WO2006038476A1 - Fused-salt bath, precipitate obtained by using the fused-salt bath, method for producing metal product and metal product - Google Patents

Fused-salt bath, precipitate obtained by using the fused-salt bath, method for producing metal product and metal product Download PDF

Info

Publication number
WO2006038476A1
WO2006038476A1 PCT/JP2005/017510 JP2005017510W WO2006038476A1 WO 2006038476 A1 WO2006038476 A1 WO 2006038476A1 JP 2005017510 W JP2005017510 W JP 2005017510W WO 2006038476 A1 WO2006038476 A1 WO 2006038476A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt bath
molten salt
precipitate
density
atomic
Prior art date
Application number
PCT/JP2005/017510
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Nitta
Shinji Inazawa
Kazunori Okada
Toshiyuki Nohira
Hironori Nakajima
Original Assignee
Sumitomo Electric Industries, Ltd.
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd., Kyoto University filed Critical Sumitomo Electric Industries, Ltd.
Priority to US11/664,095 priority Critical patent/US20080105553A1/en
Priority to DE112005002435.0T priority patent/DE112005002435B4/en
Priority to JP2006539225A priority patent/JP4785141B2/en
Priority to CN2005800335362A priority patent/CN101035930B/en
Publication of WO2006038476A1 publication Critical patent/WO2006038476A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means

Definitions

  • the present invention relates to a molten salt bath, a precipitate obtained using the molten salt bath, a method for producing a metal product, and a metal product.
  • metals such as tungsten and molybdenum (refractory metals) in groups IVA to VIA and 4 to 6 in the periodic table are excellent in heat resistance and corrosion resistance. Can be used in the above-mentioned fine metal products, it is possible to produce fine metal products with excellent heat resistance and durability.
  • Non-Patent Document 1 P. M. COPHAM, D. J. FRAY, "Selecting an optimum electrolyte for zinc chloride electrolysis", JOURNAL OF APPLIED
  • Non-Patent Document 2 M. Masuda, H. Takenishi, and A. Katagiri, "Electrodep osition of Tungsten and Related Voltammetric Study in a Basic Z nC12-NaCl (40-60 mol%) Melt", Journal of The Electrochemical Soc iety, 148 (1), 2001, p. C59 -C64
  • Non-Patent Document 3 Satoshi Katagiri, “Electrodeposition of tungsten in ZnC12—NaCl and ZnBr2—NaBr molten salts”, Molten salt and high temperature chemistry, Vol. 37, No. 1, 1994, p.2
  • Non-Patent Document 4 Nikonova IN, Pavlenko SP, Bergman AG, "Polytherm of the ternary system NaCl—KC1-ZnC12", Bull. Acad. Sci. URSS, Classe sci. Chim. (1941), p. 391—400
  • An object of the present invention is to provide a molten salt bath with high purity, high density and high density and capable of obtaining a smooth surface refractory metal precipitate, and an analysis obtained using the molten salt bath.
  • the present invention relates to at least one selected from the group force consisting of chlorine, bromine and iodine, and zinc.
  • a molten salt bath containing at least two alkali metals and fluorine.
  • the molten salt bath of the present invention may contain oxygen.
  • the molten salt bath of the present invention has a group force of tungsten, chromium, molybdenum, tantalum, titanium, zirconium, vanadium, hafnium, and niobium force.
  • the molten salt bath of the present invention comprises at least two selected from the group force consisting of sodium, potassium, and cesium as alkali metals, at least one of chlorine and bromine, zinc, and fluorine. obtain.
  • the zinc content is 14 atomic% or more and 30 atomic% or less of the entire molten salt bath.
  • the zinc content is 17 atomic% or more and 25 atomic% or less of the entire molten salt bath.
  • the fluorine content is 0.1 atom of the entire molten salt bath.
  • the present invention is a precipitate obtained using the molten salt bath described above.
  • the precipitate of the present invention is preferably deposited in a state where the molten salt bath contains 0.01 atomic% or more of oxygen.
  • the arithmetic average roughness Ra FIS B0601-1994) of the surface of the precipitate of the present invention is preferably 3 / z m or less.
  • the relative density of the precipitate of the present invention is preferably 85% or more.
  • the present invention provides a process for forming a resist pattern on a conductive substrate to expose a part of the conductive substrate, and the conductive substrate on which the resist pattern is formed in the molten salt bath described in any of the above. It is a method for producing a metal product, which includes a step of immersing and a step of depositing a metal from a molten salt bath in an exposed portion of a conductive substrate.
  • the temperature of the molten salt bath may be 250 ° C. or less.
  • the present invention is a metal product manufactured by using the above metal product manufacturing method.
  • a molten salt bath that is capable of obtaining a precipitate of a refractory metal having a high purity, a high density, and a high density and having a smooth surface, and an analysis obtained using the molten salt bath.
  • a product, a method for manufacturing a metal product, and a metal product can be provided.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a method for obtaining a precipitate using the molten salt bath of the present invention.
  • the present invention is a molten salt bath containing at least one selected from the group force consisting of chlorine, bromine and iodine, zinc, at least two alkali metals, and fluorine.
  • the molten salt bath of the present invention contains at least two of lithium, sodium, potassium and cesium as alkali metals.
  • the form in the molten salt bath of at least one, zinc, at least two alkali metals and fluorine, etc., which also selected the group power consisting of chlorine, odor, and iodine, constituting the molten salt bath of the present invention is particularly preferable.
  • these components may exist as ions in the molten salt bath, or may exist in a complexed state.
  • the above-mentioned components constituting the molten salt bath of the present invention can be detected by performing ICP spectroscopic analysis (ICP spectroscopic analysis) on a sample in which the molten salt bath of the present invention is dissolved in water.
  • the molten salt bath of the present invention may contain oxygen in addition to the above components.
  • oxygen When the molten salt bath of the present invention contains oxygen, it tends to be able to obtain precipitates with higher purity, higher density and higher density and with a smoother surface.
  • the form of oxygen in the molten salt bath of the present invention is not particularly limited, and may be present, for example, as an ion, in a state of forming a complex, or in an acidic state.
  • the presence of oxygen in the molten salt bath of the present invention can be confirmed by using an inert gas melting infrared absorption method for the molten salt bath of the present invention.
  • the inert gas melting infrared absorption method is performed, for example, as follows. First, a molten salt bath is accommodated in a carbon crucible in a helium gas atmosphere, and oxygen is generated from the molten salt bath by heating the carbon crucible. This oxygen then reacts with the carbon in the carbon crucible to produce carbon monoxide and carbon dioxide. Next, infrared rays are irradiated in the atmosphere containing the generated carbon monoxide and carbon dioxide. Finally, the presence and content of oxygen in the molten salt bath can be confirmed by investigating the attenuation of infrared rays generated by the absorption of carbon monoxide and carbon dioxide in the atmosphere.
  • the molten salt bath of the present invention may contain at least one selected from the group consisting of tungsten, chromium, molybdenum, tantalum, titanium, zirconium, vanadium, hafnium, and niobium. These metals are refractory metals in the Periodic Tables Group IVA to Group VIA and Groups 4 to 6. Including this refractory metal When electrolysis is carried out using a bright molten salt bath, it is possible to obtain precipitates with high purity, high density and high density mainly composed of these refractory metals and with a smooth surface. it can.
  • tungsten, chromium, molybdenum, tantalum, titanium, zirconium, vanadium, hafnium or niobium in the molten salt bath of the present invention is not particularly limited. May be
  • the content of the refractory metal in the molten salt bath should be 0.04 atomic% or more when the total components constituting the molten salt bath are 100 atomic%. This is preferred from the viewpoint of obtaining a dense refractory metal precipitate with a smooth surface.
  • the higher the refractory metal content in the molten salt bath the higher the current density, the more refractory metal precipitates can be obtained, but the refractory metal content is higher. As the number increases, the melting point of the molten salt bath rises, and it is necessary to raise the temperature of the molten salt bath during electrolysis.
  • the content of the refractory metal increases, for example, it becomes impossible to perform electrolysis by immersing a conductive substrate on which a resist pattern having a low melting point, such as resin, having a material strength is immersed in a molten salt bath. Therefore, the content of the refractory metal is preferably set appropriately according to the purpose.
  • the presence and content of the refractory metal in the molten salt bath of the present invention should be detected and calculated by performing ICP spectroscopic analysis on a sample in which the molten salt bath of the present invention is dissolved in water. Can do.
  • the purpose of the present invention is to obtain a refractory metal precipitate having a high purity, a high density and a high density and a smooth surface. It goes without saying that precipitates other than kutry metal may be obtained.
  • the molten salt bath of the present invention includes at least two selected from the group force consisting of sodium, potassium, and cesium as the alkali metal, at least one of chlorine and bromine, zinc, and fluorine. It is preferable to consist of. In this case, precipitates with higher purity, higher density, and higher density and having a smooth surface tend to be obtained.
  • at least two selected group powers consisting of sodium, potassium and cesium at least one of chlorine and bromine, and components inevitably contained other than zinc and fluorine.
  • the zinc content in the molten salt bath of the present invention is 14 atomic% or more and 30 atomic% or less of the entire molten salt bath. Is more preferred. If the zinc content is less than 14 atomic% of the total molten salt bath or more than 30 atomic%, high purity, high density and smooth deposits on the surface tend not to be obtained. In addition, when the zinc content is not less than 17 atomic% and not more than 25 atomic% of the entire molten salt bath, the temperature of the molten salt bath can be reduced to 250 ° C or lower.
  • the metal product can be produced by electric heating at a low temperature of the molten salt bath of 250 ° C or lower.
  • the zinc content in the molten salt bath of the present invention can be detected by performing ICP spectroscopic analysis on a sample obtained by dissolving the molten salt bath of the present invention in water.
  • the conductive substrate for example, a substrate made of a simple metal or an alloy, or a substrate in which a conductive metal or the like is attached on a nonconductive base material such as glass is used. it can.
  • the metal product is formed by depositing a metal such as a refractory metal in a molten salt bath by electrolysis on a portion of the surface of the conductive substrate exposed without forming a resist pattern.
  • examples of the metal product manufactured by the present invention include a contact probe, a micro connector, a micro relay, and various sensor parts.
  • examples of metal products manufactured by the present invention include RFMEMS (Radio Frequency Microscope) such as a variable capacitor, inductor, array, or antenna.
  • Electro Mechanical System optical MEMS members, inkjet heads, biosensor internal electrodes, or power MEMS members (electrodes, etc.).
  • the fluorine content in the molten salt bath of the present invention is too small, the effect of containing fluorine cannot be obtained. Since the tendency to scatter is increased, it is preferably 0.1 atomic% or more and 20 atomic% or less of the entire molten salt bath.
  • the fluorine content in the molten salt bath of the present invention was determined by dissolving the molten salt bath of the present invention in water. The sample can be detected and calculated by using a fluoride ion selective electrode.
  • the molten salt bath of the present invention is prepared by, for example, heating at least a mixture of zinc chloride, bromide or iodide, alkali metal chloride, bromide or iodide, and a fluorine compound. It can be obtained by melting.
  • the molten salt bath thus obtained is accommodated, for example, in an electrolytic cell 1 shown in the schematic configuration diagram of FIG. Then, after immersing anode 3 and cathode 4 in molten salt bath 2 accommodated in electrolytic cell 1, current is passed between anode 3 and cathode 4 to perform electrolysis of molten salt bath 2. For example, the metal contained in the molten salt bath 2 can be deposited on the surface of the cathode 4 to obtain a deposit.
  • the precipitate was precipitated in a state where 0.01 atomic% or more of oxygen was contained in the molten salt bath 2. In this case, a higher purity precipitate tends to be obtained.
  • oxygen is introduced into the molten salt bath 2.
  • preparation of a molten salt bath 2 in which an acid salt is mixed can be mentioned.
  • the oxygen content is a ratio (atomic%) when the total of all the components constituting the molten salt bath 2 containing oxygen is 100 atomic%. Further, the oxygen content in the molten salt bath 2 can be calculated using the above-described inert gas melting infrared absorption method.
  • the surface roughness of the surface of the precipitate is 3
  • surface roughness means arithmetic average roughness (Ra FIS B0601-1994).
  • the relative density of the precipitates is preferably 85% or more.
  • the relative density of the precipitate is less than 85%, the voids in the precipitate increase and the salt tends to be easily involved.
  • the residual stress in the precipitate increases, and the precipitate may peel off during the formation of the precipitate.
  • "relative density of precipitates” in the present invention the proportion of the original density of the metal intended to! /, Ru that precipitation density of the precipitate for (gZcm 3) (gZcm 3) of (%) It is expressed by the following formula.
  • Relative density of precipitates 100 X (density of precipitates) / (gold intended to precipitate) The original density of the genus)
  • Each powder of potassium was dried in a vacuum oven at 200 ° C. for 12 hours.
  • the WC1 (tungsten tetrachloride) powder was dried in a 100 ° C vacuum oven for 12 hours.
  • Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
  • the molten salt bath of Example 1 was prepared in an amount of 500 g by heating the resulting alumina crucible to melt the powder in the alumina crucible.
  • Table 2 shows the composition (atomic%) of this molten salt bath.
  • the composition of the molten salt bath shown in Table 2 is as follows: ZnCl, NaCl contained in the alumina crucible
  • the evaluation of the composition of the precipitate is performed by ICP spectroscopic analysis after the precipitate is dissolved in an acid.
  • the amount of tungsten contained in the precipitate increases (the tungsten (shown in Table 3)).
  • the components other than W, Zn and O shown in Table 3 are mainly constituents of the molten salt bath, and are present in the voids of the precipitate.
  • the smaller the component amount (the smaller the atomic% in the other column of Table 3), the higher the density and the higher the amount of the precipitate.
  • the surface roughness of the precipitate was evaluated using a laser microscope (model number “VK-8 500” manufactured by Keyence Corporation). The lower the surface roughness value shown in Table 3, the more the precipitate has a smoother surface.
  • the surface roughness shown in Table 3 is the arithmetic average roughness Ra (JIS B0601-1994).
  • the density of precipitates was evaluated by using a FIB (focused ion beam) apparatus to cut the vicinity of the center of the precipitates into a 3 mm x 3 mm rectangular plate together with the nickel plate, This was done by calculating the density of the precipitate.
  • the density of the precipitate was calculated as follows. First, the thickness of the precipitate in the sample was measured using a FIB apparatus. Then, the volume of the precipitate was calculated by multiplying the surface area (3 mm ⁇ 3 mm) of the precipitate by the measured thickness. On the other hand, the mass of the portion corresponding to the cut nickel plate was calculated from the mass of the whole nickel plate measured in advance.
  • the mass of the entire sample was measured, and the mass of the precipitate was calculated by subtracting the mass of the portion corresponding to the cut nickel plate from the measured mass of the entire sample. Finally, the density of the precipitate was calculated by dividing the mass of the precipitate by the volume of the precipitate.
  • the relative density of the precipitate is assumed to be 19.3 (gZcm 3 ), which is the original density of tungsten, which is a metal intended to be precipitated. From the original density, the relative density (%) of the precipitate was calculated by the following formula.
  • Relative density of precipitates 100 X (precipitate density) Z (original density of tungsten) [0045] As shown in Table 3, the precipitate obtained using the molten salt bath of Example 1 is a film-like precipitate, has a large amount of tungsten, is highly pure, and has a small surface roughness. It was a high density, high relative density and high density precipitate.
  • the above glove box is adjusted so that KF force mol and WC1 are 0.54 mol per 00 mol.
  • Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
  • the precipitate obtained using the molten salt bath of Example 2 was film-like, had a large amount of tungsten, had a high purity, and had a small surface roughness. It was a high density, high relative density and high density precipitate.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • the WC1 powder was dried in a 100 ° C vacuum oven for 12 hours. It was. A mixture of ZnCl, NaCl, and KC1 with a molar ratio of 85: 10: 5 was prepared.
  • Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
  • Example 3 the alumina crucible was heated to melt the powder in the alumina crucible, whereby the molten salt bath of Example 3 was produced.
  • Table 2 shows the composition (atomic%) of this molten salt bath.
  • Example 3 by performing the electrolysis under the same electrolysis conditions as in Example 1 (Table 3) except that the molten salt bath of Example 3 was used and the temperature of the molten salt bath was maintained at 380 ° C, A precipitate containing tungsten was obtained on the surface of the nickel plate.
  • the precipitate obtained using the molten salt bath of Example 3 is a film-like precipitate, has a large amount of tungsten, is highly pure, and has a small surface roughness. It was a high density, high relative density and high density precipitate.
  • the compound is placed in an alumina crucible, and KF force mol, WC1 is 100 mol per 100 mol of this mixture.
  • Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
  • Example 4 Thereafter, in the same manner as in Example 1, the molten salt bath of Example 4 was produced by heating the alumina crucible to melt the powder in the alumina crucible. Table 2 shows the composition (atomic%) of this molten salt bath.
  • Example 3 using the molten salt bath of Example 4, electrolysis was performed under the same electrolysis conditions as in Example 1 (Table 3) to obtain a precipitate containing tungsten on the surface of the nickel plate. . [0060] Thereafter, in the same manner as in Example 1, the precipitation state, composition, surface roughness, density and relative density of the precipitates were evaluated. The results are shown in Table 3.
  • the precipitate obtained by using the molten salt bath of Example 4 is in the form of a film, has a large amount of tungsten, is highly pure, and has a small surface roughness. It was a high density, high relative density and high density precipitate.
  • WC1 is 0.27 mol and WO is 0.27 mol.
  • Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
  • Example 5 500 g of the molten salt bath of Example 5 was prepared by heating the alumina crucible containing 2 4 3 to melt the powder in the alumina crucible. It is shown the composition of the molten salt bath (atomic 0/0) in Table 2.
  • Example 5 using the molten salt bath of Example 5, electrolysis was performed under the same electrolysis conditions as in Example 1 (Table 3) to obtain a precipitate containing tungsten on the surface of the nickel plate. .
  • the precipitate obtained using the molten salt bath of Example 5 is a film-like precipitate, has a large amount of tungsten, is highly pure, and has a small surface roughness. It was a high density, high relative density and high density precipitate.
  • the composition (molar ratio) of the raw materials contained in the alumina crucible is shown in Table 1. [0070] And ZnBr, NaBr, KBr, KF and WC1 are contained in the above glove box.
  • Example 6 The molten alumina crucible obtained in Example 6 was heated to melt the powder in the alumina crucible, thereby preparing 500 g of the molten salt bath of Example 6.
  • Table 2 shows the composition (atomic%) of this molten salt bath.
  • Example 6 electrolysis was performed under the same electrolysis conditions as in Example 1 (Table 3) to obtain a precipitate containing tungsten on the surface of the nickel plate. .
  • the precipitate obtained using the molten salt bath of Example 6 was film-like, had a large amount of tungsten, had a high purity, and had a small surface roughness. It was a high density, high relative density and high density precipitate.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • the WC1 powder was dried in a 100 ° C vacuum oven for 12 hours.
  • Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible. Show.
  • Example 7 Thereafter, in the same manner as in Example 1, the molten salt bath of Example 7 was produced by heating the alumina crucible and melting the powder in the alumina crucible. Table 2 shows the composition (atomic%) of this molten salt bath.
  • Example 7 electrolysis was performed under the same electrolysis conditions as in Example 1 (Table 3), thereby obtaining a precipitate containing tungsten on the surface of the nickel plate. .
  • the precipitate obtained by using the molten salt bath of Example 7 is a film-like precipitate, has a large amount of tungsten, is highly pure, and has a small surface roughness. It was a high density, high relative density and high density precipitate.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • the WC1 powder was dried in a 100 ° C vacuum oven for 12 hours.
  • KF is 4 moles and WC1 is 0.54 moles.
  • Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
  • Example 8 Thereafter, in the same manner as in Example 1, the alumina crucible was heated to melt the powder in the alumina crucible, whereby the molten salt bath of Example 8 was produced. Table 2 shows the composition (atomic%) of this molten salt bath.
  • the precipitate obtained using the molten salt bath of Example 8 was in the form of a film, had a large amount of tungsten, had a high purity, and had a small surface roughness. It was a high density, high relative density and high density precipitate.
  • Example 9 Weighing power of powder A precipitate containing tungsten on the surface of the nickel plate was obtained in the same manner as in Example 1 except that the steps up to obtaining a precipitate containing tungsten were performed in the atmosphere.
  • Table 1 shows the composition (molar ratio) of the raw materials accommodated in the alumina crucible in Example 9, and Table 2 shows the composition (atomic%) of the molten salt bath.
  • the oxygen content (atomic%) in the molten salt bath was calculated using an inert gas melting infrared absorption method for a sample obtained by extracting a part of the molten salt bath. The reason why the molten salt bath of Example 9 contains oxygen is thought to be due to the mixing of oxygen in the atmosphere.
  • the precipitate obtained using the molten salt bath of Example 9 had a film-like precipitation state, a large amount of tungsten, a high purity, and a small surface roughness. It was a high density, high relative density and high density precipitate.
  • Table 1 shows the composition (molar ratio) of the raw materials housed in the alumina crucible in Example 10. Then, an alumina tube was inserted into the molten salt bath in the alumina crucible, and oxygen was introduced at a flow rate of 1 LZ for publishing with oxygen for 1 hour or more. Thus the composition of the molten salt bath of Example 10 obtained (atomic 0/0) are shown in Table 2 ⁇ this.
  • the oxygen content (atomic%) in the molten salt bath was calculated using an inert gas melting infrared absorption method for a sample obtained by extracting a part of the molten salt bath. The reason why oxygen is contained in the molten salt bath of Example 10 is considered to be due to the mixing of oxygen in the atmosphere and the dissolution of oxygen introduced by the tube made by Armina.
  • the precipitate obtained using the molten salt bath of Example 10 had a precipitation state. It was a film-like precipitate with a high amount of tungsten, high purity, small surface roughness, high density, high relative density, and high density.
  • ZnCl and NaCl powders are dried in a vacuum oven at 200 ° C for 12 hours
  • Table 1 shows the composition (molar ratio) of the raw materials housed inside.
  • the molten salt bath of Comparative Example 1 was heated by melting the powder by heating the crucible.
  • Table 2 shows the composition (atomic%) of this molten salt bath.
  • the precipitates obtained using the molten salt bath of Comparative Example 1 were granular in the precipitation state, and the amount of tungsten compared to the precipitates of Example 1 to L0: It was a precipitate with a very small surface roughness and a small density, a low density and a low relative density.
  • Table 1 shows the composition (molar ratio) of the raw materials contained in the crucible.
  • Example 3 As shown in Table 3, the precipitate obtained using the molten salt bath of Comparative Example 2 is cracked, and the amount of tungsten is much higher than that of Example 1-: LO precipitate.
  • the precipitates had a small surface roughness, a large density, a low density, and a low relative density.
  • Example 1 60 20 0 0 0 0 0 4 0.54 0
  • Example 2 35 30 30 5 0 0 0 0 4 0.54 0
  • Example 3 85 10 5 0 0 0 0 0 4 0.54 0
  • Example 4 60 20 0 0 20 0 0 0 4 0.54 0 ⁇
  • Example 5 60 20 0 0 0 0 0 4 0.27 0.27
  • Example 6 0 0 0 0 0 60 20 4 0.50 0
  • Example 7 49
  • Example 7 70 15 15 0 0 0 0 0 4 0.54 0
  • Example 9 60 20 0 0 0 0 0 4 0.54 0
  • Example 10 60 20 0 0 0 0 0 0 0 0 0.54 0
  • Comparative Example 1 60 40 0 0 0 0 0 0 0 0 0.0 0.54 0
  • Example 10 60 20 0 0 0 0 0 0 0.54 0
  • Example 1 22.16 7.39 8.87 0 0 59.90 0 0.20 1.48 0
  • Example 2 14.25 12.21 13.84 2.03 0 55.82 0 0.22 1.63 0
  • Example 3 28.75 3.38 3.04 0 0 63.30 0 0.18 1.35 0
  • Example 4 22.16 7.39 1.48 0 7.39 59.90 0 0.20 1.48 0
  • Example 5 22.19 7.40 8.87 0 0 59.56 0 0.20 1.48 0.30
  • Example 6 22.18 7.39 8.87 0 0 0.74 59.15 0.19 1.48 0
  • Example 7 18.83 11.53 9.61 0 0 58.28 0 0.21 1.54 0
  • Example 8 24.94 5.34 6.77 0 0 61.33 0 0.19 1.43 0
  • Example 9 22.14 7.38 8.86 0 0 59.84 0 0.20 1.48 0.10
  • Example 10 22.10 7.37 8.84 0 0
  • Examples 1 to 5 containing fluorine When using a molten salt bath of LO V, in the case of containing no fluorine, the molten salt bath of Comparative Example 12 Compared with the case of using, it was possible to obtain a precipitate with a high purity, high relative density and high density, and a smooth surface. [0107] Further, as shown in Tables 2 and 3, the melting of Example 1 and Examples 4 to 10 in which the zinc content in the entire molten salt bath is 17 atomic percent or more and 25 atomic percent or less. When using a salt bath, the temperature of the molten salt bath is 250 ° C compared to the case of using the molten salt baths of Examples 2 to 3, and precipitates can be obtained at a lower temperature. It was.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • Table 4 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
  • the molten alumina crucible was heated to melt the powder in the alumina crucible, thereby preparing 500 g of the molten salt bath of Example 11.
  • Table 5 shows the composition (atomic%) of this molten salt bath.
  • the precipitation state, composition, surface roughness and density of the precipitates were evaluated in the same manner as in Example 1.
  • the relative density of the precipitate is assumed to be 10.22 (g / cm 3 ) of the original density of molybdenum, which is the metal intended to be deposited, and the calculated density of the precipitate and the original density of this molybdenum The relative density of the precipitate (%) was calculated.
  • Relative density of precipitates 100 X (density of precipitates) Z (original density of molybdenum) [0113]
  • the precipitates obtained using the molten salt bath of Example 11 Thiickness 3 m was a high-density, high-relative-density and high-density precipitate with a film-like precipitation state, high molybdenum content, high purity, and small surface roughness.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • Table 4 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
  • the molten alumina crucible was heated to melt the powder in the alumina crucible, whereby 500 g of the molten salt bath of Example 12 was prepared.
  • Table 5 shows the composition (atomic%) of this molten salt bath.
  • Example 12 Thereafter, the precipitation state, composition, surface roughness, density and relative density of the precipitates were evaluated in the same manner as in Example 11. The results are shown in Table 6. [0119] As shown in Table 6, the precipitate (thickness 0.5 / zm) obtained using the molten salt bath of Example 12 was in the form of a film and had a large amount of molybdenum and a high content. It was a high density, high relative density and high density precipitate with low purity and surface roughness.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • the WO powder is dried in a vacuum oven at 100 ° C for 12 hours.
  • Table 4 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
  • the molten salt crucible of Example 13 was prepared in an amount of 500 g by heating the resulting alumina crucible to melt the powder in the alumina crucible.
  • Table 5 shows the composition (atomic%) of this molten salt bath.
  • the precipitates (thickness 0.5 / zm) obtained using the molten salt bath of Example 13 were in the form of a film with a large amount of tungsten and a high amount.
  • the precipitates were pure, small in surface roughness, high density, high relative density and high density.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • Example 14 500 g of the molten salt bath of Example 14 was prepared by heating the alumina crucible that had been heated and melting the powder in the alumina crucible. Table 5 shows the composition (atomic%) of this molten salt bath.
  • the precipitation state, composition, surface roughness and density of the precipitates were evaluated in the same manner as in Example 1.
  • the relative density of the precipitate is assumed to be 16.65 (gZcm 3 ), which is the original density of tantalum, which is the metal intended to be deposited, and the calculated density of the tantalum and the original density of this tantalum. From the above, the relative density (%) of the precipitate was calculated by the following formula.
  • Relative density of precipitates 100 X (Precipitate density) Z (Original density of tantalum)
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • KF powder was weighed in the above glove box so as to be 4 mol. Then, the weighed KF powder was placed in the above-mentioned alumina crucible.
  • the lumina crucible was heated to melt the powder in the alumina crucible. Thereafter, 0.54 moles per 100 moles of the mixture of ZnCl, NaCl, and KC1 contained in the above alumina crucible
  • TiCl is weighed in the above glove box, and the weighed TiCl is
  • Example 15 500 g of the molten salt bath of Example 15 was prepared by adding it to the mina crucible.
  • Table 4 shows the composition (molar ratio) of the raw materials used to make this molten salt bath, and
  • Table 5 shows the composition (atomic%) of the molten salt bath.
  • a mirror-polished nickel plate having an arithmetic average roughness Ra of less than lOnm as a cathode, a tungsten rod having a diameter of 5 mm as an anode, and a zinc rod having a diameter of 5 mm as a reference electrode was immersed in the molten salt bath of Example 15.
  • the potential between the cathode and the anode is set to 60 mV by the three-electrode method that controls the potential of the nickel plate as the cathode.
  • electrolysis in (Table 6) By performing electrolysis in (Table 6), a precipitate containing titanium was obtained on the surface of the nickel plate as the cathode.
  • the precipitation state, composition, surface roughness and density of the precipitates were evaluated in the same manner as in Example 1.
  • the relative density of the precipitate was set to 4.54 (g / cm 3 ) as the original density of titanium, which is a metal intended to be deposited, and the density of the precipitate calculated above and Calculate the relative density (%) of the precipitate from the original density using the following formula. It was.
  • the precipitate (thickness 0.1 ⁇ m) obtained using the molten salt bath of Example 15 was in the form of a film with a large amount of titanium and a high amount of titanium. It was a high density, high relative density and high density precipitate with low purity and surface roughness.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • KF powder was weighed in the above glove box so as to be 4 mol. Then, the weighed KF powder was placed in the above-mentioned alumina crucible.
  • the lumina crucible was heated to melt the powder in the alumina crucible. After that, it becomes 1.1 mol with respect to 100 mol of the mixture of ZnCl, NaCl, and KC1 contained in the above-mentioned alumina crucible.
  • TiCl is weighed in the above glove box and the weighed TiCl is
  • Table 4 shows the composition (molar ratio) of the raw materials used to make this molten salt bath
  • Table 5 shows the composition (atomic%) of the molten salt bath.
  • a mirror-polished nickel plate having an arithmetic average roughness Ra of less than lOnm as a cathode, a tungsten rod having a diameter of 5 mm as an anode, and a zinc rod having a diameter of 5 mm as a reference electrode was immersed in the molten salt bath of Example 16.
  • the potential between the cathode and the anode is set to 60 mV by the three-electrode method that controls the potential of the nickel plate as the cathode.
  • the precipitate (thickness 0.1 ⁇ m) obtained using the molten salt bath of Example 16 was film-like, with a large amount of titanium and a high amount of titanium. It was a high density, high relative density and high density precipitate with low purity and surface roughness.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • KF powder was weighed in the above glove box so as to be 4 mol. Then, the weighed KF powder was placed in the above-mentioned alumina crucible.
  • the lumina crucible was heated to melt the powder in the alumina crucible. After that, it becomes 2.5 mol with respect to 100 mol of the mixture of ZnCl, NaCl, and KC1 contained in the above-mentioned alumina crucible.
  • TiCl is weighed in the above glove box and the weighed TiCl is
  • Table 4 shows the composition (molar ratio) of the raw materials used to make this molten salt bath
  • Table 5 shows the composition (atomic%) of the molten salt bath.
  • the precipitate (thickness 0.5 / zm) obtained using the molten salt bath of Example 17 was in the form of a film and had a large amount of titanium and a high content. It was a high density, high relative density and high density precipitate with low purity and surface roughness.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • Table 4 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
  • the molten alumina crucible was heated to melt the powder in the alumina crucible, whereby 500 g of the molten salt bath of Example 18 was produced.
  • Table 5 shows the composition (atomic%) of this molten salt bath.
  • the precipitation state, composition, surface roughness and density of the precipitates were evaluated in the same manner as in Example 1.
  • the relative density of the precipitate is assumed to be 8.57 (g / cm 3 ) of the original density of niobium, which is the metal intended to be deposited, and the density of the precipitate calculated above and the density of this niobium Calculate the relative density (%) of the precipitate from the original density using the following formula. It was.
  • the precipitate (thickness 0.5 / zm) obtained using the molten salt bath of Example 18 was in the form of a film with a large amount of niobium and a high amount. It was a high density, high relative density and high density precipitate with a small surface roughness.
  • Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
  • KF is 4 mol and VC1 (vanadium dichloride) is 0.54 mol.
  • Example 19 500 g of the molten salt bath of Example 19 was prepared by heating the alumina crucible thus melted to melt the powder in the alumina crucible. Table 5 shows the composition (atomic%) of this molten salt bath.
  • the precipitation state is the film form of Example 13, the amount of vanadium is high purity, the surface roughness is small,
  • Example 11 22.21 7.40 8.88 59.82 0 1.48 0 0.20 0 0 0 0 0
  • Example 12 22.12 7.37 8.85 59.98 0 1.47 0 0.20 0 0 0 0
  • Example 13 22.21 7.40 8.88 59.22 0.60 1.48 0.20 0 0 0 0 0
  • Example 14 22.08 7.36 8.83 58.87 0.99 1.47 0 0 0.40 0 0 0
  • Example 15 22.16 7.39 8.87 59.90 0 1.48 0 0 0 0.20 0 0
  • Example 16 21.95 7.32 8.78 60.10 0 1.46 0 0 0 0.40 0 0
  • Example 17 20.80 6.93 9.71 58.93 0 2.77 0 0 0 0.87 0 0
  • Example 18 22.12 7.37 8.85 59.98 0 1.47 0 0 0 0.20 0
  • Example 19 22.25 7.42
  • composition (Atom) Surface Relative Potential Time Precipitation Density
  • Example 11 250 150 3 Film-like 0 99 0 0 0 0 0 0 0.5 0.5 2.6 9.8 95.9
  • Example 12 250 150 3 Film-like 0 98 0 0 0 0 0 0.7 0.3 1.5 10.1 98.8
  • Example 13 250 60 3 Film-like 99 0 0 0 0 0 0 0.7 0.3 0.1 18.8 97.4
  • Example 14 250 60 3 Film type 0 0 99.1 0 0 0 0 0 0.1 0.8 1.9 15.1 90.7
  • Example 15 250 60 6 Film type 0 0 0 99 0 0 0 0 0 0.2 0.8 0.8 4.1 90 -3
  • Example 16 250 60 3 Film 0 0 0 99.1 0 0 0 0.2 0.7 1.4 4.2 92.5
  • Example 1 250 60 8 Film 0 0 0 0 98.9 0 0 0 0.3 0.8 2.3 4.1 90.3
  • Example 18 250 60 3 Film
  • a titanium layer was formed on the surface of a disk-shaped silicon substrate having a diameter of 3 inches by sputtering titanium with a thickness of 0.3 ⁇ m. Then, a photoresist having a width of 1 cm X, a length of 1 cm, and a thickness of 30 / zm made of PMMA was applied onto the titanium layer. Next, a portion of this photoresist is irradiated with SR light (synchrotron radiation), and the photoresist of the portion irradiated with SR light is selectively removed, so that the line Z space is 50 mZ5 on the titanium layer. A 0 ⁇ m striped resist pattern was formed.
  • SR light synchrotron radiation
  • the silicon substrate after the resist pattern was formed as a cathode, the tungsten rod as an anode, and these electrodes were melted with the same composition as the molten salt bath of Example 6. It was immersed in a salt bath lOOOOg. By then the titanium layer lcm 2 per 3mA current on the silicon substrate (current density 3mAZcm 2) by passing 60 hours perform constant current electrolysis between the electrodes while holding the molten salt bath 250 ° C, A precipitate containing tungsten was obtained on the titanium layer.
  • the silicon substrate was taken out with a glove box force.
  • the silicon substrate was washed with water to remove salt adhering to the silicon substrate.
  • a plasma using a mixed gas of CF (carbon tetrafluoride) and O (oxygen) is used.
  • the photoresist on the titanium layer was removed by mating. Finally, the precipitate on the titanium layer was mechanically peeled off to obtain a high-density and high-density electrode having a high tungsten purity and a smooth surface.
  • the molten salt bath of the present invention contains at least one selected from the group force consisting of chlorine, bromine and iodine, zinc, at least two alkali metals, and fluorine.
  • a precipitate having a high purity, high density and high density and a smooth surface can be obtained.

Abstract

A fused-salt bath (2) which comprises at least one selected from the group consisting of chlorine, bromine and iodine, zinc, at lest two alkali metals and fluorine. The fused-salt bath (2) may further comprise oxygen. The fused-salt bath (2) may further comprise at least one selected from the group consisting of tungsten, chromium, molybdenum, tantalum, titanium, zirconium, vanadium, hafnium and niobium. A precipitate prepared by using the above fused-salt bath (2), a method for producing a metal product, which uses the above fused-salt bath (2), and a metal product produced by the method are also provided.

Description

明 細 書  Specification
溶融塩浴、この溶融塩浴を用いて得られた析出物、金属製品の製造方法 および金属製品  Molten salt bath, precipitate obtained using the molten salt bath, method for producing metal product, and metal product
技術分野  Technical field
[0001] 本発明は溶融塩浴、この溶融塩浴を用いて得られた析出物、金属製品の製造方 法およびに金属製品関する。  [0001] The present invention relates to a molten salt bath, a precipitate obtained using the molten salt bath, a method for producing a metal product, and a metal product.
背景技術  Background art
[0002] 従来より、電铸による金属製品の製造や基材のコーティングを行なう場合には、電 解により金属を浴中から析出させる技術が利用されている。特に、近年、情報通信、 医療、ノィォまたは自動車などの様々な分野において、小型、高機能および省エネ ルギ性に優れた微細な金属製品の製造を可能とする MEMS (Micro Electro M echanical Systems)が注目されており、電解によって金属を析出させる技術を利 用して MEMSに適用される微細な金属製品を製造したり、微細な金属製品の表面 をコーティングすることが考えられて 、る。  Conventionally, a technique for depositing a metal from a bath by electrolysis has been used in the production of a metal product or coating of a base material by electrolysis. In particular, in recent years, MEMS (Micro Electro Mechanical Systems), which enables the production of small metal products that are compact, highly functional, and energy-saving, are attracting attention in various fields such as telecommunications, medicine, neurology, and automobiles. Therefore, it is conceivable to manufacture a fine metal product applied to MEMS using a technique for depositing a metal by electrolysis or to coat the surface of a fine metal product.
[0003] 他方、周期表の第 IVA族〜第 VIA族、第 4〜第 6周期のタングステンやモリブデン などの金属(リフラクトリーメタル)は耐熱性および耐腐食性に優れているため、これら の金属を上記の微細な金属製品に用いた場合には耐熱性および耐久性に優れた 微細な金属製品を製造することができる。  [0003] On the other hand, metals such as tungsten and molybdenum (refractory metals) in groups IVA to VIA and 4 to 6 in the periodic table are excellent in heat resistance and corrosion resistance. Can be used in the above-mentioned fine metal products, it is possible to produce fine metal products with excellent heat resistance and durability.
非特許文献 1 : P. M. COPHAM, D. J. FRAY, "Selecting an optimum electrolyte for zinc chloride electrolysis", JOURNAL OF APPLIED Non-Patent Document 1: P. M. COPHAM, D. J. FRAY, "Selecting an optimum electrolyte for zinc chloride electrolysis", JOURNAL OF APPLIED
ELECTROCHEMISTRY 21 (1991) , p. 158— 165 ELECTROCHEMISTRY 21 (1991), p. 158— 165
非特許文献 2 : M. Masuda, H. Takenishi, and A. Katagiri, "Electrodep osition of Tungsten and Related Voltammetric Study in a Basic Z nC12 - NaCl (40 - 60mol%) Melt" , Journal of The Electrochemical Soc iety, 148 (1) , 2001, p. C59 -C64  Non-Patent Document 2: M. Masuda, H. Takenishi, and A. Katagiri, "Electrodep osition of Tungsten and Related Voltammetric Study in a Basic Z nC12-NaCl (40-60 mol%) Melt", Journal of The Electrochemical Soc iety, 148 (1), 2001, p. C59 -C64
非特許文献 3 :片桐 晃, 「ZnC12—NaClおよび ZnBr2—NaBr溶融塩におけるタ ングステンの電析」, 溶融塩および高温化学, Vol. 37, No. 1, 1994, p.2 非特許文献 4 : Nikonova I. N. , Pavlenko S. P. , Bergman A. G. , "P olytherm of the ternary system NaCl— KC1― ZnC12 " , Bull. acad. sci. U. R. S. S. , Classe sci. chim. (1941) , p. 391— 400 Non-Patent Document 3: Satoshi Katagiri, “Electrodeposition of tungsten in ZnC12—NaCl and ZnBr2—NaBr molten salts”, Molten salt and high temperature chemistry, Vol. 37, No. 1, 1994, p.2 Non-Patent Document 4: Nikonova IN, Pavlenko SP, Bergman AG, "Polytherm of the ternary system NaCl—KC1-ZnC12", Bull. Acad. Sci. URSS, Classe sci. Chim. (1941), p. 391—400
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、ニッケルや銅などの金属は、水に溶解させた後に電解することによつ て析出させることが可能である力 リフラクトリーメタルは水溶液を用いた電解によって 析出させることができな 、と 、う問題があった。 [0004] However, force such as nickel and copper can be deposited by electrolysis after dissolving in water. Refractory metal is deposited by electrolysis using an aqueous solution. There was a problem that could not be done.
[0005] そこで、たとえば亜鉛の塩ィ匕物または臭化物と、ナトリウムの塩ィ匕物または臭化物と[0005] Thus, for example, zinc salt or bromide and sodium salt or bromide
、リフラクトリーメタルの化合物とを溶融させた溶融塩浴を用いて電解によりリフラクトリ 一メタルを析出させることが行なわれている力 その析出物は純度、密度および緻密 性が低ぐまた析出物の表面も粗 、ものとなって!/、た。 The force that is used to deposit refractory monometals by electrolysis using a molten salt bath in which a refractory metal compound is melted is low in purity, density, and compactness. Coarse, become things! /
[0006] 本発明の目的は、高純度、高密度および高緻密性であって表面の平滑なリフラタト リーメタルの析出物を得ることができる溶融塩浴、その溶融塩浴を用いて得られた析 出物、金属製品の製造方法および金属製品を提供することにある。 [0006] An object of the present invention is to provide a molten salt bath with high purity, high density and high density and capable of obtaining a smooth surface refractory metal precipitate, and an analysis obtained using the molten salt bath. To provide a product, a method for manufacturing a metal product, and a metal product.
課題を解決するための手段  Means for solving the problem
[0007] 本発明は、塩素と臭素とヨウ素とからなる群力も選択された少なくとも 1種と、亜鉛と[0007] The present invention relates to at least one selected from the group force consisting of chlorine, bromine and iodine, and zinc.
、少なくとも 2種のアルカリ金属と、フッ素と、を含有する、溶融塩浴である。 A molten salt bath containing at least two alkali metals and fluorine.
[0008] ここで、本発明の溶融塩浴は、酸素を含有し得る。 Here, the molten salt bath of the present invention may contain oxygen.
また、本発明の溶融塩浴は、タングステン、クロム、モリブデン、タンタル、チタン、ジ ルコ-ゥム、バナジウム、ハフニウムおよびニオブ力 なる群力 選択された少なくとも Further, the molten salt bath of the present invention has a group force of tungsten, chromium, molybdenum, tantalum, titanium, zirconium, vanadium, hafnium, and niobium force.
1種を含有し得る。 May contain one species.
[0009] また、本発明の溶融塩浴は、アルカリ金属としてナトリウムとカリウムとセシウムとから なる群力 選択された少なくとも 2種と、塩素および臭素の少なくとも 1種と、亜鉛と、 フッ素とからなり得る。  [0009] The molten salt bath of the present invention comprises at least two selected from the group force consisting of sodium, potassium, and cesium as alkali metals, at least one of chlorine and bromine, zinc, and fluorine. obtain.
[0010] また、本発明の溶融塩浴にぉ ヽては、亜鉛の含有量が溶融塩浴全体の 14原子% 以上 30原子%以下であることが好まし 、。 [0011] また、本発明の溶融塩浴においては、亜鉛の含有量が溶融塩浴全体の 17原子% 以上 25原子%以下であることが好まし 、。 [0010] In addition, for the molten salt bath of the present invention, it is preferable that the zinc content is 14 atomic% or more and 30 atomic% or less of the entire molten salt bath. [0011] Further, in the molten salt bath of the present invention, it is preferable that the zinc content is 17 atomic% or more and 25 atomic% or less of the entire molten salt bath.
[0012] また、本発明の溶融塩浴においては、フッ素の含有量が溶融塩浴全体の 0. 1原子[0012] Further, in the molten salt bath of the present invention, the fluorine content is 0.1 atom of the entire molten salt bath.
%以上 20原子%以下であることが好まし 、。 It is preferable to be at least 20% by atom.
[0013] また、本発明は、上記のいずれかに記載の溶融塩浴を用いて得られた析出物であ る。ここで、本発明の析出物は、溶融塩浴が酸素を 0. 01原子%以上含有する状態 で析出したことが好ましい。 [0013] Further, the present invention is a precipitate obtained using the molten salt bath described above. Here, the precipitate of the present invention is preferably deposited in a state where the molten salt bath contains 0.01 atomic% or more of oxygen.
[0014] また、本発明の析出物の表面の算術平均粗さ Ra FIS B0601— 1994)は 3 /z m 以下であることが好ましい。 [0014] Further, the arithmetic average roughness Ra FIS B0601-1994) of the surface of the precipitate of the present invention is preferably 3 / z m or less.
[0015] また、本発明の析出物の相対密度は 85%以上であることが好ましい。 [0015] The relative density of the precipitate of the present invention is preferably 85% or more.
さらに、本発明は、導電性基板上にレジストパターンを形成して導電性基板の一部 を露出させる工程と、レジストパターンが形成された導電性基板を上記のいずれかに 記載の溶融塩浴に浸漬させる工程と、導電性基板の露出している部分に溶融塩浴 中から金属を析出させる工程とを含む金属製品の製造方法である。ここで、本発明の 金属製品の製造方法にお!、て、溶融塩浴の温度は 250°C以下であり得る。  Furthermore, the present invention provides a process for forming a resist pattern on a conductive substrate to expose a part of the conductive substrate, and the conductive substrate on which the resist pattern is formed in the molten salt bath described in any of the above. It is a method for producing a metal product, which includes a step of immersing and a step of depositing a metal from a molten salt bath in an exposed portion of a conductive substrate. Here, in the method for producing a metal product of the present invention, the temperature of the molten salt bath may be 250 ° C. or less.
[0016] また、本発明は、上記の金属製品の製造方法を用いて製造された、金属製品であ る。 [0016] Further, the present invention is a metal product manufactured by using the above metal product manufacturing method.
発明の効果  The invention's effect
[0017] 本発明によれば、高純度、高密度および高緻密性であって表面の平滑なリフラタト リーメタルの析出物を得ることができる溶融塩浴、その溶融塩浴を用いて得られた析 出物、金属製品の製造方法および金属製品を提供することができる。  [0017] According to the present invention, a molten salt bath that is capable of obtaining a precipitate of a refractory metal having a high purity, a high density, and a high density and having a smooth surface, and an analysis obtained using the molten salt bath. A product, a method for manufacturing a metal product, and a metal product can be provided.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の溶融塩浴を用いて析出物を得る方法の一例を図解した模式的な構成 図である。  FIG. 1 is a schematic configuration diagram illustrating an example of a method for obtaining a precipitate using the molten salt bath of the present invention.
符号の説明  Explanation of symbols
[0019] 1 電解槽、 2 溶融塩浴、 3 陽極、 4 陰極。  [0019] 1 electrolytic cell, 2 molten salt bath, 3 anode, 4 cathode.
発明を実施するための最良の形態 [0020] 本発明は、塩素と臭素とヨウ素とからなる群力も選択された少なくとも 1種と、亜鉛と 、少なくとも 2種のアルカリ金属と、フッ素と、を含有する溶融塩浴である。ここで、本発 明の溶融塩浴中には、アルカリ金属として、リチウム、ナトリウム、カリウムおよびセシゥ ムのうち少なくとも 2種が含有される。また、本発明の溶融塩浴を構成する、塩素と臭 素とヨウ素とからなる群力も選択された少なくとも 1種、亜鉛、少なくとも 2種のアルカリ 金属およびフッ素などの溶融塩浴中における形態は特に限定されず、たとえばこれ らの成分は溶融塩浴中にぉ ヽてイオンとして存在したり、錯体を構成した状態で存在 し得る。また、本発明の溶融塩浴を構成する上記の成分は、本発明の溶融塩浴を水 に溶解させた試料について ICP分光分析(inductively coupled plasma spectr ometry)を行なうことによって検出することができる。 BEST MODE FOR CARRYING OUT THE INVENTION [0020] The present invention is a molten salt bath containing at least one selected from the group force consisting of chlorine, bromine and iodine, zinc, at least two alkali metals, and fluorine. Here, the molten salt bath of the present invention contains at least two of lithium, sodium, potassium and cesium as alkali metals. The form in the molten salt bath of at least one, zinc, at least two alkali metals and fluorine, etc., which also selected the group power consisting of chlorine, odor, and iodine, constituting the molten salt bath of the present invention is particularly preferable. For example, these components may exist as ions in the molten salt bath, or may exist in a complexed state. Further, the above-mentioned components constituting the molten salt bath of the present invention can be detected by performing ICP spectroscopic analysis (ICP spectroscopic analysis) on a sample in which the molten salt bath of the present invention is dissolved in water.
[0021] また、本発明の溶融塩浴には、上記の構成成分に加えて、酸素が含有されていて もよい。本発明の溶融塩浴が酸素を含有している場合には、さらに高純度、高密度 および高緻密性であって表面のより平滑な析出物を得ることができる傾向にある。ま た、本発明の溶融塩浴中の酸素の形態も特に限定されず、たとえばイオンとして存 在したり、錯体を構成した状態または酸ィ匕物の状態で存在していてもよい。  [0021] The molten salt bath of the present invention may contain oxygen in addition to the above components. When the molten salt bath of the present invention contains oxygen, it tends to be able to obtain precipitates with higher purity, higher density and higher density and with a smoother surface. Further, the form of oxygen in the molten salt bath of the present invention is not particularly limited, and may be present, for example, as an ion, in a state of forming a complex, or in an acidic state.
[0022] なお、本発明の溶融塩浴中の酸素の存在は、本発明の溶融塩浴について不活性 ガス融解赤外吸収法を用いることによって確認することができる。ここで、不活性ガス 融解赤外吸収法は、たとえば以下のようにして行なわれる。まず、ヘリウムガス雰囲気 中にお 、てカーボン坩堝に溶融塩浴を収容し、カーボン坩堝を加熱することによつ て溶融塩浴中から酸素を生じさせる。すると、この酸素がカーボン坩堝の炭素と反応 して一酸化炭素や二酸化炭素を生成する。次に、生成した一酸化炭素や二酸化炭 素を含む雰囲気中に赤外線を照射する。最後に、雰囲気中の一酸化炭素や二酸ィ匕 炭素が吸収することによって生じた赤外線の減衰量を調査することによって溶融塩浴 中の酸素の存在および含有量を確認することができる。  [0022] The presence of oxygen in the molten salt bath of the present invention can be confirmed by using an inert gas melting infrared absorption method for the molten salt bath of the present invention. Here, the inert gas melting infrared absorption method is performed, for example, as follows. First, a molten salt bath is accommodated in a carbon crucible in a helium gas atmosphere, and oxygen is generated from the molten salt bath by heating the carbon crucible. This oxygen then reacts with the carbon in the carbon crucible to produce carbon monoxide and carbon dioxide. Next, infrared rays are irradiated in the atmosphere containing the generated carbon monoxide and carbon dioxide. Finally, the presence and content of oxygen in the molten salt bath can be confirmed by investigating the attenuation of infrared rays generated by the absorption of carbon monoxide and carbon dioxide in the atmosphere.
[0023] また、本発明の溶融塩浴には、タングステン、クロム、モリブデン、タンタル、チタン、 ジルコニウム、バナジウム、ハフニウムおよびニオブからなる群から選択された少なく とも 1種が含有されていてもよい。これらの金属は周期表の第 IVA族〜第 VIA族、第 4〜第 6周期にあるリフラクトリーメタルである。これらのリフラクトリーメタルを含む本発 明の溶融塩浴を用いて電解を行なった場合には、これらのリフラクトリーメタルを主成 分とする高純度、高密度および高緻密性であって、表面の平滑な析出物を得ること ができる。また、本発明の溶融塩浴中におけるタングステン、クロム、モリブデン、タン タル、チタン、ジルコニウム、バナジウム、ハフニウムまたはニオブの形態は特に限定 されず、たとえばイオンとして存在したり、錯体を構成した状態で存在していてもよい [0023] The molten salt bath of the present invention may contain at least one selected from the group consisting of tungsten, chromium, molybdenum, tantalum, titanium, zirconium, vanadium, hafnium, and niobium. These metals are refractory metals in the Periodic Tables Group IVA to Group VIA and Groups 4 to 6. Including this refractory metal When electrolysis is carried out using a bright molten salt bath, it is possible to obtain precipitates with high purity, high density and high density mainly composed of these refractory metals and with a smooth surface. it can. In addition, the form of tungsten, chromium, molybdenum, tantalum, titanium, zirconium, vanadium, hafnium or niobium in the molten salt bath of the present invention is not particularly limited. May be
[0024] また、溶融塩浴中のリフラクトリーメタルの含有量は、溶融塩浴を構成する成分全体 を 100原子%としたとき 0. 04原子%以上であること力 高純度、高密度および高緻 密性であって表面が平滑なリフラクトリーメタルの析出物を得る観点から好ま 、。ま た、溶融塩浴中のリフラクトリーメタルの含有量が多いほど高電流密度で析出可能で あることからより効率的にリフラクトリーメタルの析出物を得ることができるが、リフラタト リーメタルの含有量が多くなると溶融塩浴の融点が上昇して電解時における溶融塩 浴の温度を高くする必要がある。したがって、リフラクトリーメタルの含有量が多くなる と、たとえば榭脂などの融点の低い材質力 なるレジストパターンが形成された導電 性基板を溶融塩浴中に浸漬させて電解を行なうことができなくなる場合があることか ら、リフラクトリーメタルの含有量は目的に応じて適宜設定されることが好ましい。 [0024] In addition, the content of the refractory metal in the molten salt bath should be 0.04 atomic% or more when the total components constituting the molten salt bath are 100 atomic%. This is preferred from the viewpoint of obtaining a dense refractory metal precipitate with a smooth surface. In addition, the higher the refractory metal content in the molten salt bath, the higher the current density, the more refractory metal precipitates can be obtained, but the refractory metal content is higher. As the number increases, the melting point of the molten salt bath rises, and it is necessary to raise the temperature of the molten salt bath during electrolysis. Therefore, when the content of the refractory metal increases, for example, it becomes impossible to perform electrolysis by immersing a conductive substrate on which a resist pattern having a low melting point, such as resin, having a material strength is immersed in a molten salt bath. Therefore, the content of the refractory metal is preferably set appropriately according to the purpose.
[0025] また、本発明の溶融塩浴中のリフラクトリーメタルの存在および含有量は、本発明の 溶融塩浴を水に溶解させた試料について ICP分光分析を行なうことによって検出お よび算出することができる。なお、本発明は高純度、高密度および高緻密性であって 表面が平滑なリフラクトリーメタルの析出物を得ることを目的とするものであるが、本発 明の溶融塩浴を用いてリフラクトリーメタル以外の析出物を得てもよいことは言うまで もない。  [0025] The presence and content of the refractory metal in the molten salt bath of the present invention should be detected and calculated by performing ICP spectroscopic analysis on a sample in which the molten salt bath of the present invention is dissolved in water. Can do. The purpose of the present invention is to obtain a refractory metal precipitate having a high purity, a high density and a high density and a smooth surface. It goes without saying that precipitates other than kutry metal may be obtained.
[0026] また、本発明の溶融塩浴は、上記のアルカリ金属としてナトリウムとカリウムとセシゥ ムとからなる群力 選択された少なくとも 2種と、塩素および臭素の少なくとも 1種と、 亜鉛と、フッ素とからなることが好ましい。この場合には、より高純度、高密度および高 緻密性であって、表面の平滑な析出物を得ることができる傾向にある。ここで、ナトリ ゥムとカリウムとセシウムとからなる群力も選択された少なくとも 2種、塩素および臭素 の少なくとも 1種、亜鉛およびフッ素以外の成分が、不可避的に含まれる成分を除い て溶融塩浴中に存在しな 、ことが望まし 、。 [0026] In addition, the molten salt bath of the present invention includes at least two selected from the group force consisting of sodium, potassium, and cesium as the alkali metal, at least one of chlorine and bromine, zinc, and fluorine. It is preferable to consist of. In this case, precipitates with higher purity, higher density, and higher density and having a smooth surface tend to be obtained. Here, except at least two selected group powers consisting of sodium, potassium and cesium, at least one of chlorine and bromine, and components inevitably contained other than zinc and fluorine. Preferably not present in the molten salt bath.
[0027] また、本発明の溶融塩浴中における亜鉛の含有量は、溶融塩浴全体の 14原子% 以上 30原子%以下であることが好ましぐ 17原子%以上 25原子%以下であることが より好まし 、。亜鉛の含有量が溶融塩浴全体の 14原子%未満である場合または 30 原子%よりも多い場合には高純度、高密度かつ表面の平滑な析出物を得ることがで きない傾向にある。また、亜鉛の含有量が溶融塩浴全体の 17原子%以上 25原子% 以下である場合には、溶融塩浴の温度を 250°C以下にすることができるため、導電 性基板上にポリメチルメタタリレート(PMMA)などの榭脂からなるレジストパターンが 形成された電铸型を浸漬させた場合でも溶融塩浴の温度によるレジストパターンの 変形を抑制することができる。それゆえ、この場合には、溶融塩浴の温度が 250°C以 下という低温で電铸により金属製品の製造を行なうことができる。なお、本発明の溶 融塩浴中における亜鉛の含有量は、本発明の溶融塩浴を水に溶解させた試料につ いて ICP分光分析を行なうことによって検出することができる。  [0027] Further, it is preferable that the zinc content in the molten salt bath of the present invention is 14 atomic% or more and 30 atomic% or less of the entire molten salt bath. Is more preferred. If the zinc content is less than 14 atomic% of the total molten salt bath or more than 30 atomic%, high purity, high density and smooth deposits on the surface tend not to be obtained. In addition, when the zinc content is not less than 17 atomic% and not more than 25 atomic% of the entire molten salt bath, the temperature of the molten salt bath can be reduced to 250 ° C or lower. Even when an electric mold in which a resist pattern made of a resin such as metatalylate (PMMA) is formed is immersed, deformation of the resist pattern due to the temperature of the molten salt bath can be suppressed. Therefore, in this case, the metal product can be produced by electric heating at a low temperature of the molten salt bath of 250 ° C or lower. The zinc content in the molten salt bath of the present invention can be detected by performing ICP spectroscopic analysis on a sample obtained by dissolving the molten salt bath of the present invention in water.
[0028] ここで、導電性基板としては、たとえば金属単体または合金カゝらなる基板や、ガラス などの非導電性の基材上に導電性の金属等をめつきした基板などを用いることがで きる。また、金属製品は、上記の導電性基板の表面のうちレジストパターンが形成さ れずに露出している部分に溶融塩浴中のリフラクトリーメタルなどの金属が電解により 析出して形成される。また、本発明によって製造される金属製品としては、たとえばコ ンタクトプローブ、マイクロコネクタ、マイクロリレーまたは各種センサ部品などが挙げ られる。また、本発明によって製造される金属製品としては、たとえば可変コンデンサ 、インダクタ、アレイ若しくはアンテナなどの RFMEMS (Radio Frequency Micro Here, as the conductive substrate, for example, a substrate made of a simple metal or an alloy, or a substrate in which a conductive metal or the like is attached on a nonconductive base material such as glass is used. it can. Further, the metal product is formed by depositing a metal such as a refractory metal in a molten salt bath by electrolysis on a portion of the surface of the conductive substrate exposed without forming a resist pattern. Further, examples of the metal product manufactured by the present invention include a contact probe, a micro connector, a micro relay, and various sensor parts. In addition, examples of metal products manufactured by the present invention include RFMEMS (Radio Frequency Microscope) such as a variable capacitor, inductor, array, or antenna.
Electro Mechanical System)、光 MEMS用部材、インクジェットヘッド、バイ ォセンサ内電極またはパワー MEMS用部材(電極など)が挙げられる。 Electro Mechanical System), optical MEMS members, inkjet heads, biosensor internal electrodes, or power MEMS members (electrodes, etc.).
[0029] また、本発明の溶融塩浴中におけるフッ素の含有量は、少なすぎてもフッ素を含有 させた効果を得ることができず、多すぎても析出物中にフッ素が不純物として取り込 まれる傾向が大きくなるため、溶融塩浴全体の 0. 1原子%以上 20原子%以下である ことが好ましぐ 0. 1原子%以上 4原子%以下であることがより好ましい。なお、本発 明の溶融塩浴中におけるフッ素の含有量は、本発明の溶融塩浴を水に溶解させた 試料についてフッ化物イオン選択性電極を用いることによって検出および算出するこ とがでさる。 [0029] If the fluorine content in the molten salt bath of the present invention is too small, the effect of containing fluorine cannot be obtained. Since the tendency to scatter is increased, it is preferably 0.1 atomic% or more and 20 atomic% or less of the entire molten salt bath. The fluorine content in the molten salt bath of the present invention was determined by dissolving the molten salt bath of the present invention in water. The sample can be detected and calculated by using a fluoride ion selective electrode.
[0030] 本発明の溶融塩浴は、たとえば、亜鉛の塩化物、臭化物またはヨウ化物と、アルカリ 金属の塩化物、臭化物またはヨウ化物の 2種以上と、フッ素化合物とを少なくとも混合 した後に加熱により溶融させることによって得ることができる。  [0030] The molten salt bath of the present invention is prepared by, for example, heating at least a mixture of zinc chloride, bromide or iodide, alkali metal chloride, bromide or iodide, and a fluorine compound. It can be obtained by melting.
[0031] このようにして得られた溶融塩浴は、たとえば図 1の模式的な構成図に示す電解槽 1中に収容される。そして、電解槽 1中に収容された溶融塩浴 2に陽極 3と陰極 4とを 浸漬させた後に、陽極 3と陰極 4との間に電流を流して溶融塩浴 2の電解を行なうこと によって、たとえば陰極 4の表面上に溶融塩浴 2中に含まれる金属が析出して析出 物を得ることができる。  [0031] The molten salt bath thus obtained is accommodated, for example, in an electrolytic cell 1 shown in the schematic configuration diagram of FIG. Then, after immersing anode 3 and cathode 4 in molten salt bath 2 accommodated in electrolytic cell 1, current is passed between anode 3 and cathode 4 to perform electrolysis of molten salt bath 2. For example, the metal contained in the molten salt bath 2 can be deposited on the surface of the cathode 4 to obtain a deposit.
[0032] ここで、析出物は、溶融塩浴 2中に酸素が 0. 01原子%以上含有された状態で析 出したことが好ましい。この場合には、より高純度の析出物を得ることができる傾向に ある。溶融塩浴 2中に酸素を含有させる手法としては、たとえば溶融塩浴 2の作製か ら析出物を得るまでの工程を大気中で行なうことの他、溶融塩浴 2中に酸素を導入す ること、酸ィ匕物を混合した溶融塩浴 2を作製することなどが挙げられる。なお、上記の 酸素の含有量は、酸素を含有する溶融塩浴 2を構成する成分全体の合計を 100原 子%としたときの割合 (原子%)である。また、溶融塩浴 2中の酸素の含有量は、上述 の不活性ガス融解赤外吸収法を用いて算出することができる。  [0032] Here, it is preferable that the precipitate was precipitated in a state where 0.01 atomic% or more of oxygen was contained in the molten salt bath 2. In this case, a higher purity precipitate tends to be obtained. As a technique for containing oxygen in the molten salt bath 2, for example, in addition to performing the steps from the preparation of the molten salt bath 2 to obtaining the precipitate in the atmosphere, oxygen is introduced into the molten salt bath 2. In addition, preparation of a molten salt bath 2 in which an acid salt is mixed can be mentioned. The oxygen content is a ratio (atomic%) when the total of all the components constituting the molten salt bath 2 containing oxygen is 100 atomic%. Further, the oxygen content in the molten salt bath 2 can be calculated using the above-described inert gas melting infrared absorption method.
[0033] また、平滑な表面を有する析出物を得る観点からは、析出物の表面の表面粗さは 3  [0033] From the viewpoint of obtaining a precipitate having a smooth surface, the surface roughness of the surface of the precipitate is 3
m以下であることが好ましい。ここで、本発明において「表面粗さ」とは、算術平均 粗さ Ra FIS B0601— 1994)のことである。  m or less is preferable. Here, in the present invention, “surface roughness” means arithmetic average roughness (Ra FIS B0601-1994).
[0034] また、析出物の相対密度は 85%以上であることが好ま 、。析出物の相対密度が 85%未満である場合には析出物中のボイドが多くなり、塩を巻き込みやすくなる傾向 にある。また、析出物中の残留応力が増大し、析出物の形成の途中で析出物が剥離 するおそれがある。ここで、本発明において「析出物の相対密度」は、析出することを 意図して!/、る金属の本来の密度 (gZcm3)に対する析出物の密度 (gZcm3)の割合 (%)のことであり、以下の式で表わされる。 [0034] The relative density of the precipitates is preferably 85% or more. When the relative density of the precipitate is less than 85%, the voids in the precipitate increase and the salt tends to be easily involved. In addition, the residual stress in the precipitate increases, and the precipitate may peel off during the formation of the precipitate. Here, "relative density of precipitates" in the present invention, the proportion of the original density of the metal intended to! /, Ru that precipitation density of the precipitate for (gZcm 3) (gZcm 3) of (%) It is expressed by the following formula.
析出物の相対密度(%) = 100 X (析出物の密度) / (析出することを意図して 、る金 属の本来の密度) Relative density of precipitates (%) = 100 X (density of precipitates) / (gold intended to precipitate) The original density of the genus)
実施例  Example
[0035] (実施例 1)  [0035] (Example 1)
ZnCl (塩ィ匕亜鉛)、 NaCl (塩ィ匕ナトリウム)、 KC1 (塩ィ匕カリウム)および KF (フツイ匕 ZnCl (salt 匕 zinc), NaCl (salt 匕 sodium), KC1 (salt 匕 potassium) and KF (Futsui 匕)
2 2
カリウム)のそれぞれの粉末を 200°Cの真空オーブン中で 12時間乾燥させた。また、 WC1 (四塩化タングステン)の粉末は 100°Cの真空オーブン中で 12時間乾燥させた Each powder of potassium) was dried in a vacuum oven at 200 ° C. for 12 hours. The WC1 (tungsten tetrachloride) powder was dried in a 100 ° C vacuum oven for 12 hours.
4 Four
。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 20となるょぅに、 Ar (アルゴン)雰  . Then, when the molar ratio of ZnCl, NaCl, and KCl is 60:20:20, Ar (argon) atmosphere is used.
2  2
囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグローブ ボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  After these powders were weighed in a glove box under the atmosphere, these powders were accommodated in an alumina crucible in the same glove box.
[0036] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル  [0036] In addition, a mixture of ZnCl, NaCl, and KC1 contained in the above-mentioned alumina crucible 100 mol
2  2
に対して、 KF力 モル、 WC1が 0. 54モルとなるよう〖こ、上記のグローブボックス内で  Against the above glove box, KF force mol, WC1 is 0.54 mol
4  Four
KFおよび WC1の粉末をそれぞれ秤量した後に、上記のアルミナ坩堝中にこれらの  After weighing each of KF and WC1 powders, these were put in the above-mentioned alumina crucible.
4  Four
粉末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を表 1に示す。  The powder was contained. Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
[0037] そして、上記のグローブボックス内で ZnCl、 NaCl, KC1、 KFおよび WC1が収容さ [0037] And ZnCl, NaCl, KC1, KF and WC1 are accommodated in the above glove box.
2 4 れたアルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させることによって、実施 例 1の溶融塩浴を 500g作製した。この溶融塩浴の組成 (原子%)を表 2に示す。なお 、表 2に示す溶融塩浴の組成は、上記のアルミナ坩堝中に収容された ZnCl、 NaCl  The molten salt bath of Example 1 was prepared in an amount of 500 g by heating the resulting alumina crucible to melt the powder in the alumina crucible. Table 2 shows the composition (atomic%) of this molten salt bath. The composition of the molten salt bath shown in Table 2 is as follows: ZnCl, NaCl contained in the alumina crucible
2 2
、 KC1、 KFおよび WC1の組成から算出したものである。 , Calculated from the composition of KC1, KF and WC1.
4  Four
[0038] そして、上記のグローブボックス内で、陰極として、鏡面研磨された、算術平均粗さ Ra (jIS B0601— 1994)が lOnm未満のニッケル板と、陽極として直径 5mmのタン ダステン棒とを実施例 1の溶融塩浴中に浸漬させた。次いで、この溶融塩浴の温度を 250°Cに保持した状態で、ニッケル板 lcm2当たり 3mAの電流(電流密度 3mAZcm 2)が流れるように上記の電極間に電流を 10時間流した。このような電解条件 (表 3)で 電解を行なうことにより、陰極であるニッケル板の表面上にタングステンを含む析出物 を得た。 [0038] Then, in the above glove box, a mirror-polished nickel plate with an arithmetic average roughness Ra (jIS B0601-1994) of less than lOnm was used as the cathode, and a 5 mm diameter tungsten bar as the anode. It was immersed in the molten salt bath of Example 1. Then, while maintaining the temperature of the molten salt bath 250 ° C, a current was passed for 10 hours between said electrodes to nickel plate lcm 2 per 3mA current (current density 3mAZcm 2) flows. By conducting the electrolysis under such electrolysis conditions (Table 3), a precipitate containing tungsten was obtained on the surface of the nickel plate as the cathode.
[0039] その後、タングステンを含む析出物を有するニッケル板がグローブボックス内から大 気中に取り出され、析出物の析出状態、組成、表面粗さおよび密度についてそれぞ れ評価を行なった。その結果を表 3に示す。 [0040] なお、析出物の析出状態の評価は、 SEM (走査電子顕微鏡)を用いた観察により、 析出物がニッケル板と密着した膜状になっているかどうかを判断することによって行 なった。この観察で膜状になっている場合には電着良好として評価し、析出物が粒 状に析出していたり析出物に割れが生じていた場合には電着不良として評価した。 [0039] Thereafter, a nickel plate having a precipitate containing tungsten was taken out into the atmosphere from the glove box, and the precipitation state, composition, surface roughness and density of the precipitate were evaluated. The results are shown in Table 3. [0040] It should be noted that the precipitation state of the precipitates was evaluated by determining whether or not the precipitates were in the form of a film in close contact with the nickel plate by observation using a SEM (scanning electron microscope). In this observation, when the film was formed, the electrodeposition was evaluated as good, and when the precipitate was precipitated in the form of particles or cracked, the electrodeposition was evaluated as poor electrodeposition.
[0041] また、析出物の組成の評価は、析出物を酸に溶解させた後に ICP分光分析によつ て行ない、析出物に含有されるタングステンの量が多いほど (表 3に示すタングステン (W)の原子%が大きいほど)高純度であるとして評価した。また、表 3に示す W、 Zn および O以外 (表 3のその他の欄)の成分は主に溶融塩浴の構成成分であり、析出物 の空隙に存在するため、 W、 Znおよび O以外の成分量が少ないほど(表 3のその他 の欄の原子%が小さ 、ほど)緻密性の高 、析出物であるとして評価した。  [0041] The evaluation of the composition of the precipitate is performed by ICP spectroscopic analysis after the precipitate is dissolved in an acid. As the amount of tungsten contained in the precipitate increases (the tungsten (shown in Table 3)). The higher the atomic% of W), the higher the purity. In addition, the components other than W, Zn and O shown in Table 3 (other columns in Table 3) are mainly constituents of the molten salt bath, and are present in the voids of the precipitate. The smaller the component amount (the smaller the atomic% in the other column of Table 3), the higher the density and the higher the amount of the precipitate.
[0042] また、析出物の表面粗さの評価は、レーザ顕微鏡 (キーエンス社製の型番「VK— 8 500」)用いて行なった。表 3に示す表面粗さの数値が低いほど、より平滑な表面を有 する析出物であることを示している。なお、表 3に示す表面粗さは、算術平均粗さ Ra ( JIS B0601— 1994)である。  Further, the surface roughness of the precipitate was evaluated using a laser microscope (model number “VK-8 500” manufactured by Keyence Corporation). The lower the surface roughness value shown in Table 3, the more the precipitate has a smoother surface. The surface roughness shown in Table 3 is the arithmetic average roughness Ra (JIS B0601-1994).
[0043] また、析出物の密度の評価は、 FIB (集束イオンビーム)装置を用いて、析出物の 中心近傍を 3mm X 3mmの矩形状にニッケル板ごと切り取った後に、切り取られたサ ンプル中の析出物の密度を算出することにより行なわれた。なお、析出物の密度は 以下のようにして算出された。まず、 FIB装置を用いて、サンプル中の析出物の厚み を測定した。そして、析出物の表面の面積(3mm X 3mm)と測定された厚みとを掛け 算することにより析出物の体積を算出した。他方、予め測定されたニッケル板全体の 質量から、切り取られたニッケル板に相当する部分の質量を算出した。そして、サン プル全体の質量を測定し、測定されたサンプル全体の質量カゝら上記の切り取られた ニッケル板に相当する部分の質量を引くことによって析出物の質量を算出した。最後 に、析出物の質量を析出物の体積で割ることによって、析出物の密度を算出した。  [0043] In addition, the density of precipitates was evaluated by using a FIB (focused ion beam) apparatus to cut the vicinity of the center of the precipitates into a 3 mm x 3 mm rectangular plate together with the nickel plate, This was done by calculating the density of the precipitate. The density of the precipitate was calculated as follows. First, the thickness of the precipitate in the sample was measured using a FIB apparatus. Then, the volume of the precipitate was calculated by multiplying the surface area (3 mm × 3 mm) of the precipitate by the measured thickness. On the other hand, the mass of the portion corresponding to the cut nickel plate was calculated from the mass of the whole nickel plate measured in advance. Then, the mass of the entire sample was measured, and the mass of the precipitate was calculated by subtracting the mass of the portion corresponding to the cut nickel plate from the measured mass of the entire sample. Finally, the density of the precipitate was calculated by dividing the mass of the precipitate by the volume of the precipitate.
[0044] さらに、析出物の相対密度は、析出することを意図している金属であるタングステン の本来の密度を 19. 3 (gZcm3)とし、上記で算出した析出物の密度とこのタンダステ ンの本来の密度とから以下の式により析出物の相対密度(%)を算出した。 [0044] Further, the relative density of the precipitate is assumed to be 19.3 (gZcm 3 ), which is the original density of tungsten, which is a metal intended to be precipitated. From the original density, the relative density (%) of the precipitate was calculated by the following formula.
析出物の相対密度(%) = 100 X (析出物の密度) Z (タングステンの本来の密度) [0045] 表 3に示すように、実施例 1の溶融塩浴を用いて得られた析出物は、析出状態が膜 状であって、タングステン量が多く高純度であり、表面粗さが小さぐ高密度、高相対 密度かつ高緻密性の析出物であった。 Relative density of precipitates (%) = 100 X (precipitate density) Z (original density of tungsten) [0045] As shown in Table 3, the precipitate obtained using the molten salt bath of Example 1 is a film-like precipitate, has a large amount of tungsten, is highly pure, and has a small surface roughness. It was a high density, high relative density and high density precipitate.
[0046] (実施例 2)  [Example 2]
ZnCl、 NaCl、 KC1、 LiCl (塩化リチウム)および KFのそれぞれの粉末を 200°Cの ZnCl, NaCl, KC1, LiCl (lithium chloride) and KF powders at 200 ° C
2 2
真空オーブン中で 12時間乾燥させた。また、 WC1の粉末を 100°Cの真空オーブン  Dry in a vacuum oven for 12 hours. Also, WC1 powder is vacuum oven at 100 ° C
4  Four
中で 12時間乾燥させた。そして、 ZnClとNaClとKClとLiClとがモル比で35 : 30 : 3  Dried in for 12 hours. And ZnCl, NaCl, KCl and LiCl in molar ratio 35: 30: 3
2  2
0: 5となるように、 Ar雰囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量 した後に、同じグローブボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  These powders were weighed in a glove box under an Ar atmosphere so as to be 0: 5, and then stored in an alumina crucible in the same glove box.
[0047] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1と LiClとの混合物 1 [0047] In addition, a mixture of ZnCl, NaCl, KC1, and LiCl contained in the above-described alumina crucible 1
2  2
00モルに対して、 KF力 モル、 WC1が 0. 54モルとなるように、上記のグローブボッ  The above glove box is adjusted so that KF force mol and WC1 are 0.54 mol per 00 mol.
4  Four
タス内でこれらの粉末をそれぞれ秤量した後に、上記のアルミナ坩堝中にこれらの粉 末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を表 1に示す。  Each of these powders was weighed in a tassel, and then these powders were accommodated in the above-mentioned alumina crucible. Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
[0048] そして、上記のグローブボックス内で ZnCl、 NaCl、 KC1、 LiCl, KFおよび WC1が [0048] In the above glove box, ZnCl, NaCl, KC1, LiCl, KF and WC1
2 4 収容されたアルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させることによって 2 4 By heating the contained alumina crucible to melt the powder in the alumina crucible
、実施例 2の溶融塩浴を 500g作製した。この溶融塩浴の組成 (原子0 /0)を表 2に示す Then, 500 g of the molten salt bath of Example 2 was prepared. Shows the composition of the molten salt bath (atomic 0/0) in Table 2
[0049] そして、溶融塩浴の温度を 430°Cに保持したこと以外は実施例 1と同様の電解条件 [0049] The same electrolysis conditions as in Example 1 except that the temperature of the molten salt bath was maintained at 430 ° C.
(表 3)で電解を行なうことによって、ニッケル板の表面上にタングステンを含む析出物 を得た。  By performing the electrolysis in (Table 3), a precipitate containing tungsten on the surface of the nickel plate was obtained.
[0050] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。  [0050] Thereafter, evaluation was performed on the precipitation state, composition, surface roughness, density and relative density of the precipitates in the same manner as in Example 1. The results are shown in Table 3.
[0051] 表 3に示すように、実施例 2の溶融塩浴を用いて得られた析出物は、析出状態が膜 状であって、タングステン量が多く高純度であり、表面粗さが小さぐ高密度、高相対 密度かつ高緻密性の析出物であった。  [0051] As shown in Table 3, the precipitate obtained using the molten salt bath of Example 2 was film-like, had a large amount of tungsten, had a high purity, and had a small surface roughness. It was a high density, high relative density and high density precipitate.
[0052] (実施例 3)  [0052] (Example 3)
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。また、 WC1の粉末は 100°Cの真空オーブン中で 12時間乾燥させ た。そして、 ZnClと NaClと KC1とのモル比を 85 : 10 : 5とした混合物を作製し、この Let dry for hours. The WC1 powder was dried in a 100 ° C vacuum oven for 12 hours. It was. A mixture of ZnCl, NaCl, and KC1 with a molar ratio of 85: 10: 5 was prepared.
2  2
混合物 100モルに対して、 KF力 モル、 WC1が 0. 54モルとなるように、上記のグロ  The above-mentioned gloss is adjusted so that KF force mol and WC1 are 0.54 mol per 100 mol of the mixture.
4  Four
ーブボックス内でこれらの粉末をそれぞれ秤量した後に、上記のアルミナ坩堝中にこ れらの粉末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を表 1〖こ 示す。  Each of these powders was weighed in a tube box, and then these powders were accommodated in the alumina crucible. Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
[0053] その後、実施例 1と同様にして、アルミナ坩堝を加熱してアルミナ坩堝中の粉末を 溶融させること〖こよって、実施例 3の溶融塩浴を作製した。この溶融塩浴の組成 (原 子%)を表 2に示す。  [0053] Then, in the same manner as in Example 1, the alumina crucible was heated to melt the powder in the alumina crucible, whereby the molten salt bath of Example 3 was produced. Table 2 shows the composition (atomic%) of this molten salt bath.
[0054] そして、実施例 3の溶融塩浴を用い、この溶融塩浴の温度を 380°Cに保持したこと 以外は実施例 1と同様の電解条件 (表 3)で電解を行なうことによって、ニッケル板の 表面上にタングステンを含む析出物を得た。  [0054] Then, by performing the electrolysis under the same electrolysis conditions as in Example 1 (Table 3) except that the molten salt bath of Example 3 was used and the temperature of the molten salt bath was maintained at 380 ° C, A precipitate containing tungsten was obtained on the surface of the nickel plate.
[0055] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。 [0055] Thereafter, evaluation was performed in the same manner as in Example 1 on the precipitation state, composition, surface roughness, density, and relative density of the precipitates. The results are shown in Table 3.
[0056] 表 3に示すように、実施例 3の溶融塩浴を用いて得られた析出物は、析出状態が膜 状であって、タングステン量が多く高純度であり、表面粗さが小さぐ高密度、高相対 密度かつ高緻密性の析出物であった。 [0056] As shown in Table 3, the precipitate obtained using the molten salt bath of Example 3 is a film-like precipitate, has a large amount of tungsten, is highly pure, and has a small surface roughness. It was a high density, high relative density and high density precipitate.
[0057] (実施例 4) [Example 4]
ZnCl、 NaCl、 CsCl (塩化セシウム)および KFのそれぞれの粉末を 200°Cの真空 ZnCl, NaCl, CsCl (cesium chloride) and KF powder at 200 ° C vacuum
2 2
オーブン中で 12時間乾燥させた。また、 WC1の粉末は 100°Cの真空オーブン中で  Dry in oven for 12 hours. Also, the powder of WC1 is in a 100 ° C vacuum oven.
4  Four
12時間乾燥させた。そして、 ZnClとNaClとCsClとのモル比を60 : 20 : 20とした混  Dry for 12 hours. Then, the molar ratio of ZnCl, NaCl and CsCl was 60:20:20.
2  2
合物をアルミナ坩堝中に収容し、この混合物 100モルに対して KF力 モル、 WC1が  The compound is placed in an alumina crucible, and KF force mol, WC1 is 100 mol per 100 mol of this mixture.
4 Four
0. 54モルとなるよう〖こ、上記のアルミナ坩堝中に収容した。アルミナ坩堝中に収容さ れた原料の組成 (モル比)を表 1に示す。 This was placed in the above-mentioned alumina crucible so as to be 0.5 mol. Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
[0058] その後、実施例 1と同様にして、アルミナ坩堝を加熱してアルミナ坩堝中の粉末を 溶融させること〖こよって、実施例 4の溶融塩浴を作製した。この溶融塩浴の組成 (原 子%)を表 2に示す。 [0058] Thereafter, in the same manner as in Example 1, the molten salt bath of Example 4 was produced by heating the alumina crucible to melt the powder in the alumina crucible. Table 2 shows the composition (atomic%) of this molten salt bath.
[0059] そして、実施例 4の溶融塩浴を用いて実施例 1と同様の電解条件 (表 3)で電解を行 なうことによって、ニッケル板の表面上にタングステンを含む析出物を得た。 [0060] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。 [0059] And, using the molten salt bath of Example 4, electrolysis was performed under the same electrolysis conditions as in Example 1 (Table 3) to obtain a precipitate containing tungsten on the surface of the nickel plate. . [0060] Thereafter, in the same manner as in Example 1, the precipitation state, composition, surface roughness, density and relative density of the precipitates were evaluated. The results are shown in Table 3.
[0061] 表 3に示すように、実施例 4の溶融塩浴を用いて得られた析出物は、析出状態が膜 状であって、タングステン量が多く高純度であり、表面粗さが小さぐ高密度、高相対 密度かつ高緻密性の析出物であった。  [0061] As shown in Table 3, the precipitate obtained by using the molten salt bath of Example 4 is in the form of a film, has a large amount of tungsten, is highly pure, and has a small surface roughness. It was a high density, high relative density and high density precipitate.
[0062] (実施例 5)  [Example 5]
ZnCl、 NaCl、 KC1、 KFおよび WO (三酸化タングステン)のそれぞれの粉末を 20 20 powders of ZnCl, NaCl, KC1, KF and WO (tungsten trioxide)
2 3 twenty three
0°Cの真空オーブン中で 12時間乾燥させた。また、 WC1の粉末を 100°Cの真空ォ  Dry in a vacuum oven at 0 ° C for 12 hours. In addition, the powder of WC1 is vacuumed at 100 ° C.
4  Four
ーブン中で 12時間乾燥させた。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 2  Dry in oven for 12 hours. And ZnCl, NaCl and KCl in molar ratio 60: 20: 2
2  2
0となるように、 Ar雰囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量した 後に、同じグローブボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  These powders were weighed in a glove box under an Ar atmosphere so as to be 0, and then stored in an alumina crucible in the same glove box.
[0063] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル [0063] Further, a mixture of ZnCl, NaCl, and KC1 contained in the above-mentioned alumina crucible 100 mol
2  2
に対して、 KF力 モル、 WC1が 0. 27モルおよび WOが 0. 27モルとなるように、上  Against KF force mol, WC1 is 0.27 mol and WO is 0.27 mol.
4 3  4 3
記のグローブボックス内で KF、 WC1および WOの粉末をそれぞれ秤量した後に、  After weighing KF, WC1 and WO powders in the glove box,
4 3  4 3
上記のアルミナ坩堝中にこれらの粉末を収容した。アルミナ坩堝中に収容された原 料の組成 (モル比)を表 1に示す。  These powders were accommodated in the above-mentioned alumina crucible. Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
[0064] そして、上記のグローブボックス内で、 ZnCl、 NaCl、 KC1、 KF、 WC1および WO [0064] In the above glove box, ZnCl, NaCl, KC1, KF, WC1 and WO
2 4 3 が収容されたアルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させることによつ て、実施例 5の溶融塩浴を 500g作製した。この溶融塩浴の組成 (原子0 /0)を表 2に示 す。 500 g of the molten salt bath of Example 5 was prepared by heating the alumina crucible containing 2 4 3 to melt the powder in the alumina crucible. It is shown the composition of the molten salt bath (atomic 0/0) in Table 2.
[0065] そして、実施例 5の溶融塩浴を用いて実施例 1と同様の電解条件 (表 3)で電解を行 なうことによって、ニッケル板の表面上にタングステンを含む析出物を得た。  [0065] And, using the molten salt bath of Example 5, electrolysis was performed under the same electrolysis conditions as in Example 1 (Table 3) to obtain a precipitate containing tungsten on the surface of the nickel plate. .
[0066] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。 [0066] Thereafter, evaluation was performed in the same manner as in Example 1 on the precipitation state, composition, surface roughness, density, and relative density of the precipitates. The results are shown in Table 3.
[0067] 表 3に示すように、実施例 5の溶融塩浴を用いて得られた析出物は、析出状態が膜 状であって、タングステン量が多く高純度であり、表面粗さが小さぐ高密度、高相対 密度かつ高緻密性の析出物であった。 [0067] As shown in Table 3, the precipitate obtained using the molten salt bath of Example 5 is a film-like precipitate, has a large amount of tungsten, is highly pure, and has a small surface roughness. It was a high density, high relative density and high density precipitate.
[0068] (実施例 6) ZnBr (臭化亜鉛)、 NaBr (臭化ナトリウム)、 KBr (臭化カリウム)および KFのそれ[Example 6] That of ZnBr (zinc bromide), NaBr (sodium bromide), KBr (potassium bromide) and KF
2 2
ぞれの粉末を 200°Cの真空オーブン中で 12時間乾燥させた。また、 WC1の粉末を 1  Each powder was dried in a 200 ° C. vacuum oven for 12 hours. Also, WC1 powder 1
4  Four
00°Cの真空オーブン中で 12時間乾燥させた。そして、 ZnBrと NaBrと KBrとがモル  Dry in a vacuum oven at 00 ° C for 12 hours. ZnBr, NaBr and KBr
2  2
比で 60: 20: 20となるように、 Ar雰囲気下のグローブボックス内でこれらの粉末をそ れぞれ秤量した後に、同じグローブボックス内にあるアルミナ坩堝中にこれらの粉末 を収容した。  These powders were weighed in a glove box under an Ar atmosphere so that the ratio was 60:20:20, and then these powders were accommodated in an alumina crucible in the same glove box.
[0069] また、上記のアルミナ坩堝中に収容された ZnBrと NaBrと KBrとの混合物 100モ  [0069] In addition, a mixture of ZnBr, NaBr, and KBr contained in the alumina crucible described above
2  2
ルに対して、 KF力 モル、 WC1が 0. 5モルとなるように、上記のグローブボックス内  In the above glove box, KF force mol and WC1 are 0.5 mol against
4  Four
で KFおよび WC1の粉末をそれぞれ秤量した後に、上記のアルミナ坩堝中にこれら  After weighing each of the KF and WC1 powders in the above, they are placed in the above-mentioned alumina crucible.
4  Four
の粉末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を表 1に示す [0070] そして、上記のグローブボックス内で ZnBr、 NaBr, KBr、 KFおよび WC1が収容  Of powder. The composition (molar ratio) of the raw materials contained in the alumina crucible is shown in Table 1. [0070] And ZnBr, NaBr, KBr, KF and WC1 are contained in the above glove box.
2 4 されたアルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させることによって、実 施例 6の溶融塩浴を 500g作製した。この溶融塩浴の組成 (原子%)を表 2に示す。  The molten alumina crucible obtained in Example 6 was heated to melt the powder in the alumina crucible, thereby preparing 500 g of the molten salt bath of Example 6. Table 2 shows the composition (atomic%) of this molten salt bath.
[0071] そして、実施例 6の溶融塩浴を用いて実施例 1と同様の電解条件 (表 3)で電解を行 なうことによって、ニッケル板の表面上にタングステンを含む析出物を得た。 [0071] And, using the molten salt bath of Example 6, electrolysis was performed under the same electrolysis conditions as in Example 1 (Table 3) to obtain a precipitate containing tungsten on the surface of the nickel plate. .
[0072] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。 [0072] Thereafter, evaluation was performed on the precipitation state, composition, surface roughness, density and relative density of the precipitates in the same manner as in Example 1. The results are shown in Table 3.
[0073] 表 3に示すように、実施例 6の溶融塩浴を用いて得られた析出物は、析出状態が膜 状であって、タングステン量が多く高純度であり、表面粗さが小さぐ高密度、高相対 密度かつ高緻密性の析出物であった。 [0073] As shown in Table 3, the precipitate obtained using the molten salt bath of Example 6 was film-like, had a large amount of tungsten, had a high purity, and had a small surface roughness. It was a high density, high relative density and high density precipitate.
[0074] (実施例 7) [Example 7]
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。また、 WC1の粉末は 100°Cの真空オーブン中で 12時間乾燥させ  Let dry for hours. The WC1 powder was dried in a 100 ° C vacuum oven for 12 hours.
4  Four
た。そして、 ZnClと NaClと KC1とのモル比を 49 : 30 : 21とした混合物を作製し、この  It was. A mixture of ZnCl, NaCl and KC1 with a molar ratio of 49:30:21 was prepared.
2  2
混合物 100モルに対して、 KFが 4モル、 WC1が 0. 54モルとなるように、上記のグロ  The above gloss is adjusted so that KF is 4 mol and WC1 is 0.54 mol for 100 mol of the mixture.
4  Four
ーブボックス内でこれらの粉末をそれぞれ秤量した後に、上記のアルミナ坩堝中にこ れらの粉末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を表 1〖こ 示す。 Each of these powders was weighed in a tube box, and then these powders were accommodated in the alumina crucible. Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible. Show.
[0075] その後、実施例 1と同様にして、アルミナ坩堝を加熱してアルミナ坩堝中の粉末を 溶融させること〖こよって、実施例 7の溶融塩浴を作製した。この溶融塩浴の組成 (原 子%)を表 2に示す。  Thereafter, in the same manner as in Example 1, the molten salt bath of Example 7 was produced by heating the alumina crucible and melting the powder in the alumina crucible. Table 2 shows the composition (atomic%) of this molten salt bath.
[0076] そして、実施例 7の溶融塩浴を用いて実施例 1と同様の電解条件 (表 3)で電解を行 なうことによって、ニッケル板の表面上にタングステンを含む析出物を得た。  [0076] Then, using the molten salt bath of Example 7, electrolysis was performed under the same electrolysis conditions as in Example 1 (Table 3), thereby obtaining a precipitate containing tungsten on the surface of the nickel plate. .
[0077] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。 [0077] Thereafter, evaluation was performed on the precipitation state, composition, surface roughness, density and relative density of the precipitates in the same manner as in Example 1. The results are shown in Table 3.
[0078] 表 3に示すように、実施例 7の溶融塩浴を用いて得られた析出物は、析出状態が膜 状であって、タングステン量が多く高純度であり、表面粗さが小さぐ高密度、高相対 密度かつ高緻密性の析出物であった。 [0078] As shown in Table 3, the precipitate obtained by using the molten salt bath of Example 7 is a film-like precipitate, has a large amount of tungsten, is highly pure, and has a small surface roughness. It was a high density, high relative density and high density precipitate.
[0079] (実施例 8) [0079] (Example 8)
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。また、 WC1の粉末は 100°Cの真空オーブン中で 12時間乾燥させ  Let dry for hours. The WC1 powder was dried in a 100 ° C vacuum oven for 12 hours.
4  Four
た。 ZnClと NaClと KC1とのモル比を 70 : 15 : 15とした混合物を作製し、この混合物  It was. A mixture of ZnCl, NaCl and KC1 with a molar ratio of 70:15:15 was prepared.
2  2
100モル〖こ対して、 KFが 4モル、 WC1が 0. 54モルとなるよう〖こ、上記のグローブボ  For 100 moles, KF is 4 moles and WC1 is 0.54 moles.
4  Four
ックス内でこれらの粉末をそれぞれ秤量した後に、上記のアルミナ坩堝中にこれらの 粉末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を表 1に示す。  These powders were weighed in a box, and then stored in the alumina crucible. Table 1 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
[0080] その後、実施例 1と同様にして、アルミナ坩堝を加熱してアルミナ坩堝中の粉末を 溶融させること〖こよって、実施例 8の溶融塩浴を作製した。この溶融塩浴の組成 (原 子%)を表 2に示す。 [0080] Thereafter, in the same manner as in Example 1, the alumina crucible was heated to melt the powder in the alumina crucible, whereby the molten salt bath of Example 8 was produced. Table 2 shows the composition (atomic%) of this molten salt bath.
[0081] そして、実施例 8の溶融塩浴を用いて実施例 1と同様の電解条件 (表 3)で電解を行 なうことによって、ニッケル板の表面上にタングステンを含む析出物を得た。  [0081] Then, by performing electrolysis under the same electrolysis conditions as in Example 1 (Table 3) using the molten salt bath of Example 8, a precipitate containing tungsten on the surface of the nickel plate was obtained. .
[0082] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。 [0082] Thereafter, in the same manner as in Example 1, the precipitation state, composition, surface roughness, density and relative density of the precipitates were evaluated. The results are shown in Table 3.
[0083] 表 3に示すように、実施例 8の溶融塩浴を用いて得られた析出物は、析出状態が膜 状であって、タングステン量が多く高純度であり、表面粗さが小さぐ高密度、高相対 密度かつ高緻密性の析出物であった。 [0084] (実施例 9) [0083] As shown in Table 3, the precipitate obtained using the molten salt bath of Example 8 was in the form of a film, had a large amount of tungsten, had a high purity, and had a small surface roughness. It was a high density, high relative density and high density precipitate. [Example 9]
粉末の秤量力 タングステンを含む析出物を得るに至るまでの工程を大気中で行 なったこと以外はすべて実施例 1と同様にして、ニッケル板の表面上にタングステン を含む析出物を得た。実施例 9にお ヽてアルミナ坩堝中に収容された原料の組成 ( モル比)を表 1に示し、溶融塩浴の組成 (原子%)を表 2に示す。ここで、溶融塩浴中 の酸素の含有量 (原子%)は、溶融塩浴の一部を抜き出して試料とし、その試料につ いて不活性ガス融解赤外吸収法を用いて算出した。また、実施例 9の溶融塩浴に酸 素が含まれているのは、大気中の酸素の混入によるものと考えられる。  Weighing power of powder A precipitate containing tungsten on the surface of the nickel plate was obtained in the same manner as in Example 1 except that the steps up to obtaining a precipitate containing tungsten were performed in the atmosphere. Table 1 shows the composition (molar ratio) of the raw materials accommodated in the alumina crucible in Example 9, and Table 2 shows the composition (atomic%) of the molten salt bath. Here, the oxygen content (atomic%) in the molten salt bath was calculated using an inert gas melting infrared absorption method for a sample obtained by extracting a part of the molten salt bath. The reason why the molten salt bath of Example 9 contains oxygen is thought to be due to the mixing of oxygen in the atmosphere.
[0085] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。  [0085] Thereafter, evaluation was performed on the precipitation state, composition, surface roughness, density, and relative density of the precipitate in the same manner as in Example 1. The results are shown in Table 3.
[0086] 表 3に示すように、実施例 9の溶融塩浴を用いて得られた析出物は、析出状態が膜 状であって、タングステン量が多く高純度であり、表面粗さが小さぐ高密度、高相対 密度かつ高緻密性の析出物であった。  [0086] As shown in Table 3, the precipitate obtained using the molten salt bath of Example 9 had a film-like precipitation state, a large amount of tungsten, a high purity, and a small surface roughness. It was a high density, high relative density and high density precipitate.
[0087] (実施例 10)  [Example 10]
粉末の秤量力 アルミナ坩堝中における粉末の溶融に至るまでの工程をすベて大 気中で行なった。ここで、実施例 10においてアルミナ坩堝中に収容された原料の組 成 (モル比)を表 1に示す。そして、アルミナ坩堝中の溶融塩浴にアルミナ製の管を揷 入し、その管力も酸素を 1LZ分の流量で導入して、酸素によるパブリングを 1時間以 上行なった。このようにして得られた実施例 10の溶融塩浴の組成 (原子0 /0)を表 2〖こ 示す。ここで、溶融塩浴中の酸素の含有量 (原子%)は、溶融塩浴の一部を抜き出し て試料とし、その試料について不活性ガス融解赤外吸収法を用いて算出した。また、 実施例 10の溶融塩浴に酸素が含まれているのは、大気中の酸素の混入およびアル ミナ製の管力 導入された酸素の溶解によるものと考えられる。 Powder weighing power All processes up to melting of powder in an alumina crucible were carried out in the air. Here, Table 1 shows the composition (molar ratio) of the raw materials housed in the alumina crucible in Example 10. Then, an alumina tube was inserted into the molten salt bath in the alumina crucible, and oxygen was introduced at a flow rate of 1 LZ for publishing with oxygen for 1 hour or more. Thus the composition of the molten salt bath of Example 10 obtained (atomic 0/0) are shown in Table 2 〖this. Here, the oxygen content (atomic%) in the molten salt bath was calculated using an inert gas melting infrared absorption method for a sample obtained by extracting a part of the molten salt bath. The reason why oxygen is contained in the molten salt bath of Example 10 is considered to be due to the mixing of oxygen in the atmosphere and the dissolution of oxygen introduced by the tube made by Armina.
[0088] その後、実施例 1と同様の電解条件 (表 3)で電解を行なうことによって、ニッケル板 の表面上にタングステンを含む析出物を析出させた。  [0088] Thereafter, electrolysis was carried out under the same electrolysis conditions as in Example 1 (Table 3), thereby depositing a precipitate containing tungsten on the surface of the nickel plate.
[0089] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。  [0089] Thereafter, evaluation was performed on the precipitation state, composition, surface roughness, density, and relative density of the precipitates in the same manner as in Example 1. The results are shown in Table 3.
[0090] 表 3に示すように、実施例 10の溶融塩浴を用いて得られた析出物は、析出状態が 膜状であって、タングステン量が多く高純度であり、表面粗さが小さぐ高密度、高相 対密度かつ高緻密性の析出物であった。 [0090] As shown in Table 3, the precipitate obtained using the molten salt bath of Example 10 had a precipitation state. It was a film-like precipitate with a high amount of tungsten, high purity, small surface roughness, high density, high relative density, and high density.
[0091] (比較例 1)  [0091] (Comparative Example 1)
ZnClおよび NaClのそれぞれの粉末を 200°Cの真空オーブン中で 12時間乾燥さ ZnCl and NaCl powders are dried in a vacuum oven at 200 ° C for 12 hours
2 2
せた。また、 WC1の粉末を 100°Cの真空オーブン中で 12時間乾燥させた。そして、  Let The powder of WC1 was dried in a vacuum oven at 100 ° C for 12 hours. And
4  Four
ZnClと NaClとがモル比で 60 :40となるように、 Ar雰囲気下のグローブボックス内で In a glove box under an Ar atmosphere so that the molar ratio of ZnCl and NaCl is 60:40
2 2
これらの粉末をそれぞれ秤量した後に、同じグローブボックス内にあるアルミナ坩堝 中にこれらの粉末を収容した。  Each of these powders was weighed and then stored in an alumina crucible in the same glove box.
[0092] また、上記のアルミナ坩堝中に収容された ZnClと NaClとの混合物 100モルに対し [0092] Further, with respect to 100 moles of the mixture of ZnCl and NaCl contained in the above-mentioned alumina crucible
2  2
て、 WC1が 0. 54モルとなるように、上記のグローブボックス内で WC1の粉末をそれ WC1 powder in the above glove box so that WC1 is 0.54 mol.
4 4 4 4
ぞれ秤量した後に、上記のアルミナ坩堝中に WC1の粉末を収容した。アルミナ坩堝  After weighing each, WC1 powder was placed in the alumina crucible. Alumina crucible
4  Four
中に収容された原料の組成 (モル比)を表 1に示す。  Table 1 shows the composition (molar ratio) of the raw materials housed inside.
[0093] そして、上記のグローブボックス内で ZnCl、 NaClおよび WC1が収容されたアルミ [0093] Then, aluminum containing ZnCl, NaCl and WC1 in the above glove box
2 4  twenty four
ナ坩堝を加熱してこれらの粉末を溶融させることによって、比較例 1の溶融塩浴を 50 The molten salt bath of Comparative Example 1 was heated by melting the powder by heating the crucible.
Og作製した。この溶融塩浴の組成 (原子%)を表 2に示す。 Og was produced. Table 2 shows the composition (atomic%) of this molten salt bath.
[0094] そして、比較例 1の溶融塩浴を用いてこの溶融塩浴の温度を 400°Cとしたこと以外 は実施例 1と同様の電解条件 (表 3)で電解を行なうことによって、ニッケル板の表面 上にタングステンを含む析出物を得た。 [0094] Then, by using the molten salt bath of Comparative Example 1 and setting the temperature of the molten salt bath to 400 ° C, electrolysis was performed under the same electrolysis conditions as in Example 1 (Table 3). A precipitate containing tungsten was obtained on the surface of the plate.
[0095] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。 [0095] Thereafter, evaluation was performed in the same manner as in Example 1 on the precipitation state, composition, surface roughness, density, and relative density of the precipitates. The results are shown in Table 3.
[0096] 表 3に示すように、比較例 1の溶融塩浴を用いて得られた析出物は、析出状態が粒 状であって、実施例 1〜: L0の析出物と比べてタングステン量が非常に少なぐ表面粗 さが大きぐ緻密性、密度および相対密度が低い析出物であった。 [0096] As shown in Table 3, the precipitates obtained using the molten salt bath of Comparative Example 1 were granular in the precipitation state, and the amount of tungsten compared to the precipitates of Example 1 to L0: It was a precipitate with a very small surface roughness and a small density, a low density and a low relative density.
[0097] (比較例 2) [0097] (Comparative Example 2)
ZnCl、 NaClおよび KC1のそれぞれの粉末を 200°Cの真空オーブン中で 12時間 Each powder of ZnCl, NaCl and KC1 in a vacuum oven at 200 ° C for 12 hours
2 2
乾燥させた。また、 WC1の粉末を 100°Cの真空オーブン中で 12時間乾燥させた。そ  Dried. The powder of WC1 was dried in a vacuum oven at 100 ° C for 12 hours. So
4  Four
して、 ZnClと NaClと KC1とがモル比で 60 : 20 : 20となるように、 Ar雰囲気下のグロ  In order to obtain a molar ratio of 60:20:20 for ZnCl, NaCl, and KC1,
2  2
ーブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグローブボックス内に あるアルミナ坩堝中にこれらの粉末を収容した。 Weigh each of these powders in the microwave box and place them in the same glove box. These powders were placed in an alumina crucible.
[0098] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル  [0098] Further, a mixture of ZnCl, NaCl, and KC1 contained in the above-mentioned alumina crucible 100 mol
2  2
に対して、 WC1が 0. 54モルとなるように、上記のグローブボックス内で WC1の粉末  WC1 powder in the above glove box so that WC1 is 0.54 mol.
4 4 をそれぞれ秤量した後に、上記のアルミナ坩堝中に WC1の粉末を収容した。アルミ  After weighing 4 4, WC1 powder was placed in the alumina crucible. Aluminum
4  Four
ナ坩堝中に収容された原料の組成 (モル比)を表 1に示す。  Table 1 shows the composition (molar ratio) of the raw materials contained in the crucible.
[0099] そして、上記のグローブボックス内で ZnCl、 NaCl、 KC1および WC1が収容された [0099] Then, ZnCl, NaCl, KC1 and WC1 were accommodated in the glove box.
2 4  twenty four
アルミナ坩堝を加熱してこれらの粉末を溶融させることによって、比較例 2の溶融塩 浴を 500g作製した。この溶融塩浴の組成 (原子%)を表 2に示す。  By heating the alumina crucible and melting these powders, 500 g of the molten salt bath of Comparative Example 2 was produced. Table 2 shows the composition (atomic%) of this molten salt bath.
[0100] そして、比較例 2の溶融塩浴を用いて、実施例 1と同様の電解条件 (表 3)で電解を 行なうことにより、ニッケル板の表面上にタングステンを含む析出物を得た。 [0100] Then, using the molten salt bath of Comparative Example 2, electrolysis was performed under the same electrolysis conditions as in Example 1 (Table 3) to obtain a precipitate containing tungsten on the surface of the nickel plate.
[0101] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 3に示す。 [0101] Thereafter, evaluation was performed in the same manner as in Example 1 on the precipitation state, composition, surface roughness, density, and relative density of the precipitates. The results are shown in Table 3.
[0102] 表 3に示すように、比較例 2の溶融塩浴を用いて得られた析出物には割れが生じて おり、実施例 1〜: LOの析出物と比べてタングステン量が非常に少なぐ表面粗さが大 きぐ緻密性、密度および相対密度が低い析出物であった。 [0102] As shown in Table 3, the precipitate obtained using the molten salt bath of Comparative Example 2 is cracked, and the amount of tungsten is much higher than that of Example 1-: LO precipitate. The precipitates had a small surface roughness, a large density, a low density, and a low relative density.
[0103] [表 1] [0103] [Table 1]
原料の組成(モル比) Composition of raw materials (molar ratio)
ZnCI2 NaCI KCI LiCI CsCI ZnBr2 NaBr KBr KF WCI4 03 実施例 1 60 20 20 0 0 0 0 0 4 0.54 0 実施例 2 35 30 30 5 0 0 0 0 4 0.54 0 実施例 3 85 10 5 0 0 0 0 0 4 0.54 0 実施例 4 60 20 0 0 20 0 0 0 4 0.54 0^ 実施例 5 60 20 20 0 0 0 0 0 4 0.27 0.27 実施例 6 0 0 0 0 0 60 20 20 4 0.50 0 実施例 7 49 30 21 0 0 0 0 0 4 0- 54 0 実施例 8 70 15 15 0 0 0 0 0 4 0.54 0 実施例 9 60 20 20 0 0 0 0 0 4 0.54 0 実施例 10 60 20 20 0 0 0 0 0 4 0.54 0 比較例 1 60 40 0 0 0 0 0 0 0 0.54 0 比較例 2 60 20 20 0 0 0 0 0 0 0.54 0 ZnCI 2 NaCI KCI LiCI CsCI ZnBr 2 NaBr KBr KF WCI 4 0 3 Example 1 60 20 20 0 0 0 0 0 4 0.54 0 Example 2 35 30 30 5 0 0 0 0 4 0.54 0 Example 3 85 10 5 0 0 0 0 0 4 0.54 0 Example 4 60 20 0 0 20 0 0 0 4 0.54 0 ^ Example 5 60 20 20 0 0 0 0 0 4 0.27 0.27 Example 6 0 0 0 0 0 60 20 20 4 0.50 0 Example 7 49 30 21 0 0 0 0 0 4 0- 54 0 Example 8 70 15 15 0 0 0 0 0 4 0.54 0 Example 9 60 20 20 0 0 0 0 0 4 0.54 0 Example 10 60 20 20 0 0 0 0 0 4 0.54 0 Comparative Example 1 60 40 0 0 0 0 0 0 0 0.54 0 Comparative Example 2 60 20 20 0 0 0 0 0 0 0.54 0
溶融塩浴の ii成 (原子 <½) Ii formation of molten salt bath (atomic <½)
Ζη Na K U Cs CI Br W F o 実施例 1 22.16 7.39 8.87 0 0 59.90 0 0.20 1.48 0 実施例 2 14.25 12.21 13.84 2.03 0 55.82 0 0.22 1.63 0 実施例 3 28.75 3.38 3.04 0 0 63.30 0 0.18 1.35 0 実施例 4 22.16 7.39 1.48 0 7.39 59.90 0 0.20 1.48 0 実施例 5 22.19 7.40 8.87 0 0 59.56 0 0.20 1.48 0.30 実施例 6 22.18 7.39 8.87 0 0 0.74 59.15 0.19 1.48 0 実施例 7 18.83 11.53 9.61 0 0 58.28 0 0.21 1.54 0 実施例 8 24.94 5.34 6.77 0 0 61.33 0 0.19 1.43 0 実施例 9 22.14 7.38 8.86 0 0 59.84 0 0.20 1.48 0.10 実施例 10 22.10 7.37 8.84 0 0 59.72 0 0.20 1.47 0.30 比較例 1 22.84 15.22 0 0 0 0 0.21 0 0 比較例 2 22.84 7.61 7.61 0 0 61.73 0 0.21 0 0 Ζη Na KU Cs CI Br WF o Example 1 22.16 7.39 8.87 0 0 59.90 0 0.20 1.48 0 Example 2 14.25 12.21 13.84 2.03 0 55.82 0 0.22 1.63 0 Example 3 28.75 3.38 3.04 0 0 63.30 0 0.18 1.35 0 Example 4 22.16 7.39 1.48 0 7.39 59.90 0 0.20 1.48 0 Example 5 22.19 7.40 8.87 0 0 59.56 0 0.20 1.48 0.30 Example 6 22.18 7.39 8.87 0 0 0.74 59.15 0.19 1.48 0 Example 7 18.83 11.53 9.61 0 0 58.28 0 0.21 1.54 0 Example Example 8 24.94 5.34 6.77 0 0 61.33 0 0.19 1.43 0 Example 9 22.14 7.38 8.86 0 0 59.84 0 0.20 1.48 0.10 Example 10 22.10 7.37 8.84 0 0 59.72 0 0.20 1.47 0.30 Comparative Example 1 22.84 15.22 0 0 0 0 0.21 0 0 Comparative Example 2 22.84 7.61 7.61 0 0 61.73 0 0.21 0 0
Figure imgf000022_0001
Figure imgf000022_0001
表 2および表 3からもわ力るように、フッ素を含有する実施例 1〜: LOの溶融塩浴を用 V、た場合には、フッ素を含有しな 、比較例 1 2の溶融塩浴を用いた場合と比べて、 タングステンの純度が高ぐ高密度、高相対密度かつ高緻密性で、表面が平滑な析 出物を得ることができた。 [0107] また、表 2および表 3からもわ力るように、溶融塩浴全体に対する亜鉛の含有量が 1 7原子%以上 25原子%以下である実施例 1および実施例 4〜10の溶融塩浴を用い た場合には、実施例 2〜3の溶融塩浴を用いた場合と比べて、溶融塩浴の温度が 25 0°Cと!、うより低温で析出物を得ることができた。 As shown in Table 2 and Table 3, Examples 1 to 5 containing fluorine: When using a molten salt bath of LO V, in the case of containing no fluorine, the molten salt bath of Comparative Example 12 Compared with the case of using, it was possible to obtain a precipitate with a high purity, high relative density and high density, and a smooth surface. [0107] Further, as shown in Tables 2 and 3, the melting of Example 1 and Examples 4 to 10 in which the zinc content in the entire molten salt bath is 17 atomic percent or more and 25 atomic percent or less. When using a salt bath, the temperature of the molten salt bath is 250 ° C compared to the case of using the molten salt baths of Examples 2 to 3, and precipitates can be obtained at a lower temperature. It was.
[0108] (実施例 11)  [Example 10]
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 20となるょぅに、  Let dry for hours. And when ZnCl, NaCl, and KCl are in a molar ratio of 60:20:20,
2  2
Ar雰囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグロ ーブボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  These powders were weighed in a glove box under an Ar atmosphere, and then stored in an alumina crucible in the same glove box.
[0109] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル [0109] Also, a mixture of ZnCl, NaCl, and KC1 contained in the above-mentioned alumina crucible 100 mol
2  2
に対して、 KFが 4モル、 MoCl (三塩化モリブデン)が 0. 54モルとなるように、上記  For KF 4 mol and MoCl (molybdenum trichloride) 0.54 mol
3  Three
のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、上記のアルミナ坩堝 中にこれらの粉末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を 表 4に示す。  Each of these powders was weighed in a glove box, and then these powders were accommodated in the alumina crucible. Table 4 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
[0110] そして、上記のグローブボックス内で ZnCl、 NaCl、 KC1、 KFおよび MoClが収容  [0110] And ZnCl, NaCl, KC1, KF and MoCl are housed in the above glove box
2 3 されたアルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させることによって、実 施例 11の溶融塩浴を 500g作製した。この溶融塩浴の組成 (原子%)を表 5に示す。  The molten alumina crucible was heated to melt the powder in the alumina crucible, thereby preparing 500 g of the molten salt bath of Example 11. Table 5 shows the composition (atomic%) of this molten salt bath.
[0111] そして、上記のグローブボックス内で、陰極として、鏡面研磨された、算術平均粗さ Raが 10nm未満のニッケル板と、陽極として直径 5mmのタングステン棒と、参照電極 として直径 5mmの亜鉛棒を実施例 11の溶融塩浴中に浸漬させた。次いで、この溶 融塩浴の温度を 250°Cに保持した状態で、陰極であるニッケル板の電位を制御する 3電極法により、陰極と陽極との間の電位を 150mVとして 3時間の電解条件(表 6)で 電解を行なうことにより、陰極であるニッケル板の表面上にモリブデンを含む析出物を 得た。 [0111] Then, in the above glove box, a mirror-polished nickel plate with an arithmetic average roughness Ra of less than 10 nm as a cathode, a tungsten rod with a diameter of 5 mm as an anode, and a zinc rod with a diameter of 5 mm as a reference electrode Was immersed in the molten salt bath of Example 11. Next, in a state where the temperature of the molten salt bath is maintained at 250 ° C., the three-electrode method for controlling the potential of the nickel plate as the cathode is set to 150 mV between the cathode and the anode. By conducting the electrolysis in (Table 6), a precipitate containing molybdenum was obtained on the surface of the nickel plate as the cathode.
[0112] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さおよび密度 について評価を行なった。また、析出物の相対密度を、析出することを意図している 金属であるモリブデンの本来の密度を 10. 22 (g/cm3)とし、上記で算出した析出物 の密度とこのモリブデンの本来の密度とから以下の式により析出物の相対密度(%) を算出した。 [0112] Thereafter, the precipitation state, composition, surface roughness and density of the precipitates were evaluated in the same manner as in Example 1. In addition, the relative density of the precipitate is assumed to be 10.22 (g / cm 3 ) of the original density of molybdenum, which is the metal intended to be deposited, and the calculated density of the precipitate and the original density of this molybdenum The relative density of the precipitate (%) Was calculated.
その結果を表 6に示す。  The results are shown in Table 6.
析出物の相対密度(%) = 100 X (析出物の密度) Z (モリブデンの本来の密度) [0113] 表 6に示すように、実施例 11の溶融塩浴を用いて得られた析出物 (厚さ 3 m)は、 析出状態が膜状であって、モリブデン量が多く高純度であり、表面粗さが小さぐ高 密度、高相対密度かつ高緻密性の析出物であった。  Relative density of precipitates (%) = 100 X (density of precipitates) Z (original density of molybdenum) [0113] As shown in Table 6, the precipitates obtained using the molten salt bath of Example 11 (Thickness 3 m) was a high-density, high-relative-density and high-density precipitate with a film-like precipitation state, high molybdenum content, high purity, and small surface roughness.
[0114] (実施例 12) [0114] (Example 12)
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 20となるょぅに、  Let dry for hours. And when ZnCl, NaCl, and KCl are in a molar ratio of 60:20:20,
2  2
Ar雰囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグロ ーブボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  These powders were weighed in a glove box under an Ar atmosphere, and then stored in an alumina crucible in the same glove box.
[0115] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル [0115] In addition, a mixture of ZnCl, NaCl, and KC1 contained in the above-described alumina crucible 100 mol
2  2
に対して、 KFが 4モル、 MoCl (五塩化モリブデン)が 0. 54モルとなるように、上記  For KF 4 mol and MoCl (molybdenum pentachloride) 0.54 mol
5  Five
のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、上記のアルミナ坩堝 中にこれらの粉末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を 表 4に示す。  These powders were weighed in a glove box, and then stored in the above-mentioned alumina crucible. Table 4 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
[0116] そして、上記のグローブボックス内で ZnCl、 NaCl、 KC1、 KFおよび MoClが収容  [0116] And in the above glove box, ZnCl, NaCl, KC1, KF and MoCl are housed.
2 5 されたアルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させることによって、実 施例 12の溶融塩浴を 500g作製した。この溶融塩浴の組成 (原子%)を表 5に示す。  The molten alumina crucible was heated to melt the powder in the alumina crucible, whereby 500 g of the molten salt bath of Example 12 was prepared. Table 5 shows the composition (atomic%) of this molten salt bath.
[0117] そして、上記のグローブボックス内で、陰極として、鏡面研磨された、算術平均粗さ Raが 10nm未満のニッケル板と、陽極として直径 5mmのタングステン棒と、参照電極 として直径 5mmの亜鉛棒を実施例 12の溶融塩浴中に浸漬させた。次いで、この溶 融塩浴の温度を 250°Cに保持した状態で、陰極であるニッケル板の電位を制御する 3電極法により、陰極と陽極との間の電位を 150mVとして 3時間の電解条件(表 6)で 電解を行なうことにより、陰極であるニッケル板の表面上にモリブデンを含む析出物を 得た。 [0117] Then, in the above glove box, a mirror-polished nickel plate with an arithmetic average roughness Ra of less than 10 nm as a cathode, a tungsten rod with a diameter of 5 mm as an anode, and a zinc rod with a diameter of 5 mm as a reference electrode Was immersed in the molten salt bath of Example 12. Next, in a state where the temperature of the molten salt bath is maintained at 250 ° C., the three-electrode method for controlling the potential of the nickel plate as the cathode is set to 150 mV between the cathode and the anode. By performing electrolysis in (Table 6), a precipitate containing molybdenum was obtained on the surface of the nickel plate as the cathode.
[0118] その後、実施例 11と同様の方法で、析出物の析出状態、組成、表面粗さ、密度お よび相対密度について評価を行なった。その結果を表 6に示す。 [0119] 表 6に示すように、実施例 12の溶融塩浴を用いて得られた析出物 (厚さ 0. 5 /z m) は、析出状態が膜状であって、モリブデン量が多く高純度であり、表面粗さが小さぐ 高密度、高相対密度かつ高緻密性の析出物であった。 [0118] Thereafter, the precipitation state, composition, surface roughness, density and relative density of the precipitates were evaluated in the same manner as in Example 11. The results are shown in Table 6. [0119] As shown in Table 6, the precipitate (thickness 0.5 / zm) obtained using the molten salt bath of Example 12 was in the form of a film and had a large amount of molybdenum and a high content. It was a high density, high relative density and high density precipitate with low purity and surface roughness.
[0120] (実施例 13)  [0120] (Example 13)
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。また、 WOの粉末を 100°Cの真空オーブン中で 12時間乾燥させ  Let dry for hours. Also, the WO powder is dried in a vacuum oven at 100 ° C for 12 hours.
3  Three
た。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 20となるょぅに、 Ar雰囲気下の  It was. And when ZnCl, NaCl, and KCl have a molar ratio of 60:20:20,
2  2
グローブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグローブボックス内 にあるアルミナ坩堝中にこれらの粉末を収容した。  Each of these powders was weighed in a glove box, and then stored in an alumina crucible in the same glove box.
[0121] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル [0121] Further, a mixture of ZnCl, NaCl, and KC1 contained in the above-described alumina crucible 100 mol
2  2
に対して、 KF力 モル、 WOが 0. 54モルとなるよう〖こ、上記のグローブボックス内で  Against KF force mol, WO to 0.54 mol in the above glove box
3  Three
これらの粉末をそれぞれ秤量した後に、上記のアルミナ坩堝中にこれらの粉末を収 容した。アルミナ坩堝中に収容された原料の組成 (モル比)を表 4に示す。  After weighing each of these powders, these powders were stored in the above-mentioned alumina crucible. Table 4 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
[0122] そして、上記のグローブボックス内で ZnCl、 NaCl、 KC1、 KFおよび WOが収容さ [0122] Then, ZnCl, NaCl, KC1, KF and WO are accommodated in the glove box.
2 3 れたアルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させることによって、実施 例 13の溶融塩浴を 500g作製した。この溶融塩浴の組成 (原子%)を表 5に示す。  The molten salt crucible of Example 13 was prepared in an amount of 500 g by heating the resulting alumina crucible to melt the powder in the alumina crucible. Table 5 shows the composition (atomic%) of this molten salt bath.
[0123] そして、上記のグローブボックス内で、陰極として、鏡面研磨された、算術平均粗さ Raが lOnm未満のニッケル板と、陽極として直径 5mmのタングステン棒と、参照電極 として直径 5mmの亜鉛棒を実施例 13の溶融塩浴中に浸漬させた。次いで、この溶 融塩浴の温度を 250°Cに保持した状態で、陰極であるニッケル板の電位を制御する 3電極法により、陰極と陽極との間の電位を 60mVとして 3時間の電解条件(表 6)で 電解を行なうことにより、陰極であるニッケル板の表面上にタングステンを含む析出物 を得た。 [0123] Then, in the above glove box, a mirror-polished nickel plate having an arithmetic average roughness Ra of less than lOnm as a cathode, a tungsten rod having a diameter of 5 mm as an anode, and a zinc rod having a diameter of 5 mm as a reference electrode Was immersed in the molten salt bath of Example 13. Next, while maintaining the temperature of this molten salt bath at 250 ° C, the potential of the cathode and the anode is controlled by the three-electrode method that controls the potential of the nickel plate, which is the cathode. By performing electrolysis in (Table 6), a precipitate containing tungsten was obtained on the surface of the nickel plate as the cathode.
[0124] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さ、密度およ び相対密度にっ 、て評価を行なった。その結果を表 6に示す。  [0124] Thereafter, evaluation was performed in the same manner as in Example 1 on the precipitation state, composition, surface roughness, density, and relative density of the precipitates. The results are shown in Table 6.
[0125] 表 6に示すように、実施例 13の溶融塩浴を用いて得られた析出物 (厚さ 0. 5 /z m) は、析出状態が膜状であって、タングステン量が多く高純度であり、表面粗さが小さく 、高密度、高相対密度かつ高緻密性の析出物であった。 [0126] (実施例 14) [0125] As shown in Table 6, the precipitates (thickness 0.5 / zm) obtained using the molten salt bath of Example 13 were in the form of a film with a large amount of tungsten and a high amount. The precipitates were pure, small in surface roughness, high density, high relative density and high density. [Example 14]
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 20となるょぅに、  Let dry for hours. And when ZnCl, NaCl, and KCl are in a molar ratio of 60:20:20,
2  2
Ar雰囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグロ ーブボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  These powders were weighed in a glove box under an Ar atmosphere, and then stored in an alumina crucible in the same glove box.
[0127] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル [0127] In addition, a mixture of ZnCl, NaCl, and KC1 contained in the above-described alumina crucible 100 mol
2  2
に対して、 KF力 モル、 Ta O (五酸化二タンタル)が 0. 54モルとなるように、上記の  For KF force mol and Ta O (ditantalum pentoxide) 0.55 mol
2 5  twenty five
グローブボックス内でこれらの粉末をそれぞれ秤量した後に、上記のアルミナ坩堝中 にこれらの粉末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を表 Each of these powders was weighed in a glove box, and then these powders were accommodated in the above-mentioned alumina crucible. Shows the composition (molar ratio) of raw materials stored in alumina crucible.
4に示す。 Shown in 4.
[0128] そして、上記のグローブボックス内で ZnCl、 NaCl、 KC1、 KFおよび Ta Oが収容  [0128] And ZnCl, NaCl, KC1, KF and Ta O are accommodated in the above glove box.
2 2 5 されたアルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させることによって、実 施例 14の溶融塩浴を 500g作製した。この溶融塩浴の組成 (原子%)を表 5に示す。  500 g of the molten salt bath of Example 14 was prepared by heating the alumina crucible that had been heated and melting the powder in the alumina crucible. Table 5 shows the composition (atomic%) of this molten salt bath.
[0129] そして、上記のグローブボックス内で、陰極として、鏡面研磨された、算術平均粗さ Raが 10nm未満のニッケル板と、陽極として直径 5mmのタングステン棒と、参照電極 として直径 5mmの亜鉛棒を実施例 14の溶融塩浴中に浸漬させた。次いで、この溶 融塩浴の温度を 250°Cに保持した状態で、陰極であるニッケル板の電位を制御する 3電極法により、陰極と陽極との間の電位を 60mVとして 3時間の電解条件(表 6)で 電解を行なうことにより、陰極であるニッケル板の表面上にタンタルを含む析出物を 得た。 [0129] Then, in the above glove box, a mirror-polished nickel plate with an arithmetic average roughness Ra of less than 10 nm as a cathode, a tungsten rod with a diameter of 5 mm as an anode, and a zinc rod with a diameter of 5 mm as a reference electrode Was immersed in the molten salt bath of Example 14. Next, while maintaining the temperature of this molten salt bath at 250 ° C, the potential of the cathode and the anode is controlled by the three-electrode method that controls the potential of the nickel plate, which is the cathode. By performing electrolysis in (Table 6), a precipitate containing tantalum was obtained on the surface of the nickel plate as the cathode.
[0130] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さおよび密度 について評価を行なった。また、析出物の相対密度を、析出することを意図している 金属であるタンタルの本来の密度を 16. 65 (gZcm3)とし、上記で算出した析出物の 密度とこのタンタルの本来の密度とから以下の式により析出物の相対密度(%)を算 出した。 [0130] Thereafter, the precipitation state, composition, surface roughness and density of the precipitates were evaluated in the same manner as in Example 1. In addition, the relative density of the precipitate is assumed to be 16.65 (gZcm 3 ), which is the original density of tantalum, which is the metal intended to be deposited, and the calculated density of the tantalum and the original density of this tantalum. From the above, the relative density (%) of the precipitate was calculated by the following formula.
その結果を表 6に示す。  The results are shown in Table 6.
析出物の相対密度(%) = 100 X (析出物の密度) Z (タンタルの本来の密度)  Relative density of precipitates (%) = 100 X (Precipitate density) Z (Original density of tantalum)
[0131] 表 6に示すように、実施例 14の溶融塩浴を用いて得られた析出物 (厚さ 0. 5 /z m) は、析出状態が膜状であって、タンタル量が多く高純度であり、表面粗さが小さぐ高 密度、高相対密度かつ高緻密性の析出物であった。 [0131] As shown in Table 6, precipitates (thickness 0.5 / zm) obtained using the molten salt bath of Example 14 The precipitate was in the form of a film, had a high tantalum content and high purity, and had a high density, a high relative density and a high density with a small surface roughness.
[0132] (実施例 15)  [Example 15]
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 20となるょぅに、  Let dry for hours. And when ZnCl, NaCl, and KCl are in a molar ratio of 60:20:20,
2  2
Ar雰囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグロ ーブボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  These powders were weighed in a glove box under an Ar atmosphere, and then stored in an alumina crucible in the same glove box.
[0133] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル [0133] Further, a mixture of ZnCl, NaCl, and KC1 contained in the above-described alumina crucible 100 mol
2  2
に対して 4モルとなるように KFの粉末を上記のグローブボックス内で秤量した。そして 、秤量後の KFの粉末を上記のアルミナ坩堝中に収容した。  KF powder was weighed in the above glove box so as to be 4 mol. Then, the weighed KF powder was placed in the above-mentioned alumina crucible.
[0134] 続!、て、上記のグローブボックス内で ZnCl、 NaCl、 KC1および KFが収容されたァ [0134] Continue! In the above glove box, ZnCl, NaCl, KC1 and KF were stored.
2  2
ルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させた。その後、上記のアルミナ 坩堝中に収容された ZnClと NaClと KC1との混合物 100モルに対して 0. 54モルと  The lumina crucible was heated to melt the powder in the alumina crucible. Thereafter, 0.54 moles per 100 moles of the mixture of ZnCl, NaCl, and KC1 contained in the above alumina crucible
2  2
なるように TiClを上記のグローブボックス内で秤量し、秤量後の TiClを上記のアル  TiCl is weighed in the above glove box, and the weighed TiCl is
4 4  4 4
ミナ坩堝中に添加することによって、実施例 15の溶融塩浴を 500g作製した。この溶 融塩浴を作製するために用いられた原料の組成 (モル比)を表 4に示し、溶融塩浴の 組成 (原子%)を表 5に示す。  500 g of the molten salt bath of Example 15 was prepared by adding it to the mina crucible. Table 4 shows the composition (molar ratio) of the raw materials used to make this molten salt bath, and Table 5 shows the composition (atomic%) of the molten salt bath.
[0135] そして、上記のグローブボックス内で、陰極として、鏡面研磨された、算術平均粗さ Raが lOnm未満のニッケル板と、陽極として直径 5mmのタングステン棒と、参照電極 として直径 5mmの亜鉛棒を実施例 15の溶融塩浴中に浸漬させた。次いで、この溶 融塩浴の温度を 250°Cに保持した状態で、陰極であるニッケル板の電位を制御する 3電極法により、陰極と陽極との間の電位を 60mVとして 6時間の電解条件(表 6)で 電解を行なうことにより、陰極であるニッケル板の表面上にチタンを含む析出物を得 た。 [0135] Then, in the above glove box, a mirror-polished nickel plate having an arithmetic average roughness Ra of less than lOnm as a cathode, a tungsten rod having a diameter of 5 mm as an anode, and a zinc rod having a diameter of 5 mm as a reference electrode Was immersed in the molten salt bath of Example 15. Next, while maintaining the temperature of the molten salt bath at 250 ° C, the potential between the cathode and the anode is set to 60 mV by the three-electrode method that controls the potential of the nickel plate as the cathode. By performing electrolysis in (Table 6), a precipitate containing titanium was obtained on the surface of the nickel plate as the cathode.
[0136] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さおよび密度 について評価を行なった。また、析出物の相対密度を、析出することを意図している 金属であるチタンの本来の密度を 4. 54 (g/cm3)とし、上記で算出した析出物の密 度とこのチタンの本来の密度とから以下の式により析出物の相対密度(%)を算出し た。 [0136] Thereafter, the precipitation state, composition, surface roughness and density of the precipitates were evaluated in the same manner as in Example 1. In addition, the relative density of the precipitate was set to 4.54 (g / cm 3 ) as the original density of titanium, which is a metal intended to be deposited, and the density of the precipitate calculated above and Calculate the relative density (%) of the precipitate from the original density using the following formula. It was.
その結果を表 6に示す。  The results are shown in Table 6.
析出物の相対密度(%) = 100 X (析出物の密度) Z (チタンの本来の密度)  Relative density of precipitates (%) = 100 X (precipitate density) Z (original density of titanium)
[0137] 表 6に示すように、実施例 15の溶融塩浴を用いて得られた析出物 (厚さ 0. 1 μ m) は、析出状態が膜状であって、チタン量が多く高純度であり、表面粗さが小さぐ高密 度、高相対密度かつ高緻密性の析出物であった。 [0137] As shown in Table 6, the precipitate (thickness 0.1 μm) obtained using the molten salt bath of Example 15 was in the form of a film with a large amount of titanium and a high amount of titanium. It was a high density, high relative density and high density precipitate with low purity and surface roughness.
[0138] (実施例 16) [Example 16]
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 20となるょぅに、  Let dry for hours. And when ZnCl, NaCl, and KCl are in a molar ratio of 60:20:20,
2  2
Ar雰囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグロ ーブボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  These powders were weighed in a glove box under an Ar atmosphere, and then stored in an alumina crucible in the same glove box.
[0139] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル [0139] Further, a mixture of ZnCl, NaCl, and KC1 contained in the above-mentioned alumina crucible 100 mol
2  2
に対して 4モルとなるように KFの粉末を上記のグローブボックス内で秤量した。そして 、秤量後の KFの粉末を上記のアルミナ坩堝中に収容した。  KF powder was weighed in the above glove box so as to be 4 mol. Then, the weighed KF powder was placed in the above-mentioned alumina crucible.
[0140] 続!、て、上記のグローブボックス内で ZnCl、 NaCl、 KC1および KFが収容されたァ [0140] Continue! In the above glove box, ZnCl, NaCl, KC1 and KF are stored.
2  2
ルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させた。その後、上記のアルミナ 坩堝中に収容された ZnClと NaClと KC1との混合物 100モルに対して 1. 1モルとな  The lumina crucible was heated to melt the powder in the alumina crucible. After that, it becomes 1.1 mol with respect to 100 mol of the mixture of ZnCl, NaCl, and KC1 contained in the above-mentioned alumina crucible.
2  2
るように TiClを上記のグローブボックス内で秤量し、秤量後の TiClを上記のアルミ  TiCl is weighed in the above glove box and the weighed TiCl is
4 4  4 4
ナ坩堝中に添加することによって、実施例 16の溶融塩浴を 500g作製した。この溶融 塩浴を作製するために用いられた原料の組成 (モル比)を表 4に示し、溶融塩浴の組 成 (原子%)を表 5に示す。  By adding it into the crucible, 500 g of the molten salt bath of Example 16 was produced. Table 4 shows the composition (molar ratio) of the raw materials used to make this molten salt bath, and Table 5 shows the composition (atomic%) of the molten salt bath.
[0141] そして、上記のグローブボックス内で、陰極として、鏡面研磨された、算術平均粗さ Raが lOnm未満のニッケル板と、陽極として直径 5mmのタングステン棒と、参照電極 として直径 5mmの亜鉛棒を実施例 16の溶融塩浴中に浸漬させた。次いで、この溶 融塩浴の温度を 250°Cに保持した状態で、陰極であるニッケル板の電位を制御する 3電極法により、陰極と陽極との間の電位を 60mVとして 3時間の電解条件(表 6)で 電解を行なうことにより、陰極であるニッケル板の表面上にチタンを含む析出物を得 [0142] その後、実施例 15と同様の方法で、析出物の析出状態、組成、表面粗さ、密度お よび相対密度について評価を行なった。その結果を表 6に示す。 [0141] Then, in the above glove box, a mirror-polished nickel plate having an arithmetic average roughness Ra of less than lOnm as a cathode, a tungsten rod having a diameter of 5 mm as an anode, and a zinc rod having a diameter of 5 mm as a reference electrode Was immersed in the molten salt bath of Example 16. Next, while maintaining the temperature of this molten salt bath at 250 ° C, the potential between the cathode and the anode is set to 60 mV by the three-electrode method that controls the potential of the nickel plate as the cathode. By performing the electrolysis in (Table 6), a precipitate containing titanium is obtained on the surface of the nickel plate as the cathode. [0142] Thereafter, the precipitation state, composition, surface roughness, density and relative density of the precipitates were evaluated in the same manner as in Example 15. The results are shown in Table 6.
[0143] 表 6に示すように、実施例 16の溶融塩浴を用いて得られた析出物 (厚さ 0. 1 μ m) は、析出状態が膜状であって、チタン量が多く高純度であり、表面粗さが小さぐ高密 度、高相対密度かつ高緻密性の析出物であった。  [0143] As shown in Table 6, the precipitate (thickness 0.1 μm) obtained using the molten salt bath of Example 16 was film-like, with a large amount of titanium and a high amount of titanium. It was a high density, high relative density and high density precipitate with low purity and surface roughness.
[0144] (実施例 17)  [Example 17]
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 20となるょぅに、  Let dry for hours. And when ZnCl, NaCl, and KCl are in a molar ratio of 60:20:20,
2  2
Ar雰囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグロ ーブボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  These powders were weighed in a glove box under an Ar atmosphere, and then stored in an alumina crucible in the same glove box.
[0145] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル [0145] In addition, a mixture of ZnCl, NaCl, and KC1 contained in the above-described alumina crucible 100 mol
2  2
に対して 4モルとなるように KFの粉末を上記のグローブボックス内で秤量した。そして 、秤量後の KFの粉末を上記のアルミナ坩堝中に収容した。  KF powder was weighed in the above glove box so as to be 4 mol. Then, the weighed KF powder was placed in the above-mentioned alumina crucible.
[0146] 続!、て、上記のグローブボックス内で ZnCl、 NaCl、 KC1および KFが収容されたァ [0146] Continue! In the above glove box, ZnCl, NaCl, KC1 and KF are stored.
2  2
ルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させた。その後、上記のアルミナ 坩堝中に収容された ZnClと NaClと KC1との混合物 100モルに対して 2. 5モルとな  The lumina crucible was heated to melt the powder in the alumina crucible. After that, it becomes 2.5 mol with respect to 100 mol of the mixture of ZnCl, NaCl, and KC1 contained in the above-mentioned alumina crucible.
2  2
るように TiClを上記のグローブボックス内で秤量し、秤量後の TiClを上記のアルミ  TiCl is weighed in the above glove box and the weighed TiCl is
4 4  4 4
ナ坩堝中に添加することによって、実施例 17の溶融塩浴を 500g作製した。この溶融 塩浴を作製するために用いられた原料の組成 (モル比)を表 4に示し、溶融塩浴の組 成 (原子%)を表 5に示す。  By adding it into the crucible, 500 g of the molten salt bath of Example 17 was produced. Table 4 shows the composition (molar ratio) of the raw materials used to make this molten salt bath, and Table 5 shows the composition (atomic%) of the molten salt bath.
[0147] そして、上記のグローブボックス内で、陰極として、鏡面研磨された、算術平均粗さ Raが lOnm未満のニッケル板と、陽極として直径 5mmのタングステン棒と、参照電極 として直径 5mmの亜鉛棒を実施例 17の溶融塩浴中に浸漬させた。次いで、この溶 融塩浴の温度を 250°Cに保持した状態で、陰極であるニッケル板の電位を制御する 3電極法により、陰極と陽極との間の電位を 60mVとして 8時間の電解条件(表 6)で 電解を行なうことにより、陰極であるニッケル板の表面上にチタンを含む析出物を得 た。 [0147] Then, in the above-mentioned glove box, as a cathode, a mirror-polished nickel plate with an arithmetic average roughness Ra of less than lOnm, a tungsten rod with a diameter of 5 mm as an anode, and a zinc rod with a diameter of 5 mm as a reference electrode Was immersed in the molten salt bath of Example 17. Next, while maintaining the temperature of this molten salt bath at 250 ° C, the potential of the nickel plate, which is the cathode, is controlled by the three-electrode method, with the potential between the cathode and the anode set to 60 mV, and the electrolysis conditions for 8 hours. By performing electrolysis in (Table 6), a precipitate containing titanium was obtained on the surface of the nickel plate as the cathode.
[0148] その後、実施例 15と同様の方法で、析出物の析出状態、組成、表面粗さ、密度お よび相対密度について評価を行なった。その結果を表 6に示す。 [0148] Thereafter, the precipitation state, composition, surface roughness, density and density of the precipitates were determined in the same manner as in Example 15. The relative density was evaluated. The results are shown in Table 6.
[0149] 表 6に示すように、実施例 17の溶融塩浴を用いて得られた析出物 (厚さ 0. 5 /z m) は、析出状態が膜状であって、チタン量が多く高純度であり、表面粗さが小さぐ高密 度、高相対密度かつ高緻密性の析出物であった。 [0149] As shown in Table 6, the precipitate (thickness 0.5 / zm) obtained using the molten salt bath of Example 17 was in the form of a film and had a large amount of titanium and a high content. It was a high density, high relative density and high density precipitate with low purity and surface roughness.
[0150] (実施例 18) [0150] (Example 18)
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 20となるょぅに、  Let dry for hours. And when ZnCl, NaCl, and KCl are in a molar ratio of 60:20:20,
2  2
Ar雰囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグロ ーブボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  These powders were weighed in a glove box under an Ar atmosphere, and then stored in an alumina crucible in the same glove box.
[0151] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル [0151] In addition, a mixture of ZnCl, NaCl, and KC1 contained in the above-described alumina crucible 100 mol
2  2
に対して、 KFが 4モル、 NbCl (五塩化ニオブ)が 0. 54モルとなるように、上記のグロ  In contrast, the above-mentioned gloss is adjusted so that KF is 4 mol and NbCl (niobium pentachloride) is 0.54 mol.
5  Five
ーブボックス内でこれらの粉末をそれぞれ秤量した後に、上記のアルミナ坩堝中にこ れらの粉末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を表 4〖こ 示す。  Each of these powders was weighed in a tube box, and then these powders were accommodated in the alumina crucible. Table 4 shows the composition (molar ratio) of the raw materials contained in the alumina crucible.
[0152] そして、上記のグローブボックス内で ZnCl、 NaCl、 KC1、 KFおよび NbClが収容  [0152] And ZnCl, NaCl, KC1, KF and NbCl are housed in the above glove box
2 5 されたアルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させることによって、実 施例 18の溶融塩浴を 500g作製した。この溶融塩浴の組成 (原子%)を表 5に示す。  The molten alumina crucible was heated to melt the powder in the alumina crucible, whereby 500 g of the molten salt bath of Example 18 was produced. Table 5 shows the composition (atomic%) of this molten salt bath.
[0153] そして、上記のグローブボックス内で、陰極として、鏡面研磨された、算術平均粗さ Raが lOnm未満のニッケル板と、陽極として直径 5mmのタングステン棒と、参照電極 として直径 5mmの亜鉛棒を実施例 18の溶融塩浴中に浸漬させた。次いで、この溶 融塩浴の温度を 250°Cに保持した状態で、陰極であるニッケル板の電位を制御する 3電極法により、陰極と陽極との間の電位を 60mVとして 3時間の電解条件(表 6)で 電解を行なうことにより、陰極であるニッケル板の表面上にニオブを含む析出物を得 た。 [0153] Then, in the above glove box, as a cathode, a mirror-polished nickel plate having an arithmetic average roughness Ra of less than lOnm, a tungsten rod having a diameter of 5 mm as an anode, and a zinc rod having a diameter of 5 mm as a reference electrode Was immersed in the molten salt bath of Example 18. Next, while maintaining the temperature of this molten salt bath at 250 ° C, the potential of the cathode and the anode is controlled by the three-electrode method that controls the potential of the nickel plate, which is the cathode. By performing electrolysis in (Table 6), a precipitate containing niobium was obtained on the surface of the nickel plate as the cathode.
[0154] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さおよび密度 について評価を行なった。また、析出物の相対密度を、析出することを意図している 金属であるニオブの本来の密度を 8. 57 (g/cm3)とし、上記で算出した析出物の密 度とこのニオブの本来の密度とから以下の式により析出物の相対密度(%)を算出し た。 [0154] Thereafter, the precipitation state, composition, surface roughness and density of the precipitates were evaluated in the same manner as in Example 1. In addition, the relative density of the precipitate is assumed to be 8.57 (g / cm 3 ) of the original density of niobium, which is the metal intended to be deposited, and the density of the precipitate calculated above and the density of this niobium Calculate the relative density (%) of the precipitate from the original density using the following formula. It was.
その結果を表 6に示す。  The results are shown in Table 6.
析出物の相対密度(%) = 100 X (析出物の密度) Z (ニオブの本来の密度)  Relative density of precipitates (%) = 100 X (precipitate density) Z (original density of niobium)
[0155] 表 6に示すように、実施例 18の溶融塩浴を用いて得られた析出物 (厚さ 0. 5 /z m) は、析出状態が膜状であって、ニオブ量が多く高純度であり、表面粗さが小さぐ高 密度、高相対密度かつ高緻密性の析出物であった。 [0155] As shown in Table 6, the precipitate (thickness 0.5 / zm) obtained using the molten salt bath of Example 18 was in the form of a film with a large amount of niobium and a high amount. It was a high density, high relative density and high density precipitate with a small surface roughness.
[0156] (実施例 19) [Example 19]
ZnCl、 NaCl、 KC1および KFのそれぞれの粉末を 200°Cの真空オーブン中で 12 Each powder of ZnCl, NaCl, KC1 and KF is placed in a vacuum oven at 200 ° C.
2 2
時間乾燥させた。そして、 ZnClとNaClとKClとがモル比で60 : 20 : 20となるょぅに、  Let dry for hours. And when ZnCl, NaCl, and KCl are in a molar ratio of 60:20:20,
2  2
Ar雰囲気下のグローブボックス内でこれらの粉末をそれぞれ秤量した後に、同じグロ ーブボックス内にあるアルミナ坩堝中にこれらの粉末を収容した。  These powders were weighed in a glove box under an Ar atmosphere, and then stored in an alumina crucible in the same glove box.
[0157] また、上記のアルミナ坩堝中に収容された ZnClと NaClと KC1との混合物 100モル [0157] Further, a mixture of ZnCl, NaCl, and KC1 contained in the above-mentioned alumina crucible 100 mol
2  2
に対して、 KFが 4モル、 VC1 (二塩化バナジウム)が 0. 54モルとなるように、上記の  In contrast, KF is 4 mol and VC1 (vanadium dichloride) is 0.54 mol.
2  2
グローブボックス内でこれらの粉末をそれぞれ秤量した後に、上記のアルミナ坩堝中 にこれらの粉末を収容した。アルミナ坩堝中に収容された原料の組成 (モル比)を表 Each of these powders was weighed in a glove box, and then these powders were accommodated in the above-mentioned alumina crucible. Shows the composition (molar ratio) of raw materials stored in alumina crucible.
4に示す。 Shown in 4.
[0158] そして、上記のグローブボックス内で ZnCl、 NaCl、 KC1、 KFおよび VC1が収容さ  [0158] And ZnCl, NaCl, KC1, KF and VC1 are housed in the above glove box.
2 2 れたアルミナ坩堝を加熱してアルミナ坩堝中の粉末を溶融させることによって、実施 例 19の溶融塩浴を 500g作製した。この溶融塩浴の組成 (原子%)を表 5に示す。  500 g of the molten salt bath of Example 19 was prepared by heating the alumina crucible thus melted to melt the powder in the alumina crucible. Table 5 shows the composition (atomic%) of this molten salt bath.
[0159] そして、上記のグローブボックス内で、陰極として、鏡面研磨された、算術平均粗さ Raが lOnm未満のニッケル板と、陽極として直径 5mmのタングステン棒と、参照電極 として直径 5mmの亜鉛棒を実施例 19の溶融塩浴中に浸漬させた。次いで、この溶 融塩浴の温度を 250°Cに保持した状態で、陰極であるニッケル板の電位を制御する 3電極法により、陰極と陽極との間の電位を 60mVとして 3時間の電解条件(表 6)で 電解を行なうことにより、陰極であるニッケル板の表面上にバナジウムを含む析出物 を得た。 [0159] Then, in the above glove box, a mirror-polished nickel plate having an arithmetic average roughness Ra of less than lOnm as a cathode, a tungsten rod having a diameter of 5 mm as an anode, and a zinc rod having a diameter of 5 mm as a reference electrode Was immersed in the molten salt bath of Example 19. Next, while maintaining the temperature of this molten salt bath at 250 ° C, the potential of the cathode and the anode is controlled by the three-electrode method that controls the potential of the nickel plate, which is the cathode. By performing electrolysis in (Table 6), a precipitate containing vanadium was obtained on the surface of the nickel plate as the cathode.
[0160] その後、実施例 1と同様の方法で、析出物の析出状態、組成、表面粗さおよび密度 について評価を行なった。また、析出物の相対密度を、析出することを意図している 金属であるバナジウムの本来の密度を 6. l l (g/cm3)とし、上記で算出した析出物 の密度とこのバナジウムの本来の密度とから以下の式により析出物の相対密度(%) 料組成(原比)のルモ [0160] Thereafter, the precipitation state, composition, surface roughness and density of the precipitates were evaluated in the same manner as in Example 1. Also intended to precipitate the relative density of precipitates The original density of the vanadium metal is 6. ll (g / cm 3 ), and the relative density (%) of the precipitate is calculated from the calculated density of the precipitate and the original density of the vanadium by the following formula. Lumo of composition (ratio)
を算出した。その結果を表 6に示す。  Was calculated. The results are shown in Table 6.
実施例 11  Example 11
[0161] 表 6に示す 融塩浴を用いて得られた析出物 (厚さ 0. 5 /z m) [0161] Precipitates obtained using the molten salt bath shown in Table 6 (thickness 0.5 / z m)
実施例 12ように、実施例 19の溶  As in Example 12, the solution of Example 19
は、析出状態が実施例 13膜状であって、バナジウム量が多く高純度であり、表面粗さが小さく、  The precipitation state is the film form of Example 13, the amount of vanadium is high purity, the surface roughness is small,
実施例 14  Example 14
高密度、高相対密度施実例 15かつ高緻密性の析出物であった。  It was a high density, high relative density practical example 15 and a highly dense precipitate.
実施例 16  Example 16
[0162] [表 4] [0162] [Table 4]
実施例 17  Example 17
実施例 18  Example 18
実施例91  Example 91
o o o o o o o  o o o o o o o
> ο  > ο
 Ma
o o o o o o o ο  o o o o o o o ο
o  o
 Size
o in  o in
o o o o ο  o o o o ο
o csi o  o csi o
CO o o o o o o o ο  CO o o o o o o o ο
1— o  1—o
O o o in o o o o o ο O o o in o o o o o ο
o o LO ο  o o LO ο
o o o o  o o o o
o o o o o o o o ο  o o o o o o o o ο
o  o
o マ マ ォ ォ CO ォ o o o o o o o o ο  o Mamao CO o o o o o o o o o ο
CSJ CSJ CSJ o o o O o o o o  CSJ CSJ CSJ o o o O o o o o
CO CM C CM o O O o o o o o  CO CM C CM o O O o o o o o o
CO CO O CO CO sffi 溶融塩浴の組成 (原子CO CO O CO CO sffi molten salt bath composition (atomic
0164 Zn Na K CI O F W Mo Ta Ti Nb V 0164 Zn Na K CI O F W Mo Ta Ti Nb V
実施例 11 22.21 7.40 8.88 59.82 0 1.48 0 0.20 0 0 0 0 実施例 12 22.12 7.37 8.85 59.98 0 1.47 0 0.20 0 0 0 0 実施例 13 22.21 7.40 8.88 59.22 0.60 1.48 0.20 0 0 0 0 0 実施例 14 22.08 7.36 8.83 58.87 0.99 1.47 0 0 0.40 0 0 0 実施例 15 22.16 7.39 8.87 59.90 0 1.48 0 0 0 0.20 0 0 実施例 16 21.95 7.32 8.78 60.10 0 1.46 0 0 0 0.40 0 0 実施例 17 20.80 6.93 9.71 58.93 0 2.77 0 0 0 0.87 0 0 実施例 18 22.12 7.37 8.85 59.98 0 1.47 0 0 0 0 0.20 0 実施例 19 22.25 7.42 8.90 59.74 0 1.48 0 0 0 0 0 0.20  Example 11 22.21 7.40 8.88 59.82 0 1.48 0 0.20 0 0 0 0 Example 12 22.12 7.37 8.85 59.98 0 1.47 0 0.20 0 0 0 0 Example 13 22.21 7.40 8.88 59.22 0.60 1.48 0.20 0 0 0 0 0 Example 14 22.08 7.36 8.83 58.87 0.99 1.47 0 0 0.40 0 0 0 Example 15 22.16 7.39 8.87 59.90 0 1.48 0 0 0 0.20 0 0 Example 16 21.95 7.32 8.78 60.10 0 1.46 0 0 0 0.40 0 0 Example 17 20.80 6.93 9.71 58.93 0 2.77 0 0 0 0.87 0 0 Example 18 22.12 7.37 8.85 59.98 0 1.47 0 0 0 0 0.20 0 Example 19 22.25 7.42 8.90 59.74 0 1.48 0 0 0 0 0 0.20
^s 電解条件 析出物 ^ s Electrolytic conditions Precipitate
組成 (原子 ) 表面 相対 電位 時間 析出 密度  Composition (Atom) Surface Relative Potential Time Precipitation Density
その 粗さ 密度 Its roughness density
(°C) (mV) (時間) 状態 W Mo Ta Ti Nb V Ζπ O (g/cm3) (° C) (mV) (Time) State W Mo Ta Ti Nb V Ζπ O (g / cm 3 )
他 (%)
Figure imgf000034_0001
実施例 11 250 150 3 膜状 0 99 0 0 0 0 0 0.5 0.5 2.6 9.8 95.9 実施例 12 250 150 3 膜状 0 98 0 0 0 0 0 1.7 0.3 1.5 10.1 98.8 実施例 13 250 60 3 膜状 99 0 0 0 0 0 0 0.7 0.3 0.1 18.8 97.4 実施例 14 250 60 3 膜状 0 0 99.1 0 0 0 0 0.1 0.8 1.9 15.1 90.7 実施例 15 250 60 6 膜状 0 0 0 99 0 0 0 0.2 0.8 0.8 4.1 90- 3 実施例 16 250 60 3 膜状 0 0 0 99.1 0 0 0 0.2 0.7 1.4 4.2 92.5 実施例 1フ 250 60 8 膜状 0 0 0 98.9 0 0 0 0.3 0.8 2.3 4.1 90.3 実施例 18 250 60 3 膜状 0 0 0 0 99.1 0 0 0.1 0.8 3.2 8.1 94.5 実施例 19 250 60 3 膜状 0 0 0 0 0 98.2 0 0.5 1.3 2.6 5.8 94.9
other (%)
Figure imgf000034_0001
Example 11 250 150 3 Film-like 0 99 0 0 0 0 0 0.5 0.5 2.6 9.8 95.9 Example 12 250 150 3 Film-like 0 98 0 0 0 0 0 1.7 0.3 1.5 10.1 98.8 Example 13 250 60 3 Film-like 99 0 0 0 0 0 0 0.7 0.3 0.1 18.8 97.4 Example 14 250 60 3 Film type 0 0 99.1 0 0 0 0 0.1 0.8 1.9 15.1 90.7 Example 15 250 60 6 Film type 0 0 0 99 0 0 0 0.2 0.8 0.8 4.1 90 -3 Example 16 250 60 3 Film 0 0 0 99.1 0 0 0 0.2 0.7 1.4 4.2 92.5 Example 1 250 60 8 Film 0 0 0 98.9 0 0 0 0.3 0.8 2.3 4.1 90.3 Example 18 250 60 3 Film 0 0 0 0 99.1 0 0 0.1 0.8 3.2 8.1 94.5 Example 19 250 60 3 Film 0 0 0 0 0 98.2 0 0.5 1.3 2.6 5.8 94.9
直径 3インチの円板状のシリコン基板の表面上に 0. 3 μ mの厚さでチタンのスパッ タリングを行ないチタン層を形成した。そして、このチタン層上に PMMAカゝらなる幅 1 cm X長さ lcm X厚さ 30 /z mのフォトレジストを塗布した。次いで、このフォトレジスト の一部に SR光 (シンクロトロン放射光)を照射し、 SR光が照射された部分のフオトレ ジストを選択的に除去することによって、チタン層上にライン Zスペースが 50 mZ5 0 μ mの縞状のレジストパターンを形成した。 A titanium layer was formed on the surface of a disk-shaped silicon substrate having a diameter of 3 inches by sputtering titanium with a thickness of 0.3 μm. Then, a photoresist having a width of 1 cm X, a length of 1 cm, and a thickness of 30 / zm made of PMMA was applied onto the titanium layer. Next, a portion of this photoresist is irradiated with SR light (synchrotron radiation), and the photoresist of the portion irradiated with SR light is selectively removed, so that the line Z space is 50 mZ5 on the titanium layer. A 0 μm striped resist pattern was formed.
[0166] そして、 Ar雰囲気下のグローブボックス内で、上記のレジストパターン形成後のシリ コン基板を陰極として、タングステン棒を陽極として、これらの電極を実施例 6の溶融 塩浴と同じ組成の溶融塩浴 lOOOg中に浸漬させた。次いで、溶融塩浴を 250°Cに 保持した状態でこれらの電極間にシリコン基板上のチタン層 lcm2当たり 3mAの電流 (電流密度 3mAZcm2)を 60時間流して定電流電解を行なうことによって、チタン層 上にタングステンを含む析出物を得た。 [0166] Then, in the glove box under an Ar atmosphere, the silicon substrate after the resist pattern was formed as a cathode, the tungsten rod as an anode, and these electrodes were melted with the same composition as the molten salt bath of Example 6. It was immersed in a salt bath lOOOOg. By then the titanium layer lcm 2 per 3mA current on the silicon substrate (current density 3mAZcm 2) by passing 60 hours perform constant current electrolysis between the electrodes while holding the molten salt bath 250 ° C, A precipitate containing tungsten was obtained on the titanium layer.
[0167] 定電流電解の終了後、グローブボックス力もシリコン基板を取り出した。そして、シリ コン基板を水洗することにより、シリコン基板に付着した塩を除去した。続いて、シリコ ン基板を乾燥させた後、 CF (四フッ化炭素)と O (酸素)との混合ガスを用いたプラズ  [0167] After the constant current electrolysis, the silicon substrate was taken out with a glove box force. The silicon substrate was washed with water to remove salt adhering to the silicon substrate. Subsequently, after drying the silicon substrate, a plasma using a mixed gas of CF (carbon tetrafluoride) and O (oxygen) is used.
4 2  4 2
マアツシングを行なうことによって、チタン層上のフォトレジストを除去した。最後に、チ タン層上の析出物を機械的に剥離することによって、タングステンの純度が高ぐ高 密度かつ高緻密性で、表面が平滑な電铸物を得ることができた。  The photoresist on the titanium layer was removed by mating. Finally, the precipitate on the titanium layer was mechanically peeled off to obtain a high-density and high-density electrode having a high tungsten purity and a smooth surface.
[0168] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。 [0168] The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
産業上の利用可能性  Industrial applicability
[0169] 本発明の溶融塩浴は、塩素と臭素とヨウ素とからなる群力も選択された少なくとも 1 種と、亜鉛と、少なくとも 2種のアルカリ金属と、フッ素と、を含有しているので、本発明 の溶融塩浴を用いた場合には高純度、高密度および高緻密性で表面が平滑な析出 物を得ることができる。 [0169] The molten salt bath of the present invention contains at least one selected from the group force consisting of chlorine, bromine and iodine, zinc, at least two alkali metals, and fluorine. When the molten salt bath of the present invention is used, a precipitate having a high purity, high density and high density and a smooth surface can be obtained.

Claims

請求の範囲  The scope of the claims
[I] 塩素と臭素とヨウ素とからなる群力 選択された少なくとも 1種と、亜鉛と、少なくとも 2種のアルカリ金属と、フッ素と、を含有する、溶融塩浴。  [I] A group salt consisting of chlorine, bromine and iodine A molten salt bath containing at least one selected, zinc, at least two alkali metals, and fluorine.
[2] 酸素を含有することを特徴とする、請求項 1に記載の溶融塩浴。  [2] The molten salt bath according to claim 1, which contains oxygen.
[3] タングステン、クロム、モリブデン、タンタル、チタン、ジルコニウム、バナジウム、ハフ [3] tungsten, chromium, molybdenum, tantalum, titanium, zirconium, vanadium, hough
-ゥムおよびニオブカゝらなる群カゝら選択された少なくとも 1種を含有することを特徴と する、請求項 1に記載の溶融塩浴。 The molten salt bath according to claim 1, characterized in that it contains at least one selected from the group consisting of -um and niobium.
[4] 前記アルカリ金属としてナトリウムとカリウムとセシウムとからなる群力も選択された少 なくとも 2種と、塩素および臭素の少なくとも 1種と、亜鉛と、フッ素と、力らなることを特 徴とする、請求項 1に記載の溶融塩浴。 [4] It is characterized in that at least two kinds of group power consisting of sodium, potassium and cesium are selected as the alkali metal, at least one of chlorine and bromine, zinc and fluorine are used. The molten salt bath according to claim 1.
[5] 前記亜鉛の含有量が前記溶融塩浴全体の 14原子%以上 30原子%以下であるこ とを特徴とする、請求項 1に記載の溶融塩浴。 [5] The molten salt bath according to claim 1, wherein the zinc content is 14 atomic% or more and 30 atomic% or less of the entire molten salt bath.
[6] 前記亜鉛の含有量が前記溶融塩浴全体の 17原子%以上 25原子%以下であるこ とを特徴とする、請求項 1に記載の溶融塩浴。 6. The molten salt bath according to claim 1, wherein the zinc content is 17 atomic% or more and 25 atomic% or less of the entire molten salt bath.
[7] 前記フッ素の含有量が前記溶融塩浴全体の 0. 1原子%以上 20原子%以下である ことを特徴とする、請求項 1に記載の溶融塩浴。 7. The molten salt bath according to claim 1, wherein the fluorine content is 0.1 atomic% or more and 20 atomic% or less of the entire molten salt bath.
[8] 請求項 1に記載の溶融塩浴を用いて得られた、析出物。 [8] A precipitate obtained using the molten salt bath according to claim 1.
[9] 前記溶融塩浴が酸素を 0. 01原子%以上含有する状態で析出したことを特徴とす る、請求項 8に記載の析出物。  [9] The precipitate according to claim 8, wherein the molten salt bath is precipitated in a state containing 0.01 atomic% or more of oxygen.
[10] 前記析出物の表面の算術平均粗さ Ra FIS B0601— 1994)が 以下である ことを特徴とする、請求項 8に記載の析出物。 [10] The precipitate according to claim 8, wherein the arithmetic average roughness Ra FIS B0601-1994) of the surface of the precipitate is as follows.
[II] 前記析出物の相対密度が 85%以上であることを特徴とする、請求項 8に記載の析 出物。  [II] The precipitate according to claim 8, wherein the relative density of the precipitate is 85% or more.
[12] 導電性基板上にレジストパターンを形成して前記導電性基板の一部を露出させる 工程と、前記レジストパターンが形成された導電性基板を請求項 1に記載の溶融塩 浴に浸漬させる工程と、前記導電性基板の露出している部分に前記溶融塩浴中から 金属を析出させる工程と、を含む、金属製品の製造方法。  [12] The step of forming a resist pattern on the conductive substrate to expose a part of the conductive substrate; and the conductive substrate on which the resist pattern is formed are immersed in the molten salt bath according to claim 1. A method for producing a metal product, comprising: a step; and a step of depositing a metal from the molten salt bath on an exposed portion of the conductive substrate.
[13] 前記溶融塩浴の温度が 250°C以下であることを特徴とする、請求項 12に記載の金 属製品の製造方法。 [13] The gold according to claim 12, wherein the temperature of the molten salt bath is 250 ° C or lower. A method of manufacturing a genus product.
請求項 13に記載の金属製品の製造方法を用いて製造された、金属製  A metal product manufactured using the method for manufacturing a metal product according to claim 13.
PCT/JP2005/017510 2004-10-01 2005-09-22 Fused-salt bath, precipitate obtained by using the fused-salt bath, method for producing metal product and metal product WO2006038476A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/664,095 US20080105553A1 (en) 2004-10-01 2005-09-22 Molten Salt Bath, Deposit Obtained Using The Molten Salt Bath, Method Of Manufacturing Metal Product, And Metal Product
DE112005002435.0T DE112005002435B4 (en) 2004-10-01 2005-09-22 Molten salt bath, deposit obtained using the molten salt bath, production process for a metal product and metal product
JP2006539225A JP4785141B2 (en) 2004-10-01 2005-09-22 Molten salt bath, precipitate obtained using the molten salt bath, method for producing metal product, and metal product
CN2005800335362A CN101035930B (en) 2004-10-01 2005-09-22 Fused-salt bath, precipitate obtained by using the fused-salt bath, method for producing metal product and metal product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004290519 2004-10-01
JP2004-290519 2004-10-01

Publications (1)

Publication Number Publication Date
WO2006038476A1 true WO2006038476A1 (en) 2006-04-13

Family

ID=36142554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017510 WO2006038476A1 (en) 2004-10-01 2005-09-22 Fused-salt bath, precipitate obtained by using the fused-salt bath, method for producing metal product and metal product

Country Status (7)

Country Link
US (1) US20080105553A1 (en)
JP (1) JP4785141B2 (en)
KR (1) KR100900117B1 (en)
CN (1) CN101035930B (en)
DE (1) DE112005002435B4 (en)
TW (1) TWI364462B (en)
WO (1) WO2006038476A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235462A (en) * 2008-03-26 2009-10-15 Sumitomo Electric Ind Ltd Molten salt bath, method for producing molten salt bath, and tungsten deposit
JP2010201390A (en) * 2009-03-05 2010-09-16 Sumitomo Electric Ind Ltd Photocatalytic element
US20100243456A1 (en) * 2009-03-27 2010-09-30 Sumitomo Electric Industries, Ltd. Molten salt bath, method for preparing the same, and tungsten film
WO2011102059A1 (en) * 2010-02-19 2011-08-25 住友電気工業株式会社 Metal laminate structure and production method for same
JP2015193899A (en) * 2013-11-19 2015-11-05 住友電気工業株式会社 Electrolyte for electrodeposition and method of producing metal film
US9199433B2 (en) 2009-06-30 2015-12-01 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the metal laminated structure
WO2019171744A1 (en) * 2018-03-08 2019-09-12 住友電気工業株式会社 Method for manufacturing titanium-plated member, and titanium-plated member
JPWO2018216319A1 (en) * 2017-05-22 2020-03-19 住友電気工業株式会社 Manufacturing method of titanium plated member
WO2021176769A1 (en) * 2020-03-04 2021-09-10 住友電気工業株式会社 Electrolyte for titanium plating and method for producing titanium plated member using electrolyte for titanium plating

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013116510A1 (en) * 2012-01-31 2013-08-08 Halotechnics, Inc. Thermal energy storage with molten salt
US10907238B2 (en) 2014-09-09 2021-02-02 Metoxs Pte. Ltd System apparatus and process for leaching metal and storing thermal energy during metal extraction
CN105714332B (en) * 2016-04-15 2019-03-22 华北理工大学 A kind of method of fused salt electro-deposition vanadium
JP6947212B2 (en) * 2017-05-22 2021-10-13 住友電気工業株式会社 Method for manufacturing molten salt titanium plating solution composition and titanium plating member
US11352508B2 (en) * 2018-01-19 2022-06-07 Dynalene Inc. Molten salt inhibitor and method for corrosion protection of a steel component
KR102306152B1 (en) * 2021-03-19 2021-09-28 한국지질자원연구원 Method for analyzing solubility of metal oxide using oxygen sensor, apparatus for analyzing solubility of metal oxide using oxygen sensor, metal refining apparatus using oxygen sensor, and metal refining method using oxygen sensor
CN116855965B (en) * 2023-09-04 2023-11-14 浙江百能科技有限公司 PTA alkali recovery furnace molten salt separation and purification device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279486A (en) * 2000-03-30 2001-10-10 Japan Science & Technology Corp Method for plating tantalum
JP2004084059A (en) * 2002-07-04 2004-03-18 Sumitomo Electric Ind Ltd Die for plating with fine pattern, fine metal structure, die for fine working, method for producing die for plating with fine pattern, and method for producing fine metal structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2786809A (en) * 1953-09-30 1957-03-26 Horizons Titanium Corp Electrolytic cladding
NL302728A (en) * 1963-02-18
CA2012009C (en) * 1989-03-16 1999-01-19 Tadashi Ogasawara Process for the electrolytic production of magnesium
DK169354B1 (en) * 1992-07-08 1994-10-10 Danfoss As Melting bath and method for electrolytic surface coating with refractory metals from fluoride-containing salt melts
US6187168B1 (en) * 1998-10-06 2001-02-13 Aluminum Company Of America Electrolysis in a cell having a solid oxide ion conductor
DK174876B1 (en) * 2001-02-26 2004-01-12 Danfoss As Implant and implant surface modification process
KR101204588B1 (en) * 2004-11-24 2012-11-27 스미토모덴키고교가부시키가이샤 Molten salt bath, deposit, and method of producing metal deposit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279486A (en) * 2000-03-30 2001-10-10 Japan Science & Technology Corp Method for plating tantalum
JP2004084059A (en) * 2002-07-04 2004-03-18 Sumitomo Electric Ind Ltd Die for plating with fine pattern, fine metal structure, die for fine working, method for producing die for plating with fine pattern, and method for producing fine metal structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAMELOT P ET AL: "Using square-wave voltammetry to monitor molten alkaline fluoride baths for electrodeposition of niobium.", ELECTROCHIMICA ACTA., vol. 43, no. 5-6, 1997, pages 607 - 616, XP004487074 *
TAKENISHI H AND KATAGIRI A.: "Effect of Oxide Ion on the Electrodeposition of Tungsten in the ZnCl~ 2-NaCl (60-40 mol%) Melt.", ELECTROCHEMISTRY., vol. 67, no. 6, 1999, pages 669 - 676, XP002993884 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235462A (en) * 2008-03-26 2009-10-15 Sumitomo Electric Ind Ltd Molten salt bath, method for producing molten salt bath, and tungsten deposit
JP2010201390A (en) * 2009-03-05 2010-09-16 Sumitomo Electric Ind Ltd Photocatalytic element
US20100243456A1 (en) * 2009-03-27 2010-09-30 Sumitomo Electric Industries, Ltd. Molten salt bath, method for preparing the same, and tungsten film
JP2010229518A (en) * 2009-03-27 2010-10-14 Sumitomo Electric Ind Ltd Molten salt bath, method of manufacturing molten salt bath and tungsten film
US9199433B2 (en) 2009-06-30 2015-12-01 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the metal laminated structure
US8993121B2 (en) 2010-02-19 2015-03-31 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the same
JP2011171564A (en) * 2010-02-19 2011-09-01 Sumitomo Electric Ind Ltd Metal laminate structure and method of manufacturing metal laminate structure
WO2011102059A1 (en) * 2010-02-19 2011-08-25 住友電気工業株式会社 Metal laminate structure and production method for same
JP2015193899A (en) * 2013-11-19 2015-11-05 住友電気工業株式会社 Electrolyte for electrodeposition and method of producing metal film
JPWO2018216319A1 (en) * 2017-05-22 2020-03-19 住友電気工業株式会社 Manufacturing method of titanium plated member
WO2019171744A1 (en) * 2018-03-08 2019-09-12 住友電気工業株式会社 Method for manufacturing titanium-plated member, and titanium-plated member
JPWO2019171744A1 (en) * 2018-03-08 2021-03-11 住友電気工業株式会社 Titanium-plated member manufacturing method and titanium-plated member
JP7086172B2 (en) 2018-03-08 2022-06-17 住友電気工業株式会社 Titanium-plated member manufacturing method and titanium-plated member
WO2021176769A1 (en) * 2020-03-04 2021-09-10 住友電気工業株式会社 Electrolyte for titanium plating and method for producing titanium plated member using electrolyte for titanium plating

Also Published As

Publication number Publication date
CN101035930A (en) 2007-09-12
KR100900117B1 (en) 2009-06-01
US20080105553A1 (en) 2008-05-08
JPWO2006038476A1 (en) 2008-05-15
JP4785141B2 (en) 2011-10-05
TWI364462B (en) 2012-05-21
KR20070058649A (en) 2007-06-08
TW200617187A (en) 2006-06-01
DE112005002435B4 (en) 2014-01-02
DE112005002435T5 (en) 2007-08-30
CN101035930B (en) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2006038476A1 (en) Fused-salt bath, precipitate obtained by using the fused-salt bath, method for producing metal product and metal product
WO2018216321A1 (en) Metal porous body and method for producing metal porous body
WO2018216322A1 (en) Composite metal porous body and method for producing composite metal porous body
JP4636563B2 (en) Molten salt bath and method for producing metal deposit
Norikawa et al. Electrodeposition of titanium in a water-soluble KF–KCl molten salt
JP4883534B2 (en) Molten salt bath, method for producing molten salt bath, and tungsten precipitate
JP5568883B2 (en) Molten salt bath and method for producing molten salt bath
JP6802255B2 (en) Conductive material and its manufacturing method
WO2018216319A1 (en) Method for producing titanium-plated member
JP3901133B2 (en) Molten salt bath for electroforming and method for producing metal product using the same
US7776200B2 (en) Structure and method of manufacturing the same
CN110582594A (en) Molten salt titanium plating solution composition and method for producing titanium-plated member
Grinevitch et al. Electrode and chemical reactions during electrodeposition of tantalum products in CsCl melt
CN110923752B (en) Transition metal powder with high specific surface area and preparation method thereof
Gunnell et al. Mo deposition and dissolution in des with the use of fluoride salts
JP7207411B2 (en) Method for evaluating electrolyte for titanium plating and method for manufacturing titanium-plated member using electrolyte for titanium plating
Escobar et al. One and two-step electrodeposition of composite films of calcium-deficient hydroxyapatite matrix with nanoscale Ag-and Zn-based particles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539225

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11664095

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580033536.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050024350

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077009342

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112005002435

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11664095

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607