NL2031136B1 - Set of kompetitive allele specific pcr (kasp)-based core single nucleotide polymorphism (snp) markers for eggplant and use thereof - Google Patents

Set of kompetitive allele specific pcr (kasp)-based core single nucleotide polymorphism (snp) markers for eggplant and use thereof Download PDF

Info

Publication number
NL2031136B1
NL2031136B1 NL2031136A NL2031136A NL2031136B1 NL 2031136 B1 NL2031136 B1 NL 2031136B1 NL 2031136 A NL2031136 A NL 2031136A NL 2031136 A NL2031136 A NL 2031136A NL 2031136 B1 NL2031136 B1 NL 2031136B1
Authority
NL
Netherlands
Prior art keywords
seq
eggplant
kasp
markers
snp
Prior art date
Application number
NL2031136A
Other languages
Dutch (nl)
Inventor
Zhang Ying
Shu Jinshuai
Liu Fuzhong
Chen Yuhui
Original Assignee
Inst Vegetables & Flowers Caas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Vegetables & Flowers Caas filed Critical Inst Vegetables & Flowers Caas
Priority to NL2031136A priority Critical patent/NL2031136B1/en
Application granted granted Critical
Publication of NL2031136B1 publication Critical patent/NL2031136B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/08Fruits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/826Solanum melongena [eggplant]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physiology (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present disclosure discloses a set of kompetitive allele-specif1c PCR (KASP)- based core single nucleotide polymorphism (SNP) markers of an eggplant and use thereof. In the present disclosure, the KASP-based core SNP markers include 20 core SNP markers for identifying a germplasm resource of the eggplant. KASP primers are distributed on 12 chromosomes of an eggplant genome, and have unique amplif1cation, desirable typing effect and strong representativeness, during variety confirmation, purity testing or genetic diversity analysis, the markers have simple and fast operations, and stable and reliable results, and can be flexibly selected according to the number of samples and sites to be tested. Therefore, the KASP markers developed by the present disclosure can be scaled and standardized for different number of sample sizes.

Description

SET OF KOMPETITIVE ALLELE SPECIFIC PCR (KASP)-BASED CORE
SINGLE NUCLEOTIDE POLYMORPHISM (SNP) MARKERS FOR
EGGPLANT AND USE THEREOF
TECHNICAL FIELD
[01] The present disclosure relates to the technical field of molecular biology and molecular detection, in particular to a set of kompetitive allele-specific PCR (KASP)- based core single nucleotide polymorphism (SNP) markers of an eggplant and use thereof.
BACKGROUND ART
[02] Eggplant (Solanum melongena L.) is an important vegetable crop cultivated worldwide. At present, there are no reports of KASP-based core SNP markers covering a whole genome of the eggplant. Moreover, there is no suitable high-throughput detection kit for DNA fingerprinting construction, genetic diversity analysis, resource identification, taxonomy and background screening. Therefore, it is an urgent technical problem for technicians in the field of eggplant genetic breeding and biotechnology to develop the KASP-based core SNP markers of eggplant to achieve high-throughput detection of resource materials in the eggplant.
SUMMARY
[03] To solve the shortcomings of the prior art, the present disclosure provides a set of KASP-based core SNP markers of an eggplant and use thereof, and further provides use of the markers in DNA fingerprinting construction, genetic diversity analysis, resource identification, taxonomy and background screening. The present disclosure provides a technical guarantee for high-throughput molecular detection of target DNA samples in the eggplant. Since being distributed on 12 chromosomes of an eggplant genome, the set of markers can be selected for use according to actual needs, and a genomic DNA can be detected at any stage of a candidate material. The markers have flexible use, high detection efficiency, wide applicability, few limiting factors, and stable and accurate detection results. Therefore, the present disclosure provides a flexible, simple, practical and efficient way to realize the DNA fingerprinting construction, the genetic diversity analysis, the resource identification, the taxonomy and the background screening of genomes in the eggplant.
[04] To achieve the above objective, the present disclosure adopts the following technical solutions.
[05] The present disclosure provides a set of KASP-based core SNP markers of an eggplant, including 20 core SNP markers; where specific information of the 20 core SNP markers are as follows:
[06]
Chromosome SNP name | Chromosome name variation 1 | variation 2 variation 1 variation 2 sit je qr sen 16 je |T wn fo fen EE ves [3 Je fa gees fs JA 6
Sens Iv Jo ww [ma Jo]
[07] the above position is determined with reference to a genome GUIQIE-1 (https://www.ncbi.nlm.nih. gov/bioproject/PRINA612792/).
[08] The present disclosure further provides a set of KASP primers for amplifying the core SNP markers of an eggplant by PCR, where the 20 core SNP markers SNP1,
SNP2, SNP3, SNP4, SNP5, SNP6, SNP7, SNPS, SNP9, SNP10, SNP11, SNPI2,
SNP13, SNP14, SNP15, SNP16, SNP17, SNP18, SNP19, SNP20 are amplified by the following primers, respectively: Seq ID No. 1-3, Seq ID NO.4-6, Seq ID NO.7-9, Seq ID
NO.10-12, Seq ID NO.13-15, Seq ID NO. 16-18, Seq ID NO.19-21, Seq ID NO.22-24,
Seq ID NO.25-27, Seq ID NO.28-30, Seq ID NO.31-33, Seq ID NO.34-36, Seq ID
NO.37-39, Seq ID NO.40-42, Seq ID NO.43-45, Seq ID NO.46-48, Seq ID NO.49-51,
Seq ID NO.52-54, Seq ID NO.55-57, and Seq ID NO.58-60.
[09] The present disclosure further provides use of the core SNP markers or the
KASP primers of an eggplant in construction of an SNP fingerprint of the eggplant.
[10] The present disclosure further provides use of the core SNP markers or the
KASP primers of an eggplant in detection of a resource of the eggplant.
[11] The present disclosure further provides use of the core SNP markers or the
KASP primers of an eggplant in analysis of a genetic diversity of the eggplant.
[12] The present disclosure further provides use of the core SNP markers or the
KASP primers of an eggplant in taxonomy of the eggplant.
[13] The present disclosure further provides use of the core SNP markers or the
KASP primers of an eggplant in preparation of a detection reagent, a kit, a genomic chip or a liquid-phase probe of the eggplant.
[14] It can be seen from the above technical solutions that compared with the prior art, the present disclosure discloses the set of KASP-based core SNP markers of the eggplant and the use thereof. Compared with previous SSR, InDel and other markers, the KASP primers are distributed on 12 chromosomes of the eggplant genome, and have unique amplification, desirable typing effect and strong representativeness, such that high-throughput detection can be achieved with short detection cycle; during variety confirmation and purity testing, the markers have simple and fast operations, and stable and reliable detection results, and can be flexibly selected according to the number of samples and sites to be tested. Therefore, the KASP markers developed by the present disclosure can be scaled and standardized for different number of sample sizes.
BRIEF DESCRIPTION OF DRAWINGS
[15] FIG. | shows a typing diagram of SNP primers of the present disclosure, where each dot represents a piece of material, a category I-genotype is GG; a category II- genotype is GA; and a category III-genotype is AA;
[16] FIG. 2 shows a cluster diagram of 5 groups of materials with the same name of the present disclosure; and
[17] FIG. 3 shows a cluster diagram of 7 groups of similar materials detected by the 20 SNP markers of the present disclosure.
DETAILED DESCRIPTION OF THE EMBODIMENTS
[18] To further illustrate the technical means and effects adopted by the present disclosure, the present disclosure will be further described below in conjunction with examples and drawings. It may be understood that the specific embodiments described herein are merely intended to explain the present disclosure, rather than to limit the present disclosure.
[19] If a specific technology or condition is not specified in the embodiments, it shall be one described in the literature in the art or a product specification. Reagents or instruments not specified with manufacturers are all conventional products that can be purchased through proper channels.
[20] Example 1 Screening of core SNP markers of an eggplant [ZI] 10~ resequencing was conducted on 10 parts of eggplant core germplasm resources, and genome-wide genetic variation analysis was conducted on the core germplasms using GUIQIE-1 (https://www.ncbi.nlm.nih. gov/bioproject/PRJNA612792/) as a reference genome; combining a physical location and function of a chromosome where a mutation sites were located, SNP sites were selected on different chromosomes to ensure that the selected sites had extensive genetic variation in the core germplasms; a total of 384 genetically-stable SNP sites that can be designed as KASP markers were screened according to a length of the chromosome and the number of mutation sites on each chromosome; the applicability of 384 KASP markers was screened using 32 different types of eggplant high-generation inbred lines, and a total of 20 markers with stable amplification effect, clear typing and strong representativeness were selected as core
SNP markers of the eggplant (Table 1).
[22] Table 1
[23]
. . Allelic Allelic . Allalic Allelic imp Physical ENP Physical
Chromosome | | 7 variation | variation Chromosome variation | vanston name Iocation \ . nase location 4
Ee wmerlo [a [wm [7 wm ro
I EE eh CL [MB In |P |E |T
[24] In this example, the eggplant resource materials used are inbred lines or genetic resources created by the eggplant genetic breeding research group of the Institute of
Vegetables and Flowers, Chinese Academy of Agricultural Sciences, through multi- 5 generation inbred selection and breeding, these materials are unique to the research group and are guaranteed to be released to the public for verification experiments within 20 years from the date of application.
[25] Example 2 Method for identification of 72 eggplant germplasm resources using 20 core SNP markers of an eggplant
[26] Step 1. DNA Extraction
[27] Tender leaves of a test eggplant plants were taken to extract a genomic DNA using a modified cetyltrimethylammonium bromide (CTAB) method.
[28] Step 2. Synthesis, dilution and mixing of KASP primers
[29] A working solution of KASP primers was a mixture of three primers: an Allele-
FAM, an Allele-HEX and a common primer Common (Table 2); the Allele-FAM, the
Allele-HEX and the common primer Common were diluted to 10 pmol, and mixed according to a volume ratio of 2:2:5 to obtain a primer premix. A 5'-end of the Allele-
FAM primer is labeled with a FAM, and a 5'-end of the Allele-HEX primer is labeled with a HEX.
Table 2
[30] Step 3. PCR reaction system and amplification
[31] Relevant components of PCR amplification were added to a 384-well plate (Part
No. KBS-0750-001) of LGC Company; a reaction system of the PCR amplification was 3 uL, as shown in Table 3.
[32] Table3
[33]
Component 384-well reaction system 2xKASP mix 576 pL+115 uL
[34] Under a Kraken operating system, air bubbles were removed using a Meridian sample loading workstation during liquid separation. When each pair of primers was added, a loss of 230 uL of the reaction solution was required, such that the 2#KASP mix and the ddH2O each increased by 115 pL.
[35] The specific operation was as follows: a diluted DNA sample to be tested was added into the 384-well reaction plate using a K-pette dispensing workstation, and dried in a drying oven of LGC Company at 60°C for 30 min to prepare a dry powder; under the Kraken operating system, 1xKASP mix and the primer premix were added to each well using the Meridian sample loading workstation, and the 384-well reaction plate was immediately placed on a Kube heat sealer and a Fusion laser sealer for sealing film; and
PCR amplification was conducted in a Hydrocycler, a high-throughput water bath system.
[36] APCR program was: pre-denaturation at 94°C for 15 min; denaturation at 94°C for 20 sec, renaturation and extension at 61-55°C for 1 min (conducting 10 cycles of amplification with a touch down program, with a decrease of 0.6°C for each cycle), denaturation at 94°C for 20 sec, and amplification at 55°C for 1 min for 26 cycles.
[37] After the amplification was completed, a fluorescence signal was detected using a BMG PHERAstar instrument and a genotyping status was checked, experimental results were exported using Kraken software, as shown in FIG. 1; and the genotypes were counted.
[38] 72 eggplant germplasm resources were detected using 20 SNPs, where there were 5 groups of materials with the same name (seeds were taken independently from the same material 2-3 times, to extract DNA independently). SNP locus analysis found that the genotypes of these materials with the same name are completely consistent, and the cluster analysis has also completely clustered groups of materials with the same name (FIG. 2).
[39] 7 groups (20 parts) of highly similar non-identical materials are detected in 72 materials, and the similarity within these material groups is 97.5-100% (FIG. 3). This shows that 20 SNP markers are suitable for constructing fingerprints of eggplant germplasm resources and identifying the specificity of resources.
[40] The eggplant materials used are as shown in Table 4, where 21CN756 and 21CN775 are from Jinan Tianrui Seed Sales Co., Ltd.; the remaining materials are from the eggplant genetic breeding research group of the Institute of Vegetables and Flowers,
Chinese Academy of Agricultural Sciences.
[41] Table 4
[42]
TOW ee [SIONS eee [1 re wie LAN [eee LAN oa ee [rm
21CNWI18 | Inbred line | 21CN746 Fl 21CN770 Fl
[43] The applicant claims that the detailed process equipment and process flow of the present disclosure are described through the above-mentioned examples, but the present disclosure is not limited to the above-mentioned detailed process equipment and process flow, that is, the present disclosure can be implemented without depending on the above-mentioned detailed process equipment and process flow. Those skilled in the art should understand that any improvement to the present disclosure, equivalent replacement of each raw material of the product of the present disclosure, addition of auxiliary ingredients, selection of specific methods and the like all fall within the scope of protection and disclosure of the present disclosure.
SEQLTXT
SEQUENCE LISTING
<110> Institute of Vegetables and Flowers, Chinese Academy of
Agricultural Sciences <120> SET OF KOMPETITIVE ALLELE SPECIFIC PCR (KASP)-BASED CORE SINGLE
NUCLEOTIDE POLYMORPHISM (SNP) MARKERS FOR EGGPLANT AND USE
THEREOF
<130> HKJP202112526 <160> 60 <170> PatentIn version 3.5 <21e> 1 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP1 <400> 1 gaaggtgacc aagttcatgc tcagacccaa ctggacttgc tag 43 <2105 2 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP1 <400> 2 gaaggtcgga gtcaacggat tcagacccaa ctggacttgc taa 43 <2105 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP1 <400> 3 acttttctag gcctccatct agtag 25 <2105 4
Pagina 1
SEQLTXT
<211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP2 <400> 4 gaaggtgacc aagttcatgc tcataggcca agcaacatag tacttg 46 <210> 5 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP2 <400> 5 gaaggtcgga gtcaacggat tcataggcca agcaacatag tactta 46 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP2 <400> 6 tccaagcagg tggcatgcct tg 22 <210> 7 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP3 <400> 7 gaaggtgacc aagttcatgc tctgtgttat tctgggtccc cg 42 <210> 8 <211> 43 <212> DNA <213> Artificial Sequence
Pagina 2
SEQLTXT
<220> <223> Allele-HEX primer of SNP3 <400> 8 gaaggtcgga gtcaacggat tgctgtgtta ttctgggtcc cca 43 <210> 9 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP3 <400> 9 cctcatctat caatggtaat agatagatat c 31 <210> 10 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP4 <400> 10 gaaggtgacc aagttcatgc tgatcctcaa tgtttttatc ggtatgtta 49 <210> 11 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP4 <400> 11 gaaggtcgga gtcaacggat tatcctcaat gtttttatcg gtatgttg 48 <210> 12 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP4 <400> 12
Pagina 3
SEQLTXT gatcaatcaa agcatacaca ttaaagtcaa ag 32 <210> 13 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP5 <400> 13 gaaggtgacc aagttcatgc tcaaacacaa acgcaaagtc atattataac 50 <210> 14 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP5 <400> 14 gaaggtcgga gtcaacggat ttcaaacaca aacgcaaagt catattataa t 51 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP5 <400> 15 tagaaaattc tgccaaaatt tctgtaaaaa taagat 36 <210> 16 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP6 <400> 16 gaaggtgacc aagttcatgc tatacttatt agagagtcga agcatttg 48 <210> 17
Pagina 4
SEQLTXT
<211> 51 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP6 <400> 17 gaaggtcgga gtcaacggat tgaaatactt attagagagt cgaagcattt a 51 <210> 18 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP6 <400> 18 agcataacta ctataataag caaaagtact cattt 35 <210> 19 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP7 <400> 19 gaaggtgacc aagttcatgc tgggccaacc aaaaagaaga aaacaa 46 <210> 20 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP7 <400> 20 gaaggtcgga gtcaacggat tgggccaacc aaaaagaaga aaacag 46 <210> 21 <211> 33 <212> DNA <213> Artificial Sequence
Pagina 5
SEQLTXT
<220> <223> Common primer of SNP7 <400> 21 gaaacccata aacaaactat agattggatt ttg 33 <210> 22 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP8 <400> 22 gaaggtgacc aagttcatgc tctcagttct tccacttttt acctac 46 <210> 23 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP8 <400> 23 gaaggtcgga gtcaacggat tcctcagttc ttccactttt tacctat 47 <210> 24 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP8 <400> 24 taattttgag gacttctgtg ctttgagg 28 <210> 25 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP9 <400> 25
Pagina 6
SEQLTXT gaaggtgacc aagttcatgc tactcctcat agaccttgtc atagaa 46 <210> 26 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP9 <400> 26 gaaggtcgga gtcaacggat tctcctcata gaccttgtca tagac 45 <210> 27 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP9 <400> 27 ttatagcaca taacctcttg ggttacac 28 <210> 28 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP19 <400> 28 gaaggtgacc aagttcatgc taaaggatga agaggagcat gctaaa 46 <210> 29 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP19 <400> 29 gaaggtcgga gtcaacggat tggatgaaga ggagcatgct aag 43 <210> 30
Pagina 7
SEQLTXT
<211> 30 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP10 <400> 30 catggttttt gagcattcac aaaactactc 30 <210> 31 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP11 <400> 31 gaaggtgacc aagttcatgc ttatttgcct tacccagatg gtaatg 46 <210> 32 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP11 <400> 32 gaaggtcgga gtcaacggat taatatttgc cttacccaga tggtaata 48 <210> 33 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP11 <400> 33 gctacccatt atctagagtt agtcgc 26 <210> 34 <211> 48 <212> DNA <213> Artificial Sequence
Pagina 8
SEQLTXT
<220> <223> Allele-FAM primer of SNP12 <400> 34 gaaggtgacc aagttcatgc tcacctactt gaattatttg gagacttt 48 <210> 35 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP12 <400> 35 gaaggtcgga gtcaacggat tcacctactt gaattatttg gagacttc 48 <210> 36 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP12 <400> 36 agtccttcct aacctctaat cagaac 26 <210> 37 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP13 <400> 37 gaaggtgacc aagttcatgc tgtgttatga aatggggact tggc 44 <210> 38 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP13 <400> 38
Pagina 9
SEQLTXT gaaggtcgga gtcaacggat tgtgttatga aatggggact tggg 44 <210> 39 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP13 <400> 39 ccgaattgca tggaaacata agtttcataa c 31 <210> 40 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP14 <400> 40 gaaggtgacc aagttcatgc tgcgcagcag gcataaaaag agaa 44 <210> 41 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP14 <400> 41 gaaggtcgga gtcaacggat tgcgcagcag gcataaaaag agat 44 <210> 42 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP14 <400> 42 aaaaattcac ttttgacata ttgcaaatct tgc 33 <210> 43
Pagina 10
SEQLTXT
<211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP15 <400> 43 gaaggtgacc aagttcatgc ttcagtcaga ccatggtttt gattca 46 <210> 44 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP15 <400> 44 gaaggtcgga gtcaacggat tcagtcagac catggttttg attcg 45 <210> 45 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP15 <400> 45 ttggtttggg gaaaatacaa gcagtg 26 <210> 46 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP16 <400> 46 gaaggtgacc aagttcatgc tcgtgcacca ttttgttcaa cacca 45 <210> 47 <211> 45 <212> DNA <213> Artificial Sequence
Pagina 11
SEQLTXT
<220> <223> Allele-HEX primer of SNP16 <400> 47 gaaggtcgga gtcaacggat tcgtgcacca ttttgttcaa cacct 45 <210> 48 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP16 <400> 48 gtatttttgt acaatggtgt gttatgagaa g 31 <210> 49 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP17 <400> 49 gaaggtgacc aagttcatgc tatactgtcc cggagaggaa aag 43 <210> 50 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP17 <400> 50 gaaggtcgga gtcaacggat tattatactg tcccggagag gaaaaa 46 <210> 51 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP17 <400> 51
Pagina 12
SEQLTXT ctattctatc cattctgcac ctcatgg 27 <210> 52 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP18 <400> 52 gaaggtgacc aagttcatgc ttactaaaat ctgaagtcat tgggcg 46 <210> 53 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP18 <400> 53 gaaggtcgga gtcaacggat tgttactaaa atctgaagtc attgggca 48 <210> 54 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP18 <400> 54 caaacttgga tagcgattta catgatgaac 30 <210> 55 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP19 <400> 55 gaaggtgacc aagttcatgc taacttgact tatgaggaag ttccga 46 <210> 56
Pagina 13
SEQLTXT
<211> 44 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP19 <400> 56 gaaggtcgga gtcaacggat tcttgactta tgaggaagtt ccgg 44 <210> 57 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Common primer of SNP19 <400> 57 actcaacctc tttacttgtc tatctaag 28 <210> 58 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Allele-FAM primer of SNP20 <400> 58 gaaggtgacc aagttcatgc tccttcactt gatttccgac ccaaa 45 <210> 59 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Allele-HEX primer of SNP20 <400> 59 gaaggtcgga gtcaacggat tcttcacttg atttccgacc caag 44 <210> 60 <211> 31 <212> DNA <213> Artificial Sequence
Pagina 14
SEQLTXT
<220> <223> Common primer of SNP20 <400> 60 ttggaaacat ccataacaaa cttgttcatt c 31
Pagina 15

Claims (6)

S11 - ConclusiesS11 - Conclusions 1. KASP-primers voor het amplificeren van SNP-merkers, waarbij de primers een verzameling van kern-enkelenucleotidepolymorfisme- (SNP) merkers op basis van kompetitieve allelspecifieke PCR die geisoleerd zijn uit een aubergine omvatten, waarbij de verzameling 20 kern-SNP-merkers als volgt omvat: SNP- Chromos | Allelvan | Allelvan | SNP- Chromios | Allelvan | Allelvan waarbij de 20 kern-SNP-merkers SNP1, SNP2, SNP3, SNP4, SNP5, SNP6, SNP7, SNPS, SNP9, SNPI0, SNP11, SNP12, SNPI3, SNP14, SNP15, SNP16, SNP17, SNPI8, SNP19, SNP20 respectievelijk door de volgende primers geamplificeerd zijn: Seq ID Nr. 1-3, Seq ID NR. 4-6, Seq ID NR. 7-9, Seq ID NR. 10-12, Seq ID NR. 13-15, Seq ID NR. 16-18, Seq ID NR. 19-21, Seq ID NR. 22-24, Seq ID NR. 25-27, Seq ID NR. 28-30, Seq ID NR. 31-33, Seq ID NR. 34-36, Seq ID NR. 37-39, Seq ID NR. 40-42, Seq ID NR. 43-45, Seq ID NR. 46-48, Seq ID NR. 49-51, Seq ID NR. 52-54, Seq ID NR. 55-57 en Seq ID NR. 58-60.1. KASP primers for amplifying SNP markers, the primers comprising a collection of nuclear single nucleotide polymorphism (SNP) markers isolated from an eggplant based on competitive allele-specific PCR, the collection comprising 20 nuclear SNP markers includes as follows: SNP-Chromos | Allelvan | Allelvan | SNP - Chromios | Allelvan | Allelevan involving the 20 core SNP markers SNP1, SNP2, SNP3, SNP4, SNP5, SNP6, SNP7, SNPS, SNP9, SNPI0, SNP11, SNP12, SNPI3, SNP14, SNP15, SNP16, SNP17, SNPI8, SNP19, SNP20 respectively by the following primers have been amplified: Seq ID No. 1-3, Seq ID NO. 4-6, Seq ID NO. 7-9, Seq ID NO. 10-12, Seq ID NO. 13-15, Seq ID NO. 16-18, Seq ID NO. 19-21, Seq ID NO. 22-24, Seq ID NO. 25-27, Seq ID NO. 28-30, Seq ID NO. 31-33, Seq ID NO. 34-36, Seq ID NO. 37-39, Seq ID NO. 40-42, Seq ID NO. 43-45, Seq ID NO. 46-48, Seq ID NO. 49-51, Seq ID NO. 52-54, Seq ID NO. 55-57 and Seq ID NO. 58-60. 2. Gebruik van de KASP-primers volgens conclusie 1 in constructie van een SNP- vingerafdruk van de aubergine.Use of the KASP primers according to claim 1 in construction of an eggplant SNP fingerprint. 3. Gebruik van de KASP-primers volgens conclusie | in detectie van een bron van de aubergine.3. Use of the KASP primers according to claim | in detection of a source of the eggplant. S12 -S12 - 4. Gebruik van de KASP-primers volgens conclusie 1 in analyse van een genetische diversiteit van de aubergine.Use of the KASP primers according to claim 1 in analysis of eggplant genetic diversity. 5. Gebruik van de KASP-primers volgens conclusie 1 in taxonomie van de aubergine.5. Use of the KASP primers according to claim 1 in eggplant taxonomy. 6. Gebruik van de KASP-primers volgens conclusie 1 in bereiding van een detectiereagent, een kit, een genoomchip of een vloeibarefasesonde van de aubergine.Use of the KASP primers according to claim 1 in the preparation of a detection reagent, a kit, a genome chip or a liquid phase probe of eggplant.
NL2031136A 2022-03-02 2022-03-02 Set of kompetitive allele specific pcr (kasp)-based core single nucleotide polymorphism (snp) markers for eggplant and use thereof NL2031136B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2031136A NL2031136B1 (en) 2022-03-02 2022-03-02 Set of kompetitive allele specific pcr (kasp)-based core single nucleotide polymorphism (snp) markers for eggplant and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2031136A NL2031136B1 (en) 2022-03-02 2022-03-02 Set of kompetitive allele specific pcr (kasp)-based core single nucleotide polymorphism (snp) markers for eggplant and use thereof

Publications (1)

Publication Number Publication Date
NL2031136B1 true NL2031136B1 (en) 2023-09-08

Family

ID=82404176

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2031136A NL2031136B1 (en) 2022-03-02 2022-03-02 Set of kompetitive allele specific pcr (kasp)-based core single nucleotide polymorphism (snp) markers for eggplant and use thereof

Country Status (1)

Country Link
NL (1) NL2031136B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229928A (en) * 2019-06-27 2019-09-13 江西省农业科学院蔬菜花卉研究所 Molecular labeling combination and its application for Eggplant Germplasm Resources identification
CN112029890A (en) * 2020-09-07 2020-12-04 北京市农林科学院 SNP (Single nucleotide polymorphism) site primer combination for identifying melon germplasm authenticity and application
CN112094939A (en) * 2020-09-29 2020-12-18 北京市农林科学院 Method for identifying authenticity of eggplant variety and primer combination used by method
CN112251533A (en) * 2020-11-09 2021-01-22 浙江省农业科学院 SNP molecular marker closely linked with main effect QTL site of eggplant fruit length and application
CN112813191A (en) * 2021-03-30 2021-05-18 天津市农业科学院 Molecular marker related to eggplant sepal covering pericarp color and application
CN113943731A (en) * 2021-11-30 2022-01-18 中国农业科学院蔬菜花卉研究所 Primer pair for identifying dominant parthenocarpic gene of eggplant by using KASP molecular marker and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229928A (en) * 2019-06-27 2019-09-13 江西省农业科学院蔬菜花卉研究所 Molecular labeling combination and its application for Eggplant Germplasm Resources identification
CN112029890A (en) * 2020-09-07 2020-12-04 北京市农林科学院 SNP (Single nucleotide polymorphism) site primer combination for identifying melon germplasm authenticity and application
CN112094939A (en) * 2020-09-29 2020-12-18 北京市农林科学院 Method for identifying authenticity of eggplant variety and primer combination used by method
CN112251533A (en) * 2020-11-09 2021-01-22 浙江省农业科学院 SNP molecular marker closely linked with main effect QTL site of eggplant fruit length and application
CN112813191A (en) * 2021-03-30 2021-05-18 天津市农业科学院 Molecular marker related to eggplant sepal covering pericarp color and application
CN113943731A (en) * 2021-11-30 2022-01-18 中国农业科学院蔬菜花卉研究所 Primer pair for identifying dominant parthenocarpic gene of eggplant by using KASP molecular marker and application thereof

Similar Documents

Publication Publication Date Title
WO2014048062A1 (en) Snp loci set and usage method and application thereof
CN107385024B (en) Rice fertility restorer gene assisted breeding molecular marker and application thereof
Noh et al. A high-throughput marker-assisted selection system combining rapid DNA extraction high-resolution melting and simple sequence repeat analysis: Strawberry as a model for fruit crops
CN105925721A (en) Single nucleotide polymorphism marker site, primer and kit for identifying coloring property of peach epidermis and application
CN109628627A (en) The SNP marker development and application of broad-spectrum rice-blast resistant gene of paddy rice Pigm
CN115094156A (en) Development and application of KASP marker of rice high-temperature-resistant gene TT1
Parveen et al. Molecular markers and their application in plant biotechnology
CN107400715A (en) The exploitation and its application of the special chemoattractant molecule mark of Thinopyrum ponticum and probe
CN113249509B (en) Identification primer and identification method for interspecific hybrid progeny of populus jaborandi and populus microphylla
CN117106967A (en) Functional KASP molecular marker of rice blast resistance gene and application thereof
CN105603083B (en) Method for carrying out corn-assisted efficient breeding by using two molecular markers including SSR (simple sequence repeat) and SNP (Single nucleotide polymorphism)
Salvi et al. Development of PCR-based assays for allelic discrimination in maize by using the 5′-nuclease procedure
NL2031136B1 (en) Set of kompetitive allele specific pcr (kasp)-based core single nucleotide polymorphism (snp) markers for eggplant and use thereof
CN111378781A (en) Molecular marker primer for quickly and efficiently identifying salt-tolerant gene SKC1 of rice and application
CN113736866B (en) SNP locus combination for detecting tomato yellow leaf curl virus resistance and application thereof
CN113736907B (en) SNP locus combination for detecting tomato gray leaf spot resistance and application thereof
CN112609018B (en) SNP molecular marker of rice grain type related gene GLW2 and application thereof
Vasile et al. DNA-based methods used for varietal purity detection in wheat cultivars
CN114214448A (en) SNP marker for identifying brown planthopper resistant gene Bph30 of rice and application thereof
CN115094158A (en) KASP marker development of rice blast resistance gene Pid4 and application thereof
CN111647677B (en) Molecular marker closely linked with wheat grain filling rate QTL QGfr. sicau-6D and application
Wang et al. Development of 5Ns chromosome-specific SCAR markers for utilization in future wheat breeding programs
He et al. Construction of Fingerprint of Michelia Germplasm by Fluorescent SSR Markers
Sun et al. Development of Molecular Markers for the Determination of the New Cultivar ‘Chunpoong’in Panax ginseng CA M EYER Associated with a Major Latex-Like Protein Gene
Subramanya et al. Development of CAPS marker linked to H2 locus of Fusarium wilt resistance in Chickpea