NO116732B - - Google Patents

Download PDF

Info

Publication number
NO116732B
NO116732B NO15869165A NO15869165A NO116732B NO 116732 B NO116732 B NO 116732B NO 15869165 A NO15869165 A NO 15869165A NO 15869165 A NO15869165 A NO 15869165A NO 116732 B NO116732 B NO 116732B
Authority
NO
Norway
Prior art keywords
melt
cathode
electrolytic
temperature
metals
Prior art date
Application number
NO15869165A
Other languages
Norwegian (no)
Inventor
J Venables
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of NO116732B publication Critical patent/NO116732B/no

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B15/00Welts for footwear
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/32Electrolytic production, recovery or refining of metals by electrolysis of melts of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • C25D3/14Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds
    • C25D3/16Acetylenic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

Fremgangsmåte til smelte-elektrolytisk fremstilling av tette sammenhengende avsetninger av zirkonium, hafnium, vanadium, niob, tantal, krom, molybden, wolfram eller legeringer av disse metaller. Process for the melt-electrolytic production of densely connected deposits of zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten or alloys of these metals.

Foreliggende oppfinnelse angår en forbedret fremgangsmåte for elektroutfelling av metaller, særlig tungtsmeltelige metaller og legeringer av disse og særlig en modifikasjon av den fremgangsmåte som.er beskrevet i det norske hovedpatentet nr. 113 392. I hovedpatentet er det beskrevet en fremgangsmåte til smelte-elektrolytisk fremstilling av finkornede, strukturelt sammenhengende avsetninger av tungtsmeltelige metaller og legeringer av metaller fra gruppen: The present invention relates to an improved method for the electrodeposition of metals, particularly hard-to-melt metals and their alloys, and in particular a modification of the method described in the Norwegian main patent no. 113 392. In the main patent, a method for melt-electrolytic production is described of fine-grained, structurally coherent deposits of refractory metals and alloys of metals from the group:

zirkon., hafnium, vanadium, niob, tantal, krom, molybden og wolfram, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten,

i en elektrolysecelle med en opploselig eller uopploselig anode og et elektrisk ledende grunnmateriale som katode i inert atmosfære. Foreliggende .oppfinnelse'angår spesielt en forbedring av en slik fremgangsmåte, hvor den uonskede grovhet og uregelmessighet på'-'over- in an electrolytic cell with a soluble or insoluble anode and an electrically conductive base material as cathode in an inert atmosphere. The present 'invention' relates in particular to an improvement of such a method, where the unwanted roughness and irregularity of'-'over-

flaten av utfellingen stort sett er eliminert. the surface of the precipitate is largely eliminated.

Fremgangsmåten i det norske hovedpatent nr. 113 392 er kjennetegnet ved at elektrolysen utfores med en smelte-elektrolytt som i det vesentlige er fri for klorider, bromider og oksyder og består av The method in the Norwegian main patent no. 113 392 is characterized by the fact that the electrolysis is carried out with a molten electrolyte which is essentially free of chlorides, bromides and oxides and consists of

(a) en grunnsmelte av minst et fluorid av kalium, rubidium (a) a basic melt of at least one fluoride of potassium, rubidium

eller cesium og minst et fluorid av andre elementer som ligger hoyere i den elektromotoriske rekke enn det metall som skal utfelles, og or cesium and at least one fluoride of other elements that are higher in the electromotive series than the metal to be precipitated, and

(b) minst et fluorid av det metall som skal utfelles, (b) at least one fluoride of the metal to be precipitated,

idet forholdet mellom de nevnte fluorider i smeiten, temperaturen i since the ratio between the mentioned fluorides in the smelting, the temperature i

smeiten og elektrolysestromtettheten reguleres på kjent måte slik at det gir en tett, strukturelt sammenhengende avsetning av metallet ulegert med nevnte grunnmateriale. the smelting and the electrolysis current density are regulated in a known manner so that it produces a dense, structurally coherent deposit of the metal unalloyed with said base material.

Denne fremgangsmåte ga ikke bare tette, finkornede, strukturelt sammenhengende og seige utfellinger med god slagkraft, men kan også anvendes for elektroutvinning av metallene, dvs. ekstrahere metallene fra smeltede salter ved elektrolyse. De tette, finkornede strukturelt sammenhengende utfellinger av metaller som fremstilles ved hjélp av denne fremgangsmåte står i skarp kontrast til pressede pulvre eller dendriter som er utfelt ved hjelp av tidligere fremgangsmåter. This method not only produced dense, fine-grained, structurally coherent and tough precipitates with good impact power, but can also be used for electroextraction of the metals, i.e. extracting the metals from molten salts by electrolysis. The dense, fine-grained, structurally coherent deposits of metals produced by this method are in sharp contrast to pressed powders or dendrites that are deposited by previous methods.

Det er imidlertid blitt funnet at ved.en elektroutfellings-prosess, hvori et metall avsettes fra et elektrolytisk system om-fattende en elektrolytisk smelte over på et katodisk grunnmateriale oppstår det ved temperaturforskjellen mellom den elektrolytiske smelte og katodematerialet, for kontakten med systemet er av tilstrekkelig storrelse, ufinsket ruhet og uregelmessigheter på den utfelte overflate. Dette problem er mer utpreget og oppstår oftere ved elektroutfelling av tungtsmeltelige metaller, hvor det normalt hersker store temperaturforskjeller mellom den elektrolytiske smelte og katoden som metallet skal overtrekkes på.. However, it has been found that in an electrodeposition process, in which a metal is deposited from an electrolytic system comprising an electrolytic melt onto a cathodic base material, the temperature difference between the electrolytic melt and the cathode material occurs because the contact with the system is of sufficient size, unpolished roughness and irregularities on the precipitated surface. This problem is more pronounced and occurs more often in the case of electrodeposition of difficult-to-melt metals, where there are normally large temperature differences between the electrolytic melt and the cathode on which the metal is to be coated.

Det er en hensikt med foreliggende oppfinnelse å skaffe en forbedret fremgangsmåte for elektroutfelling av metaller fra et elektrolytisk system over på et katodisk grunnmateriale hvor den.uheldige It is an aim of the present invention to provide an improved method for the electrodeposition of metals from an electrolytic system onto a cathodic base material where the

* ruhet og uregelmessighet på den utfelte flate stort sett er eliminert. Ifolge foreliggende oppfinnelse er det således tilveiebragt en fremgangsmåte til smelte-elektrolytisk fremstilling av tette og sammenhengende avsetninger av zirkon, hafnium, vanadium^ nibb, tantaif'* roughness and irregularity on the deposited surface are largely eliminated. According to the present invention, a method has thus been provided for the melt-electrolytic production of dense and continuous deposits of zircon, hafnium, vanadium, nibb, tantaif'

krom, molybden, wolfram eller legeringer av disse metaller i en elektrolysecelle med en opploselig eller uopploselig anode og et chromium, molybdenum, tungsten or alloys of these metals in an electrolytic cell with a soluble or insoluble anode and a

elektrisk ledende grunnmateriale som katode i inert atmosfære ifolge patent nr. 113 392, kjennetegnet ved at katoden, for-den bringes i kontakt med den elektrolytiske smelte, forvarmes, fortrinnsvis i inert atmosfære, til en temperatur som er ekvivalent med likvidustemperaturen for den elektrolytiske smelte, eller hoyere enn denne. electrically conductive base material as a cathode in an inert atmosphere according to patent no. 113 392, characterized in that the cathode, before it is brought into contact with the electrolytic melt, is preheated, preferably in an inert atmosphere, to a temperature equivalent to the liquidus temperature of the electrolytic melt , or higher than this.

Selv om det ikke er onskelig å bindes til noen spesiell teori eller mekanisme i forbindelse med opprinnelsen av ruheten og uregelmessighetene på metallaysetningene ved hjelp av tidligere fremgangsmåter viste undersøkelser at opprinnelsen til de fleste uregelmessigheter kan spores tilbake til mellomflaten mellom grunnmaterialet og utfellingen. Det antas at det dannes gassbobler på grunnmaterialet, og det belegges så på disse og disse blir områder for hoy feltkonsentrasjon, som forer til ruhet og uregelmessigheter i de tykkere plater. Denne ruhet som fremkommer som store konvekse fremspring på overflaten er uonsket av mange grunner. For eksempel hindrer nærvær av dumper en heldig valsing av tykkere plater eller de kan lett slåes av og etterlater et krater som går ned til under-laget hvorved overtrekkets beskyttende evner reduseres. De gassbobler som dannes på grunnmaterialet oppstår oyensynlig fra tre for-skjellige kilder. For det forste ble det funnet at det var inkorpo-rert betydelige•mengder gass i smeiten og at en slik gass ble fri-gjort i det oyeblikk smeiten nærmet seg sin frysetemperatur. Folge-lig frigjores gassbobler fra det frosne elektrolyttmateriale når en kald katode neddyppes i en varm smelte. Although it is not desirable to be bound by any particular theory or mechanism in connection with the origin of the roughness and irregularities on the metal deposits using previous methods, investigations showed that the origin of most irregularities can be traced back to the interface between the base material and the deposit. It is assumed that gas bubbles are formed on the base material, and these are then coated and these become areas of high field concentration, which lead to roughness and irregularities in the thicker plates. This roughness, which appears as large convex projections on the surface, is undesirable for many reasons. For example, the presence of dumpers prevents a successful rolling of thicker plates or they can be easily knocked off and leave a crater that goes down to the substrate thereby reducing the protective capabilities of the coating. The gas bubbles that form on the base material apparently arise from three different sources. Firstly, it was found that significant quantities of gas had been incorporated into the melt and that such gas was released at the moment the melt approached its freezing temperature. Consequently, gas bubbles are released from the frozen electrolyte material when a cold cathode is immersed in a hot melt.

For det annet inneholder de fleste metaller store gass-volumer i en størrelsesorden på 0.1 til 10 cm^ per cm^ metall, og denne gass kan frigjores ved hSyere temperaturer. F.eks. ble i visse former for kopper ét grunnmateriale som vanligvis anvendes ved elektroutf elling gassinnholdet funnet å være 0.1 crn-^ per cm^ metall. Secondly, most metals contain large volumes of gas in the order of 0.1 to 10 cm^ per cm^ of metal, and this gas can be released at higher temperatures. E.g. in certain forms of copper, a basic material which is usually used in electrodeposition, the gas content was found to be 0.1 crn-^ per cm^ of metal.

Endelig kan atmosfærisk gass:som kan anvendes som inert fluidum i elektroutfellingssonen innesluttes mellom de frosne salter og den kalde katode når den neddyppes i.smeiten. Når de frosne materialer til slutt smelter dannes det bobler ved katode-smelte-flaten, som overtrekkes, og'ferer til uonskede uregelmessigheter og ruhet i avsetningene. Finally, atmospheric gas, which can be used as an inert fluid in the electrodeposition zone, can be trapped between the frozen salts and the cold cathode when it is immersed in the forge. When the frozen materials finally melt, bubbles are formed at the cathode-melt surface, which are coated, and lead to unwanted irregularities and roughness in the deposits.

At de tidligere nevnte årsaker er riktige menes å være for-di katodetemperaturen opprinnelig er.langt lavere enn temperaturen % for den elektrolytiske smelte. Det er blitt funnet at når temperaturen for katoden er vesentlig lavere enn temperaturen for den flytende elektrolytiske smelte, dannes tilstrekkelige gassmengder ved katodesmelte-mellomflaten til å medfore betydelige ruheter og uregelmessigheter i den avsatte plate. Når således elektroutfellingen utfores ved vanlige temperaturer i et område på omtrent 575° til SOO°C, oppstår det vanligvis vesentlige temperaturforskjeller mellom ka-todens temperatur og temperaturen for"den elektrolytiske smelte. That the previously mentioned reasons are correct is believed to be because the cathode temperature is originally much lower than the temperature % of the electrolytic melt. It has been found that when the temperature of the cathode is substantially lower than the temperature of the liquid electrolytic melt, sufficient amounts of gas are formed at the cathode-melt interface to cause significant roughness and irregularities in the deposited plate. Thus, when the electrodeposition is carried out at ordinary temperatures in the range of about 575° to 100°C, substantial temperature differences usually occur between the temperature of the cathode and the temperature of the electrolytic melt.

Som angitt ovenfor-er det blitt funnet at hensikten med foreliggende oppfinnelse oppnås når katodematerialet oppvarmes til en temperatur som er tilstrekkelig til i det vesentlige å redusere bobledannelse ved mellomflaten mellom katode og smelte. For prak-tiske formål oppvarmes katodematerialet til minst samme temperatur som den flytende elektrolytiske smeltes temperatur. Den elektrolytiske smeltes flytende temperatur kan defineres som den temperatur ved hvilken det forste faste materiale dannes når smeiten avkjoles langsomt. Forvarmningen hindrer gassbobledannelse ved avdrivning av en eventuelt adsorbert overflategass, og medforer utover dette diffu-sjon av de 'indre gasser og reduserer derved den totale gasskonsen-trasjon i katoden og storkning av smelte på katoden hindres. Ved en foretrukket utforelse oppvarmes katoden i en inert atmosfære over den elektrolytiske smelte inntil den når-termisk likevekt med det elektrolytiske system, hvoretter den- neddyppes i den elektrolytiske smelte for overtrekking. As indicated above, it has been found that the purpose of the present invention is achieved when the cathode material is heated to a temperature which is sufficient to substantially reduce bubble formation at the interface between cathode and melt. For practical purposes, the cathode material is heated to at least the same temperature as the temperature of the liquid electrolytic melt. The liquid temperature of the electrolytic melt can be defined as the temperature at which the first solid material is formed when the melt is cooled slowly. The preheating prevents the formation of gas bubbles by drifting off any adsorbed surface gas, and in addition causes diffusion of the internal gases and thereby reduces the total gas concentration in the cathode and solidification of melt on the cathode is prevented. In a preferred embodiment, the cathode is heated in an inert atmosphere above the electrolytic melt until it reaches thermal equilibrium with the electrolytic system, after which it is immersed in the electrolytic melt for coating.

Likvidustemperaturen som katodematerialet forvarmes til vil naturligvis være avhengig av den spesielle sammensetning av den elektrolytiske smelte. Om onskes kan katodematerialet også forvarmes til temperaturer som er litt hoyere enn likvidustemperaturen for den elektrolytiske smelte. Generelt er det blitt iakttatt at katodematerialet skal forvarmes til minst likvidustemperaturen for det . elektrolytiske system for å oppnå tilfredsstillende resultater. Forvarming av katodematerialet kan utfores på flere måter. F.eks.hvis det anvendes en lukket elektrolytisk celle, som ved elektroutf elling av tungtsmeltelige metaller, kan sonen over elektro-lytten holdes ved eller litt over temperaturen for den elektrolytiske smelte ved hjelp av egnede oppvarmningsinnretninger.• Etterat katodematerialet har nådd termisk likevekt kan det neddyppes i smeiten for overtrekking. The liquid temperature to which the cathode material is preheated will naturally depend on the particular composition of the electrolytic melt. If desired, the cathode material can also be preheated to temperatures that are slightly higher than the liquidus temperature of the electrolytic melt. In general, it has been observed that the cathode material must be preheated to at least the liquidus temperature for it. electrolytic system to achieve satisfactory results. Preheating of the cathode material can be carried out in several ways. For example, if a closed electrolytic cell is used, as in the case of electrodeposition of refractory metals, the zone above the electrolyte can be kept at or slightly above the temperature of the electrolytic melt by means of suitable heating devices.• After the cathode material has reached thermal equilibrium can it is dipped into the melt for coating.

Selv om den forbedrede fremgangsmåte ifolge foreliggende oppfinnelse kan anvendes for en hvilken som helst elektroutfellings-fremgangsmåte hvor det eksisterer en vesentlig temperaturforskjell mellom katoden og likvidustemperaturen, kan den særlig anvendes for elektroutfelling av tungtsmeltelige metaller ved hjelp av den fremgangsmåte som er angitt i hovedpatentet, hvor det oppstår stor ruhet. Although the improved method according to the present invention can be used for any electrodeposition method where there is a significant temperature difference between the cathode and the liquidus temperature, it can be used in particular for the electrodeposition of refractory metals by means of the method indicated in the main patent, where great roughness occurs.

Folgende eksempler illustrerer fremgangsmåten. The following examples illustrate the procedure.

Eksempel I. Example I.

Tantal ble overtrukket fra et bad bestående av den eutektiske blanding av liF, NaF .og KF og inneholdende 15 vektprosent tan-talfluorid. Den eutektiske blanding av fluoridene av litium, natrium og kalium består av 29.25 vektprosent LiF, 11.70 vektprosent NaF og 59-05 vektprosent KF og har et smeltepunkt på ca. 454°C. Elektrolysen ble utfort ved en smeltetemperatur på 775°C°g med en katode-strømtetthet på o 30 ma/cm 2 . Katoden beståor av en kobberstav som ble neddyppet i kald tilstand, i smeiten 'til en tredjedel av sin totale lengde. Den ble holdt i denne stilling i 20 til 30 minutter for at delen over smeiten kunne forvarmes. Deretter ble staven neddyppet i sin fulle lengde og overtrukket. Den dannede overtrekning på katoden ble identifisert som tantal og hadde en tetthet på 16.6 g/crn^ Tantalum was coated from a bath consisting of the eutectic mixture of LiF, NaF and KF and containing 15% by weight of tantalum fluoride. The eutectic mixture of the fluorides of lithium, sodium and potassium consists of 29.25 weight percent LiF, 11.70 weight percent NaF and 59-05 weight percent KF and has a melting point of approx. 454°C. The electrolysis was carried out at a melting temperature of 775°C°g with a cathode current density of o 30 ma/cm 2 . The cathode consists of a copper rod which was immersed in a cold state, in the smelting 'to a third of its total length. It was held in this position for 20 to 30 minutes so that the part above the forge could be preheated. The rod was then immersed in its full length and coated. The coating formed on the cathode was identified as tantalum and had a density of 16.6 g/crn^

(den teoretiske tetthet for tantal) en hårdhet på 95 Diamond Pyramid .... Hardness (DPH), og var strukturelt sammenhengende. Tantal overtrukket på den nedre del av katoden, var meget ru og inneholdt klumper, mens den ovre del som var blitt forvarmet for neddypping var meget glatt. (the theoretical density for tantalum) a hardness of 95 Diamond Pyramid .... Hardness (DPH), and was structurally coherent. Tantalum coated on the lower part of the cathode was very rough and contained lumps, while the upper part, which had been preheated for immersion, was very smooth.

Eksempel II Example II

To kobberprover ble ovértrukket, med kolumbium fra et bad bestående av den eutektiske blanding av LiF, NaF og KF og som inneholdt 10 vektprosent kolumbiumfluorid%I begge tilfelle ble elektrolysen utfort ved en smeltetemperatur på 775°C°g©n strømtetthet på 50 ma/cm 2. En prove ble neddyppet kald i smeiten og overtrukket. Two copper samples were overextracted, with columbium from a bath consisting of the eutectic mixture of LiF, NaF and KF and which contained 10% by weight of columbium fluoride% In both cases the electrolysis was carried out at a melting temperature of 775°C°g©n a current density of 50 ma/ cm 2. A sample was dipped cold in the melt and coated.

Det dannede overtrekk som ble identifisert som niob var meget ru og hadde mange klumper som stakk ut fra den overtrukne overflate. En annen prove ble forvarmet ved at den ble understøttet like over smeiten en time, slik at den kom i termisk likevekt med smeiten. Proveh ble deretter neddyppet og overtrukket. Den dannede overtrekning som igjen ble identifisert som niob var glatt og var i enhver henseende av kommersielt aksepterbar kvalitet. The resulting coating identified as niobium was very rough and had many lumps protruding from the coated surface. Another sample was preheated by being supported just above the melt for an hour, so that it reached thermal equilibrium with the melt. Proveh was then dipped and coated. The resulting coating which was again identified as niobium was smooth and in all respects of commercially acceptable quality.

Eksempel III Example III

For å vise virkningen av forvarmningsteknikken på elektroutf elling av molybden på nikkel fra et smeltet kloridsystem i mot- setning til et smeltet fluoridsystem, ble det fremstilt en elektrolytisk smelte fra en blanding av LiCl (289.7 g) KC1 (349,3) og K^MoClg (213 g). Den eutektiske blanding av KC1 og LiCl ble forst smeltet i en induksjonsovn og den storknede smelte ble brutt opp for å hindre at digelen skulle sprekke når det utvider seg ved gjentatt oppvarmning. K^MoClg ble deretter satt til dette og elektrout-fellingscellen ble satt sammen. Argon ble sendt gjennom cellen for å drive ut luft, og deretter ble cellen oppvarmet til ca. 625°G. Elektrolyse ble utfort ved en smeltetemperatur på 625°C og med strom-tettheter fra 25 til 50 ma/cm . En prove av nikkel ble neddyppet kald i smeiten og overtrukket. Den dannede overtrekning, som ble identifisert ved analyse som molybden, var ru, og hadde store korn, og mange klumper stakk ut fra den overtrukne overflate. En annen nikkelprove ble forvarmet ved at den ble holdt over smeiten inntil den kom i termisk likevekt med smeiten. Denne prove som også ble identifisert som molybden ved hjelp av analyse, var glatt og av kommersiell aksepterbar kvalitet. To demonstrate the effect of the preheating technique on the electrodeposition of molybdenum on nickel from a molten chloride system as opposed to a molten fluoride system, an electrolytic melt was prepared from a mixture of LiCl (289.7 g), KC1 (349.3) and K^ MoCl 2 (213 g). The eutectic mixture of KC1 and LiCl was first melted in an induction furnace and the solidified melt was broken up to prevent the crucible from cracking as it expands on repeated heating. K^MoClg was then added to this and the electrodeposition cell was assembled. Argon was passed through the cell to expel air, and then the cell was heated to approx. 625°G. Electrolysis was carried out at a melting temperature of 625°C and with current densities from 25 to 50 ma/cm. A sample of nickel was dipped cold in the forge and coated. The resulting coating, which was identified by analysis as molybdenum, was rough and had large grains, and many lumps protruded from the coated surface. Another nickel sample was preheated by holding it over the melt until it reached thermal equilibrium with the melt. This sample, which was also identified as molybdenum by analysis, was smooth and of commercially acceptable quality.

Claims (2)

Fremgangsmåte til smelte-elektrolytisk fremstilling av tette og sammenhengende avsetninger av zirkonium, hafnium, vanadium, niob, tantal, krom, molybden, wolfram eller legeringer av disse metaller i en elektrolysecelle med en opploselig eller uoppløselig anode og et elektrisk ledende grunnmateriale som katode i inert atmosfære ifolge patent nr. 113 392>karakterisert vedat katoden, fQr den bringes i kontakt med den elektrolytiske smelte, forvarmes, fortrinnsvis i inert atmosfære, til en temperatur som er ekvivalent med likvidustemperaturen for den elektrolytiske smelte eller hSyere enn denne. Process for the melt-electrolytic production of dense and continuous deposits of zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten or alloys of these metals in an electrolysis cell with a soluble or insoluble anode and an electrically conductive base material as cathode in inert atmosphere according to patent no. 113 392> characterized in that the cathode, before it is brought into contact with the electrolytic melt, is preheated, preferably in an inert atmosphere, to a temperature equivalent to the liquidus temperature of the electrolytic melt or higher than this. 2. Fremgangsmåte ifolge krav 1,karakterisertved at katoden forvarmes til temperaturen av den elektrolytiske smelte.2. Method according to claim 1, characterized in that the cathode is preheated to the temperature of the electrolytic melt.
NO15869165A 1963-02-18 1965-06-26 NO116732B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US26787963A 1963-02-18 1963-02-18
US30275563A 1963-07-19 1963-07-19
US33989864A 1964-01-24 1964-01-24
US38611964A 1964-07-28 1964-07-28

Publications (1)

Publication Number Publication Date
NO116732B true NO116732B (en) 1969-05-12

Family

ID=27500922

Family Applications (2)

Application Number Title Priority Date Filing Date
NO15647165A NO116820B (en) 1963-02-18 1965-01-22
NO15869165A NO116732B (en) 1963-02-18 1965-06-26

Family Applications Before (1)

Application Number Title Priority Date Filing Date
NO15647165A NO116820B (en) 1963-02-18 1965-01-22

Country Status (9)

Country Link
JP (1) JPS5010816B1 (en)
BE (3) BE658463A (en)
CH (3) CH425392A (en)
DE (3) DE1226311B (en)
DK (2) DK120422B (en)
FR (1) FR87182E (en)
NL (3) NL6500846A (en)
NO (2) NO116820B (en)
SE (1) SE312709B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541521U (en) * 1977-06-03 1979-01-08
FR2691169B1 (en) * 1992-05-12 1994-07-01 Cezus Co Europ Zirconium REFRACTORY METAL ALLOYS SUITABLE FOR TRANSFORMATION INTO HOMOGENEOUS AND PURE INGOTS AND METHODS FOR OBTAINING SAID ALLOYS.
WO2006038476A1 (en) * 2004-10-01 2006-04-13 Sumitomo Electric Industries, Ltd. Fused-salt bath, precipitate obtained by using the fused-salt bath, method for producing metal product and metal product
JP4883534B2 (en) * 2008-03-26 2012-02-22 住友電気工業株式会社 Molten salt bath, method for producing molten salt bath, and tungsten precipitate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715093A (en) * 1952-01-25 1955-08-09 Senderoff Seymour Electrolytic production of molybdenum powder and coherent deposits
GB812817A (en) * 1954-05-21 1959-04-29 Solar Aircraft Co Electrolytic production of titanium
BE563570A (en) * 1956-12-28

Also Published As

Publication number Publication date
NL302728A (en)
DE1226311B (en) 1966-10-06
BE640801A (en)
CH451638A (en) 1968-05-15
SE312709B (en) 1969-07-21
BE665942A (en) 1965-10-18
DK120422B (en) 1971-05-24
BE658463A (en) 1965-05-17
CH451637A (en) 1968-05-15
NO116820B (en) 1969-05-27
CH425392A (en) 1966-11-30
FR87182E (en) 1966-06-24
DK125439B (en) 1973-02-19
DE1230233B (en) 1966-12-08
NL6509767A (en) 1966-01-31
DE1259104B (en) 1968-01-18
JPS5010816B1 (en) 1975-04-24
NL6500846A (en) 1965-11-25

Similar Documents

Publication Publication Date Title
Mellors et al. The Electrodeposition of Coherent Deposits of Refractory Metals: III. Zirconium
US5024737A (en) Process for producing a reactive metal-magnesium alloy
Haarberg et al. Electrodeposition of titanium from chloride melts
US4853094A (en) Process for the electrolytic production of metals from a fused salt melt with a liquid cathode
GB833767A (en) Continuous electrolytic production of titanium
US4790917A (en) Refining of lithium-containing aluminum scrap
Elwell Electrocrystallization of semiconducting materials from molten salt and organic solutions
US5118396A (en) Electrolytic process for producing neodymium metal or neodymium metal alloys
NO128915B (en)
NO115607B (en)
Padamata et al. Primary Production of Aluminium with Oxygen Evolving Anodes
NO116732B (en)
US4049511A (en) Protective material made of corundum crystals
US2734855A (en) Electrolytic preparation of reduced
CN110205652B (en) Preparation method and application of copper-scandium intermediate alloy
US3298935A (en) Preparation of reactive metal solutions by electrodeposition methods
US4170533A (en) Refractory article for electrolysis with a protective coating made of corundum crystals
KR102306151B1 (en) Apparatus for refining of metals using liquid metal cathode, and method thereof
GB1134217A (en) Improved process for the electrodeposition of metals, alloys or compounds thereof from molten electrolytes
Wesley Preparation of pure nickel by electrolysis of a chloride solution
US808066A (en) Process for the production of metallic calcium.
US2923670A (en) Method and means for electrolytic purification of plutonium
Haarberg et al. Mass transfer reactions near the cathode during aluminium electrolysis
Lu et al. The corrosion performance of a binary Cu-Ni alloy used as an anode for aluminum electrolysis
US4166013A (en) Method of making metal beta-alumina and refining metal using it