be converted to the nitriles under similar conditions as described above, with the exception that ammonia is introduced into the reactor together with oxygen. A desired ammonia-to-olefin ratio is approx. 1:1, as it has been found that generally undesirable, olefinically unsaturated oxidized products are formed when this ratio is in the range above 0.15:1 to 0.75:1. Water is formed as a reaction product and additional water can be added both to improve the conversion and also to regulate the thermal conditions in the reactor.

Olefiner med i det minste 4 og opptil ca. 8 ikke-kvaternære karbonatomer, av hvilke i det minste 4 er anordnet i rekkefølge i en rett kjede eller i en ring, kan bli oksydativt dehydro-genert til diolefiner og aromatiske forbindelser. Foretrukne olefiner er enten normale rettkjedede eller tertiære olefiner, og både cis- og trans-isomerer kan brukes. Fra ca. 0,3 til 3 mol oksygen pr. mol olefin kan anvendes for oksydehydrogenering av olefinene, og et svakt moloverskudd av oksygen foretrekkes. Reaksjon^'-emperaturene kan variere fra 325 til 1000°C, og det sørges for fjernelse av den eksoterme reaksjonsvarme, særlig når reaktortemperåturen over-skrider 550°C. Trykket, temperaturen og kontakttidene er i det samme området som for de foran beskrevne reaksjoner. Olefins with at least 4 and up to approx. 8 non-quaternary carbon atoms, of which at least 4 are arranged in sequence in a straight chain or in a ring, can be oxidatively dehydrogenated to diolefins and aromatic compounds. Preferred olefins are either normal straight chain or tertiary olefins, and both cis and trans isomers can be used. From approx. 0.3 to 3 mol of oxygen per moles of olefin can be used for oxydehydrogenation of the olefins, and a slight molar excess of oxygen is preferred. The reaction temperatures can vary from 325 to 1000°C, and care is taken to remove the exothermic heat of reaction, particularly when the reactor temperature exceeds 550°C. The pressure, temperature and contact times are in the same range as for the reactions described above.

Den tilsynelatende kontakttid defineres som tidslengden i sekunder som volumenheten av gass målt under reaksjonsbetingelsene er i kontakt med den tilsynelatende volumenhet av katalysatoren. Kon-takttiden beregnes ut fra det tilsynelatende volum av katalysator-skiktet, middeltrykket og temperaturen i reaktoren og strøm-hastighetene av de forskjellige komponenter i reaksjonsblandingen. The apparent contact time is defined as the length of time in seconds that the unit volume of gas measured under the reaction conditions is in contact with the apparent unit volume of the catalyst. The contact time is calculated from the apparent volume of the catalyst layer, the mean pressure and temperature in the reactor and the flow rates of the various components in the reaction mixture.

Prosent omdannelse pr. passering defineres som mol umettet produkt som utvinnes dividert med mol monoolefin som innføres, multi-plisert med 100. Percentage conversion per passage is defined as moles of unsaturated product recovered divided by moles of monoolefin introduced, multiplied by 100.

Et hvilket som helst reaksjonsapparat som er egnet for utførelse av dampfaseoksydasjonsreaksjoner kan anvendes, fortrinnsvis reaktorer av typen med fast skikt eller med fluidisert.skikt. Eksempler på basiskatalysatorer skal anføres i det følgende, hvor alle deler er basert på vekt hvis det ikke er anført noe annet. Any reaction apparatus suitable for carrying out vapor phase oxidation reactions can be used, preferably reactors of the fixed bed or fluidized bed type. Examples of base catalysts shall be given below, where all parts are based on weight unless otherwise stated.

Eksempel 1. Example 1.

Ved en typisk fremstilling av en ikke aktivert katalysator ble 87,8 g uranylnitrat (U02)(N03)2.6H20 oppløst i ca. 100 ml varmt vann, 154,3 g orto-arsensyre H3As04.l/2H20 ble oppløst i ca. In a typical preparation of an unactivated catalyst, 87.8 g of uranyl nitrate (U02)(N03)2.6H20 were dissolved in approx. 100 ml of hot water, 154.3 g of ortho-arsenic acid H3As04.1/2H20 were dissolved in approx.

400 ml varmt vann. Uranylnitratoppløsningen ble tilsatt til den fortynnede orto-arsensyre, og blandingen omrørt. Til denne blanding ble tilsatt 116,8 g "Ludox" (kolloidal oppløsning av polymerisert kiselsyre). Blandingen ble kontinuerlig opphetet under konstant omrøring inntil den dannet en gel. Gelen ble ved hjelp av skjeer overført til skåler, anbragt i en ovn med luftsirkulasjon ved 120°C og tørket ever natten. Den ovnstørkede katalysator ble derpå varmebehandlet i en ovn åpen til atmosfæren, og man startet med en temperatur på 425°C og derpå ble temperaturen økt til 480°C over en periode på 2 timer. Katalysatoren ble kalsinert over natten ved 480°C. Katalysatoren som man fikk hadde en sammensetning som kan skrives som 82,5% UAs,. q°ii 5" 17,5% Si02. 400 ml warm water. The uranyl nitrate solution was added to the dilute ortho-arsenic acid and the mixture stirred. To this mixture was added 116.8 g of "Ludox" (colloidal solution of polymerized silicic acid). The mixture was continuously heated with constant stirring until it formed a gel. The gel was transferred to bowls using spoons, placed in an oven with air circulation at 120°C and dried overnight. The oven-dried catalyst was then heat-treated in an oven open to the atmosphere, starting with a temperature of 425°C and then increasing the temperature to 480°C over a period of 2 hours. The catalyst was calcined overnight at 480°C. The catalyst that was obtained had a composition that can be written as 82.5% UAs. q°ii 5" 17.5% SiO 2 .

Den følgende tabell viser de resultater man fikk ved anvendelse The following table shows the results obtained by application

av katalysatoren for de ovenfor angitte formål. of the catalyst for the purposes stated above.

Eksempel nr. 2 og 3 angår dannelse av akrylnitril ved amm-oksydasjon av et olefin. Examples no. 2 and 3 concern the formation of acrylonitrile by amm-oxidation of an olefin.

Eksempel 4 og 5 angår oksydasjon av et olefin til akrolein (mindre mengder av umettede syrer som også dannes, er ikke angitt). Examples 4 and 5 relate to the oxidation of an olefin to acrolein (smaller amounts of unsaturated acids which are also formed are not indicated).

Eksempel nr. 6 angår oksy-dehydrogenering av butener til butadien. Det omtrentlige mol-forhold av buten til luft var 1:12; som i de andre eksemplene i tabellen er mindre mengder av biprodukter som dannes, ikke angitt. Example No. 6 concerns the oxy-dehydrogenation of butenes to butadiene. The approximate mole ratio of butene to air was 1:12; as in the other examples in the table, smaller amounts of by-products formed are not indicated.

Varmebehandling ved 540°C og høyere som er angitt i tabellen, er generelt for å øke aktiveringen etter kalsinering ved 425°c i 16-24 timer. Heat treatment at 540°C and above as indicated in the table is generally to increase activation after calcination at 425°C for 16-24 hours.

Claims (3)

1. Katalysatorblanding inneholdende uran og oksygen og som kan anvendes for oksydasjon av olefiner til umettede aldehyder og syrer, for oksyderende dehydrogenering av olefiner til konjugerte diener og for amm-oksydasjon av olefiner til umettede nitriler, karakterisert vedat den hovedsakelig består av et aktivert katalytisk oksyd-kompleks definert ved den emp c iriske formel As x U y 0 z, hvor "x" er et tall fra 1 til 10,"y" er et tall fra 1 til 25 og "z" er et tall som velges slik at det tilfredsstiller eller svarer til valensen til arsen og uran i den oksydasjonstilstand hvori de fore-ligger i katalysatoren.1. Catalyst mixture containing uranium and oxygen and which can be used for oxidation of olefins to unsaturated aldehydes and acids, for oxidative dehydrogenation of olefins to conjugated dienes and for amm oxidation of olefins to unsaturated nitriles, characterized in that it mainly consists of an activated catalytic oxide complex defined by the empirical formula As x U y 0 z, where "x" is a number from 1 to 10,"y" is a number from 1 to 25 and " z" is a number chosen so that it satisfies or corresponds to the valence of arsenic and uranium in the oxidation state in which they are present in the catalyst. 2. Katalysatorblanding ifølge krav 1, karakterisert vedat den som aktivator også inneholder ett eller flere oksyder av molybden, bor, vanadium, tinn, nikkel, vismut, krom, jern, mangan, sink og wolfram i en mengde tilsvarende mindre enn 1 atomekvivalent i forhold til uran og arsen.2. Catalyst mixture according to claim 1, characterized in that, as an activator, it also contains one or more oxides of molybdenum, boron, vanadium, tin, nickel, bismuth, chromium, iron, manganese, zinc and tungsten in an amount corresponding to less than 1 atomic equivalent in relation to uranium and arsenic. 3. Katalysatorblanding ifølge krav 2, karakterisert vedat den som aktivator inneholder jern eller molybden.3. Catalyst mixture according to claim 2, characterized in that it contains iron or molybdenum as an activator.
NO05100/68A 1967-12-20 1968-12-19 NO127285B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO57573A NO128101B (en) 1967-12-20 1973-02-13
NO57473A NO128100B (en) 1967-12-20 1973-02-13

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69193467A 1967-12-20 1967-12-20
US69194367A 1967-12-20 1967-12-20
US69199267A 1967-12-20 1967-12-20

Publications (1)

Publication Number Publication Date
NO127285B true NO127285B (en) 1973-06-04

Family

ID=27418552

Family Applications (1)

Application Number Title Priority Date Filing Date
NO05100/68A NO127285B (en) 1967-12-20 1968-12-19

Country Status (14)

Country Link
JP (3) JPS5227118B1 (en)
AT (1) AT311385B (en)
BE (1) BE725697A (en)
BR (1) BR6804931D0 (en)
CH (1) CH500762A (en)
DE (1) DE1808990C3 (en)
ES (1) ES361612A1 (en)
FR (1) FR1595237A (en)
GB (1) GB1257335A (en)
IL (1) IL31274A (en)
LU (1) LU57596A1 (en)
NL (1) NL167670C (en)
NO (1) NO127285B (en)
SE (1) SE374736B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR17506A (en) * 1971-01-25 1975-07-23 Snam Progetti WITHOUT CATALYZOER AND ITS MANUFACTURING OF UNSATERATED NITTILES AND OXIDATION OF OLEFINS
CA975382A (en) * 1971-02-04 1975-09-30 Arthur F. Miller Process for the manufacture of acrylonitrile and methacrylonitrile

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL302849A (en) * 1963-01-04

Also Published As

Publication number Publication date
LU57596A1 (en) 1969-08-04
SE374736B (en) 1975-03-17
AT311385B (en) 1973-11-12
NL167670C (en) 1982-01-18
BE725697A (en) 1969-06-19
DE1808990A1 (en) 1969-07-03
GB1257335A (en) 1971-12-15
DE1808990B2 (en) 1979-06-07
NL6818481A (en) 1969-06-24
NL167670B (en) 1981-08-17
JPS5334194B1 (en) 1978-09-19
DE1808990C3 (en) 1980-01-31
JPS5339397B1 (en) 1978-10-20
IL31274A (en) 1972-09-28
BR6804931D0 (en) 1973-01-04
JPS5227118B1 (en) 1977-07-18
FR1595237A (en) 1970-06-08
ES361612A1 (en) 1970-12-01
CH500762A (en) 1970-12-31
IL31274A0 (en) 1969-02-27

Similar Documents

Publication Publication Date Title
US3956181A (en) Oxidation catalyst
US3932551A (en) Process for the preparation of diolefins from olefins
US4162234A (en) Oxidation catalysts
US4423281A (en) Process for producing conjugated diolefins
US4397771A (en) Oxidation catalysts
US8367885B2 (en) Method of preparing multicomponent bismuth molybdate catalysts with controlling pH and a method of preparing 1,3-butadiene using thereof
NO145184B (en) Oxidation catalysts.
US3546138A (en) Promoted antimony-iron oxidation catalyst
JP2011178719A (en) Process for producing butadiene
US3542842A (en) Ammoxidation of propylene or isobutylene to acrylonitrile or methacrylonitrile
NO138476B (en) SCISSORS FOR CUTTING METAL AND THE LIKE
NO143740B (en) PROCEDURE FOR THE PREPARATION OF ACRYLIC NITRIL OR METACRYL NITRIL.
US4174354A (en) Oxidative dehydrogenation using chromium-containing catalysts
US4190556A (en) Production of unsaturated nitriles using catalysts promoted with various metals
US3544616A (en) Ammoxidation of propylene or isobutylene to acrylonitrile or methacrylonitrile
NO119083B (en)
US4046833A (en) Dehydrogenation of paraffins
US4255284A (en) Dehydrogenation catalyst
NO148936B (en) Vapor trap with free-flowing floats
NO127285B (en)
US4111983A (en) Oxidation of unsaturated aldehydes to unsaturated acids
US3666822A (en) Uranium-molybdenum oxidation catalysts
US3929899A (en) Process for the oxidation of olefins to unsaturated aldehydes and catalysts therefore
US4131631A (en) Dehydrogenation of paraffins
US4334116A (en) Dehydrogenation using promoted molybdenum-copper-tin catalysts