MD575Z - Method for recrystallization of bismuth filament in glass insulation - Google Patents

Method for recrystallization of bismuth filament in glass insulation Download PDF

Info

Publication number
MD575Z
MD575Z MDS20120020A MDS20120020A MD575Z MD 575 Z MD575 Z MD 575Z MD S20120020 A MDS20120020 A MD S20120020A MD S20120020 A MDS20120020 A MD S20120020A MD 575 Z MD575 Z MD 575Z
Authority
MD
Moldova
Prior art keywords
bismuth
wire
recrystallization
filament
axis
Prior art date
Application number
MDS20120020A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Альбина НИКОЛАЕВА
Павел БОДЮЛ
Леонид КОНОПКО
Анна ЦУРКАН
Иван СТИЧ
Original Assignee
ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ filed Critical ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ
Priority to MDS20120020A priority Critical patent/MD575Z/en
Publication of MD575Y publication Critical patent/MD575Y/en
Publication of MD575Z publication Critical patent/MD575Z/en

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

The invention relates to the field of production of thermoelectric materials with directional anisotropy, namely to a method for recrystallization of bismuth filament in glass insulation.The method, according to the invention, consists in that one end of the bismuth filament is heated to the melting point to form a very narrow molten zone. The said zone is brought into contact with the cold monocrystalline nucleus in the form of filament of a larger diameter, with the crystallographic C3 axis directed along the axis of the filament, from which the molten zone is recrystallized, borrowing the direction of the crystallographic axes of the monocrystalline nucleus. Melting and recrystallization of the bismuth filament are carried out gradually, from the end in contact with the surface of the nucleus up to its other end.

Description

Invenţia se referă la domeniul de producere a materialelor termoelectrice cu anizotropie direcţionată, şi anume la un procedeu de recristalizare a firului de bismut în izolaţie de sticlă. The invention relates to the field of production of thermoelectric materials with directed anisotropy, namely to a process for recrystallization of bismuth wire in glass insulation.

Este cunoscut procedeul de creştere a monocristalelor din masa topită prin tragerea monocristalului cu ajutorul unui germene de cristalizare, care efectuează o mişcare pe direcţie orizontală. Procesul de creştere a monocristalului are loc într-o luntre de cuarţ, care se află într-o fiolă, din care este evacuat aerul, situată pe suport orizontal. Zona topită în luntrea de cuarţ, care asigură iniţial omogenizarea materialului, este deplasată cu o viteză mică constantă cu un număr par de deplasări complete de la un capăt la alt capăt al fiolei. Ultima deplasare a zonei topite are loc după contactul cu germenele de cristalizare, care este începutul creşterii monocristalului de orientare cristalografică corespunzătoare [1]. The process of growing single crystals from the molten mass by pulling the single crystal with the help of a crystallization seed, which performs a movement in the horizontal direction, is known. The process of growing the single crystal takes place in a quartz boat, which is located in a vial, from which the air is evacuated, located on a horizontal support. The molten zone in the quartz boat, which initially ensures the homogenization of the material, is moved at a constant low speed with an even number of complete displacements from one end to the other end of the vial. The last displacement of the molten zone takes place after contact with the crystallization seeds, which is the beginning of the growth of the single crystal of the corresponding crystallographic orientation [1].

Dezavantajul acestui procedeu constă în aceea că în urma prelucrării mecanice în interiorul materialului obţinut pot apărea unele defecte atomare, care pot înrăutăţi proprietăţile lui fizice. Pe lângă aceasta, procedeul este dificil de aplicat la firele în izolaţie de sticlă. The disadvantage of this process is that after mechanical processing, some atomic defects may appear inside the obtained material, which can worsen its physical properties. In addition, the process is difficult to apply to glass-insulated wires.

În calitate de cea mai apropiată soluţie serveşte procedeul de recristalizare laser, care constă în aceea că pe un suport orizontal din sticlă organică se fixează un fir din aliaj de bismut-staniu în izolaţie de sticlă. Firul se încălzeşte cu un fascícul laser până la o temperatură, ce depăşeşte temperatura de topire a materialului. În urma recristalizării se obţin fire de bismut-staniu cu axa trigonală C3 orientată de-a lungul axei firului [2]. The closest solution is the laser recrystallization process, which consists in fixing a bismuth-tin alloy wire in glass insulation on a horizontal organic glass support. The wire is heated with a laser beam to a temperature exceeding the melting temperature of the material. As a result of recrystallization, bismuth-tin wires with the C3 trigonal axis oriented along the wire axis are obtained [2].

Dezavantajele acestui procedeu constau în aceea că pot fi prelucrate fire de lungimi foarte mici, procesul este complex din cauza diferenţei dintre diametrul firului monocristalin şi diametrul fasciculului laser, ca rezultat se obţin fire cu axa cristalografică C3 direcţionată de-a lungul axei firului cu o precizie joasă. The disadvantages of this process are that very short lengths of wires can be processed, the process is complex due to the difference between the diameter of the single-crystal wire and the diameter of the laser beam, as a result, wires with the C3 crystallographic axis directed along the wire axis with low precision are obtained.

Problema tehnică pe care o rezolvă invenţia constă în mărirea preciziei de obţinere a firului de bismut în izolaţie de sticlă cu axa cristalografică C3 direcţionată de-a lungul axei firului. The technical problem solved by the invention consists in increasing the precision of obtaining the bismuth wire in glass insulation with the crystallographic axis C3 directed along the wire axis.

Problema se soluţionează prin aceea că procedeul de recristalizare a firului de bismut în izolaţie de sticlă constă în aceea că un capăt al firului de bismut se încălzeşte până la temperatura de topire, cu formarea unei zone topite foarte înguste, care se aduce în contact cu un germene monocristalin rece sub formă de fir de diametru mai mare, cu axa cristalografică C3 direcţionată de-a lungul axei firului, de la care zona topită se recristalizează, preluând direcţia axelor cristalografice ale germenelui monocristalin. Totodată topirea şi recristalizarea firului de bismut se efectuează treptat, de la capătul de contact cu suprafaţa germenelui până la celălalt capăt al lui. The problem is solved by the fact that the process of recrystallization of bismuth wire in glass insulation consists in that one end of the bismuth wire is heated to the melting temperature, with the formation of a very narrow molten zone, which is brought into contact with a cold single-crystal seed in the form of a wire of larger diameter, with the crystallographic axis C3 directed along the axis of the wire, from which the molten zone recrystallizes, taking over the direction of the crystallographic axes of the single-crystal seed. At the same time, the melting and recrystallization of the bismuth wire is carried out gradually, from the end in contact with the surface of the seed to its other end.

Rezultatul tehnic este condiţionat de faptul că la topirea firului de bismut şi aducerea în contact cu o suprafaţă rece a unui germene monocristalin masiv de diametru mai mare se cedează o parte din energia termică a topiturii şi la suprafaţa de contact începe procesul de recristalizare cu preluarea direcţiilor axelor cristalografice ale germenelui monocristalin. Dacă la suprafaţa de contact axa cristalografică C3 a germenelui monocristalin este orientată de-a lungul axei firului, iar zona topită se deplasează de la capătul de contact cu suprafaţa germenelui până la celălalt capăt al firului, atunci direcţiile axelor cristalografice ale germenelui se vor păstra pe toată lungimea firului de bismut recristalizat. Astfel, la încălzirea firului cu o microsobă, ce poate să se deplaseze de-a lungul lui, topirea şi recristalizarea firului de bismut pot fi efectuate treptat, de la capătul de contact cu suprafaţa germenelui până la celălalt capăt al lui. The technical result is conditioned by the fact that when melting the bismuth wire and bringing it into contact with a cold surface of a massive single-crystal seed of larger diameter, part of the thermal energy of the melt is given off and at the contact surface the recrystallization process begins with the taking over of the directions of the crystallographic axes of the single-crystal seed. If at the contact surface the crystallographic axis C3 of the single-crystal seed is oriented along the wire axis, and the melted zone moves from the end in contact with the seed surface to the other end of the wire, then the directions of the crystallographic axes of the seed will be preserved along the entire length of the recrystallized bismuth wire. Thus, when heating the wire with a micro-oven, which can move along it, the melting and recrystallization of the bismuth wire can be carried out gradually, from the end in contact with the seed surface to its other end.

Invenţia se explică cu ajutorul desenelor din fig. 1-2, care reprezintă: The invention is explained with the help of the drawings in Fig. 1-2, which represent:

- fig. 1, instalaţia de recristalizare zonală orizontală, - fig. 1, horizontal zonal recrystallization plant,

- fig. 2, diagrama unghiulară de rotaţie a magnetorezistenţei transversale a firului de bismut recristalizat. - Fig. 2, angular rotation diagram of the transverse magnetoresistance of the recrystallized bismuth wire.

Instalaţia de recristalizare zonală orizontală este reprezentată în fig. 1, unde 1 este capătul firului de bismut în izolaţie de sticlă, 2 - zona topită a firului de bismut în izolaţie de sticlă, 3 - firul de bismut, 4 - orientarea iniţială a axelor cristalografice ale firului de bismut în izolaţie de sticlă, 5 - axa firului de bismut, 6 - germene monocristalin, 7 - orientarea axelor cristalografice ale germenelui monocristalin, 8 - firul de bismut recristalizat, 9 - microsoba cu posibilitatea de deplasare de-a lungul firului. The horizontal zonal recrystallization installation is represented in Fig. 1, where 1 is the end of the bismuth wire in glass insulation, 2 - the molten zone of the bismuth wire in glass insulation, 3 - the bismuth wire, 4 - the initial orientation of the crystallographic axes of the bismuth wire in glass insulation, 5 - the axis of the bismuth wire, 6 - single-crystal seed, 7 - the orientation of the crystallographic axes of the single-crystal seed, 8 - the recrystallized bismuth wire, 9 - the microfurnace with the possibility of movement along the wire.

Exemplu de realizare a invenţiei Example of embodiment of the invention

Un capăt al firului de bismut de 15 µm obţinut după metoda Ulitovski, la care axa cristalografică C3 nu coincide cu axa firului, se topeşte cu ajutorul unei microsobe (9). Prin încălzire treptată se formează o zonă topită foarte îngustă. Soba este întărită pe un suport, care are posibilitatea de a se deplasa orizontal de la germenele monocristalin de-a lungul firului de bismut. Viteza de deplasare a zonei topite este de 5 cm/oră. Zona topită se aduce în contact cu o suprafaţă rece a germenelui monocristalin de diametru mai mare de 50 µm, la care axa cristalografică C3 este orientată de-a lungul axei firului. Procesul de obţinere a contactului este supravegheat la microscop. Ca rezultat al contactului cu suprafaţa rece zona topită cedează germenelui o parte din energia termică şi la suprafaţa de contact a germenelui începe procesul de recristalizare a firului cu preluarea direcţiilor axelor cristalografice (7) ale germenelui. One end of the 15 µm bismuth wire obtained by the Ulitovsky method, in which the crystallographic axis C3 does not coincide with the wire axis, is melted using a microfurnace (9). By gradual heating, a very narrow molten zone is formed. The furnace is fixed on a support, which has the ability to move horizontally from the single-crystal seeds along the bismuth wire. The speed of movement of the molten zone is 5 cm/hour. The molten zone is brought into contact with a cold surface of the single-crystal seed with a diameter greater than 50 µm, in which the crystallographic axis C3 is oriented along the wire axis. The process of obtaining the contact is monitored under a microscope. As a result of the contact with the cold surface, the molten zone gives up part of the thermal energy to the seed and at the contact surface of the seed, the process of recrystallization of the wire begins with the taking over of the directions of the crystallographic axes (7) of the seed.

La amplasarea firului de bismut recristalizat şi a germenelui monocristalin în câmp magnetic diagramele unghiulare de rotaţie ale rezistenţei electrice sunt identice şi caracterizate printr-o simetrie de ordinul trei, cu o perioadă de simetrie de 60° (fig. 2). Astfel, firul de bismut recristalizat are orientaţia cristalografică C3 de-a lungul axei firului. When the recrystallized bismuth wire and the single-crystal seed are placed in a magnetic field, the angular rotation diagrams of the electrical resistance are identical and characterized by a third-order symmetry, with a symmetry period of 60° (Fig. 2). Thus, the recrystallized bismuth wire has the C3 crystallographic orientation along the wire axis.

În aşa mod pot fi prelucrate firele cu diametrul de 1...20 µm obţinute prin metoda Ulitovski. Astfel se obţin fire cu axa cristalografică C3 direcţionată de-a lungul axei firului cu proprietăţi fizice prestabilite. În calitate de germene monocristalin se aleg fire monocristaline cu diametrul de 50...60 µm, la care axa cristalografică C3 este direcţionată de-a lungul axei firului. In this way, wires with a diameter of 1...20 µm obtained by the Ulitovsky method can be processed. Thus, wires with the crystallographic axis C3 directed along the wire axis with predetermined physical properties are obtained. As single-crystal seeds, single-crystal wires with a diameter of 50...60 µm are chosen, in which the crystallographic axis C3 is directed along the wire axis.

1. Пфанн В. Зонная плавка. Мир, Москва, 1970, с. 246-251 1. Пфанн В. Zone swimsuit. Мир, Moscow, 1970, p. 246-251

2. Nikolaeva A., Moloşnic E., Para G., Vieru S., Botnari O. Proprietăţile firelor monocristaline de Bi-Sn cu axa C3 orientată în lungul fibrei. Conferinţa fizicienilor din Moldova, Chişinău, 2007, p. 32 (regăsit în Internet la 2012.05.17) <URL: sfm.asm.md/cfm2007/abstracts%20CFM2007.pdf> 2. Nikolaeva A., Moloşnic E., Para G., Vieru S., Botnari O. Properties of single-crystalline Bi-Sn wires with the C3 axis oriented along the fiber. Conference of physicists from Moldova, Chişinău, 2007, p. 32 (retrieved on the Internet on 2012.05.17) <URL: sfm.asm.md/cfm2007/abstracts%20CFM2007.pdf>

Claims (1)

Procedeu de recristalizare a firului de bismut în izolaţie de sticlă, care constă în aceea că un capăt al firului de bismut se încălzeşte până la temperatura de topire, cu formarea unei zone topite foarte înguste, care se aduce în contact cu un germene monocristalin rece sub formă de fir de diametru mai mare, cu axa cristalografică C3 direcţionată de-a lungul axei firului, de la care zona topită se recristalizează, preluând direcţia axelor cristalografice ale germenelui monocristalin, totodată topirea şi recristalizarea firului de bismut se efectuează treptat, de la capătul de contact cu suprafaţa germenelui până la celălalt capăt al lui.Process for recrystallization of bismuth wire in glass insulation, which consists in heating one end of the bismuth wire to the melting temperature, with the formation of a very narrow molten zone, which is brought into contact with a cold single-crystal seed in the form of a larger diameter wire, with the crystallographic axis C3 directed along the wire axis, from which the molten zone recrystallizes, taking over the direction of the crystallographic axes of the single-crystal seed, at the same time the melting and recrystallization of the bismuth wire is carried out gradually, from the end in contact with the seed surface to its other end.
MDS20120020A 2012-01-31 2012-01-31 Method for recrystallization of bismuth filament in glass insulation MD575Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20120020A MD575Z (en) 2012-01-31 2012-01-31 Method for recrystallization of bismuth filament in glass insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20120020A MD575Z (en) 2012-01-31 2012-01-31 Method for recrystallization of bismuth filament in glass insulation

Publications (2)

Publication Number Publication Date
MD575Y MD575Y (en) 2012-12-31
MD575Z true MD575Z (en) 2013-07-31

Family

ID=47469610

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20120020A MD575Z (en) 2012-01-31 2012-01-31 Method for recrystallization of bismuth filament in glass insulation

Country Status (1)

Country Link
MD (1) MD575Z (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD1102Z (en) * 2015-12-07 2018-01-31 Технический университет Молдовы Installation and process for wire extension in insulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD3662C2 (en) * 2005-09-02 2009-02-28 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Semiconductor thermoelectric alloy (variants)
MD323Z (en) * 2009-12-29 2011-08-31 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Thermoelectric microwire in glass insulation
  • 2012

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD3662C2 (en) * 2005-09-02 2009-02-28 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Semiconductor thermoelectric alloy (variants)
MD323Z (en) * 2009-12-29 2011-08-31 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Thermoelectric microwire in glass insulation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nikolaeva A., Moloşnic E., Para G., Vieru S., Botnari O. Proprietăţile firelor monocristaline de Bi-Sn cu axa C3 orientată în lungul fibrei. Conferinţa fizicienilor din Moldova, Chişinău, 2007, p. 32 (regăsit în Internet la 2012.05.17) <URL: sfm.asm.md/cfm2007/abstracts%20CFM2007.pdf> *
Пфанн В. Зонная плавка. Мир, Москва, 1970, с. 246-251 *

Also Published As

Publication number Publication date
MD575Y (en) 2012-12-31

Similar Documents

Publication Publication Date Title
RU2010130676A (en) METHOD AND DEVICE FOR PRODUCING SAPPHIRE SINGLE CRYSTAL
KR102049710B1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL AND PRODUCTION DEVICE
JP5434801B2 (en) Method for producing SiC single crystal
CN102851545A (en) Ni-Mn-Ge magnetic shape memory alloy and preparation method thereof
CN103608497A (en) SiC single crystal and manufacturing process therefor
US9982365B2 (en) Method for producing SiC single crystal
CN102691098B (en) Growing method of sapphire crystal prepared by Kyropoulos method
CN101213318B (en) Method and apparatus for growing single-crystal metals
MD575Z (en) Method for recrystallization of bismuth filament in glass insulation
JP6869077B2 (en) Method for manufacturing silicon carbide single crystal ingot
Kozuki et al. Metastable crystal growth of the low temperature phase of barium metaborate from the melt
Prabhakaran et al. Studies on bulk growth, structural and microstructural characterization of 4-aminobenzophenone single crystal grown from vertical Bridgman technique
CN105369345A (en) Crucible and preparation method for preparing sapphire single crystals
JP4894848B2 (en) Method for producing silicon single crystal
US9822468B2 (en) Method for producing SiC single crystal
JP6231375B2 (en) Crucible, crystal manufacturing apparatus and crystal manufacturing method
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP5951132B2 (en) Apparatus for producing single crystals by crystallization of single crystals in the melting region
JP2002104896A (en) Method and apparatus for growing single crystal
MD1409Z (en) Process for recrystallization of bismuth microwire in glass insulation
JP6279930B2 (en) Crystal manufacturing apparatus and crystal manufacturing method
JP2020125242A (en) Polycrystalline silicon ingot, polycrystalline silicon rod, and method for producing monocrystalline silicon
CN112210819A (en) Preparation method and equipment of crystal bar
RU56404U1 (en) CRYSTALLIZATION PLANT FOR GROWING REFLECTIVE EUTECTIC Pseudomonocrystals
JP4599564B2 (en) Fabrication method of multi-phase silicide

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)