MX388689B - Sensores de efecto de campo. - Google Patents
Sensores de efecto de campo.Info
- Publication number
- MX388689B MX388689B MX2019014905A MX2019014905A MX388689B MX 388689 B MX388689 B MX 388689B MX 2019014905 A MX2019014905 A MX 2019014905A MX 2019014905 A MX2019014905 A MX 2019014905A MX 388689 B MX388689 B MX 388689B
- Authority
- MX
- Mexico
- Prior art keywords
- nanostructure
- active moiety
- channel
- field effect
- effect sensors
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4145—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4146—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4148—Integrated circuits therefor, e.g. fabricated by CMOS processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54346—Nanoparticles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/43—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 1D charge carrier gas channels, e.g. quantum wire FETs or transistors having 1D quantum-confined channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0092—Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/027—Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
- H03K3/03—Astable circuits
- H03K3/0315—Ring oscillators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
- H10D62/123—Nanowire, nanosheet or nanotube semiconductor bodies comprising junctions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Crystallography & Structural Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Computer Hardware Design (AREA)
- Biophysics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
Abstract
Se describen aparatos y métodos para sensores de efecto de campo de molécula individual que tienen canales conductores funcionalizados con una porción activa individual. Una región de una nanoestructura (por ejemplo, tal como un nanocable de silicio o un nanotubo de carbono) proporciona el canal conductor. La densidad de estado de trampa de la nanoestructura se modifica para una parte de la nanoestructura en proximidad con una ubicación donde la porción se activa se enlaa a la nanoestructura. En un ejemplo, el dispositivo semiconductor incluye una fuente, un drenador, un canal que incluye una nanoestructura que tiene una porción modificada con una densidad de estado de trampa incrementada, la porción modificada que se funcionaliza adicionalmente con una porción activa. Una terminal de compuerta esta en comunicación eléctrica con la nanoestructura. A medida que se aplica una señal eléctrica variable a una solución iónica en contacto con el canal nanoestructural, los cambios en la corriente observada del dispositivo semiconductor pueden usarse para identificar la composición del analito.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762539813P | 2017-08-01 | 2017-08-01 | |
| PCT/US2018/040439 WO2019027604A1 (en) | 2017-08-01 | 2018-06-29 | FIELD EFFECT SENSORS |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MX2019014905A MX2019014905A (es) | 2021-12-13 |
| MX388689B true MX388689B (es) | 2025-03-20 |
Family
ID=65229384
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MX2019014905A MX388689B (es) | 2017-08-01 | 2018-06-29 | Sensores de efecto de campo. |
Country Status (17)
| Country | Link |
|---|---|
| US (1) | US10551342B2 (es) |
| EP (1) | EP3646018B1 (es) |
| JP (1) | JP6833079B2 (es) |
| KR (1) | KR102213538B1 (es) |
| CN (1) | CN111051871B (es) |
| AU (2) | AU2018310436A1 (es) |
| BR (1) | BR112019028104B1 (es) |
| CA (1) | CA3067245C (es) |
| IL (1) | IL271295B (es) |
| MX (1) | MX388689B (es) |
| PH (1) | PH12019502908A1 (es) |
| RU (1) | RU2740358C1 (es) |
| SA (1) | SA519410908B1 (es) |
| SG (1) | SG11201912263VA (es) |
| TW (1) | TWI709241B (es) |
| WO (1) | WO2019027604A1 (es) |
| ZA (1) | ZA201908275B (es) |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12298301B2 (en) | 2014-12-18 | 2025-05-13 | Cardea Bio, Inc. | Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same |
| AU2019221691B2 (en) | 2018-02-16 | 2022-04-28 | Illumina Singapore Pte. Ltd. | Charge-tagged nucleotides and methods of use thereof |
| EP3772640B1 (en) * | 2019-08-09 | 2022-06-22 | Sciosense B.V. | Electric circuitry for strain measurement |
| TWI731444B (zh) * | 2019-10-21 | 2021-06-21 | 財團法人國家實驗研究院 | 癌胚胎抗原之檢測方法 |
| EP4158327A1 (en) * | 2020-05-27 | 2023-04-05 | Gisens Biotech SA | Sensors and systems based on two-dimensional nanosheet field-effect transistors, methods of preparation and devices for their operation |
| RU2749698C1 (ru) * | 2020-11-17 | 2021-06-16 | федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") | Биомолекулярный сенсор с микроэлектронным генератором электромагнитной волны |
| CN113960128B (zh) * | 2020-12-15 | 2022-08-23 | 有研工程技术研究院有限公司 | 基于钾离子适配体修饰的硅纳米线场效应管生物传感器 |
| US12061165B2 (en) * | 2021-01-25 | 2024-08-13 | University Of Central Florida Research Foundation, Inc. | Plasmonic organic electrochemical transistor |
| US20230022648A1 (en) * | 2021-07-14 | 2023-01-26 | Tower Semiconductor Ltd. | Biosensor having a fluid compartment |
| CN114199969B (zh) * | 2021-12-03 | 2023-04-28 | 清华大学 | 一种基于核酸适配体的纳米电极生物传感器及其应用 |
| TWI832146B (zh) * | 2022-01-21 | 2024-02-11 | 明志科技大學 | 具雙閘極之溶液式閘極石墨烯電晶體 |
| KR20250080539A (ko) * | 2023-11-28 | 2025-06-05 | 순천향대학교 산학협력단 | 엔도뉴클레아제를 선택적으로 검출하기 위한 바이오 센서용 전계효과 트랜지스터, 이를 포함하는 바이오 센서 및 이의 제조방법 |
| WO2025123128A1 (en) * | 2023-12-11 | 2025-06-19 | Bio-Stream Diagnostics Inc. | Systems and methods for rapid target molecule detection using an organic electrochemical transistor based sensing platform |
| WO2025187387A1 (ja) * | 2024-03-04 | 2025-09-12 | 株式会社村田製作所 | センサ |
| CN118191066B (zh) * | 2024-05-16 | 2024-10-22 | 中国科学院上海微系统与信息技术研究所 | 一种双栅硅纳米线晶体管传感器及制作方法 |
| CN118243761B (zh) * | 2024-05-28 | 2024-07-30 | 星云基因科技有限公司 | 一种利用生物传感器进行生物信息识别的方法 |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6567292B1 (en) * | 2002-06-28 | 2003-05-20 | Progressant Technologies, Inc. | Negative differential resistance (NDR) element and memory with reduced soft error rate |
| AU2003282548A1 (en) * | 2002-10-10 | 2004-05-04 | Nanosys, Inc. | Nano-chem-fet based biosensors |
| DE10325150A1 (de) * | 2003-05-31 | 2004-12-30 | Hahn-Meitner-Institut Berlin Gmbh | Parametrierte Halbleiterverbundstruktur mit integrierten Dotierungskanälen, Verfahren zur Herstellung und Anwendung davon |
| US7018880B2 (en) * | 2003-12-22 | 2006-03-28 | Texas Instruments Incorporated | Method for manufacturing a MOS transistor having reduced 1/f noise |
| US20060102931A1 (en) * | 2004-11-17 | 2006-05-18 | Thomas Edward Kopley | Field effect transistor having a carrier exclusion layer |
| US7923240B2 (en) * | 2006-03-31 | 2011-04-12 | Intel Corporation | Photo-activated field effect transistor for bioanalyte detection |
| US20100027355A1 (en) * | 2007-07-31 | 2010-02-04 | Dao Thuy B | Planar double gate transistor storage cell |
| KR101026468B1 (ko) * | 2008-09-10 | 2011-04-01 | 한국전자통신연구원 | 생분자 검출 장치 및 검출 방법 |
| EP2366994A1 (en) * | 2010-03-18 | 2011-09-21 | Wolfgang Knoll | Biosensor on thin-film transistors |
| IL206241A0 (en) | 2010-06-08 | 2010-12-30 | Fernando Patolsky | Modified nanowires for use in detecting nitro - containing chemicals |
| WO2013039858A2 (en) * | 2011-09-12 | 2013-03-21 | Nanoselect, Inc. | Carbon nanostructure electrochemical sensor and method |
| US9957472B2 (en) * | 2011-09-22 | 2018-05-01 | Georgia Tech Research Corporation | Deterministic high-density single-cell trap array |
| US10054562B2 (en) * | 2012-02-28 | 2018-08-21 | Ramot At Tel-Aviv University Ltd. | Molecular sensor based on virtual buried nanowire |
| EP3709370A1 (en) * | 2012-03-31 | 2020-09-16 | Longitude Flash Memory Solutions Ltd. | Oxide-nitride-oxide stack having multiple oxynitride layers |
| WO2013158280A1 (en) | 2012-04-20 | 2013-10-24 | The Trustees Of Columbia University In The City Of New York | Systems and methods for single-molecule nucleic-acid assay platforms |
| EA020321B1 (ru) * | 2012-06-05 | 2014-10-30 | Федеральное Государственное Бюджетное Учреждение "Научно-Производственный Комплекс "Технологический Центр" Миэт" | Чувствительный элемент датчика |
| KR101229392B1 (ko) * | 2012-09-12 | 2013-02-05 | 주식회사 아이엠헬스케어 | 오믹 접합을 이용하는 fet 기반 바이오 센서 |
| TWI637517B (zh) * | 2012-10-24 | 2018-10-01 | 半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
| AU2014338510A1 (en) * | 2013-10-22 | 2016-06-09 | Ramot At Tel-Aviv University Ltd. | Method and system for sensing |
| US10054563B2 (en) * | 2015-03-31 | 2018-08-21 | Rge Smart Pte. Ltd. | Optoelectronic pixel sensor |
| WO2016161246A1 (en) * | 2015-04-03 | 2016-10-06 | President And Fellows Of Harvard College | Nanoscale wires with external layers for sensors and other applications |
| US20170059513A1 (en) * | 2015-08-31 | 2017-03-02 | International Business Machines Corporation | Hybrid ion-sensitive field-effect transistor |
| CA3007606A1 (en) * | 2015-12-09 | 2017-06-15 | Ramot At Tel-Aviv University Ltd. | Method and system for sensing |
| CN106129113B (zh) * | 2016-07-11 | 2019-06-14 | 中国科学院微电子研究所 | 一种垂直双扩散金属氧化物半导体场效应晶体管 |
| CN106971944A (zh) * | 2017-05-22 | 2017-07-21 | 深圳市华星光电技术有限公司 | 金属氧化物薄膜晶体管的制备方法及其结构 |
-
2018
- 2018-06-29 SG SG11201912263VA patent/SG11201912263VA/en unknown
- 2018-06-29 EP EP18842058.2A patent/EP3646018B1/en active Active
- 2018-06-29 KR KR1020197037982A patent/KR102213538B1/ko not_active Expired - Fee Related
- 2018-06-29 RU RU2019141087A patent/RU2740358C1/ru active
- 2018-06-29 CA CA3067245A patent/CA3067245C/en active Active
- 2018-06-29 WO PCT/US2018/040439 patent/WO2019027604A1/en not_active Ceased
- 2018-06-29 AU AU2018310436A patent/AU2018310436A1/en not_active Abandoned
- 2018-06-29 MX MX2019014905A patent/MX388689B/es unknown
- 2018-06-29 CN CN201880044249.9A patent/CN111051871B/zh active Active
- 2018-06-29 BR BR112019028104-5A patent/BR112019028104B1/pt not_active IP Right Cessation
- 2018-06-29 JP JP2019571587A patent/JP6833079B2/ja not_active Expired - Fee Related
- 2018-06-29 US US16/024,299 patent/US10551342B2/en active Active
- 2018-07-13 TW TW107124317A patent/TWI709241B/zh not_active IP Right Cessation
-
2019
- 2019-12-10 IL IL271295A patent/IL271295B/en unknown
- 2019-12-11 ZA ZA2019/08275A patent/ZA201908275B/en unknown
- 2019-12-20 PH PH12019502908A patent/PH12019502908A1/en unknown
- 2019-12-25 SA SA519410908A patent/SA519410908B1/ar unknown
-
2021
- 2021-06-09 AU AU2021203805A patent/AU2021203805B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| AU2021203805A1 (en) | 2021-07-08 |
| CA3067245C (en) | 2020-10-20 |
| EP3646018A1 (en) | 2020-05-06 |
| BR112019028104B1 (pt) | 2021-10-26 |
| TW201911577A (zh) | 2019-03-16 |
| BR112019028104A2 (pt) | 2020-07-28 |
| KR102213538B1 (ko) | 2021-02-08 |
| JP2020528542A (ja) | 2020-09-24 |
| WO2019027604A1 (en) | 2019-02-07 |
| AU2018310436A1 (en) | 2020-01-16 |
| MX2019014905A (es) | 2021-12-13 |
| IL271295B (en) | 2021-09-30 |
| US20190041354A1 (en) | 2019-02-07 |
| RU2740358C1 (ru) | 2021-01-13 |
| CN111051871A (zh) | 2020-04-21 |
| SG11201912263VA (en) | 2020-01-30 |
| AU2021203805B2 (en) | 2023-05-25 |
| ZA201908275B (en) | 2021-04-28 |
| TWI709241B (zh) | 2020-11-01 |
| EP3646018A4 (en) | 2020-11-18 |
| CN111051871B (zh) | 2022-05-10 |
| SA519410908B1 (ar) | 2022-08-09 |
| EP3646018B1 (en) | 2023-08-09 |
| PH12019502908A1 (en) | 2020-09-14 |
| CA3067245A1 (en) | 2019-02-07 |
| KR20200017425A (ko) | 2020-02-18 |
| JP6833079B2 (ja) | 2021-02-24 |
| IL271295A (en) | 2020-01-30 |
| US10551342B2 (en) | 2020-02-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| MX2019014905A (es) | Sensores de efecto de campo. | |
| US11121334B2 (en) | 3D graphene transistor | |
| IN2015DN02565A (es) | ||
| Choi et al. | Capacitively coupled hybrid ion gel and carbon nanotube thin‐film transistors for low voltage flexible logic circuits | |
| EP2768039A3 (en) | Graphene device and electronic apparatus | |
| Carrad et al. | Hybrid nanowire ion-to-electron transducers for integrated bioelectronic circuitry | |
| EP2555247A3 (en) | Thin film transistor including a nanoconductor layer | |
| Qu et al. | Interaction of bipolaron with the H2O/O2 redox couple causes current hysteresis in organic thin-film transistors | |
| Das et al. | Dielectrically modulated ferroelectric-TFET (Ferro-TFET) based biosensors | |
| Wei et al. | Extended gate ion-sensitive field-effect transistors using Al2O3/hexagonal boron nitride nanolayers for pH sensing | |
| SE0800764L (sv) | Insulated gate field effect transistor in series with a junction field effect transistor | |
| Dang et al. | Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene | |
| Kettner et al. | Ionic gel as gate dielectric for the easy characterization of graphene and polymer field-effect transistors and electrochemical resistance modification of graphene | |
| WO2012006546A3 (en) | Circuits, devices and sensors for fluid detection | |
| TW200943532A (en) | Semiconductor device and fabrication process thereof | |
| Lu et al. | Probing the sensitivity of nanowire-based biosensors using liquid-gating | |
| JP2015004615A5 (es) | ||
| Kwon et al. | Drift-free pH detection with silicon nanowire field-effect transistors | |
| Edgington et al. | Boron δ-doped (1 1 1) diamond solution gate field effect transistors | |
| Cheng et al. | Flexible solution-gated graphene field effect transistor for electrophysiological recording | |
| Lee et al. | Issues with the electrical characterization of graphene devices | |
| PH12018502239A1 (en) | An array apparatus and associated methods | |
| Al-Amin et al. | Field controlled RF Graphene FETs with improved high frequency performance | |
| Yusof et al. | pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor | |
| Jin et al. | Ultra-low noise HEMTs for deep cryogenic low-frequency and high-impedance readout electronics |