NO121010B - - Google Patents

Download PDF

Info

Publication number
NO121010B
NO121010B NO1432/69A NO143269A NO121010B NO 121010 B NO121010 B NO 121010B NO 1432/69 A NO1432/69 A NO 1432/69A NO 143269 A NO143269 A NO 143269A NO 121010 B NO121010 B NO 121010B
Authority
NO
Norway
Prior art keywords
hours
glass
sodium vapor
temperature
composition
Prior art date
Application number
NO1432/69A
Other languages
Norwegian (no)
Inventor
G Piesslinger
B Frank
E Roeder
Original Assignee
Philips Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19681771143 external-priority patent/DE1771143C3/en
Application filed by Philips Nv filed Critical Philips Nv
Publication of NO121010B publication Critical patent/NO121010B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Structural Engineering (AREA)
  • Glass Compositions (AREA)

Description

Fremgangsmåte til fremstilling av overfor natriumdamp resistent kiselsyrefri glasskeramikk. Process for the production of sodium vapor resistant silica-free glass ceramics.

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av mot natriumdamp resistent glasskeramikk og utladningslamper, hvor enten forbindelsen mellom den av tettsintret polykrystallinsk materiale, for eksempel aluminiumoksyd, bestående hylster og elek-trodematerialet består av ifølge fremgangsmåten fremstilt glasskeramikk og hvor selve hylsen helt eller delvis består av denne glasskeramikk. The invention relates to a method for the production of sodium vapor resistant glass ceramics and discharge lamps, where either the connection between the sleeve consisting of densely sintered polycrystalline material, for example aluminum oxide, and the electrode material consists of glass ceramics produced according to the method and where the sleeve itself is wholly or partly made of this glass ceramics.

Tettsintret, polykrystallinsk aluminiumoksyd (US-patent nr. 3.026.210) består i det minste av 99,555 A^O^. Den er gjennom-skinnende, gasstett og har en fremragende bestandighet mot innvirkning av natriumdamp inntil meget høye temperaturer. Dette materiale anvendes derfor som hylse for høytrykknatriumdamp-utladningslamper, Densely sintered, polycrystalline alumina (U.S. Patent No. 3,026,210) consists of at least 99.555 A^O^. It is translucent, gas tight and has excellent resistance to the effects of sodium vapor up to very high temperatures. This material is therefore used as a sleeve for high-pressure sodium vapor discharge lamps,

Disse lampers avtetning og innsmeltningen av elektrodene var hittil ikke så enkel. Det ble bl.a. foreslått (US-patent nr. 3.281.309), hertil å anvende aueltede eutektiske blandinger på basis av jordalkalioksyd og A120^, som ved stivning ga et glass-krystallinsk produkt. Den krystallinske fase oppstår ved de fleste sammensetninger av denne type spontant og hurtig, altså ubehersket. Derved blir den mekaniske fasthet såvel som gasstetthet av den dannede forbindelse sterkt nedsatt. Dette materiale er egentlig bare anvend-bart som lodding og ikke for fremstilling av større legemer. The sealing of these lamps and the fusion of the electrodes was not so simple until now. It was, among other things, proposed (US patent no. 3,281,309), for this purpose, to use auelted eutectic mixtures based on alkaline earth oxide and Al 2 O 3 , which on solidification gave a glass-crystalline product. The crystalline phase occurs in most compositions of this type spontaneously and quickly, i.e. uncontrollably. Thereby, the mechanical strength as well as gas tightness of the formed compound is greatly reduced. This material is really only suitable for soldering and not for the production of larger bodies.

Ved fremstillingen av natriumdamputladningslamper var In the manufacture of sodium vapor discharge lamps was

man tidligere tvunget til å anvende avslutnings- og innsetnings-stykker av tettsintret polykrystallinsk aluminiumoksyd. Dette førte med seg at på grunn av tilpasning av utvidelseskoeffisientene måtte metallet bestå av niob, hvilket har den ulempe at sammensmeltningen må utføres i edelgass. one was previously forced to use termination and insertion pieces of densely sintered polycrystalline aluminum oxide. This meant that, due to adaptation of the expansion coefficients, the metal had to consist of niobium, which has the disadvantage that the fusion must be carried out in noble gas.

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av mot natriumdamp resistent glasskeramikk til bruk som tette-materiale for høytrykknatriumdamputladningslamper med et hylster av tettsintret, polykrystallinsk aluminiumoksyd med en renhet på minst 99, 5% eller som hylsemateriale for utladningslamper, idet fremgangsmåten er karakterisert ved at et glass som fåes med smeltning av en blanding med sammensetning i vektprosent beregnet som oksyder, innen grensene The invention relates to a method for producing glass ceramics resistant to sodium vapor for use as a sealing material for high-pressure sodium vapor discharge lamps with a casing of densely sintered, polycrystalline aluminum oxide with a purity of at least 99.5% or as a casing material for discharge lamps, the method being characterized in that a glass which is obtained by melting a mixture with composition in weight percent calculated as oxides, within the limits

først oppvarmes \ til 2 timer ved en temperatur mellom 700 og 900°C, deretter 0-2 timer mellom 900 og 1000°C og endelig i 1-6 timer mellom 1000 og 1200°C. first heated for 2 hours at a temperature between 700 and 900°C, then 0-2 hours between 900 and 1000°C and finally for 1-6 hours between 1000 and 1200°C.

Den på denne måte dannede glasskeramikk, som er fin-krystallinsk, har sammenlignet med glass av samme sammensetning en natriumdampbestandighet, som er tilfredsstillende inntil ca. 200°C høyere temperaturer, dvs. til ca. 900°C. For en høytrykknatrium-damputladningslampes hylster er den nettopp ennå ikke egnet. Derimot er den ved anvendelse av midlere trykk anvendbar som hylse. Et antall glasskeramikker innen det ovennevnte sammensetningsområdet har en transparens, som er sammenlignbar med denne for tettsintret aluminiumoksyd. De er egnet til forarbeidelse, f.eks. til rørformede legemer ved hjelp av strengpressefremgangsmåten, som ble beskrevet i fransk patent nr. 1.585•373. The glass ceramic formed in this way, which is finely crystalline, has, compared to glass of the same composition, a sodium vapor resistance which is satisfactory up to approx. 200°C higher temperatures, i.e. to approx. 900°C. For a high-pressure sodium vapor discharge lamp's casing, it is just not yet suitable. On the other hand, when medium pressures are used, it can be used as a sleeve. A number of glass-ceramics within the above composition range have a transparency comparable to that of densely sintered alumina. They are suitable for processing, e.g. into tubular bodies by means of the strand press process, which was described in French Patent No. 1,585•373.

Ifølge en foretrukket utførelse av fremgangsmåten ifølge oppfinnelsen blir et glass som fåes ved smeltning av en blanding med en sammensetning i vektprosent, beregnet som oksyd, innen grensene According to a preferred embodiment of the method according to the invention, a glass obtained by melting a mixture with a composition in weight percent, calculated as oxide, within the limits

oppvarmet først \ til 2 timer ved en temperatur mellom 700 og 900°C, deretter \ til 2 timer mellom 900 og 1000°C og endelig 1-4 timer mellom 1000 og 1200°C. heated first \ to 2 hours at a temperature between 700 and 900°C, then \ to 2 hours between 900 and 1000°C and finally 1-4 hours between 1000 and 1200°C.

Behandlingen i tre trinn, dvs. med en behandling ved en temperatur mellom 900 og 1000°C mellom kimdannelse og kimvekst, ned-setter faren for revnedannelse i materialet betraktelig. The treatment in three stages, i.e. with a treatment at a temperature between 900 and 1000°C between nucleation and nucleation, considerably reduces the risk of cracking in the material.

Ved fremstilling av høytrykknatriumdamplamper med et hylster av tettsintret polykrystallinsk aluminiumoksyd byr glass-keramikken fremstilt ifølge oppfinnelsen den mulighet til en meget enklere tetning enn den tidligere ble anvendt. When manufacturing high-pressure sodium vapor lamps with a casing of densely sintered polycrystalline aluminum oxide, the glass-ceramic produced according to the invention offers the possibility of a much simpler seal than was previously used.

Fig. 1 viser en kjent tetning. Heri er 1 den rørformede hylse av tettsintret aluminiumoksyd, hvori det ved begge ender klemmende er anbragt et ringformet stykke av samme materiale. Fig. 1 shows a known seal. Here, 1 is the tubular sleeve of densely sintered aluminum oxide, in which a ring-shaped piece of the same material is clamped at both ends.

Ringen 4 består likeledes av samme materiale. Som elektrodegjennom-føring 2 anvendes niob, mens de to ringer 5 består av med bindemiddel innsatt presset glasspulver. Glasset har eksempelvis sammensetning (i vektprosent): CaO 38,8, Al^ 45,6, MgO 5,2, BaO 8,7 og 1,7 ifølge den nederlandske patentsøknad nr. 6.705.470. Ved oppvarmning forbrenner bindemidlet og danner en vakuumtett forbindelse mellom omhylling og elektrodegjennomføring. The ring 4 also consists of the same material. Niobium is used as electrode lead-through 2, while the two rings 5 consist of pressed glass powder inserted with a binder. The glass has, for example, composition (in weight percent): CaO 38.8, Al^ 45.6, MgO 5.2, BaO 8.7 and 1.7 according to the Dutch patent application no. 6,705,470. When heated, the binder burns and forms a vacuum-tight connection between the casing and the electrode feedthrough.

På fig. 2 er det vist hvorledes avtetningen med det ifølge oppfinnelsen oppnådde materiale kommer i stand meget enklere. Ifølge dette overføres den av et stykke bestående glasspropp 7 etter innsmeltning ved hjelp av en egnet termisk behandling i glasskera-mikken ifølge oppfinnelsen. Ved denne avtetningstype kan elektrode-gj ennomf øringen 6 eksempelvis bestå av det meget billigere molybden. In fig. 2 it is shown how the sealing with the material obtained according to the invention is achieved much more easily. According to this, it is transferred by a piece of glass stopper 7 after fusion by means of a suitable thermal treatment in the glass ceramic according to the invention. With this type of sealing, the electrode passage 6 can for example consist of the much cheaper molybdenum.

Ved oppfinnelsens fremkomst har det vist seg at det ved den termiske behandling ved første fase av glasset utskiller seg finfordelte kimer, f.eks. i form av 3 CaO.B^^. På disse kimer krystalliserer ved den videre termiske behandling forbindelsen CaO.Al20.j som har en fremragende bestandighet mot innvirkning av natriumdamp. Utslagsgivende for en egnet glasskeramikk er valg av sammensetningen, samt temperaturprogrammet, da det foruten CaCA^O^ også kan utskille seg den dårlige mot innvirkning av natriumdamp bestandige fase 12 Ca0.7 A^O^. With the advent of the invention, it has been shown that during the thermal treatment in the first phase of the glass, finely divided germs are released, e.g. in the form of 3 CaO.B^^. On these germs, the compound CaO.Al20.j crystallizes during the further thermal treatment, which has an excellent resistance to the influence of sodium vapour. Decisive for a suitable glass ceramic is the selection of the composition, as well as the temperature program, as, in addition to CaCA^O^, the phase 12 Ca0.7 A^O^, which is poorly resistant to the effects of sodium vapor, can also be separated.

Materialet oppnådd ifølge oppfinnelsen kan ikke bare finne anvendelse som tetningsmateriale for høytrykksnatriumlamper eller middeltrykksnatriumlamper men også for andre høybelastede lamper. The material obtained according to the invention can not only find use as a sealing material for high pressure sodium lamps or medium pressure sodium lamps but also for other highly loaded lamps.

Oppfinnelsen skal forklares nærmere ved hjelp av noen eksempler. Det smeltes de i tabellen angitte sammensetninger i vektprosent av en blanding som inneholderkalsiumkarbonat, aluminiumoksyd, borsyre og eventuelt magnesiumkarbonat, bariumkarbonat, zirkonoksyd og yttriumoksyd. Staver trukket av smeiten oppvarmes i første rekke 1 2 timer ved en temperatur mellom 750 og 850°C. Deretter økes temperaturen med en hastighet på 4 - 5°C pr. minutt til 950°C, og holdes i 1 time ved denne verdi. Deretter økes temperaturen igjen med en hastighet på 4 - 5°C pr. minutt til 1100°C, holdes her i 2 til 4 timer og avkjøles endelig i luften til værelsetemperatur. The invention will be explained in more detail with the help of some examples. The compositions given in the table are melted in percentage by weight of a mixture containing calcium carbonate, aluminum oxide, boric acid and possibly magnesium carbonate, barium carbonate, zirconium oxide and yttrium oxide. Bars drawn from the forge are first heated for 12 hours at a temperature between 750 and 850°C. The temperature is then increased at a rate of 4 - 5°C per minute to 950°C, and held for 1 hour at this value. The temperature is then increased again at a rate of 4 - 5°C per minute to 1100°C, held here for 2 to 4 hours and finally cooled in air to room temperature.

I sluttproduktene kan det røntgenografisk påvises fasene 3 CaO.BgO^ og CaO.A^O-j, fasen 12 Ca0.7 A^O-j er tilstede i spor. In the end products, the phases 3 CaO.BgO^ and CaO.A^O-j can be detected X-ray, the phase 12 Ca0.7 A^O-j is present in traces.

Natriumbestandigheten er for alle prøver ved en behandling i 48 timer ved 850°C meget god;ved prøvene 1, 2 og 6 bevirker en slik påkjenning ved 950°C dessuten knapt noe angrep. The sodium resistance is very good for all samples when treated for 48 hours at 850°C; for samples 1, 2 and 6, such a stress at 950°C also causes hardly any attack.

Claims (2)

1. Fremgangsmåte til fremstilling av mot natriumdamp resistent glasskeramikk til bruk som téttemateriale for høytrykk-natriumdamputladningslamper med et hylster av tettsintret, poly-krystallinsk aluminiumoksyd med en renhet på minst 99, 5% eller som hylsemateriale for utladningslamper, karakterisert ved at et glass som fåes med smeltning av en blanding med sammensetning i vektprosent beregnet som oksyder, innen grensene1. Process for the production of sodium vapor resistant glass ceramics for use as a sealing material for high-pressure sodium vapor discharge lamps with a casing of densely sintered, poly-crystalline aluminum oxide with a purity of at least 99.5% or as a casing material for discharge lamps, characterized in that a glass obtained with melting of a mixture with composition in weight percent calculated as oxides, within the limits først oppvarmes \ til 2 timer ved en temperatur mellom 700 og 900 C, deretter 0-2 timer mellom 900 og 1000°C og endelig i 1-6 timer mellom 1000 og 1200°C. first it is heated for 2 hours at a temperature between 700 and 900°C, then 0-2 hours between 900 and 1000°C and finally for 1-6 hours between 1000 and 1200°C. 2. Fremgangsmåte ifølge krav 1,karakterisert ved at et glass som fåes ved smeltning av en blanding med en sammensetning i vektprosent, beregnet som oksyder innen grensene: først oppvarmes \ til 2 timer ved en temperatur mellom 700 og 900 C, deretter \ til 2 timer mellom 900 og 1000°C og endelig i 1-4 timer mellom 1000 og 1200°C.2. Method according to claim 1, characterized in that a glass obtained by melting a mixture with a composition in weight percent, calculated as oxides within the limits: is first heated \ to 2 hours at a temperature between 700 and 900 C, then \ to 2 hours between 900 and 1000°C and finally for 1-4 hours between 1000 and 1200°C.
NO1432/69A 1968-04-10 1969-04-08 NO121010B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19681771143 DE1771143C3 (en) 1968-04-10 Process for the production of sodium vapor-resistant glass ceramics on the basis of CaO-AI deep 2 O deep 3 and their use

Publications (1)

Publication Number Publication Date
NO121010B true NO121010B (en) 1971-01-04

Family

ID=5700772

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1432/69A NO121010B (en) 1968-04-10 1969-04-08

Country Status (7)

Country Link
AT (1) AT289327B (en)
BE (1) BE731264A (en)
FR (1) FR2009818A1 (en)
GB (1) GB1260933A (en)
NL (1) NL6905353A (en)
NO (1) NO121010B (en)
OA (1) OA03039A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199704A (en) * 1979-03-15 1980-04-22 General Electric Company Alumina, calcia, baria, strontia sealing composition and article of manufacture
GB2047227B (en) * 1979-04-02 1983-05-25 Gen Electric Alumina calcia and baria sealing composition
JP5148807B2 (en) 2001-08-02 2013-02-20 スリーエム イノベイティブ プロパティズ カンパニー Al2O3-rare earth oxide-ZrO2 / HfO2 material and method for producing and using the same
CA2455953A1 (en) * 2001-08-02 2003-02-13 3M Innovative Properties Company Method of making articles from glass and glass ceramic articles so produced
CA2454079A1 (en) * 2001-08-02 2003-02-13 3M Innovative Properties Company Glass-ceramics
US8056370B2 (en) 2002-08-02 2011-11-15 3M Innovative Properties Company Method of making amorphous and ceramics via melt spinning
US7811496B2 (en) 2003-02-05 2010-10-12 3M Innovative Properties Company Methods of making ceramic particles
US7292766B2 (en) 2003-04-28 2007-11-06 3M Innovative Properties Company Use of glasses containing rare earth oxide, alumina, and zirconia and dopant in optical waveguides
DE102004024017A1 (en) * 2004-05-13 2005-12-01 Schott Ag Production of illumination device with at least one body enclosing an illuminant useful for automobile illumination, e.g. halogen lamps, miniaturized glass-ceramic devices, and high pressure discharge lamps
FR3114549B1 (en) 2020-09-28 2023-11-17 Psa Automobiles Sa BATTERY SYSTEM INCLUDING VENTILATION AIR DUCT

Also Published As

Publication number Publication date
DE1771143A1 (en) 1971-11-25
DE1771143B2 (en) 1976-06-10
OA03039A (en) 1970-12-15
BE731264A (en) 1969-10-09
NL6905353A (en) 1969-10-14
FR2009818A1 (en) 1970-02-13
GB1260933A (en) 1972-01-19
AT289327B (en) 1971-04-13

Similar Documents

Publication Publication Date Title
US3926603A (en) Method of manufacturing a glass ceramic material which is resistant to sodium vapour
JPH0158829B2 (en)
NO121010B (en)
KR930003061B1 (en) Seal glass composition
US2165819A (en) Electric insulator and method of making same
JPH0727755B2 (en) Method for manufacturing arc tube for discharge lamp
JPH10139478A (en) Composition for sealing
US4199704A (en) Alumina, calcia, baria, strontia sealing composition and article of manufacture
JPS6121586B2 (en)
CN108117372A (en) A kind of production method of porcelain product compound material and porcelain product
JPH09235136A (en) Low-melting point class composition and glass ceramics composition for sealing
US4740403A (en) Composite body
US3441421A (en) Calcia-magnesia-alumina seal compositions
US2675497A (en) Quartz metal seal
JP4650444B2 (en) Low melting glass for sealing
JP3165355B2 (en) Sealing composition
US5916832A (en) Hermetic sealing composition
EP0220813B1 (en) Method for sealing the discharge tubes of metal halide high pressure discharge lamps
JPWO2002042232A1 (en) Color cathode ray tube and glass frit for color cathode ray tube
EP0045359B1 (en) Sealing glass composition
US3467510A (en) Sealing technique for producing glass to metal seals
JP2000007375A (en) Low-melting glass composition and glass-ceramic composition for sealing
US3472667A (en) Elemental boron-containing vitreous silica bodies and method
JPS5910940B2 (en) Heat-resistant sealing glass composition
SU1661158A1 (en) Method for making glass and metal assemblies