MX2019009874A - Metodo de prueba de la fragilizacion por hidrogeno. - Google Patents

Metodo de prueba de la fragilizacion por hidrogeno.

Info

Publication number
MX2019009874A
MX2019009874A MX2019009874A MX2019009874A MX2019009874A MX 2019009874 A MX2019009874 A MX 2019009874A MX 2019009874 A MX2019009874 A MX 2019009874A MX 2019009874 A MX2019009874 A MX 2019009874A MX 2019009874 A MX2019009874 A MX 2019009874A
Authority
MX
Mexico
Prior art keywords
hydrogen embrittlement
test specimen
load
flaw size
notched area
Prior art date
Application number
MX2019009874A
Other languages
English (en)
Inventor
Craig Willan W
Original Assignee
Goff Omega Holdings Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goff Omega Holdings Llc filed Critical Goff Omega Holdings Llc
Publication of MX2019009874A publication Critical patent/MX2019009874A/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • G01N3/567Investigating resistance to wear or abrasion by submitting the specimen to the action of a fluid or of a fluidised material, e.g. cavitation, jet abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0228Low temperature; Cooling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/0242With circulation of a fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/027Specimens with holes or notches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils
    • G01N2203/0464Chucks, fixtures, jaws, holders or anvils with provisions for testing more than one specimen at the time
    • G01N2203/047Chucks, fixtures, jaws, holders or anvils with provisions for testing more than one specimen at the time in series
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

Un método para probar la fragilización por hidrógeno, que incluye montar un recipiente alrededor de un espécimen de prueba de aleación de acero, el recipiente que tiene un fondo cerrado por debajo de un área con muescas en el espécimen de prueba y un extremo superior abierto por encima del área con muescas; aplicar una carga de tracción al espécimen de prueba y sostener la carga durante una duración seleccionada para incubar agrietamientos potenciales de fragilización por hidrógeno con un tamaño subcrítico de defecto, si está presente suficiente hidrógeno a niveles peligrosos en el espécimen de prueba; entonces, mientras sostiene la carga, dispensar un fluido criogénico en el recipiente, sumergir y enfriar el área con muescas, reducir el tamaño subcrítico de defecto para cualquier agrietamiento de fragilización por hidrógeno incubado; y con la carga sostenida, fracturar el área con muescas si el tamaño subcrítico de defecto de cualquier agrietamiento de fragilización por hidrógeno incubado alcanza un tamaño crítico de defecto.
MX2019009874A 2017-02-17 2018-02-06 Metodo de prueba de la fragilizacion por hidrogeno. MX2019009874A (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762460147P 2017-02-17 2017-02-17
PCT/US2018/017008 WO2018151974A2 (en) 2017-02-17 2018-02-06 Testing method for hydrogen embrittlement

Publications (1)

Publication Number Publication Date
MX2019009874A true MX2019009874A (es) 2019-10-07

Family

ID=63167627

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2019009874A MX2019009874A (es) 2017-02-17 2018-02-06 Metodo de prueba de la fragilizacion por hidrogeno.

Country Status (6)

Country Link
US (1) US10634593B2 (es)
EP (1) EP3583400B1 (es)
AU (1) AU2018220685A1 (es)
CA (1) CA3050317C (es)
MX (1) MX2019009874A (es)
WO (1) WO2018151974A2 (es)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10473569B2 (en) * 2017-06-15 2019-11-12 Saudi Arabian Oil Company Method and device for testing a material sample in a standard test for in-plane fracture toughness evaluation
JP7234544B2 (ja) * 2018-09-07 2023-03-08 日本製鉄株式会社 水素脆化特性評価方法
DE102019202424A1 (de) * 2019-02-22 2020-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Erfassung von mechanischen Kennwerten eines durch Druckwasserstoff beeinflussten Werkstoffs, Hohlprobe zur Verwendung in der Vorrichtung und Verwendungen der Hohlprobe
JP7259805B2 (ja) * 2019-06-10 2023-04-18 Jfeスチール株式会社 遅れ破壊特性評価方法
CN110608954B (zh) * 2019-10-22 2024-05-14 中国工程物理研究院化工材料研究所 一种针对哑铃状试样的串联拉伸加载装置
FR3106898B1 (fr) 2020-01-30 2022-10-07 Psa Automobiles Sa Procede d’analyse de la fragilisation par l’hydrogene de pieces en aciers nus ou revetus utilisees dans les vehicules automobiles
CN111965047B (zh) * 2020-07-07 2021-11-09 南京航空航天大学 一种复合材料层间剪切测试装置及其操作方法
CN112086211B (zh) * 2020-09-15 2022-04-15 华北电力大学 用于模拟锆合金包壳二次氢脆现象的实验装置及实验方法
CN112098244B (zh) * 2020-09-22 2021-04-20 深圳市美宝昕新材料有限公司 一种适用于硅酮密封胶的多方向拉力的抗疲劳性测试设备
CN113504114A (zh) * 2021-06-18 2021-10-15 河南中原特钢装备制造有限公司 金属材料拉伸试验机及其制造方法
CN115541409B (zh) * 2022-11-24 2023-03-07 东北大学 一种适用于超低温环境下的金属圆柱试样疲劳测试装置
CN116399680B (zh) * 2022-11-25 2024-02-09 中国石油大学(华东) 一种具有管道氢脆防护作用的气体运输方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3455152A (en) 1967-01-05 1969-07-15 Associated Spring Corp Method for quickly determining hydrogen embrittlement of metallic parts
US3572102A (en) * 1969-05-12 1971-03-23 Francis I Baratta Fixture for testing brittle materials
US4064438A (en) 1976-01-29 1977-12-20 The University Of Utah Nondestructive detection and measurement of hydrogen embrittlement
JPS5825335Y2 (ja) * 1978-06-20 1983-05-31 株式会社島津製作所 試験機
US4221651A (en) 1979-06-25 1980-09-09 Rockwell International Corporation Electrochemical cell for measuring hydrogen in metal
JPS58153140A (ja) * 1982-03-08 1983-09-12 Masami Kobayashi 金属片の破壊試験装置
JPH0789106B2 (ja) 1986-03-25 1995-09-27 株式会社東芝 低合金鋼の劣化判定法
US7235212B2 (en) 2001-02-09 2007-06-26 Ques Tek Innovations, Llc Nanocarbide precipitation strengthened ultrahigh strength, corrosion resistant, structural steels and method of making said steels
US5585570A (en) * 1994-10-12 1996-12-17 Lra Laboratories, Inc. Rising step-load test apparatus
US20040060620A1 (en) 2000-10-05 2004-04-01 Johns Hopkins University High performance nanostructured materials and methods of making the same
US6776520B2 (en) * 2001-03-16 2004-08-17 Arizona Board Of Regents Method for determining a coefficient of thermal expansion and apparatus therefor
US7089802B2 (en) * 2003-09-05 2006-08-15 The Boeing Company Method and apparatus for determining hydrogen embrittlement
WO2006113916A2 (en) * 2005-04-20 2006-10-26 The Regents Of The University Of California Crytogenic immersion microscope
JP5196926B2 (ja) * 2007-09-13 2013-05-15 新日鐵住金株式会社 薄鋼板用水素脆化評価装置及び薄鋼板水素脆化評価方法
US8186875B2 (en) * 2008-09-14 2012-05-29 Nuovo Pignone S.P.A. Method for determining reheat cracking susceptibility
CN101706395B (zh) * 2009-11-18 2011-11-16 南京工业大学 低温环境下材料氢脆敏感性测量装置
CN102455342B (zh) 2010-11-02 2015-04-08 西安航空动力控制科技有限公司 一种快速检测电镀氢脆的方法
JP5356438B2 (ja) 2011-03-04 2013-12-04 株式会社日本製鋼所 高圧水素環境下の疲労き裂寿命判定方法
DE102012013113A1 (de) 2012-06-22 2013-12-24 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa
US9176039B2 (en) * 2013-02-28 2015-11-03 The Boeing Company Method and systems for determining hydrogen embrittlement
US9063035B2 (en) * 2013-06-03 2015-06-23 The Boeing Company Apparatus and method for load testing a coupon
JP2015052478A (ja) * 2013-09-05 2015-03-19 株式会社住化分析センター 試験装置および水素脆化試験方法
KR101671977B1 (ko) * 2014-12-22 2016-11-04 주식회사 포스코 곡면시편의 인장시험장치 및 인장시험방법
JP6447957B2 (ja) 2014-12-25 2019-01-09 東京電力ホールディングス株式会社 鋼材の水素脆化試験溶液、水素チャージ方法および水素脆化試験方法

Also Published As

Publication number Publication date
CA3050317A1 (en) 2018-08-23
CA3050317C (en) 2023-06-20
AU2018220685A1 (en) 2019-07-25
US20180238783A1 (en) 2018-08-23
EP3583400B1 (en) 2022-01-05
EP3583400A4 (en) 2021-03-17
US10634593B2 (en) 2020-04-28
WO2018151974A3 (en) 2018-09-20
EP3583400A2 (en) 2019-12-25
WO2018151974A2 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
MX2019009874A (es) Metodo de prueba de la fragilizacion por hidrogeno.
Hong et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels
Fassina et al. Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels
Nguyen et al. Environment hydrogen embrittlement of pipeline steel X70 under various gas mixture conditions with in situ small punch tests
Liu et al. The influence of hydrogen on 3.5 NiCrMoV steel studied using the linearly increasing stress test
Peral et al. Effect of hydrogen on the fatigue crack growth rate of quenched and tempered CrMo and CrMoV steels
Macadre et al. Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni–Cr–Mo steel candidate for a storage cylinder of a 70 MPa hydrogen filling station
Nguyen et al. Ductility and fatigue properties of low nickel content type 316L austenitic stainless steel after gaseous thermal pre-charging with hydrogen
Fassina et al. Fatigue behavior of pipeline steel under hydrogen environment and low temperature
Fassina et al. Influence of hydrogen and low temperature on pipeline steels mechanical behaviour
Craidy et al. Hydrogen–Microstructure–Mechanical properties interactions in super duplex stainless steel components
Ziaei et al. Failure analysis: chloride stress corrosion cracking of AISI 316 stainless steel downhole pressure memory gauge cover
Sims Standards and codes to control hydrogen-induced cracking in pressure vessels and pipes for hydrogen gas storage and transport
de Miguel et al. Hydrogen enhanced fatigue in full scale metallic vessel tests–Results from the MATHRYCE project
Andrews et al. Will fractures propagate in a leaking CO 2 pipeline?
Zhou et al. A method to determine minimum design metal temperature of pressure vessels made from ferritic steel by Master Curve approach
Murakami et al. Microscopic mechanism of hydrogen embrittlement in fatigue and fracture
Yamabe et al. Fatigue-life and leak-before-break assessments of Cr-Mo steel pressure vessels with high-pressure gaseous hydrogen
Li et al. The effect of strain hardening on mechanical properties of S30408 austenitic stainless steel: a fundamental research for the quality evaluation of strain strengthened pressure vessel
Díaz et al. A methodology for the numerical assessment of autofrettage influence on hydrogen content near a notch in a 4130 steel pressure vessel
Solin et al. Fatigue crack initiation and propagation in Cr-Mo Steel hydrogen storage vessels: Research on design for safe life
石凯凯 et al. Various theoretical models study of prediction fatigue crack growth
Nibur et al. Identification of Conservative Hydrogen Assisted Cracking Fracture Threshold Measurements
Zhang et al. Electrochemical potential dependence of SCC initiation in X60 pipeline steel in near-neutral pH environment
Tehinse et al. Application of load sequence to control crack growth in steel pipelines under near neutral pH SCC