NL2027823B1 - Method and installation for growing a harvestable crop - Google Patents

Method and installation for growing a harvestable crop Download PDF

Info

Publication number
NL2027823B1
NL2027823B1 NL2027823A NL2027823A NL2027823B1 NL 2027823 B1 NL2027823 B1 NL 2027823B1 NL 2027823 A NL2027823 A NL 2027823A NL 2027823 A NL2027823 A NL 2027823A NL 2027823 B1 NL2027823 B1 NL 2027823B1
Authority
NL
Netherlands
Prior art keywords
water
basin
irrigation
crop
permeable
Prior art date
Application number
NL2027823A
Other languages
Dutch (nl)
Inventor
Willem Lambertus Paans Hugo
Original Assignee
Erfgoed Nederland B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erfgoed Nederland B V filed Critical Erfgoed Nederland B V
Priority to NL2027823A priority Critical patent/NL2027823B1/en
Priority to PCT/EP2022/057512 priority patent/WO2022200362A2/en
Priority to EP22717145.1A priority patent/EP4312509A2/en
Application granted granted Critical
Publication of NL2027823B1 publication Critical patent/NL2027823B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/247Watering arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/001Self-acting watering devices, e.g. for flower-pots with intermittent watering means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/1423Greenhouse bench structures
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

Method for growing and harvesting a crop, wherein the crop is planted in a bed of soil so that roots of the crop develop within the bed and the crop grows, the grown crop being harvested, wherein the bed of soil is installed on a floor system. The floor system comprises a watertight basin, irrigation lines placed in the basin, a water supply and discharge system including a water pump connected to the irrigation lines. One or more layers of loose granular material, e.g. lava granules, are filled in the basin and compacted. The compacted permeable granular material has a substantially horizontal top surface at a level at or below the top edge of the perimeter of the watertight basin. A water-permeable fabric covers the top surface of the compacted permeable granular material. The bed of soil is installed on top of the water-permeable fabric. The water supply and discharge system is configured to cause a supply of water via the one or more irrigation lines so that the water-permeable granular material structure in the basin is flooded with water and the water level is above the water- permeable fabric, which water level is maintained for a flood period so that water is absorbed by the bed of soil, e.g. at least in part by the crop. The water supply and discharge system is configured to cause a discharge of water via the one or more irrigation lines so that the water-permeable granular material structure in the basin is relieved from the water after the flood period.

Description

P34984NL00
METHOD AND INSTALLATION FOR GROWING A HARVESTABLE CROP The invention relates to the field of soil-grown crops. The invention provides for an installation and a method for growing and harvesting a soil-grown crop, wherein the crop is planted in a bed of soil and/or growing medium so that roots of the crop develop within the bed and the crop grows. The grown crop is harvested. Depending on the type of crop the roots are removed from the bed, e.g. of soil, upon harvesting or remain in the bed.
When growing a crop, whether outdoors or in a greenhouse or the like, the control of the conditions governing the growth is crucial. Equally, the efficient use of resources, e.g. like water and energy is of importance. Further, environmental aspects are of relevance, e.g. the desire to avoid draining nutrient rich water used in the growth process into nearby waterways. The invention is aimed at providing an improved installation and method for growing and harvesting a crop, wherein the crop is planted in a bed of soil and/or growing medium so that roots of the crop develop within the bed and the crop grows, the grown crop being harvested.
The invention provides for an installation according to claim 1 and for a method according to claim 8. In embodiments, as preferred, — after harvesting the crop — the bed remains installed on the floor system and a new crop is planted for growing and harvesting, e.g. the bed remaining installed at least one year, e.g. several years, before being renewed. The bed may be composed entirely or primarily of soil. In other embodiments, the crop grows in a soilless approach in a bed that is entirely or primarily composed of a growing medium. Examples of growing media are perlite, rockwool, expanded clay, vermiculite, etc.
Combinations are also envisaged. The invention proposes the installation of a watertight basin having a bottom and a periphery with a top edge.
In an embodiment, a single watertight basin extends below the entirety of a continuous bed, which can be, for example, at least 100 m2, e.g. at least 1000 m2, e.g. over 5000m2, in size.
In another embodiment, multiple watertight basins are arranged below a single continuous bed of soil, each being covered by a distinct zone of the bed. In an embodiment, the periphery of a watertight basin extends about a basin having a surface of at least 100 m2, e.g. at least 1000 m2, e.g. at least 5000 m2.
In the basin, one or more irrigation lines are placed which each comprise multiple openings distributed along the length thereof, which make it possible for water to flow from the one or more irrigation lines for supply of water to the bed or back into the lines for discharge of water. In an embodiment, the bottom of the basin is formed in the ground, e.g. wherein a gulley is made in the ground at the designated location of an irrigation line. An impervious ground sheet, e.g. of plastic, is placed, also covering the gulley. The bed may be sloped towards the gulley. An irrigation line is accommodate in the gulley after the sheet has been placed. One or more layers of loose granular material, e.g. of lava granules, are compacted so as to provide stable and permeable granular material structure in the basin.
The one or more irrigation lines are covered by the granular material structure, e.g. as they are placed directly on the bottom of the basin. A substantially horizontal top surface of the compacted permeable granular material is provided at a level at or below the top edge of the perimeter of the watertight basin and the top surface of the compacted permeable granular material is covered by a water-permeable fabric, e.g. a (woven) cloth or a mat. The bed of soil and/or growing medium may have a thickness adapted to the crop, e.g. of at least 10, e.g. at least 15 cm.
When water is supplied to the basin by the irrigation lines, the water level in the basin rises, in practice until the water rises up through the permeable fabric everywhere and uniformly. Thereby the bottom part of the bed of soil is penetrated by the rising water.
The combination of an ebb/flood system for providing water to irrigation lines provided in a water-permeable granular material structure which is separated from the bed by a water- permeable fabric provides for uniform and controlled water supply to the bed.
3- The frequency and/or duration and/or water height of the flood periods may be controlled over time on the basis of one or more parameters, like the crop, the actual growth phase of the crop, the actual size of the crop, air temperature, soil bed temperature, sunlight intensity, evaporation, wind, humidity of the air and/or soil, the presence of nutrients in the water, the demand for nutrients, etc. In an embodiment, underneath the water-permeable fabric, a capillary mat is arranged which has a capillary action in the horizontal direction and in the vertical direction, for example a non- woven mat made of fibrous elements, for example a compacted non-woven mat. In an embodiment, a perforated plastic film is placed directly underneath the permeable top fabric. For example, the perforated film is made of impermeable film material which is provided with distributed perforations having an average opening of between 0.75 mm2 and 108 mm2, wherein the perforations form preferably at most 10% of the surface area. In an embodiment, the perimeter of the basin is bounded by the ground sheet, e.g. this sheet being connected to a beam about the perimeter of the basin. For example, the top side of the beam is substantially level with the top side of the floor formed by the water-permeable top fabric. In an embodiment, the basin bottom is provided with a watertight plastic film, which preferably also extends underneath the one or more irrigation lines. The water supply and discharge system including a water pump connected to the one or more irrigation lines allows for controlled supply of water. This system is configured to cause a supply of water via the one or more irrigation lines so that the water-permeable granular material structure in the basin is flooded with water and the water level is above the water- permeable fabric, which water level is maintained for a flood period so that water is absorbed by the bed of soil, e.g. at least in part by the crop. The water supply and discharge system is configured to cause a discharge of water via the one or more irrigation lines so that the water-permeable granular material structure in the basin is relieved from the water after the flood period.
The water may be combined with nutrients aiding the growth of the crop, e.g. the nutrients being supplied by a nutrient pump from a nutrient storage container.
4- The water may be combined with a sterilizing agent or the like, e.g. when sterilization is performed between crops.
The water supplied to the basin via the irrigation lines may be cold, or even cooled by a water cooling device, e.g. in view of reducing the temperature of the bed and/or in an air zone above bed, e.g. in a zone where the crop grows. For example, the bed and the air zone where the crop grows can be kept relatively cold compared to higher air layers by suitable supply of water. This is, for example, of benefit in a greenhouse, where temperature may rise in summer. The inventive floor then may be used to cool just the air zone where the crop grows, whilst allowing for higher temperature above said zone.
It is noted that, in embodiments, water may additionally be supplied from above onto the bed and/or crop by a further watering system or rain. Any surplus water coming from above will then seep through the bed and the permeable fabric and be collected in the layer(s) of granular material filled in the basin, from which it can (when desired) be discharged via the irrigation lines. Of course, this can also apply to the situation of absorbing (heavy) rain when the installation is outdoors.
The permeable fabric, e.g. cloth, e.g. a woven cloth, or mat, provides for a separation between the water-permeable structure in the basin and the bed. The water-permeable cloth or mat prevents the bed soil material, as well as the roots, e.g. the bulk of the roots, from entering into the permeable granular material structure. The latter, for example, could negatively influence the uniformity of supply of water to the bed or the crop and/or induce undesirable growth of organisms in the granular structure.
The invention allows for a controlled and uniform water supply to the bed of soil and thus to the crop, e.g. which allows for a controlled and uniform degree of growth of the crop. As explained herein, the invention also allows for a controlled micro-climate in which the crop grows.
The invention is based on the insight that a combination of an ebb/flood system with a granular material filled watertight basin which is separated from the bed of soil and/or growing medium in which the roots of the crop grow by a water-permeable fabric allows for a uniform and controlled water supply to the bed. The invention allows for enhanced or optimal control conditions to grow a crop.
-5- During installation of the floor system, it is considered advantageous if steps of supplying water and adjusting the effective emerging flow of water are repeated one or more times until a desired uniform emerging flow of water from the one or more irrigation lines is achieved, before providing the water-permeable structure in the basin. The effective emerging flow of water may be influenced by the number and size of the openings in the irrigation lines. In an embodiment, a supply, e.g. comprising a gas pump, e.g. a compressor or blower, is provided, connected to the one or more irrigation lines or to dedicated gas distribution lines distinct from the irrigation lines. The gas supply is configured for pumping a gas, e.g. air, through the one or more irrigation lines towards the basin and then through the to the bed of soil. The gas may be heated or cooled, which allows for heating or cooling the bed and possibly an air zone directly above the bed where the crop grows.
Controlling the temperature of the bed by controlled supply of a gas via the basin, e.g. air, in addition to controlling the water supply of the bed further increases the control of conditions for growth of the crop. In embodiments, the gas may be CO:, which improves the growth rate of the crop. This embodiment allows for control of the growth by controlling the temperature, CO: supply and water supply.
In an embodiment, a gas supply and distribution system is provided, for example for supply of air and/or CO2, wherein the gas supply and distribution system comprises a network of gas supply lines distinct from the irrigation lines and configured for distributing a gas across the floor, which network is provided in the basin embedded in the water-permeable structure or on the bottom of the basin, wherein the gas supply and distribution system further comprises a gas supplying installation for supplying gas to the network and in to the basin to reach the bed.
For example, the network for distributing gas is provided at least 5 cm below the fabric.
For example, the network for distributing gas comprises one or more perforated gas distribution lines having along the length thereof perforations for emitting the gas, e.g. with an inlet connected to a main gas pipe and with a closed end, e.g. multiple perforated gas distribution lines extending parallel to one another from a common main gas pipe, e.g. perpendicular to the main gas pipe.
For example, one or more main gas pipes extend parallel to the irrigation lines, e.g. each main gas pipe centred between a pair of adjacent irrigation lines, wherein perforated gas
-6- distribution lines branch off from each main gas pipe, e.g. in opposite directions, e.g. perpendicular to the main gas pipe. For example, the network comprises a main gas pipe, e.g. which extends parallel to the irrigation lines, e.g. centred between a pair of irrigation lines, wherein perforated gas distribution lines branch off from the main gas pipe in opposite directions, e.g. perpendicular to the main gas pipe. For example, the network comprises a main gas pipe, e.g. which extends parallel to the irrigation lines, e.g. centred between a pair of irrigation lines, the main gas pipe having a length of at least 25 meters, and wherein perforated gas distribution lines branch off from the main gas pipe in opposite directions, e.g. perpendicular to the main gas pipe, each perforated gas distribution line having a blind end and a length of between 3 and 5 meters.
For example, the network for distributing gas comprises perforated gas distribution lines having along the length thereof perforations for emitting the gas, e.g. with an inlet connected to a main gas pipe and with a closed end, wherein multiple perforated gas distribution lines extend, e.g. parallel to one another from a common main gas pipe, e.g. perpendicular to the main gas pipe, and wherein a flow rate adjusting device is present at the inlet of each perforated gas distribution line. For example, the network is supported at a distance above the bottom of the basin by spacers that are placed on the bottom of the basin, e.g. prior to filling granular material in the basin.
For example, the gas supply and distribution system is adapted to heat and/or cool the gas before distributing the gas, e.g. air. In an embodiment, a water storage is provided and in operation alternately water is drawn from the water storage and supplied to the basin and water is discharged from the basin to the water storage. This allows for more economic use of water as no or little new water has to be supplied to the system each time water is supplied to the bed of soil. Water that is supplied to the bed, either by the system or as rain, may be stored in the water storage for later use after draining the water from the basin.
In an embodiment, the basin has a bottom profile comprising a gulley in the bottom profile in which an irrigation line is provided and a bottom surface on one or both sides of the channel,
7.
preferably a bottom surface sloping towards the channel, wherein the profile is covered by a watertight membrane, after which the irrigation line is placed in the gulley, wherein, for example, the gulley is formed such that it has a cross section which corresponds to the cross section of at least the bottom portion of the irrigation line to be accommodated therein.
Preferably, the gulley is formed such that it has a cross section which corresponds to the cross section of at least the bottom portion of the irrigation line to be accommodated therein. Thus, a zone where stagnant water could collect next to the bottom part of the irrigation line is avoided. In particular, this measure is advantageous if the line is only provided with openings in a top portion, above the gulley.
In an embodiment, the irrigation line is a plastic line with a smooth inner wall, preferably made of PVC. Preferably, no corrugated lines are used as irrigation lines, but rather lines which have a closed and smooth, non-corrugated peripheral wall. For example, PVC lines with a smooth wall. It has been found that, due to the shape of a corrugated wall, these corrugated lines contribute to a non-uniform emerging flow of the water. In this respect, the lines with a smooth wall perform better and they are also available in strong designs, in which openings can readily be made without being too disadvantageous for the mechanical load-bearing capacity of the line. In a practical embodiment of the method, the irrigation lines placed in the basin, for example smooth-walled PVC lines, are provided with several openings along their length, for example at regular intervals, in an initial processing step.
In an embodiment, the irrigation line is accommodated in a gulley, so that a top portion of the line is exposed, wherein the one or more openings are formed or enlarged in the exposed top portion of the line. If desired, a small number of openings may be provided in the bottom portion in order to avoid accumulation of water at the underside of the line, and possible floating up of the drained line. This is an effective approach, for example, if only a top cloth is used as water-permeable top structure.
In embodiments, the method comprises the steps of — while the one or more irrigation lines have been placed in the basin and a pump is connected thereto — supplying water to the one or more irrigation lines by means of the pump and monitoring the emerging flow of the water from the one or more irrigation lines in order to check whether the emerging flow is uniform across the one or more irrigation lines in the basin, and — if deviations in the emerging flow are observed — adjusting the effective emerging flow by providing the one or more irrigation lines, in situ, with one or more additional openings or increasing the dimensions of one or more openings at a location where the emerging flow is considered to be too small and/or
-8- closing one or more openings of the irrigation lines or reducing the dimensions of one or more openings at a location where the emerging flow is considered to be too large. This embodiment is based on the insight that it is found that the water level above the top does not rise in a uniform manner everywhere, as a result of which the bed of soil at some locations has a different water regime than at different locations. This embodiment is furthermore based on the insight that the emerging flow of water from the one or more irrigation lines affects the uniformity with which the water rises (viewed across the surface of the bed), despite the presence of a water-permeable structure in the basin. This embodiment makes it possible to improve the uniformity of the rise of the water level, viewed across the floor, by adjusting “in situ” the effective emerging flow of the one or more irrigation lines. This is preferably carried out by providing the one or more irrigation lines with one or more additional openings or increasing the dimensions of one or more openings at a location where the emerging flow is thought to be too small.
In practice, the monitoring can take the form of a visual check by a monitoring individual, but it is also conceivable to provide a measuring system. For example, a system with one or more cameras could be provided which record the emerging flow and said images are then looked at by a monitoring individual. If desired, it is also possible to provide software, which analyses the camera images in order to assess the emerging flow of water and determine the locations at which the emerging flow is too small and/or too large.
In an embodiment, the installation is arranged in a greenhouse. As discussed the floor system with bed thereon can also be installed outdoors.
The present invention, also relates to a greenhouse provided with the installation.
The invention will be explained below with reference to the drawing, in which: - Fig. 1 diagrammatically shows an installation to illustrate the invention; and - Fig. 2 shows a cross section of a part of the installation.
Fig. 1 diagrammatically shows an installation 1 to illustrate the invention. The installation 1 has been installed as follows.
A watertight basin 4 is constructed. The basin 4 has a bottom profile 12, which is produced in abase, e.g. the ground.
0.
Several U-shaped gullies 14 are provided in the bottom profile 12 and extend substantially parallel to each other. Although two gullies 14 are shown in Figure 1, the bottom profile 12 may comprise significantly more gullies 14. On either side of each gulley 14, the bottom profile 12 comprises a bottom surface which runs off towards said gulley 14. After the bottom profile 12 has been formed, the bottom profile 12 is covered with a watertight ground sheet.
An irrigation line 7 is laid in each gulley 14. The irrigation lines 7, preferably, have a smooth, non-corrugated peripheral wall.
The irrigation lines 7 are, for example, formed by plastic pipes with smooth walls, such as PVC pipes. The outer diameter of the irrigation lines 7 corresponds to the curvature of the bottom of the U-shaped gullies 14, in other words the gullies 14 are produced with a cross section which corresponds to the cross section of at least the bottom portion of the irrigation line 7 to be accommodated therein. As is illustrated in Figure 2, this results in a top portion of an irrigation line 7 which is accommodated in a gulley 14 being exposed.
When installing the irrigation lines 7, each irrigation line 7 may already have been provided with several openings 8, which are a distance apart in the longitudinal direction of this irrigation line 7, for example equidistant from each other. Instead, it is also possible for one or more irrigation lines 7 to be configured such that they are initially closed, that is to say have a closed pipe wall, in which case the openings 8 are made after these irrigation lines 7 have been accommodated in the gullies 14 and preferably in the exposed top portion of these irrigation lines 7.
The openings 8 can be made in the irrigation lines 7 in different ways. The openings 8 are, for example, made using a tool which is provided with a base comprising guide means, for example wheels, which are configured to engage with an irrigation line 7. The tool can be placed on an irrigation line 7 and moved along the irrigation line 7. At a location where an outflow opening 8 is desired, the tool may perform an operation on the irrigation line 7 to form the outflow opening 8, for example by drilling, milling, sawing, burning, cutting, or punching. The irrigation lines 7 are connected to a water supply and discharge system 3 which comprises a water storage 11 and a water pump 10. The irrigation lines 7 may be further connected to a gas pump 21.
After the irrigation lines 7 have been accommodated in the gullies 14 and provided with openings 8, water may be supplied to the irrigation lines 7 by means of the water pump 10.
-10- In an embodiment, the emerging flow of water from the irrigation lines 7 is monitored, for example visually, by an individual or by a measuring system (not shown). If undesired deviations in the emerging flow are observed, the effective emerging flow is adjusted in situ by providing the irrigation lines 7 with one or more additional openings 8 or by increasing the dimensions of one or more openings 8 at a location where the emerging flow is considered to be too small and/or by closing one or more openings 8 in the irrigation lines or by reducing the dimensions of one or more openings 8 at a location where the emerging flow is considered to be too large.
If necessary, the steps of supplying water, monitoring and adjusting the effective emerging flow are repeated one or more times until a desired uniform emerging flow of water from the irrigation lines 7 is achieved.
Subsequently, a water-permeable structure 5 is arranged in the basin 4. The water- permeable structure 5 comprises one or more layers of granular material. The irrigation lines 7 are covered by the water-permeable structure 5.
An elongate, readily water-permeable strip of gauze or an open fabric may be laid over the irrigation line 7 which is provided with openings, which strip is configured to prevent granular material from penetrating into the openings 8, and which strip preferably covers edge regions of the basin bottom, which border the irrigation line 7.
A compacting of the one or more layers of loose granular material is performed, so as to provide a stable permeable granular material structure in the basin.
A substantially horizontal top surface of the compacted permeable granular material is provided at a level at or, preferably, below the top edge of the perimeter of the watertight basin. The horizontality is desired in view of obtaining a desired degree of uniformity of the water level when filling water into the basin to the water level being in contact with the bed of soil.
The top surface of the compacted permeable granular material is covered by a water- permeable fabric 17, e.g. a (woven) cloth or a mat, e.g. said cloth or mat being spooled from a roll, e.g. adjacent webs being secured to one another along their edges.
Preferably, the water-permeable fabric 17 is secured to the perimeter of the basin, preferably at a height below the top edge of the perimeter of the basin.
-11- The water-permeable cloth or mat 17 allows water to first be distributed evenly through the water-permeable structure 5 before being supplied to the bed of soil 2 through the water permeable mat or cloth 17. The water-permeable cloth or mat 17 prevent soil from the bed 2 from entering in the water-permeable structure 5 which negatively influences the supply of water to the bed by negatively influencing the distribution of water through the water- permeable structure 5. The bed of soil and/or growing medium 2 is installed over the permeable cloth or mat 17. Possibly walkway areas of the floor remain uncovered by the bed of soil. As the perimeter of the basin extends above the fabric 17, e.g. over about the height of the bed, e.g. up to or below the top of the bed, e.g. over or at least several centimetres, the perimeters contains the water within the bed during a flood period of the floor system.
In embodiments, further elongated barrier members are placed on the floor, delimiting compartments in the bed. In the embodiment of figure 1, the bed 2 is used to grow harvestable crop 9.
With the floor system 1 a particularly uniform water supply is achieved. The combination of an ebb/flood system 3 for providing water to irrigation lines 7 which are provided in a water- permeable structure 5 which is separated from the bed 2 by a water-permeable mat 17 or cloth provides for uniform and controlled water supply to the bed 2.
For example, the system may be used to make the roots of the crop longer by gradually reducing the water level in the bed 2 over time. The roots will grow longer in order to follow the reducing water level. A result of this is a crop with longer roots. The roots will not grow through the fabric, or only to a minimal extent.
Figure 2 shows a crass section of a part of the installation 1. The figure shows the basin 4 and a gulley 14 which is provided in the bottom profile 12. The installation 1 may have as many gullies 14 as required. An irrigation line 7 is provided in the gulley 14, which irrigation line 7 comprises openings 8 at a top side thereof. In embodiments, the openings 8 may also be provided on a bottom side of the irrigation line 7 in order to prevent water from gathering in the gulley 14. On either side of each gulley 14, the bottom profile 12 comprises a bottom
-12- surface which runs off towards said gulley 14. This allows water in the basin 4 to flow easily towards the irrigation line 7 for drainage of the basin 4. The basin 4 and irrigation line 7 are covered by the water permeable structure 5. The water permeable structure 5 comprises a granular material such as volcanic rocks, e.g. lava granules, or coarse sand.
The bed 2, e.g. of between 10 and 40 centimetres thick, is installed over the water- permeable structure 5 and between the bed 2 and the water-permeable structure 5 the water permeable cloth or mat 17 is provided.

Claims (12)

-13- CONCLUSIES-13- CONCLUSIONS 1. Installatie voor het kweken en oogsten van een gewas, waarbij het gewas in een bed van grond en/of groeimedium geplant wordt, zodat wortels van het gewas zich in het bed ontwikkelen en het gewas groeit, waarbij het gegroeide gewas geoogst wordt, waarbij de installatie een bed van grond en/of groeimedium omvat dat op een vloersysteem geïnstalleerd is, waarbij het vloersysteem (1) omvat: - een waterdicht bassin (4) met een bodem en een omtrek met een toprand; - een of meer irrigatieleidingen (7) die in het bassin (4) geplaatst zijn, waarbij de irrigatieleidingen (7) meerdere openingen (8) langs de lengte daarvan hebben voor het doorlaten van water, en mogelijk ook van een gas, bijvoorbeeld lucht en/of CO2, door genoemde openingen (8), - een watertoevoer- en afvoersysteem (3) met een waterpomp (10) die verbonden is met de een of meer irrigatieleidingen (7); - een of meer lagen van granulair materiaal, bijvoorbeeld lavagranulaat, gevuld in het bassin; waarbij genoemde een of meer lagen van los granulair materiaal verdicht is om zo een permeabele granulaire materiaalstructuur (5) in het bassin (4) te verschaffen, waarbij de een of meer irrigatieleidingen (7) bedekt zijn door de granulaire materiaalstructuur (5), - waarbij het verdichte permeabele granulaire materiaal een in hoofdzaak horizontale topoppervlak heeft op een niveau van of, bij voorkeur, onder de toprand van de omtrek van het waterdichte bassin, - een waterpermeabele stof (17), bijvoorbeeld een doek, bijvoorbeeld een gewoven doek, of een mat, die het topoppervlak van het verdichte permeabele granulaire materiaal bedekt, waarbij het bed van grond en/of groeimedium {2) geïnstalleerd is op een bovenkant van de waterpermeabele stof (17), waarbij het watertoevoer-en afvoersysteem is ingericht om water toe te voeren via de een of meer irrigatieleidingen (7) zo dat de waterpermeabele granulaire materiaalstructuur (5) in het bassin (4) bevloeit is met water en waarbij het waterniveau boven de waterpermeabele stof (17) is, waarbij het waterniveau aangehouden wordt gedurende een vloedperiode zo dat het water geabsorbeerd wordt door het bed (2) en het gewas, en waarbij het watertoevoer- en afvoersysteem is ingericht om water af te voeren via de een of meer irrigatieleidingen (7) zo dat de waterpermeabele granulaire materiaalstructuur (5) in het bassin (4) ontdaan is van het water na de vloedperiode.A plant for growing and harvesting a crop, wherein the crop is planted in a bed of soil and/or growing medium so that roots of the crop develop in the bed and the crop grows, whereby the grown crop is harvested, wherein the installation comprises a bed of soil and/or growing medium installed on a floor system, the floor system (1) comprising: - a watertight basin (4) with a bottom and a perimeter with a top edge; - one or more irrigation ducts (7) placed in the basin (4), the irrigation ducts (7) having a plurality of openings (8) along their length for the passage of water, and possibly also a gas, e.g. air and /or CO2, through said openings (8), - a water supply and discharge system (3) with a water pump (10) connected to the one or more irrigation pipes (7); - one or more layers of granular material, for example lava granulate, filled in the basin; wherein said one or more layers of loose granular material is compacted so as to provide a permeable granular material structure (5) in the basin (4), wherein the one or more irrigation conduits (7) are covered by the granular material structure (5), - wherein the densified permeable granular material has a substantially horizontal top surface at a level at or, preferably, below the top edge of the perimeter of the watertight basin, - a water permeable fabric (17), e.g. a cloth, e.g. a woven cloth, or a mat covering the top surface of the compacted permeable granular material, the bed of soil and/or growing medium {2) being installed on a top of the water permeable substance (17), the water supply and discharge system being arranged to supply water to be fed via the one or more irrigation pipes (7) such that the water-permeable granular material structure (5) in the basin (4) is irrigated with water and the water level level above the water permeable substance (17), wherein the water level is maintained during a flood period such that the water is absorbed by the bed (2) and the crop, and wherein the water supply and drainage system is arranged to discharge water through the one or more irrigation pipes (7) such that the water-permeable granular material structure (5) in the basin (4) is freed of the water after the flood period. -14 --14 - 2. Installatie volgens conclusie 1, waarbij het vloersysteem (1) verder een gastoevoer (21) omvat, die verbonden is met de een of meer irrigatieleidingen (7) of met toegewijde gasverdelingsleidingen die ook in het bassin aangebracht zijn, bijvoorbeeld op de bodem daarvan, waarbij de gasverdelingsleidingen verschillend zijn van de irrigatieleidingen, waarbij de gastoevoer (21) is ingericht voor het pompen van een gas, bijvoorbeeld verwarmd of gekoeld gas, door de een of meer leidingen (7) naar de bodem (2).Installation according to claim 1, wherein the floor system (1) further comprises a gas supply (21), which is connected to the one or more irrigation pipes (7) or to dedicated gas distribution pipes also arranged in the basin, e.g. at the bottom thereof the gas distribution pipes being different from the irrigation pipes, the gas supply (21) being arranged for pumping a gas, for instance heated or cooled gas, through the one or more pipes (7) to the bottom (2). 3. Installatie volgens conclusie 1 of 2, waarbij het vloersysteem (1) verder een wateropslag (11) omvat, waarbij het watertoevoer- en afvoersysteem is ingericht om selectief water uit de wateropslag (11) te putten voor het toevoeren naar de een of meer irrigatieleidingen en voor het afvoeren van water via de een of meer irrigatieleidingen naar de wateropslag (11).An installation according to claim 1 or 2, wherein the floor system (1) further comprises a water storage (11), the water supply and drainage system being arranged to selectively draw water from the water storage (11) for supplying the one or more irrigation pipes and for draining water through the one or more irrigation pipes to the water storage (11). 4. Installatie volgens een of meer van de conclusies 1 - 3, waarbij het bassin (4) een bodemprofiel heeft, welke, bijvoorbeeld, in de grond geproduceerd is, omvattende een goot (14) in het bodemprofiel waarin een irrigatieleiding (7) is aangebracht en omvattende een bodemoppervlak aan een of beide zijden van de goot (14), bij voorkeur een bodemoppervlak (12, 16) die richting de goot (14) afloopt, waarbij het bodemprofiel bedekt is door een waterdicht membraan, waarbij de irrigatieleiding (7) geplaatst is in de goot, waarbij, bijvoorbeeld, de goot (14) zo gevormd is dat het een doorsnede heeft die correspondeert met de doorsnede van ten minste een bodemdeel van de irrigatieleiding (7) die daarin aangebracht is.Installation according to one or more of claims 1 to 3, wherein the basin (4) has a bottom profile, which is, for example, produced in the ground, comprising a gutter (14) in the bottom profile in which an irrigation pipe (7) is located. and comprising a bottom surface on one or both sides of the gutter (14), preferably a bottom surface (12, 16) sloping towards the gutter (14), the bottom profile being covered by a watertight membrane, the irrigation conduit (7 ) is placed in the gutter, wherein, for example, the gutter (14) is shaped to have a cross-section corresponding to the cross-section of at least a bottom portion of the irrigation conduit (7) arranged therein. 5. Installatie volgens een of meer van de conclusies 1 - 4, waarbij de irrigatieleiding (7) een plastic leiding met een gladde wand is, bij voorkeur gemaakt van PVC.Installation according to one or more of claims 1-4, wherein the irrigation pipe (7) is a smooth-walled plastic pipe, preferably made of PVC. 6. Installatie volgens een of meer van de conclusies 1 - 5, waarbij de irrigatieleiding (7) in een goot (14) is aangebracht zodanig dat een bovenste gedeelte van de leiding (7) blootgesteld is, en waarbij de een of meer openingen (8) gevormd zijn in het blootgestelde bovenste gedeelte van de leiding (7).Installation according to one or more of claims 1 to 5, wherein the irrigation conduit (7) is arranged in a gutter (14) such that an upper part of the conduit (7) is exposed, and wherein the one or more openings ( 8) formed in the exposed upper portion of the conduit (7). 7. Installatie volgens een of meer van de voorgaande conclusies, waarbij de waterpermeabele stof (17) een gewoven waterpermeabele doek (17) is.Installation according to one or more of the preceding claims, wherein the water-permeable fabric (17) is a woven water-permeable cloth (17). 8. Werkwijze voor het kweken en oogsten van een gewas, waarbij het gewas in een bed van grond en/of groeimedium geplant is zo dat wortels van het gewas zich in het bed ontwikkelen en het gewas groeit, waarbij het gegroeide gewas geoogst wordt, waarbij het bedA method of growing and harvesting a crop, wherein the crop is planted in a bed of soil and/or growing medium so that roots of the crop develop in the bed and the crop grows, harvesting the grown crop, wherein the bed -15- van grond en/of groeimedium op een vloersysteem geïnstalleerd is, waarbij het vloersysteem (1) omvat: - een waterdicht bassin (4) met een bodem en een omtrek met een toprand; - een of meer irrigatieleidingen (7) die in het bassin (4) geplaatst zijn, waarbij de irrigatieleidingen (7) meerdere openingen (8) langs de lengte daarvan hebben voor het doorlaten van water, en mogelijk ook van een gas, bijvoorbeeld lucht en/of CO2, door genoemde openingen (8), - een watertoevoer- en afvoersysteem (3) met een waterpomp (10) die verbonden is met de een of meer irrigatieleidingen (7); - een of meer lagen van granulair materiaal, bijvoorbeeld lavagranulaat, gevuld in het bassin; waarbij genoemde een of meer lagen van los granulair materiaal verdicht is om zo een permeabele granulaire materiaalstructuur (5) in het bassin (4) te verschaffen, waarbij de een of meer irrigatieleidingen (7) bedekt zijn door de granulaire materiaalstructuur (5), - waarbij het verdichte permeabele granulaire materiaal een in hoofdzaak horizontale topoppervlak heeft dat op een niveau van of, bij voorkeur, onder de toprand van de omtrek van het waterdichte bassin, - een waterpermeabele stof (17), bijvoorbeeld een doek, bijvoorbeeld een gewoven doek, of een mat, die het topoppervlak van het verdichte permeabele granulaire materiaal bedekt, waarbij het bed van grond en/of groeimedium (2) geïnstalleerd is op een bovenkant van de waterpermeabele stof (17), waarbij het watertoevoer-en afvoersysteem is ingericht om water toe te voeren via de een of meer irrigatieleidingen (7) zo dat de waterpermeabele granulaire materiaalstructuur (5) in het bassin (4) bevloeit is met water en waarbij het waterniveau boven de waterpermeabele stof (17) is, waarbij het waterniveau aangehouden wordt gedurende een vloedperiode zo dat het water geabsorbeerd wordt door het bed (2) en het gewas, en waarbij het watertoevoer- en afvoersysteem is ingericht om water af te voeren via de een of meer irrigatieleidingen (7) zo dat de waterpermeabele granulaire materiaalstructuur (5) in het bassin (4) ontdaan is van het water na de vloedperiode.-15- of soil and/or growing medium is installed on a floor system, the floor system (1) comprising: - a watertight basin (4) with a bottom and a perimeter with a top edge; - one or more irrigation ducts (7) placed in the basin (4), the irrigation ducts (7) having a plurality of openings (8) along their length for the passage of water, and possibly also a gas, e.g. air and /or CO2, through said openings (8), - a water supply and discharge system (3) with a water pump (10) connected to the one or more irrigation pipes (7); - one or more layers of granular material, for example lava granulate, filled in the basin; wherein said one or more layers of loose granular material is compacted so as to provide a permeable granular material structure (5) in the basin (4), wherein the one or more irrigation conduits (7) are covered by the granular material structure (5), - wherein the densified permeable granular material has a substantially horizontal top surface which is at a level or, preferably, below the top edge of the perimeter of the watertight basin, - a water permeable fabric (17), e.g. a cloth, e.g. a woven cloth, or a mat covering the top surface of the compacted permeable granular material, wherein the bed of soil and/or growing medium (2) is installed on a top of the water-permeable substance (17), the water supply and discharge system being arranged to supply water to be supplied via the one or more irrigation pipes (7) such that the water-permeable granular material structure (5) in the basin (4) is irrigated with water and there is a level above the water permeable substance (17), the water level being maintained during a flood period such that the water is absorbed by the bed (2) and the crop, and the water supply and drainage system is arranged to discharge water through the one or more irrigation pipes (7) such that the water-permeable granular material structure (5) in the basin (4) is freed of the water after the flood period. 9. Werkwijze volgens conclusie 8, waarbij — na het oogsten van het gewas — de bodem (2) geïnstalleerd blijft op het vloersysteem en een nieuw gewas voor het kweken en oogsten geplant wordt, bijvoorbeeld waarbij de bodem (2) ten minste één jaar geïnstalleerd blijft, bijvoorbeeld meerdere jaren, voordat deze vernieuwd wordt.Method according to claim 8, wherein — after harvesting the crop — the soil (2) remains installed on the floor system and a new crop is planted for cultivation and harvesting, for example wherein the soil (2) is installed for at least one year remains, for example several years, before it is renewed. -16 --16 - 10. Werkwijze volgens conclusie 8 of 9, waarbij het vloersysteem (1) verder een gastoevoer, bijvoorbeeld omvattende een gaspomp (21), omvat die verbonden is met de een of meer irrigatieleidingen (7) of met toegewijde gasverdelingsleidingen die in het bassin zijn aangebracht, bijvoorbeeld op een bodem daarvan, waarbij de gasverdelingsleidingen S verschillend zijn van de irrigatieleidingen, waarbij de gastoevoer (21) een gas, bijvoorbeeld een verwarmd of gekoeld gas, door de een of meer leidingen (7) naar de bodem (2) pompt.A method according to claim 8 or 9, wherein the floor system (1) further comprises a gas supply, for example comprising a gas pump (21), which is connected to the one or more irrigation pipes (7) or to dedicated gas distribution pipes arranged in the basin. e.g. on a bottom thereof, the gas distribution pipes S being different from the irrigation pipes, wherein the gas supply (21) pumps a gas, for example a heated or cooled gas, through the one or more pipes (7) to the bottom (2). 11. Werkwijze volgens een of meer van de conclusies 8 - 10, waarbij het vloersysteem (1) verder een wateropslag (11) omvat, waarbij het watertoevoer- en afvoersysteem selectief water uit de wateropslag (11) put voor het toevoeren naar de een of meer irrigatieleidingen en water via de een of meer irrigatieleidingen naar de wateropslag (11) afvoert.A method according to any one of claims 8 to 10, wherein the flooring system (1) further comprises a water storage (11), wherein the water supply and drainage system selectively draws water from the water storage (11) for supplying the one or more more irrigation pipes and drains water through the one or more irrigation pipes to the water storage (11). 12. Werkwijze volgens een of meer van de conclusies 8 - 11, waarbij het bassin (4) een bodemprofiel heeft, welke, bijvoorbeeld in de grond geproduceerd is, omvattende een goot (14) in het bodemprofiel waarin een irrigatieleiding (7) is aangebracht en een bodemoppervlak aan een of beide kanten van de goot (14), bij voorkeur een bodemoppervlak (12, 16) die naar de goot (14) helt, waarbij het bodemprofiel bedekt is door een waterdicht membraan, waarbij de irrigatieleiding (7) in de goot geplaatst is, waarbij, bijvoorbeeld, de goot (14) gevormd is zo dat deze een doorsnede heeft die correspondeert met de doorsnede van ten minste een bodemdeel van de irrigatieleiding (7) die daarin aangebracht wordt.Method according to one or more of claims 8-11, wherein the basin (4) has a bottom profile, which is, for example, produced in the ground, comprising a gutter (14) in the bottom profile in which an irrigation pipe (7) is arranged. and a bottom surface on one or both sides of the gutter (14), preferably a bottom surface (12, 16) sloping towards the gutter (14), the bottom profile being covered by a watertight membrane, the irrigation conduit (7) in the gutter is placed, for example, the gutter (14) being shaped so as to have a cross section corresponding to the cross section of at least a bottom portion of the irrigation conduit (7) fitted therein.
NL2027823A 2021-03-24 2021-03-24 Method and installation for growing a harvestable crop NL2027823B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL2027823A NL2027823B1 (en) 2021-03-24 2021-03-24 Method and installation for growing a harvestable crop
PCT/EP2022/057512 WO2022200362A2 (en) 2021-03-24 2022-03-22 Cultivation floor system and method
EP22717145.1A EP4312509A2 (en) 2021-03-24 2022-03-22 Cultivation floor system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2027823A NL2027823B1 (en) 2021-03-24 2021-03-24 Method and installation for growing a harvestable crop

Publications (1)

Publication Number Publication Date
NL2027823B1 true NL2027823B1 (en) 2022-10-07

Family

ID=76159937

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2027823A NL2027823B1 (en) 2021-03-24 2021-03-24 Method and installation for growing a harvestable crop

Country Status (1)

Country Link
NL (1) NL2027823B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0532447A2 (en) * 1991-09-09 1993-03-17 Leif Liebmann Pedersen Irrigation valve for a cultivation table and related irrigation system
NL2010291C2 (en) * 2013-02-12 2014-08-13 Erfgoed B V FARMING FLOOR SYSTEM.
EP3272208A2 (en) * 2013-02-12 2018-01-24 ErfGoed Materieel B.V. Method for installing a cultivation floor system and cultivation floor system
US20180220600A1 (en) * 2010-01-21 2018-08-09 Austin Russell Systems and methods for water harvesting and recycling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0532447A2 (en) * 1991-09-09 1993-03-17 Leif Liebmann Pedersen Irrigation valve for a cultivation table and related irrigation system
US20180220600A1 (en) * 2010-01-21 2018-08-09 Austin Russell Systems and methods for water harvesting and recycling
NL2010291C2 (en) * 2013-02-12 2014-08-13 Erfgoed B V FARMING FLOOR SYSTEM.
EP3272208A2 (en) * 2013-02-12 2018-01-24 ErfGoed Materieel B.V. Method for installing a cultivation floor system and cultivation floor system

Similar Documents

Publication Publication Date Title
US11818993B2 (en) Cultivation floor system for providing supply and discharge irrigation
US5938372A (en) Subsurface irrigation apparatus and method
EP3355686B1 (en) Sub-surface irrigation system
JP2007267732A (en) Rooftop greening system
JP2007267731A (en) Greening system
CA2510441C (en) Capillary carpet and method of manufacturing thereof
NL2027823B1 (en) Method and installation for growing a harvestable crop
JP5970675B2 (en) Underground irrigation system
JP2979209B2 (en) Hydroponic cultivation method and its structure
EP3899141A1 (en) Aerification system
NL2027824B1 (en) Sports pitch floor system
JP5187752B2 (en) Underground irrigation system and double pipe unit used therefor
EA006806B1 (en) Device and cultivation method for the optimal economic/ecological utilization of hectares in farming/agriculture/horticulture/winegrowing etc.
EP4312509A2 (en) Cultivation floor system and method
NL2027825B1 (en) Cultivation floor system and method
GB2232865A (en) Apparatus for watering and draining soil
US20240085064A1 (en) Geothermal aerification system and related methods
RU2072769C1 (en) Amelioration facilities of desert valleys
WO2022114098A1 (en) Cultivation system and cultivation method for water-grown wasabi
JPH062015B2 (en) Layered structure for plant vegetation with perforated pipes and plant vegetation method using the same
JP3066038B2 (en) Integrated water supply and drainage function device
RU2608052C2 (en) Land reclamation system
JPH05153870A (en) Rooftop heater of structure