NL9000540A - Gekoelde bladen voor een gasturbinemotor. - Google Patents

Gekoelde bladen voor een gasturbinemotor. Download PDF

Info

Publication number
NL9000540A
NL9000540A NL9000540A NL9000540A NL9000540A NL 9000540 A NL9000540 A NL 9000540A NL 9000540 A NL9000540 A NL 9000540A NL 9000540 A NL9000540 A NL 9000540A NL 9000540 A NL9000540 A NL 9000540A
Authority
NL
Netherlands
Prior art keywords
cooling air
supply
cooling
holes
film
Prior art date
Application number
NL9000540A
Other languages
English (en)
Other versions
NL194734B (nl
NL194734C (nl
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US07/236,093 priority Critical patent/US5700131A/en
Priority to GB9000458A priority patent/GB2314125B/en
Priority to AU48812/90A priority patent/AU684037B1/en
Priority to CA002007631A priority patent/CA2007631C/en
Priority to SE9000112A priority patent/SE470599B/sv
Priority to DE4003804A priority patent/DE4003804C2/de
Priority to NO900804A priority patent/NO306740B1/no
Priority to TR20290A priority patent/TR23588A/xx
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to NL9000540A priority patent/NL194734C/nl
Priority to JP02800005A priority patent/JP3112933B2/ja
Publication of NL9000540A publication Critical patent/NL9000540A/nl
Publication of NL194734B publication Critical patent/NL194734B/nl
Application granted granted Critical
Publication of NL194734C publication Critical patent/NL194734C/nl

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)

Description

Gekoelde bladen voor een gasturbinemotor.
Kruisverwi j zing.
Het onderwerp van deze aanvrage is verwant aan het onderwerp van de gemeenschappelijk in eigendom hebbende Amerikaanse octrooiaanvragen (referentienummers van de agent F-6043 en F-6057) die op dezelfde datum zijn ingediend met de respectievelijke titels "Gekoelde bladen voor een gasturbinemotor" en "Spelingscontröle voor de turbine van een gasturbinemotor" .
Strekking van de techniek.
De onderhavige uitvinding heeft betrekking op gasturbinemotoren en in het bijzonder op inwendig gekoelde rotorbladen.
Stand der techniek.
Zoals bekend, getroost de vliegtuigmotorindustrie zich een opmerkelijke inspanning om de prestatie van de gasturbinemotor te verbeteren onder gelijktijdige vermindering van zijn gewicht. Klaarblijkelijk is het uiteindelijke doel de optimaal beschikbare verhouding tussen de stuwkracht en het gewicht te bereiken. Natuurlijk is een van de belangrijkste gebieden waar men zich op concentreert het "hete deel" van de motor omdat bekend is dat de verhouding tussen de stuwkracht en het gewicht van de motor belangrijk wordt verbeterd door de temperatuur van de turbinegassen te verhogen. Echter, de temperatuur van de turbi-negassen wordt beperkt door de temperatuurgrenzen van de metalen componenten van de motor. Tot nu toe zijn belangrijke inspanningen gericht op het verkrijgen van hogere bedrijfstemperaturen van de turbine door belangrijke technologische vorderingen met betrekking tot het inwendige koelen van de turbinebladen toe te passen. Voorbeelden van enige van de vele prestaties op dit gebied worden geïllustreerd door de Amerikaanse octrooischriften 3*533*711« verleend aan D.M. Kirchon op 13 oktober 1966, 4.073*599. verleend aan Allen e.a. op 14 februari 1978, en 4.180.373, verleend aan Moore e.a. op 25 december 1979, welke laatste wordt overgedragen aan dezelfde rechtverkrijgende als van deze octrooiaanvrage.
De beschrijving in het Amerikaanse octrooischrift 812.108, dat ingediend is op 23 december 1985 door L.R. Anderson en T.A. Auxier en overgedragen is aan dezelfde rechtverkrijgende als van deze octrooiaanvrage, verdient de aandacht. In deze octrooiaanvrage is het blad gevormd met een inwendige radiale doorlaat die de filmkoelgaten voedt.
De inwendige wand die de radiale doorlaat bepaalt heeft een aantal op radiale afstand van elkaar geplaatste gaten die in verbinding staan met de koelende lucht in het inwendige van het blad. De radiale doorlaat is bij de bodem gesloten zodat de koelende lucht eerder statisch dan dynamisch is in de doorlaat. Dat betekent, dat er geen stroming in de doorlaat is die gaat van de wortel naar de tip van het blad, maar de stroom gaat eerder door het gat in de inwendige wand, door de zijdelingse ruimte die wordt verschaft door de radiale doorlaat en vervolgens naarbuiten door het aangrenzende filmkoelgat.
In het blad volgens de onderhavige uitvinding zijn de radiale doorlaten bij de wortel geopend naar de aanvoerdruk zodat er een constante stroming in deze doorlaat (doorlaten) is van de wortel naar de tip van het blad. Een deel van de koelende lucht wordt door de filmkoelgaten afgevoerd terwijl een deel door de opening(en) wordt af gevoerd die zich aan de tip bevinden. Dit is een dynamische stro-mingsdoorlaat. Als de koelende lucht in radiale richting voortgaat naar de tip wordt een deel door de filmkoelgaten afgevoerd en aangevuld door de lucht die wordt toegelaten door de koelluchtbevoorradingsgaten in de inwendige wand die de doorlaat begrenst. De gewenste terugstroommarge en de radiale stroming kan bij voorbaat worden verzekerd door het gat (de gaten) aan de tip van het blad de juiste afmeting te geven en door gebruik te maken van stromingshindemissen in de stroming zoals stoot-strippen. Bovendien wordt, om koeling te verkrijgen bij verlaagde aanvoerdrukniveaus, lucht die in de radiale doorlaat stroomt, gebruikt om het achterste oppervlak te raken van het aërodynamisch vlak van het blad voor koelingsdoeleinden, en de uitstroom bij de tip van de doorlaat wordt gebruikt om het tipdeel van het blad te koelen.
Het blad volgens de uitvinding verkrijgt intrinsiek een vuilaf-scheidingskenmerk omdat de lucht over 90" draait en de lucht in de doorlaten wordt gecentrifugeerd door de roterende beweging van het blad.
Samenvatting van de uitvinding.
Een doel van deze uitvinding is het verschaffen van een verbeterd turbineblad voor een gasturbinemotor.
Een kenmerk van deze uitvinding is het verschaffen van radiale doorlaten die grenzen aan het aërodynamisch vlak van een turbineblad dat ontlucht is om druk toe te voeren aan de wortel en koellucht laat stromen naar een opening in de tip van het blad. De koellucht in de radiale doorlaat voedt de filmkoelgaten en wordt bijgevuld met extra koellucht door koelluchtbevoorradingsgaten die radiaal op afstand van elkaar zijn aangebracht in de inwendige wand die de radiale doorlaat begrenst. Het koeleffect wordt verkregen met minder koellucht en bij lagere drukniveaus.
Een kenmerk van deze uitvinding is het van tevoren bepalen van de achterste druk in de radiale doorlaat door het gat in de tip van de radiale doorlaat de juiste afmeting te geven en door stuurstrippen aan te brengen. Verbeterde filmkoeling wordt bereikt door de juiste terug-stroommarge te handhaven over heel het radiale gebied van de radiale doorlaat om de stroming door alle filmkoelgaten die in contact staan met dit radiale gebied te minimaliseren.
Een ander kenmerk is het verschaffen van een verbeterd inwendig gekoeld turbineblad dat vuil verdraagt.
De voorgaande en andere kenmerken en voordelen van de onderhavige uitvinding zullen duidelijker worden uit de volgende beschrijving en begeleidende tekeningen.
Korte beschrijving van de tekeningen.
Fig. 1 is een dwarsdoorsnede van een turbineblad met axiale stroming volgens de onderhavige uitvinding.
Fig. 2 is een doorsnede langs de lijn 2-2 van fig.l.
Fig. 3 is een gedeeltelijk aanzicht in doorsnede volgens de lijn 3- 3 van fig. 1.
Fig. 4 is een gedeeltelijk aanzicht in doorsnede volgens de lijn 4- 4 van fig. 1 die de uitvinding toont waarbij gebruik gemaakt wordt van scheve stuurstrippen.
Beste meinier voor het uitvoeren van de uitvinding.
Hoewel de voorkeursuitvoering een turbineblad beschrijft die normaal wordt gebruikt voor een gasturbinemotor die wordt gebruikt bij de F100 motor die wordt vervaardigd door Pratt & Whitney Aircraft, een divisie van United Technologies Corporation, de rechtverkrijgende van deze octrooiaanvrage, dient het duidelijk te zijn dat deze uitvinding toepasbaar is voor andere soorten van luchtgekoelde turbinebladen.
De hier gebruikte term "terugstroommarge" is de drukverhouding die gemeten is over elk van de koelluchtafvoergaten op het aërodynamische draagvlak van het blad. Slechts gedeelten van het blad worden hier getoond ten behoeve van de eenvoud en het gemak, en opgemerkt wordt dat de uitontwikkelde technieken voor het vergroten van het warmtetransport^ zoals voetstukken, stuurstrippen en dergelijke hiervan zijn weggelaten.
Zoals getoond, is het blad dat algemeen wordt aangeduid met 10 vervaardigd van één van de bekende hoge temperatuur legeringen en omvat een koker die een voorrand 12, een achterrand 1**, tip 16 en wortel 18 begrenst. Het blad 18 is gevormd om het aërodynamische draagvlak te begrenzen dat een zuigzijde 20 (lagere druk) en een drukzijde 22 heeft. Een aantal gaten is in het aërodynamische draagvlak gevormd voor het bereiken van de gewenste koeling. In het ideale geval stroomt de koellucht die over een groot deel van het aërodynamische draagvlak gaat uit deze gaten om een film te vormen die zich gedraagt als een grens tussen het aërodynamische draagvlak en de hete gassen van de route van het gas van de motor.
Het aanzicht in doorsnede van fig. 2 dat de inwendige kanalen toont van het blad door een vlak dat door het centrum gaat (midden-koorde deel) is een voorbeeld van de gewoonlijk gebruikte bladkoelings-techniek door gebruik te maken van verschillende koelkanalen die worden begrensd door de ribben 26 die dienen om de lucht volgens een serpentinevormig pad te laten stromen om een optimale convectiekoeling te krijgen. De uitvinding is aangepast om te worden toegepast met dit type koeltechniek hoewel het niet hiertoe wordt beperkt.
Het inventieve concept wordt getoond in fig. 1 en 3 die de koel-luchtaanvoerkanalen 30 tonen die gevormd zijn op de gewenste plaatsen grenzend aan de aërodynamische draagvlakken aan de zuigzijde en de drukzijde. Ten behoeve van het gemak en de eenvoud zal slechts één koelluchtkanaal worden beschreven en dat is datgene dat door de doorsnede 3-3 wordt afgebeeld in fig. 3-
Overeenkomstig deze uitvinding, is het koelluchtaanvoerkanaal 30 een hoofdzakelijk cilindrisch gevormde, in radiale richting lopende doorlaat die grenzend aan het aërodynamische draagvlak is gevormd en een aantal radiaal op afstand van elkaar geplaatste filmkoelgaten 32 bevat die zijn aangebracht in het draagvlak. Koellucht van een inlaat-opening 3^ die gevormd is in de wortel van het blad, stroomt radiaal naar de afvoeropening 36 die in de tip van het blad is aangebracht terwijl een deel van de koellucht door de filmkoelgaten 32 stroomt. Dientengevolge is de stroming in aanvoerkanaal 30 eerder dynamisch dan statisch, en, zoals hierna wordt verduidelijkt, het toevoerkanaal 30 wordt continu bijgevuld met koellucht.
De diameter van de afvoeropening 36 ie gedimensioneerd om een gewenste terugstroommarge en een radiale stroming te bereiken. Dit dient voor het verschaffen van de gewenste drukverhouding over elk van de filmkoelgaten 32 opdat de filmkoeleffectiviteit wordt geoptimaliseerd van elk van de gaten die zich volledig over het radiale oppervlak uitstrekken. Het dient eveneens voor het verschaffen van voldoende stroming bij een gewenste druk om de tip van het blad te koelen. Het zal voor de vakspecialist duidelijk zijn, dat het aanvoerkanaal 30 andere warmteoverdrachtsmiddelen zou kunnen bevatten zoals stuurstrip-pen, voor het vergroten van de koeling van het blad die eveneens de drukval beïnvloeden in het kanaal en de terugstroommarge en de radiale stroming beïnvloeden.
Zoals hierboven vermeld, wordt het aanvoerkanaal 30 bijgevuld met koellucht door de bijvulkoelgaten 38 die in verbinding staan met de lucht die stroomt door de serpentinevormige kanalen 40 die worden begrensd door de ribben 26. Dientengevolge ontvangt het kanaal 30 koellucht van zowel de bron van koellucht die wordt toegelaten door de inlaat 3^ bij de wortel van het blad (hetgeen gewoonlijk lucht is die wordt af gevoerd van de compressor) en de bi jvulkoellucht die wordt toegelaten door de bijvulgaten 38 die zich uitstrekken over het radiale oppervlak van het aanvoerkanaal 30. Omdat de hoeveelheid koellucht in het aanvoerkanaal 30 verminderd wanneer de lucht voortgaat in de richting van de tip, wordt koellucht bijgevuld door de lucht die hieraan wordt toegelaten via de bijvulgaten 38. Dit concept leent zichzelf voor het controleren van de drukverhouding over alle filmkoelgaten over het aërodynamische draagvlak die van de wortel naar de tip gaan. Dientengevolge zal, omdat de stroming tot een minimum wordt beperkt tengevolge van de terugstroommarge in radiale zin is aangepast, de bedekking van de filmgaten over deze lengte constant zijn.
Zoals hierboven vermeld kan de drukval in het aanvoerkanaal verder worden aangepast door stuurstrippen toe te voegen die eveneens leiden tot het verbeteren van de effectiviteit van de warmteoverdracht. Verwezen wordt naar fig. 4 dat een deel van een aanvoerkanaal 30 toont dat is aangepast om de scheve stuurstrippen 70 te bevatten.
Bij de hiervoor bekende ontwerpen was het noodzakelijk om de koellucht in de inlaat te brengen bij een beduidend hogere druk om er voor te zorgen dat er ruimschoots voldoende druk zou zijn bij het naderen van de tip van het blad. Echter, tengevolge van de aard van het ontwerp, in het bijzonder omdat de koellucht wordt overgebracht van een statische constructie naar de roterende bladen, veroorzaakte dit een lekkageprobleem of een moeilijk afdichtprobleem. Aldus ontstond normaliter een compromis tussen toelaatbare lekkage en gewenste koelluchtdruk.
Krachtens de onderhavige uitvinding en omdat het koellucht-aanvoerkanaal wordt bijgevuld met koellucht, kan de inlaatdruk een beduidend verminderde waarde hebben, waardoor het lekkageprobleem wordt ondervangen en de motorprestaties worden verbeterd.
Zoals duidelijk mag zijn uit het voorgaande, richten de bijvulgaten 38 de koellucht in de serpentinevormige doorgangen om het achtervlak van het draagvlak te raken. Dit veroorzaakt niet alleen contactkoeling, maar het dient eveneens als vuilafscheider omdat de lucht in enige mate draait om te migreren door de filmkoelgaten 32. De vuildeeltjes zullen worden gevangen door de dynamische stroom van koellucht in het aanvoerkanaal 30 waar deze dan naar de tip van het blad wordt gedragen en wordt afgevoerd in de gasbaan via de afvoer-opening 36. Omdat het blad roteert, wordt de lucht met de vuildeeltjes in het aanvoerkanaal 30 gecentrifugeerd in de richting van de afvoeropening 36. Binnen het raamwerk van de onderhavige uitvinding kan worden overwogen om de bijvulgaten 38 binnenwaarts te richten naar de wortel van het blad, waardoor een scheidingshoek wordt verschaft die groter is dan 90°, waardoor de vuilafscheiding wordt verbeterd.
Hoewel de onderhavige uitvinding is geïllustreerd en beschreven met betrekking tot gedetailleerde uitvoeringen daarvan, zal het echter duidelijk zijn aan de vakspecialist dat verschillende veranderingen in vorm en detail daarvan kunnen worden aangebracht zonder het karakter en het terrein van de geclaimde uitvinding te verlaten.

Claims (5)

1. Turbinebladoppervlak voor een gasturbinemotor met inwendige doorlaten voor het daarin laten stromen van koellucht, omvattende een aërodynamisch draagvlak dat een worteldeel, een voorranddeel, een achterranddeel, een middenkoordedeel, en een tipdeel begrenst, een aantal radiale inwendige doorlaten die worden begrensd door inwendige wandmiddelen die aangrenzend zijn gevormd aan het genoemde achterranddeel en het voorranddeel en die lopen van het genoemde worteldeel naar het genoemde tipdeel die een aanvoerkanaal begrenzen, een aantal radiaal op afsteind van elkaar ereplaatste filmkoelgaten in het genoemde aërodynamische draagvlak die in verbinding staan met het genoemde aanvoerkanaal om een film van koellucht te laten stromen grenzend aan het genoemde aërodynamische draagvlak, een aantal bijvulgaten die radiaal op afstand van elkaar zijn aangebracht in de genoemde wandmiddelen om koellucht te laten stromen van het genoemde middenkoordedeel naar het genoemde aanvoerkanaal om de koellucht aan te vullen in het genoemde aanvoerkanaal dat anders wordt verloren tijdens het toevoeren van koellucht aan de genoemde filmkoelgaten, en middelen om koellucht van het genoemde worteldeel over te brengen om afgevoerd te worden uit een opening in het genoemde aërodynamische draagvlak aan het genoemde tipdeel, en een bron van koellucht om koellucht toe te voeren aan het genoemde worteldeel,
2. Turbineblad volgens conclusie 1, waarin de afmetingen van de genoemde opening bij het genoemde tipdeel zijn gekozen om de stroom van koellucht te minimaliseren in de genoemde aanvoerkamer om hoofdzakelijk een uniforme filmgatbedekking te verschaffen van alle filmgaten die worden gevoed door het genoemde aanvoerkanaal door de terugstroommarge voor iedere radiale positie in het genoemde aanvoerkanaal aan te passen.
3> Turbineblad volgens conclusie 1, waarin het genoemde aanvoerkanaal middelen verschaft voor het scheiden van vuil van de genoemde koellucht en het verwijderen van het genoemde gescheiden vuil door de genoemde afvoeropening.
4. Turbineblad volgens conclusie 1, omvattende stuurstrip-pen in het genoemde aanvoerkanaal.
5. Turbineblad volgens conclusie 4, waarin de genoemde stuurstrippen relatief scheef zijn geplaatst ten opzichte van de richting van het genoemde aanvoerkanaal.
NL9000540A 1988-08-24 1990-03-09 Gekoeld turbineblad voor een gasturbinemotor. NL194734C (nl)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US07/236,093 US5700131A (en) 1988-08-24 1988-08-24 Cooled blades for a gas turbine engine
GB9000458A GB2314125B (en) 1988-08-24 1990-01-09 Cooled blades for a gas turbine engine
CA002007631A CA2007631C (en) 1988-08-24 1990-01-12 Cooled blades for a gas turbine engine
SE9000112A SE470599B (sv) 1988-08-24 1990-01-12 Kylda blad för en gasturbinmotor
AU48812/90A AU684037B1 (en) 1988-08-24 1990-01-12 Cooled blades for a gas turbine engine
DE4003804A DE4003804C2 (de) 1988-08-24 1990-02-08 Filmgekühlte Turbinenschaufeln für ein Gasturbinentriebwerk
NO900804A NO306740B1 (no) 1988-08-24 1990-02-20 Turbinblad for en gassturbinmotor
TR20290A TR23588A (tr) 1988-08-24 1990-03-07 Gizli
NL9000540A NL194734C (nl) 1988-08-24 1990-03-09 Gekoeld turbineblad voor een gasturbinemotor.
JP02800005A JP3112933B2 (ja) 1988-08-24 1990-03-16 ガスタービンエンジン用冷却ブレード

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US07/236,093 US5700131A (en) 1988-08-24 1988-08-24 Cooled blades for a gas turbine engine
US23609388 1988-08-24
GB9000458A GB2314125B (en) 1988-08-24 1990-01-09 Cooled blades for a gas turbine engine
GB9000458 1990-01-09
CA002007631A CA2007631C (en) 1988-08-24 1990-01-12 Cooled blades for a gas turbine engine
AU48812/90A AU684037B1 (en) 1988-08-24 1990-01-12 Cooled blades for a gas turbine engine
SE9000112 1990-01-12
CA2007631 1990-01-12
SE9000112A SE470599B (sv) 1988-08-24 1990-01-12 Kylda blad för en gasturbinmotor
AU4881290 1990-01-12
DE4003804A DE4003804C2 (de) 1988-08-24 1990-02-08 Filmgekühlte Turbinenschaufeln für ein Gasturbinentriebwerk
DE4003804 1990-02-08
NL9000540A NL194734C (nl) 1988-08-24 1990-03-09 Gekoeld turbineblad voor een gasturbinemotor.
NL9000540 1990-03-09
JP80000590 1990-03-16
JP02800005A JP3112933B2 (ja) 1988-08-24 1990-03-16 ガスタービンエンジン用冷却ブレード

Publications (3)

Publication Number Publication Date
NL9000540A true NL9000540A (nl) 1998-01-05
NL194734B NL194734B (nl) 2002-09-02
NL194734C NL194734C (nl) 2003-01-07

Family

ID=27570073

Family Applications (1)

Application Number Title Priority Date Filing Date
NL9000540A NL194734C (nl) 1988-08-24 1990-03-09 Gekoeld turbineblad voor een gasturbinemotor.

Country Status (10)

Country Link
US (1) US5700131A (nl)
JP (1) JP3112933B2 (nl)
AU (1) AU684037B1 (nl)
CA (1) CA2007631C (nl)
DE (1) DE4003804C2 (nl)
GB (1) GB2314125B (nl)
NL (1) NL194734C (nl)
NO (1) NO306740B1 (nl)
SE (1) SE470599B (nl)
TR (1) TR23588A (nl)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5975851A (en) * 1997-12-17 1999-11-02 United Technologies Corporation Turbine blade with trailing edge root section cooling
US6126396A (en) * 1998-12-09 2000-10-03 General Electric Company AFT flowing serpentine airfoil cooling circuit with side wall impingement cooling chambers
GB9901218D0 (en) * 1999-01-21 1999-03-10 Rolls Royce Plc Cooled aerofoil for a gas turbine engine
US6283708B1 (en) 1999-12-03 2001-09-04 United Technologies Corporation Coolable vane or blade for a turbomachine
US6435814B1 (en) * 2000-05-16 2002-08-20 General Electric Company Film cooling air pocket in a closed loop cooled airfoil
DE50304226D1 (de) * 2002-03-25 2006-08-24 Alstom Technology Ltd Gekühlte turbinenschaufel
US7080971B2 (en) 2003-03-12 2006-07-25 Florida Turbine Technologies, Inc. Cooled turbine spar shell blade construction
GB2401915B (en) * 2003-05-23 2006-06-14 Rolls Royce Plc Turbine blade
DE10346366A1 (de) * 2003-09-29 2005-04-28 Rolls Royce Deutschland Turbinenschaufel für ein Flugzeugtriebwerk und Gießform zu deren Herstellung
US7059825B2 (en) * 2004-05-27 2006-06-13 United Technologies Corporation Cooled rotor blade
US7198468B2 (en) * 2004-07-15 2007-04-03 Pratt & Whitney Canada Corp. Internally cooled turbine blade
US7189060B2 (en) * 2005-01-07 2007-03-13 Siemens Power Generation, Inc. Cooling system including mini channels within a turbine blade of a turbine engine
US7413407B2 (en) * 2005-03-29 2008-08-19 Siemens Power Generation, Inc. Turbine blade cooling system with bifurcated mid-chord cooling chamber
US7270515B2 (en) * 2005-05-26 2007-09-18 Siemens Power Generation, Inc. Turbine airfoil trailing edge cooling system with segmented impingement ribs
US7632071B2 (en) * 2005-12-15 2009-12-15 United Technologies Corporation Cooled turbine blade
US7445432B2 (en) * 2006-03-28 2008-11-04 United Technologies Corporation Enhanced serpentine cooling with U-shaped divider rib
US7866948B1 (en) 2006-08-16 2011-01-11 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall impingement and vortex cooling
US7540712B1 (en) * 2006-09-15 2009-06-02 Florida Turbine Technologies, Inc. Turbine airfoil with showerhead cooling holes
US8047790B1 (en) * 2007-01-17 2011-11-01 Florida Turbine Technologies, Inc. Near wall compartment cooled turbine blade
US8083485B2 (en) * 2007-08-15 2011-12-27 United Technologies Corporation Angled tripped airfoil peanut cavity
US10286407B2 (en) 2007-11-29 2019-05-14 General Electric Company Inertial separator
EP2096261A1 (de) * 2008-02-28 2009-09-02 Siemens Aktiengesellschaft Turbinenschaufel für eine stationäre Gasturbine
US8172533B2 (en) * 2008-05-14 2012-05-08 United Technologies Corporation Turbine blade internal cooling configuration
US8177507B2 (en) * 2008-05-14 2012-05-15 United Technologies Corporation Triangular serpentine cooling channels
US20090293495A1 (en) * 2008-05-29 2009-12-03 General Electric Company Turbine airfoil with metered cooling cavity
US8171978B2 (en) * 2008-11-21 2012-05-08 United Technologies Corporation Castings, casting cores, and methods
US8113780B2 (en) * 2008-11-21 2012-02-14 United Technologies Corporation Castings, casting cores, and methods
US8137068B2 (en) * 2008-11-21 2012-03-20 United Technologies Corporation Castings, casting cores, and methods
US20110097188A1 (en) * 2009-10-23 2011-04-28 General Electric Company Structure and method for improving film cooling using shallow trench with holes oriented along length of trench
US8944763B2 (en) 2011-08-18 2015-02-03 Siemens Aktiengesellschaft Turbine blade cooling system with bifurcated mid-chord cooling chamber
US8840370B2 (en) 2011-11-04 2014-09-23 General Electric Company Bucket assembly for turbine system
US8961111B2 (en) * 2012-01-03 2015-02-24 General Electric Company Turbine and method for separating particulates from a fluid
JP2015520322A (ja) 2012-06-13 2015-07-16 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジンの壁
US9157329B2 (en) * 2012-08-22 2015-10-13 United Technologies Corporation Gas turbine engine airfoil internal cooling features
US9765630B2 (en) * 2013-01-09 2017-09-19 General Electric Company Interior cooling circuits in turbine blades
JP5554425B2 (ja) * 2013-02-12 2014-07-23 三菱重工業株式会社 タービン翼
US11149548B2 (en) 2013-11-13 2021-10-19 Raytheon Technologies Corporation Method of reducing manufacturing variation related to blocked cooling holes
WO2015075239A1 (en) 2013-11-25 2015-05-28 Alstom Technology Ltd Blade assembly on basis of a modular structure for a turbomachine
WO2015091289A2 (en) 2013-12-20 2015-06-25 Alstom Technology Ltd Rotor blade or guide vane assembly
EP3149310A2 (en) 2014-05-29 2017-04-05 General Electric Company Turbine engine, components, and methods of cooling same
CA2949547A1 (en) 2014-05-29 2016-02-18 General Electric Company Turbine engine and particle separators therefore
US11033845B2 (en) 2014-05-29 2021-06-15 General Electric Company Turbine engine and particle separators therefore
US9915176B2 (en) 2014-05-29 2018-03-13 General Electric Company Shroud assembly for turbine engine
US10036319B2 (en) 2014-10-31 2018-07-31 General Electric Company Separator assembly for a gas turbine engine
US10167725B2 (en) 2014-10-31 2019-01-01 General Electric Company Engine component for a turbine engine
US9988936B2 (en) 2015-10-15 2018-06-05 General Electric Company Shroud assembly for a gas turbine engine
US10174620B2 (en) 2015-10-15 2019-01-08 General Electric Company Turbine blade
US10428664B2 (en) 2015-10-15 2019-10-01 General Electric Company Nozzle for a gas turbine engine
US20170306764A1 (en) * 2016-04-26 2017-10-26 General Electric Company Airfoil for a turbine engine
US10605090B2 (en) * 2016-05-12 2020-03-31 General Electric Company Intermediate central passage spanning outer walls aft of airfoil leading edge passage
US10704425B2 (en) 2016-07-14 2020-07-07 General Electric Company Assembly for a gas turbine engine
US10830052B2 (en) 2016-09-15 2020-11-10 Honeywell International Inc. Gas turbine component with cooling aperture having shaped inlet and method of forming the same
US10801724B2 (en) * 2017-06-14 2020-10-13 General Electric Company Method and apparatus for minimizing cross-flow across an engine cooling hole
US11149555B2 (en) 2017-06-14 2021-10-19 General Electric Company Turbine engine component with deflector
US10370976B2 (en) * 2017-08-17 2019-08-06 United Technologies Corporation Directional cooling arrangement for airfoils
US10539026B2 (en) 2017-09-21 2020-01-21 United Technologies Corporation Gas turbine engine component with cooling holes having variable roughness
US10641106B2 (en) 2017-11-13 2020-05-05 Honeywell International Inc. Gas turbine engines with improved airfoil dust removal
RU189517U1 (ru) * 2018-12-24 2019-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный архитектурно-строительный университет" Рабочая лопатка газовой турбины
US11952911B2 (en) * 2019-11-14 2024-04-09 Rtx Corporation Airfoil with connecting rib

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2231426C3 (de) * 1972-06-27 1974-11-28 Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Deckbandlose, innen gekühlte Axialturbinenlaufschaufel
US3810711A (en) * 1972-09-22 1974-05-14 Gen Motors Corp Cooled turbine blade and its manufacture
US3994622A (en) * 1975-11-24 1976-11-30 United Technologies Corporation Coolable turbine blade
US4118146A (en) * 1976-08-11 1978-10-03 United Technologies Corporation Coolable wall
US4221539A (en) * 1977-04-20 1980-09-09 The Garrett Corporation Laminated airfoil and method for turbomachinery
GB1552536A (en) * 1977-05-05 1979-09-12 Rolls Royce Rotor blade for a gas turbine engine
GB2028928B (en) * 1978-08-17 1982-08-25 Ross Royce Ltd Aerofoil blade for a gas turbine engine
JPS55104506A (en) * 1979-02-02 1980-08-11 Hitachi Ltd Gas-turbine blade
US4424001A (en) * 1981-12-04 1984-01-03 Westinghouse Electric Corp. Tip structure for cooled turbine rotor blade
JPS5918202A (ja) * 1982-07-21 1984-01-30 Agency Of Ind Science & Technol ガスタ−ビンの翼
US4770608A (en) * 1985-12-23 1988-09-13 United Technologies Corporation Film cooled vanes and turbines
DE3603350A1 (de) * 1986-02-04 1987-08-06 Walter Prof Dipl Ph Sibbertsen Verfahren zur kuehlung thermisch belasteter bauelemente von stroemungsmaschinen, vorrichtung zur durchfuehrung des verfahrens sowie ausbildung thermisch belasteter schaufeln
JPS62228603A (ja) * 1986-03-31 1987-10-07 Toshiba Corp ガスタ−ビンの翼
US4761116A (en) * 1987-05-11 1988-08-02 General Electric Company Turbine blade with tip vent
US4753575A (en) * 1987-08-06 1988-06-28 United Technologies Corporation Airfoil with nested cooling channels
US4820123A (en) * 1988-04-25 1989-04-11 United Technologies Corporation Dirt removal means for air cooled blades
US4820122A (en) * 1988-04-25 1989-04-11 United Technologies Corporation Dirt removal means for air cooled blades

Also Published As

Publication number Publication date
TR23588A (tr) 1990-04-19
SE9000112D0 (sv) 1990-01-12
SE9000112L (sv) 1998-05-03
NO900804L (no) 1997-06-10
NL194734B (nl) 2002-09-02
GB2314125A (en) 1997-12-17
GB9000458D0 (en) 1997-09-03
US5700131A (en) 1997-12-23
NL194734C (nl) 2003-01-07
CA2007631C (en) 2000-03-14
DE4003804C2 (de) 1999-03-04
CA2007631A1 (en) 1997-06-06
JP3112933B2 (ja) 2000-11-27
NO306740B1 (no) 1999-12-13
JPH11287102A (ja) 1999-10-19
AU684037B1 (en) 1997-12-04
SE470599B (sv) 1998-09-14
GB2314125B (en) 1998-05-13
DE4003804A1 (de) 1998-01-08

Similar Documents

Publication Publication Date Title
NL9000540A (nl) Gekoelde bladen voor een gasturbinemotor.
EP0659978B1 (en) Aerodynamic tip sealing for rotor blades
NL9000541A (nl) Spelingscontrole voor de turbine van een gasturbinemotor.
US7942009B1 (en) Gas turbine engine with an air cooled bearing
US5862666A (en) Turbine engine having improved thrust bearing load control
US6419446B1 (en) Apparatus and method for inhibiting radial transfer of core gas flow within a core gas flow path of a gas turbine engine
US5733102A (en) Slot cooled blade tip
US7125225B2 (en) Cooled rotor blade with vibration damping device
US4902198A (en) Apparatus for film cooling of turbine van shrouds
US5827040A (en) Hydrostatic augmentation of a compliant foil hydrodynamic fluid film thrust bearing
US6017189A (en) Cooling system for turbine blade platforms
EP0547279B1 (en) Bearing cooling arrangement for air cycle machine
US5927946A (en) Turbine blade having recuperative trailing edge tip cooling
EP1605136B1 (en) Cooled rotor blade
US6183198B1 (en) Airfoil isolated leading edge cooling
US4117669A (en) Apparatus and method for reducing thermal stress in a turbine rotor
JP2000291404A (ja) テーパ付先端リブを備えたタービン羽根
JPH0424523B2 (nl)
US6067791A (en) Turbine engine with a thermal valve
EP3645841B1 (en) Compressor aerofoil
EP1544412B1 (en) Cooled rotor blade with vibration damping device
JP3215476B2 (ja) 空気循環装置
CA2007633C (en) Clearance control for the turbine of a gas turbine engine
GB2319567A (en) Clearance control for the turbine of a gas turbine engine
JPH0734807A (ja) 複流型蒸気タービン

Legal Events

Date Code Title Description
A1B A search report has been drawn up
BV The patent application has lapsed
A1B A search report has been drawn up
BC A request for examination has been filed
V1 Lapsed because of non-payment of the annual fee

Effective date: 20081001