MD1149Z - Installation and method for applying an individual image onto an electrically conductive object - Google Patents
Installation and method for applying an individual image onto an electrically conductive object Download PDFInfo
- Publication number
- MD1149Z MD1149Z MDS20160035A MDS20160035A MD1149Z MD 1149 Z MD1149 Z MD 1149Z MD S20160035 A MDS20160035 A MD S20160035A MD S20160035 A MDS20160035 A MD S20160035A MD 1149 Z MD1149 Z MD 1149Z
- Authority
- MD
- Moldova
- Prior art keywords
- electrode
- individual image
- reflector
- applying
- electrically conductive
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000009434 installation Methods 0.000 title claims abstract description 11
- 239000003792 electrolyte Substances 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 239000011521 glass Substances 0.000 claims abstract description 10
- 230000005855 radiation Effects 0.000 claims abstract description 10
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
Landscapes
- Hybrid Cells (AREA)
Abstract
Description
Invenţia se referă la domeniul tehnologiilor informaţionale şi poate fi utilizată pentru executarea marcajului de identificare prin prelucrarea electrochimică a obiectelor electroconductoare. The invention relates to the field of information technologies and can be used to execute identification marking through electrochemical processing of electroconductive objects.
Este cunoscut un procedeu de identificare a obiectului electroconductor prin imprimarea pe obiect a unui număr de identificare, pe care se aplică mecanic o grilă informaţională de coordonate, urmată de efectuarea unei descărcări electrice punctiforme între obiect şi un electrod vibrant instalat cu interstiţiu deasupra ei, totodată electrodul se deplasează arbitrar în sistemul de coordonate al grilei, imaginea grilei obţinută după descărcare este scanată şi păstrată în memoria calculatorului, iar identificarea obiectului este realizată prin compararea numărului şi a imaginii obţinute a grilei cu cele înregistrate anterior [1]. A method of identifying an electroconductive object is known by printing an identification number on the object, on which an information grid of coordinates is mechanically applied, followed by performing a point-like electrical discharge between the object and a vibrating electrode installed with a gap above it, at the same time the electrode moves arbitrarily in the grid coordinate system, the grid image obtained after the discharge is scanned and stored in the computer memory, and the object identification is achieved by comparing the number and the obtained grid image with those previously recorded [1].
Dar un asemenea procedeu de identificare are o serie de neajunsuri. Pentru realizarea acestui procedeu este necesar de a folosi tensiune înaltă şi vibraţii, ce prezintă pericol pentru personalul de serviciu. But such an identification process has a number of drawbacks. To carry out this process it is necessary to use high voltage and vibrations, which pose a danger to the service personnel.
Este cunoscut un procedeu de identificare a obiectului electroconductor, care include aplicarea pe obiect a unui marcaj de identificare, format dintr-un număr de identificare, o grilă informaţională de coordonate şi o imagine individuală, obţinută prin aplicarea curentului electric la obiect şi la un electrod, instalat cu interstiţiu deasupra lui şi format din secţii, conectate la o sursă de energie electrică de tensiune joasă printr-un generator de numere aleatorii, totodată în interstiţiul dintre aceştia se debitează un electrolit lichid; marcajul obţinut se înregistrează în memoria calculatorului, iar identificarea obiectului se realizează prin compararea marcajului de pe obiectul identificat cu cel înregistrat [2]. A method of identifying an electroconductive object is known, which includes applying an identification mark to the object, consisting of an identification number, an information grid of coordinates and an individual image, obtained by applying electric current to the object and to an electrode, installed with a gap above it and consisting of sections, connected to a low-voltage electrical energy source through a random number generator, while a liquid electrolyte is discharged into the gap between them; the mark obtained is recorded in the computer memory, and the object is identified by comparing the mark on the identified object with the registered one [2].
Dezavantajele acestui procedeu sunt complexitatea tehnologică, controlul admisiei unui număr mare de electrozi, metodica complexă de admisie a electrolitului. The disadvantages of this process are the technological complexity, the control of the intake of a large number of electrodes, the complex electrolyte intake methodology.
Cea mai apropiată soluţie este dispozitivul de identificare a obiectului electroconductor, care include un electrod având forma unui suport de sticlă, pe care este aplicat un strat metalic semitransparent, instalat deasupra obiectului cu un interstiţiu pentru electrolit, electrodul şi obiectul fiind conectate la o sursă de curent de joasă tensiune, dispozitivul de asemenea include un laser şi un bloc de scanare, dirijate de un generator de numere aleatorii şi conectate la o sursă de curent independentă, totodată dispozitivul este dotat cu un bloc pentru înregistrarea informaţiei scanate în memoria calculatorului; şi procedeul de identificare a obiectului electroconductor, care include aplicarea pe obiect a unui marcaj, format dintr-o imagine individuală, o grilă de coordonate şi un număr de identificare, scanarea şi înregistrarea în memoria calculatorului a marcajului obţinut, compararea marcajului de pe obiectul identificat cu cel înregistrat, totodată imaginea individuală se obţine prin dizolvarea anodică a obiectului la aplicarea curentului electric la obiect şi la un electrod transparent pentru laser, instalat deasupra obiectului cu interstiţiu, în care se debitează electrolit, cu iradierea concomitentă şi aleatorie cu laser a suprafeţei obiectului şi/sau a spaţiului dintre obiect şi electrod [3]. The closest solution is the device for identifying the electroconductive object, which includes an electrode in the form of a glass support, on which a semi-transparent metal layer is applied, installed above the object with an interstitial for the electrolyte, the electrode and the object being connected to a low-voltage current source, the device also includes a laser and a scanning block, directed by a random number generator and connected to an independent current source, at the same time the device is equipped with a block for recording the scanned information in the computer memory; and the process of identifying the electroconductive object, which includes applying a mark to the object, consisting of an individual image, a coordinate grid and an identification number, scanning and recording in the computer memory the mark obtained, comparing the mark on the identified object with the recorded one, at the same time the individual image is obtained by anodic dissolution of the object upon application of electric current to the object and to a transparent electrode for the laser, installed above the object with an interstitial, into which electrolyte is discharged, with the simultaneous and random laser irradiation of the object surface and/or the space between the object and the electrode [3].
Dezavantajele acestui dispozitiv este complexitatea realizării procesului de deplasare haotică a laserului şi costul înalt al generatorului de numere aleatorii. The disadvantages of this device are the complexity of implementing the chaotic laser movement process and the high cost of the random number generator.
Problema pe care o rezolvă invenţia este obţinerea semnelor de identificare pe un obiect electroconductor cu ajutorul radiaţiei laser fară deplasarea laserului. The problem that the invention solves is obtaining identification marks on an electroconductive object using laser radiation without moving the laser.
Instalaţia, conform invenţiei, elimină dezavantajele menţionate mai sus prin aceea că conţine un corp cilindric cav cu un capăt deschis, în care longitudinal este amplasat un electrod, cu formarea a două camere superioară şi inferioară, care comunică între ele, electrodul fiind executat în formă de un suport de sticlă, pe partea de jos a căruia este aplicată o peliculă metalică semitransparentă, pe electrod sau de partea de sus a corpului este fixat mobil un reflector unghiular, orientat spre sursa de radiaţie laser, care este instalată paralel electrodului, iar în partea de jos a corpului este fixat un obiect electroconductor, pe electrod, în faţa reflectorului, sunt amplasaţi nişte turbulatori, totodată electrodul şi obiectul electroconductor sunt conectaţi la o sursă de tensiune joasă. The installation, according to the invention, eliminates the disadvantages mentioned above by containing a hollow cylindrical body with an open end, in which an electrode is longitudinally placed, with the formation of two upper and lower chambers, which communicate with each other, the electrode being made in the form of a glass support, on the lower part of which a semi-transparent metal film is applied, on the electrode or on the upper part of the body an angular reflector is movably fixed, oriented towards the laser radiation source, which is installed parallel to the electrode, and an electroconductive object is fixed at the lower part of the body, on the electrode, in front of the reflector, some turbulators are placed, at the same time the electrode and the electroconductive object are connected to a low voltage source.
Procedeul, conform invenţiei, elimină dezavantajele menţionate mai sus prin aceea că include aplicarea pe obiect a unui marcaj de identificare, format dintr-un număr de identificare, o grilă informaţională de coordonate şi o imagine individuală, obţinută cu ajutorul instalaţiei menţionate mai sus, prin debitarea electrolitului cu o viteză de 5…12 l/min în camera superioară a corpului, turbulizarea fluxului de electrolit de turbulatori, reflectarea razei laser de reflectorul unghiular, trecerea razei laser prin pelicula metalică semitransparentă cu focalizarea ulterioară a acesteia pe marcajul de identificare, totodată reflectorul este deplasat aleatoriu datorită turbulizării fluxului de electrolit. The method, according to the invention, eliminates the above-mentioned disadvantages by including the application on the object of an identification mark, consisting of an identification number, an information grid of coordinates and an individual image, obtained with the help of the above-mentioned installation, by discharging the electrolyte at a speed of 5…12 l/min in the upper chamber of the body, the turbulization of the electrolyte flow by turbulators, the reflection of the laser beam by the angular reflector, the passage of the laser beam through the semi-transparent metal film with its subsequent focusing on the identification mark, at the same time the reflector is randomly moved due to the turbulization of the electrolyte flow.
Rezultatul tehnic al invenţiei este simplificarea procesului de marcare a semnelor de identificare prin excluderea generatorului complex de numere aleatorii şi a sistemului de deviere a laserului, posibilitatea deplasării stohastice a fasciculului laserului pe suprafaţa piesei prelucrate datorită fixării libere a reflectorului şi perturbatorilor în fluxul de electrolit. The technical result of the invention is the simplification of the process of marking identification marks by excluding the complex random number generator and the laser deflection system, the possibility of stochastic movement of the laser beam on the surface of the processed part due to the free fixation of the reflector and the disruptors in the electrolyte flow.
Invenţia se explică prin desenele din fig. 1-3, care reprezintă: The invention is explained by the drawings in Fig. 1-3, which represent:
- fig. 1, schema instalaţiei, care permite realizarea acestui procedeu; - Fig. 1, diagram of the installation, which allows this process to be carried out;
- fig. 2, o altă posibilitate de montare a reflectorului; - Fig. 2, another possibility of mounting the reflector;
- fig. 3, marcajul obţinut. - Fig. 3, the mark obtained.
La fel ca şi în multe alte procedee de identificare a obiectelor electroconductoare, pe obiect 1 se marchează o grilă de coordonate 2 cu un număr de identificare 3 (fig. 3) cu introducerea ulterioară a acestei informaţii în memoria computerului. Imaginea individuală 4 pe obiectul 1 se obţine prin realizarea procesului electrochimic dintre pelicula metalică şi obiect şi în baza radiaţiei laser, care se deplasează stohastic deasupra imaginii individuale 4. Convenţional este prezentată sursa de curent de tensiune joasă 5. Electrodul 6 este executat din material cu permeabilitate la lumină (spre exemplu sticlă) cu o peliculă metalică semitransparentă 7. Datorită faptului că reflectorul unghiular 8 este fixat relativ liber fluxul de electrolit continuu oscilează reflectorul 8, ce provoacă deplasarea stohastică a radiaţiei laser pe suprafaţa marcajului, creând o suprafaţă incomparabilă pe obiectul 1. As in many other methods of identifying electrically conductive objects, a coordinate grid 2 with an identification number 3 (Fig. 3) is marked on the object 1 with the subsequent entry of this information into the computer memory. The individual image 4 on the object 1 is obtained by carrying out the electrochemical process between the metal film and the object and on the basis of laser radiation, which moves stochastically over the individual image 4. Conventionally, the low-voltage current source 5 is shown. The electrode 6 is made of a light-permeable material (for example, glass) with a semi-transparent metal film 7. Due to the fact that the angular reflector 8 is fixed relatively freely, the flow of continuous electrolyte oscillates the reflector 8, which causes the stochastic movement of the laser radiation on the surface of the marking, creating an incomparable surface on the object 1.
Instalaţia pentru aplicarea imaginii individuale pe un obiect electroconductor conţine un electrod cu o peliculă metalică semitransparentă 7, conectată la sursa de curent de tensiune joasă 5. Pentru excluderea oscilaţiilor peliculei, ultima este amplasată pe suportul de sticlă 6. Laserul este instalat paralel peliculei metalice semitransparente 7. Deasupra peliculei metalice semitransparente 7 în fluxul de electrolit, format de canalul 9, este instalat reflectorul unghiular 8 cu posibilitatea devierii sub acţiunea fluxului de electrolit. În acest scop reflectorul este fixat liber minimum de două suporturi suspendate 10 la canalul 9. Reflectorul 8 poate fi fixat şi pe suportul elastic 11 montat direct pe suportul de sticlă 6 (fig. 2). Suporturile suspendate sau suportul elastic sunt executate din materiale polimerice plastice (spre exemplu, fluoroplast, polietilenă ş.a.). Canalul 9 este dotat cu perturbatorii 12 ai fluxului de electrolit, care sunt executaţi din material dielectric (spre exemplu, fluoroplast, sticlă organică, textolit). Pentru fiecare serie de experimente, în scopul sporirii securizării este necesar de a schimba forma şi dimensiunile perturbatorilor 12, acestea fiind selectate experimental în aşa mod, încât după instalarea lor reflectorul unghiular 8 începe a oscila în limitele necesare. Distanţa de la prismă la perturbatori şi distanţa dintre ei la fel se selectează pe cale experimentală până la obţinerea oscilaţiei fasciculului în intervalul necesar. The installation for applying an individual image to an electroconductive object contains an electrode with a semi-transparent metal film 7, connected to the low-voltage current source 5. To exclude oscillations of the film, the latter is placed on the glass support 6. The laser is installed parallel to the semi-transparent metal film 7. Above the semi-transparent metal film 7 in the electrolyte flow, formed by the channel 9, the angular reflector 8 is installed with the possibility of deflection under the action of the electrolyte flow. For this purpose, the reflector is freely fixed by at least two suspended supports 10 to the channel 9. The reflector 8 can also be fixed on the elastic support 11 mounted directly on the glass support 6 (Fig. 2). The suspended supports or the elastic support are made of plastic polymeric materials (for example, fluoroplastic, polyethylene, etc.). The channel 9 is equipped with electrolyte flow disruptors 12, which are made of dielectric material (for example, fluoroplastic, organic glass, textolite). For each series of experiments, in order to increase security, it is necessary to change the shape and dimensions of the disruptors 12, they being selected experimentally in such a way that after their installation the angular reflector 8 begins to oscillate within the required limits. The distance from the prism to the disruptors and the distance between them are also selected experimentally until the beam oscillation is obtained within the required range.
Exemple de realizare a invenţiei Examples of embodiments of the invention
Exemplul 1 Example 1
În calitate de electrolit a fost selectată soluţia de apă NaCl (150…250 g/l), transparentă pentru radiaţia laser, tensiunea sursei de curent 15…20 V, interstiţiul 3 mm. Materialul obiectului pentru tratare - Oţel-45. Iradierea a fost efectuată cu laserul neodim de tipul ЛТИПЧ-8 pe АИГ:Nd3+ cu lungimea de undă λ=l,064 µm, ce corespunde transparentei integrale a soluţiei, puterea radiaţiei de 5 MW şi diametrul fasciculului pe planul suprafeţei prelucrate de ~0,5 mm. Perturbatorii din sticlă organică de formă dreptunghiulară, cu dimensiunile de 5x2 mm şi înălţimea 15 mm, se instalează înaintea prismei la o distanţă de 20…30 mm. La debitul electrolitului în canalul 9 de la 5 la 8 1/min s-a înregistrat oscilaţia reflectorului unghiular 8, care duce la devierea fasciculului laser de la poziţia neutră pe suprafaţa matricei obiectului 1 în intervalul de la -10 la +15 mm la 5 1/min şi de la -14 la +25 mm la debitul de 8 l/min. As an electrolyte, a NaCl water solution (150…250 g/l) was selected, transparent for laser radiation, the voltage of the power source 15…20 V, the gap 3 mm. The material of the object for treatment - Steel-45. Irradiation was carried out with a neodymium laser of the type ЛТИПЧ-8 on AIG:Nd3+ with a wavelength λ=1.064 µm, which corresponds to the integral transparency of the solution, the radiation power of 5 MW and the beam diameter on the plane of the processed surface of ~0.5 mm. The perturbators made of organic glass of rectangular shape, with dimensions of 5x2 mm and a height of 15 mm, are installed in front of the prism at a distance of 20…30 mm. At the electrolyte flow rate in channel 9 from 5 to 8 1/min, the oscillation of the angular reflector 8 was recorded, which leads to the deviation of the laser beam from the neutral position on the surface of the object matrix 1 in the range from -10 to +15 mm at 5 1/min and from -14 to +25 mm at the flow rate of 8 l/min.
Exemplul 2 Example 2
În calitate de electrolit a fost selectată soluţia de apă NaCl (200 g/l), transparentă pentru radiaţia laser, tensiunea sursei de curent de 15…20 V, interstiţiul 3 mm. Materialul obiectului pentru tratare - Oţel-45. Iradierea a fost efectuată cu laser neodim de tipul ЛТИПЧ-8 pe АИГ: Nd3+ cu lungimea de undă λ=l,064 µm, ce corespunde transparenţei integrale a soluţiei, puterea radiaţiei de 5 MW şi diametrul fasciculului pe planul suprafeţei prelucrate de ~0,5 mm. Perturbatorii din sticlă organică de formă dreptunghiulară, cu dimensiunile de 8x5 mm, înălţimea 15 mm, se instalează înaintea prismei la o distanţă de 30…40 mm. La debitul electrolitului în canalul suplimentar 9 de la 8 la 12 l/min s-a înregistrat oscilaţia reflectorului unghiular 8, care duce la devierea fasciculului laser de la poziţia neutră pe suprafaţa obiectului 1 în intervalul de la -12 până la +24 mm la 8 l/min şi de la -16 până la +32 mm la debitul de 12 l/min. As an electrolyte, a solution of NaCl water (200 g/l), transparent to laser radiation, a voltage of the power source of 15…20 V, a gap of 3 mm was selected. The material of the object for treatment - Steel-45. Irradiation was carried out with a neodymium laser of the type LTIPCH-8 on AIG: Nd3+ with a wavelength of λ=1.064 µm, which corresponds to the integral transparency of the solution, a radiation power of 5 MW and a beam diameter on the plane of the processed surface of ~0.5 mm. Perturbators made of organic glass of rectangular shape, with dimensions of 8x5 mm, height of 15 mm, are installed in front of the prism at a distance of 30…40 mm. At the electrolyte flow rate in the additional channel 9 from 8 to 12 l/min, the oscillation of the angular reflector 8 was recorded, which leads to the deviation of the laser beam from the neutral position on the surface of the object 1 in the range from -12 to +24 mm at 8 l/min and from -16 to +32 mm at the flow rate of 12 l/min.
Aceasta confirmă posibilitatea iradierii stohastice a suprafeţei marcajului obiectului 1 într-un interval larg fără utilizarea generatorului de numere aleatorii. This confirms the possibility of stochastic irradiation of the surface of the object 1 mark over a wide range without the use of a random number generator.
După obţinerea imaginii individuale pe marcajul de identificare se aplică cu un strung de gravare sau unul digital cu ac de lovitură codul reperului şi grila de coordonate, suprafaţa se scanează şi în baza de date concomitent se introduce codul numeric cu matricea individuală. Identificarea se realizează prin confruntarea codurilor numerice şi coincidenţa imaginilor individuale. În cazul dacă numărul de identificare pe articol are o imagine individuală, care nu coincide cu numărul de identificare, atunci articolul se consideră o fabricaţie contrafăcută. After obtaining the individual image on the identification mark, the reference code and the coordinate grid are applied with an engraving lathe or a digital one with a punch needle, the surface is scanned and the numerical code with the individual matrix is simultaneously entered into the database. Identification is achieved by comparing the numerical codes and the coincidence of the individual images. If the identification number on the item has an individual image that does not coincide with the identification number, then the item is considered a counterfeit.
Astfel, este propus procedeul de identificare şi instalaţia pentru realizarea acestuia, care nu necesită deplasarea laserului şi un generator costisitor de numere aleatorii. Thus, the identification process and the installation for its implementation are proposed, which do not require laser movement and an expensive random number generator.
1. MD 3389 F2 2007.08.31 1. MD 3389 F2 2007.08.31
2. MD 3992 B2 2009.12.31 2. MD 3992 B2 2009.12.31
3. MD 4045 B1 2010.05.31 3. MD 4045 B1 2010.05.31
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20160035A MD1149Z (en) | 2016-03-15 | 2016-03-15 | Installation and method for applying an individual image onto an electrically conductive object |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20160035A MD1149Z (en) | 2016-03-15 | 2016-03-15 | Installation and method for applying an individual image onto an electrically conductive object |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD1149Y MD1149Y (en) | 2017-05-31 |
| MD1149Z true MD1149Z (en) | 2017-12-31 |
Family
ID=58850663
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20160035A MD1149Z (en) | 2016-03-15 | 2016-03-15 | Installation and method for applying an individual image onto an electrically conductive object |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD1149Z (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2708609C1 (en) * | 2018-07-20 | 2019-12-09 | Владимир Дмитриевич Шкилев | Electrochemical method of surface treatment of dielectrics with individual surface condition and device for its implementation |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD3389F2 (en) * | 2004-02-27 | 2007-08-31 | Vladimir Schiliov | Process for identification of the current-conducting object |
| MD3992B2 (en) * | 2007-10-02 | 2009-12-31 | Valeriu Valentin Dudchin | Method for identification of the current-conducting object and plant for application thereon of an individual image |
| MD4045B1 (en) * | 2008-10-30 | 2010-05-31 | Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei | Method for identification of electrically conducting object and device for realization thereof |
| MD4135B1 (en) * | 2010-01-19 | 2011-10-31 | Vladimir Shkilyov | Method for applying identification tags on objects |
| MD4162B1 (en) * | 2011-01-03 | 2012-03-31 | Vladimir Schiliov | Method for manufacturing identification tags |
| MD522Y (en) * | 2011-12-14 | 2012-06-30 | Inst De Fiz Aplikateh Al Akademiej De Shtiintse A Republichij Moldova | Method for application of identification tag on solid material objects |
| MD4271B1 (en) * | 2012-07-17 | 2014-01-31 | Alexandr Grigorii Grigoriant | Method for manufacturing an identification tag on a metal substrate |
| MD760Y (en) * | 2013-11-26 | 2014-04-30 | Institutul De Fizică Aplicată Al Academiei De Ştiinţe A Moldovei | Apparatus and method for applying an individual image by electric discharge |
| MD921Y (en) * | 2014-11-27 | 2015-06-30 | Institutul De Fizică Aplicată Al Academiei De Ştiinţe A Moldovei | Installation and process for manufacturing an identification tag on a current-conducting object |
-
2016
- 2016-03-15 MD MDS20160035A patent/MD1149Z/en not_active IP Right Cessation
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD3389F2 (en) * | 2004-02-27 | 2007-08-31 | Vladimir Schiliov | Process for identification of the current-conducting object |
| MD3992B2 (en) * | 2007-10-02 | 2009-12-31 | Valeriu Valentin Dudchin | Method for identification of the current-conducting object and plant for application thereon of an individual image |
| MD4045B1 (en) * | 2008-10-30 | 2010-05-31 | Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei | Method for identification of electrically conducting object and device for realization thereof |
| MD4135B1 (en) * | 2010-01-19 | 2011-10-31 | Vladimir Shkilyov | Method for applying identification tags on objects |
| MD4162B1 (en) * | 2011-01-03 | 2012-03-31 | Vladimir Schiliov | Method for manufacturing identification tags |
| MD522Y (en) * | 2011-12-14 | 2012-06-30 | Inst De Fiz Aplikateh Al Akademiej De Shtiintse A Republichij Moldova | Method for application of identification tag on solid material objects |
| MD4271B1 (en) * | 2012-07-17 | 2014-01-31 | Alexandr Grigorii Grigoriant | Method for manufacturing an identification tag on a metal substrate |
| MD760Y (en) * | 2013-11-26 | 2014-04-30 | Institutul De Fizică Aplicată Al Academiei De Ştiinţe A Moldovei | Apparatus and method for applying an individual image by electric discharge |
| MD921Y (en) * | 2014-11-27 | 2015-06-30 | Institutul De Fizică Aplicată Al Academiei De Ştiinţe A Moldovei | Installation and process for manufacturing an identification tag on a current-conducting object |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2708609C1 (en) * | 2018-07-20 | 2019-12-09 | Владимир Дмитриевич Шкилев | Electrochemical method of surface treatment of dielectrics with individual surface condition and device for its implementation |
Also Published As
| Publication number | Publication date |
|---|---|
| MD1149Y (en) | 2017-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Sharon et al. | Local crack branching as a mechanism for instability in dynamic fracture | |
| ES2159541T3 (en) | METHOD OF MANUFACTURE OF ULTRA-THICK FILMS TO CONTROL THERMAL PROPERTIES AND CURRENT DRIVING IN HYBRID CIRCUITS. | |
| US11036950B2 (en) | Device and method for producing and detecting a forgery-proof identification | |
| ATE110473T1 (en) | PROCESS FOR RAPID AND UNIFORM HEATING OF A TRANSPARENT OR REFLECTIVE MULTILAYER OPTICAL SYSTEM USING SOLID ELECTROLYTES. | |
| RO119997B1 (en) | Method of marking an object | |
| RU2667926C2 (en) | Method and system for marking object having surface of conductive material | |
| DE69033245D1 (en) | METHOD AND DEVICE FOR THE PRODUCTION OF FINE GUIDES WITH SMALL SPACES | |
| PE33298A1 (en) | PROCEDURE FOR MAKING METALLIC WIRE | |
| MD1149Z (en) | Installation and method for applying an individual image onto an electrically conductive object | |
| MD4045B1 (en) | Method for identification of electrically conducting object and device for realization thereof | |
| US20110033568A1 (en) | Device for production of nanofibres through electrostatic spinning of polymer matrix | |
| Jeon et al. | Fabrication of arbitrary polymer patterns for cell study by two‐photon polymerization process | |
| CN101870038A (en) | Anti-counterfeiting laser boring method and device of cigarette tipping paper | |
| Ränke et al. | Nano/microstructuring of nickel electrodes by combining direct laser interference patterning and polygon scanner processing for efficient hydrogen production | |
| MD921Z (en) | Installation and process for manufacturing an identification tag on a current-conducting object | |
| MD4271C1 (en) | Method for manufacturing an identification tag on a metal substrate | |
| ES2168328T3 (en) | OPTICAL SUPPORT OF READABLE INFORMATION BY MACHINE. | |
| ATE37563T1 (en) | METHOD AND DEVICE FOR CELL FUSION. | |
| ATE895T1 (en) | PASSIVE ELECTRO-OPTICAL INDICATOR, METHOD FOR DRIVING SUCH INDICATOR AND USE THEREOF. | |
| RU2544714C2 (en) | Method of making and installing labels | |
| RU2479396C1 (en) | Method of laser engraving of metals or alloys | |
| RU2657261C2 (en) | Method of creating an identification mark and a tool for electrochemical processing of an identification mark | |
| RU2654460C1 (en) | Method of three-dimensional identification of a solid object | |
| RU2236952C2 (en) | Method and device for carrying out high speed marking | |
| JP6975441B2 (en) | Marking method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG9Y | Short term patent issued | ||
| KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |