LU101541A1 - Gas-liquid two-phase saturated coal rock sample experimental device and saturation test method - Google Patents

Gas-liquid two-phase saturated coal rock sample experimental device and saturation test method Download PDF

Info

Publication number
LU101541A1
LU101541A1 LU101541A LU101541A LU101541A1 LU 101541 A1 LU101541 A1 LU 101541A1 LU 101541 A LU101541 A LU 101541A LU 101541 A LU101541 A LU 101541A LU 101541 A1 LU101541 A1 LU 101541A1
Authority
LU
Luxembourg
Prior art keywords
liquid
gas
coal rock
saturation
detector
Prior art date
Application number
LU101541A
Other languages
French (fr)
Other versions
LU101541B1 (en
Inventor
Caifang Wu
Jiang Han
Xiaojie Fang
Guanlin Li
Original Assignee
Univ China Mining
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ China Mining filed Critical Univ China Mining
Publication of LU101541A1 publication Critical patent/LU101541A1/en
Application granted granted Critical
Publication of LU101541B1 publication Critical patent/LU101541B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • G01N5/025Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0893Investigating volume, surface area, size or distribution of pores; Porosimetry by measuring weight or volume of sorbed fluid, e.g. B.E.T. method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/10Analysing materials by measuring the pressure or volume of a gas or vapour by allowing diffusion of components through a porous wall and measuring a pressure or volume difference

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Disclosed are a gas-liquid two-phase saturated coal rock sample experimental device and a saturation test method. The device includes a core holder. Two ends of the core holder are connected to a fluid entry device and a fluid discharge device respectively by means of a dense copper tube. The fluid entry device includes a first main device box and a plurality of gas-liquid pressurization tanks. The first main device box is provided with a humidity detector, a pressure detector, and a methane concentration detector. The gas-liquid pressurization tank includes a gas pressurization tank and a liquid pressurization tank. The fluid discharge device includes a second main device box and a vacuum pump. The second main device box is provided with a humidity detector, a pressure detector, and a methane concentration detector. The vacuum pump is used to create a low-pressure environment in the second main device box. The present invention replaces the conventional liquid with atomized liquid, reduces the damage of the fluid to the structure and physical properties of the coal rock sample as much as possible while reducing the resistance of the fluid when passing through a porous medium, and reduces the difficulty in liquid saturation and gas-liquid displacement.

Description

GAS-LIQUID TWO-PHASE SATURATED COAL ROCK SAMPLE LU101541
EXPERIMENTAL DEVICE AND SATURATION TEST METHOD
TECHNICAL FIELD
The present invention relates to the field of coalmine production, and in particular, to a gas-liquid two-phase saturated coal rock sample experimental device and a saturation test method.
BACKGROUND
In the mining process of coalbed methane wells, with the progress of drainage and depressurization, the pore pressure of coal reservoirs is continuously reduced, the effective stress of coal rock is gradually increasing, the stress sensitivity effect is enhanced, and the permeability is reduced. The gas adsorbed to the coal rock begins to desorb when the reservoir pressure drops to the critical desorption pressure, the coal matrix shrinks, and the permeability begins to increase gradually, forming an asymmetric U-shaped curve. The positive and negative effects make the permeability of coal reservoirs always in a complex dynamic change process, and the reason for the dynamic change in the permeability is the dynamic change in the gas and water states of the reservoirs at different drainage times. Therefore, exploration of the permeability of coal rock under different gas and water conditions and its changing process can provide reference and guidance for the establishment of a coalbed methane drainage system.
At present, the direct immersion method is often adopted for the saturation experiments of coal rock samples at home and abroad. In the case of a relatively short immersion time, the liquid saturation of coal rock samples cannot be guaranteed, and the direct immersion method would affect the physical properties of the coal rock samples and damage the original structures of the coal rock samples.
SUMMARY
To overcome the foregoing deficiencies of the prior art, the present invention provides a gas-liquid two-phase saturated coal rock sample experimental device and a saturation test method, in which an ultrasonic high-frequency vibration generator is adopted to atomize a conventional liquid fluid into nanometer-sized liquid particles.
The liquid particles enter the pores (fracture) inside the coal rock by means of the LU101541 pressure difference and are fully saturated, and the water saturation degree of the coal rock sample is determined by a mass difference method and a humidity difference. Similarly, the gas saturation degree of the coal rock sample can be determined according to a methane concentration difference method.
The technical solution adopted by the present invention is: a gas-liquid two-phase saturated coal rock sample experimental device, comprising a core holder. Two ends of the core holder are connected to a fluid entry device and a fluid discharge device respectively by means of a dense copper tube. The fluid entry device comprises a first main device box and a plurality of gas-liquid pressurization tanks. The first main device box is provided with a humidity detector, a pressure detector, and a methane concentration detector. The gas-liquid pressurization tank comprises a gas pressurization tank and a liquid pressurization tank. The fluid discharge device comprises a second main device box and a vacuum pump. The second main device box is provided with a humidity detector, a pressure detector, and a methane concentration detector. The vacuum pump is used to create a low-pressure environment in the second main device box.
Further, a booster pump is disposed in the gas pressurization tank, and the booster pump is connected to a gas storage tank. A booster pump is disposed in the liquid pressurization tank, and the booster pump is connected to a sealed water tank.
Further, an ultrasonic high-frequency vibration generator is mounted in the sealed water tank.
Further, a weighing unit is disposed at the bottom of the core holder.
Further, the core holder is further connected to a pressure detector for monitoring the change in stress of the coal rock sample in the gas-liquid saturation process to ensure safe and smooth operation of the experiment.
Further, a gas-liquid two-phase saturated coal rock sample saturation test method is provided. The method comprises the following steps: a: placing a coal rock sample on a core holder having a weighing unit, and turning on an ultrasonic high-frequency vibration generator to realize the liquid atomization; coupling the atomized liquid subjected to pressurization processing to a first main device box by means of a dense copper tube, wherein the first main device box is provided with a humidity detector, a pressure detector, and a methane concentration detector, and obtaining the gas-liquid state in a measured seal box by taking meter readings, wherein the conventional liquid is replaced with the atomized liquid, such that the damage of the fluid to the structure and physical properties of the coal rock sample is reduced as much as possible while reducing the resistance of the fluid when passing through a porous medium;
b: making the gas and the atomized liquid enter the core holder through the dense copper tube, penetrate into the coal rock sample under the effect of a pressure difference, and enter a fluid discharge device through pore-fractures inside the coal rock sample, determining the maximum saturation mass mmax °f the coal rock sample through a mass difference method, comparing with the mass m of the coal rock sample in the natural state to calculate ~ mmax ~m, and setting an arithmetic progression Ôm, ......δwherein different values of the arithmetic progression correspond to different saturations, respectively; and c: turning on a vacuum pump to create a low-pressure environment in a second main device box, increasing a pressure difference δρ between the first main device box and the second main device box; comparing the readings of humidity detectors and methane concentration detectors on the first main device box and the second main device box; determining a humidity difference δβ and a methane concentration difference Sc at different saturations; and on this basis, determining different saturations according to the meter readings.
Further, in the coal rock sample saturation test method, a saturation test is first performed on coal rock samples having different physical structures and properties to obtain corresponding saturation division standards, and then the saturation measurement is performed. For coal rock samples with small pore structure and poor permeability, the penetration and saturation are promoted by means of atomization. The experimental process is performed at normal temperature and variable pressure conditions.
Compared with the prior art, the present invention has the following advantageous effects: the conventional liquid is replaced with the atomized liquid, LU101541 such that the damage of the fluid to the structure and physical properties of the coal rock sample is reduced as much as possible while reducing the resistance of the fluid when passing through a porous medium, and the difficulty in liquid saturation and gas-liquid displacement is reduced.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic structural diagram of a gas-liquid two-phase saturated coal rock sample experimental device according to the present invention.
In the drawing, 1-core holder, 2-fluid entry device, 3-fluid discharge device, 11-weighing unit, 21-main device box I, 22-gas-liquid pressurization tank, 31-second main device box, 32-vacuum pump, 211-humidity detector, 212-pressure detector, 213-methane concentration detector, 2211-booster pump, 2212-gas storage tank, 2221-sealed water tank, 22211-ultrasonic high-frequency vibration generator
DETAILED DESCRIPTION OF THE INVENTION
In order to deepen the understanding of the present invention, the present invention will be further described in conjunction with the accompanying drawings and one embodiment. The embodiment is only illustrative of the present invention and is not intended to limit the protection scope of the present invention.
As shown in FIG. 1, a gas-liquid two-phase saturated coal rock sample experimental device comprises a core holder 1. Two ends of the core holder 1 are connected to a fluid entry device 2 and a fluid discharge device 3 respectively by means of a dense copper tube. The fluid entry device 2 includes a first main device box 21 and a plurality of gas-liquid pressurization tanks 22. The first main device box 21 is provided with a humidity detector 211, a pressure detector 212, and a methane concentration detector 213. The gas-liquid pressurization tank 22 comprises a gas pressurization tank 221 and a liquid pressurization tank 222. The fluid discharge device 3 comprises a second main device box 31 and a vacuum pump 32. The second main device box 31 is provided with a humidity detector 211, a pressure detector 212, and a methane concentration detector 213. The vacuum pump 32 is used to create a low-pressure environment in the second main device box 31.
In the foregoing embodiment, a booster pump 2211 is disposed in the gas LU101541 pressurization tank 221, and the booster pump 2211 is connected to a gas storage tank 2212. A booster pump 2211 is disposed in the liquid pressurization tank 222, and the booster pump 2211 is connected to a sealed water tank 2221. An ultrasonic high-frequency vibration generator 22211 is mounted in the sealed water tank 2221.
In the foregoing embodiment, a weighing unit 11 is disposed at the bottom of the core holder 1, and the core holder 1 is further connected to a pressure detector 212 for monitoring the change in stress of the coal rock sample in the gas-liquid saturation process to ensure safe and smooth operation of the experiment.
In the foregoing embodiment, a gas-liquid two-phase saturated coal rock sample saturation test method comprises the following steps, a: The coal rock sample is placed on a core holder having a weighing unit, and an ultrasonic high-frequency vibration generator is turned on to realize the liquid atomization; the atomized liquid subjected to pressurization processing is coupled to a first main device box by means of a dense copper tube, wherein the first main device box is provided with a humidity detector, a pressure detector, and a methane concentration detector; and the gas-liquid state in a measured seal box is obtained by taking meter readings. The conventional liquid is replaced with the atomized liquid, such that the damage of the fluid to the structure and physical properties of the coal rock sample is reduced as much as possible while reducing the resistance of the fluid when passing through a porous medium.
b: The gas and the atomized liquid enter the core holder through the dense copper tube, penetrate into the coal rock sample under the effect of a pressure difference, and enter a fluid discharge device through pore-fractures inside the coal rock sample. The maximum saturation mass mmax of the coal rock sample is determined through a mass difference method and is compared with the mass m of the coal rock sample in the natural state to calculate Sm = mmax — m, and an arithmetic progression — 8m. — Sm... ...8m is set, wherein different values of the arithmetic progression correspond to different saturations, respectively.
c: A vacuum pump is turned on to create a low-pressure environment in a second main device box, and a pressure difference between the first main device box and the second main device box is increased. The readings of humidity detectors and methane concentration detectors on the first main device box and the second main device box are compared, and a humidity difference and a methane concentration 5 difference ßc at different saturations are determined. On this basis, different saturations are determined according to the meter readings.
In the foregoing embodiment, in the coal rock sample saturation test method, a saturation test is first performed on coal rock samples having different physical structures and properties to obtain corresponding saturation division standards, and 10 then the saturation measurement is performed. For coal rock samples with small pore structure and poor permeability, the penetration and saturation are promoted by means of atomization. The experimental process is performed at normal temperature and variable pressure conditions.
The embodiment of the present invention is a preferred embodiment, but the 15 present invention is not limited thereto. Those skilled in the art can easily understand the spirit of the present invention and make different extensions and changes according to the foregoing embodiment, which fall within the protection scope of the present invention without departing from the spirit of the present invention.

Claims (7)

REVENDICATIONS 1. Dispositif expérimental gaz-liquide d'échantillonnage de roche houillère saturée à deux phases, comprenant un support de noyau, dans lequel deux extrémités du support de noyau sont reliées à un dispositif d'entrée de fluide et à un dispositif de décharge de fluide respectivement au moyen d'un tube de cuivre dense ; le dispositif d'entrée de fluide comprend un premier boîtier principal et plusieurs réservoirs de pressurisation gaz-liquide ; le premier boîtier principal est pourvu d'un détecteur d'humidité, d'un détecteur de pression et d'un détecteur de concentration en méthane ; le réservoir de pressurisation gaz-liquide comprend un réservoir de pressurisation gaz et un réservoir de pressurisation liquide ; le dispositif de décharge de fluide comprend un deuxième boîtier de dispositif principal et une pompe à vide ; le deuxième boîtier de dispositif principal est muni d'un détecteur d'humidité, d'un détecteur de pression et d un détecteur de concentration de méthane ; et la pompe à vide est utilisée pour créer un environnement basse pression dans le second boîtier de dispositif principal.1. Gas-liquid two-phase saturated coal rock sampling device, comprising a core support, in which two ends of the core support are connected to a fluid inlet device and to a fluid discharge device respectively by means of a dense copper tube; the fluid inlet device comprises a first main housing and several gas-liquid pressurization tanks; the first main housing is provided with a humidity detector, a pressure detector and a methane concentration detector; the gas-liquid pressurization tank comprises a gas pressurization tank and a liquid pressurization tank; the fluid discharge device includes a second main device housing and a vacuum pump; the second main device housing is provided with a humidity detector, a pressure detector and a methane concentration detector; and the vacuum pump is used to create a low pressure environment in the second main device housing. 2. Dispositif expérimental d'échantillonnage de roche houillère saturée biphasée gaz-liquide selon la revendication 1, dans lequel une pompe de surpression est disposée dans le réservoir de pressurisation de gaz et la pompe de surpression est connectée à un réservoir de stockage de gaz ; une pompe de surpression est disposée dans le réservoir de pressurisation de liquide et la pompe de surpression est connectée à un réservoir à eau étanche.2. Experimental device for sampling two-phase saturated coal-gas-liquid rock according to claim 1, in which a booster pump is arranged in the gas pressurization tank and the booster pump is connected to a gas storage tank; a booster pump is arranged in the liquid pressurization tank and the booster pump is connected to a sealed water tank. 3. Dispositif expérimental gaz-liquide d'échantillonnage de roche houillère saturée à deux phases selon la revendication 2, dans lequel un générateur de vibrations ultrasonores à haute fréquence est monté dans le réservoir d'eau étanche.3. Gas-liquid two-phase saturated coal rock sampling device according to claim 2, in which a high frequency ultrasonic vibration generator is mounted in the sealed water tank. 4. Dispositif expérimental d'échantillonnage de roche houillère saturée biphasée gaz-liquide selon la revendication 1, dans lequel une unité de pesage est disposée au fond du support du noyau.4. Experimental device for sampling two-phase gas-liquid saturated coal rock according to claim 1, in which a weighing unit is arranged at the bottom of the support of the core. 5. Dispositif expérimental d'échantillonnage de roche houillère saturée à deux phases gaz-liquide selon la revendication 1, dans lequel le support de noyau est en outre relié à un détecteur de pression pour surveiller la variation de contrainte de l'échantillon de roche houillère dans le processus de saturation gaz-liquide.5. An experimental gas-liquid two-phase saturated coal rock sampling device according to claim 1, in which the core support is further connected to a pressure detector to monitor the stress variation of the coal rock sample. in the gas-liquid saturation process. 6. Procédé d'essai de saturation d'échantillon de roche houillère saturée à deux phases gaz-liquide selon la revendication 1, comprenant les étapes suivantes : LU101541 a : placer un échantillon de roche houillère sur un support de noyau ayant une unité de pesage, et mettre en marche un générateur de vibrations ultrasonores à haute fréquence pour réaliser l'atomisation de liquide ; coupler le liquide atomisé soumis à un traitement de pressurisation à un premier boîtier principal au moyen d'un tube en cuivre dense, dans lequel le premier boîtier principal est muni d un detecteur d humidité, un détecteur de pression et un détecteur de concentration en méthane ; et l'obtention de l'état gaz-liquide dans une boîte étanche mesurée en prenant des lectures de compteurs, dans laquelle le liquide conventionnel est remplacé par le liquide atomisé, de sorte que les dommages du fluide à la structure et aux propriétés physiques de l'échantillon de roche de charbon sont réduits autant que possible tout en réduisant la résistance du fluide en passant par un milieu poreux ;6. A method for testing the saturation of a gas-liquid two-phase saturated coal rock sample according to claim 1, comprising the following steps: LU101541 a: placing a sample of coal rock on a core support having a weighing unit , and start a high frequency ultrasonic vibration generator to achieve atomization of liquid; coupling the atomized liquid subjected to a pressurization treatment to a first main housing by means of a dense copper tube, in which the first main housing is provided with a humidity detector, a pressure detector and a methane concentration detector ; and obtaining the gas-liquid state in a sealed box measured by taking meter readings, in which the conventional liquid is replaced by the atomized liquid, so that the damage of the fluid to the structure and to the physical properties of the carbon rock sample are reduced as much as possible while reducing the resistance of the fluid passing through a porous medium; b : faire entrer le gaz et le liquide atomisé dans le support de noyau au moyen du tube de cuivre dense, pénétrer dans l'échantillon de roche houillère sous l'effet d'une différence de pression, et entrer dans un dispositif de décharge de fluide par des fractures de pores dans l'échantillon de roche houillère, déterminer la masse maximale de saturation de l'échantillon de roche houillère par un procédé par différence de masse, comparer avec la masse de l'échantillon de roche houillère dans son état naturel pour calculer et régler une progression arithmétique, où différentes valeurs de la progression arithmétique correspondent respectivement à différentes saturations ; et c : mise en marche d'une pompe à vide pour créer un environnement à basse pression dans un deuxième boîtier principal, augmentant une difference de pression entre le premier boîtier principal et le deuxième boîtier principal ; comparaison des lectures des détecteurs d'humidité et des détecteurs de concentration de méthane sur le premier boîtier principal et le deuxième boîtier principal ; détermination d'une différence d'humidité et de concentration de méthane à différentes saturations ; et sur cette base, détermination de différentes saturations en fonction des lectures des instruments.b: introduce the atomized gas and liquid into the core support by means of the dense copper tube, penetrate into the coal rock sample under the effect of a pressure difference, and enter a device for discharging fluid by pore fractures in the coal rock sample, determine the maximum saturation mass of the coal rock sample by a mass difference method, compare with the mass of the coal rock sample in its natural state to calculate and adjust an arithmetic progression, where different values of the arithmetic progression correspond respectively to different saturations; and c: switching on a vacuum pump to create a low pressure environment in a second main housing, increasing a pressure difference between the first main housing and the second main housing; comparing the readings of the humidity detectors and the methane concentration detectors on the first main housing and the second main housing; determination of a difference in humidity and methane concentration at different saturations; and on this basis, determination of different saturations according to the readings of the instruments. 7. Procédé d'essai de saturation d'échantillons de roche houillère saturée à deux phases gaz-liquide selon la revendication 6, dans lequel, dans le procédé d'essai de saturation d'échantillons de roche houillère, un essai de saturation est d'abord effectué sur des échantillons de roche houillère ayant différentes structures et propriétés physiques pour obtenir des étalons de division de saturation correspondants, puis la LU101541 mesure de saturation est effectuée ; pour les échantillons de roche houillère avec structure à faible pores et faible perméabilité, on favorise la pénétration et la saturation par pulvérisation ; et le processus expérimental est effectué à température normale et7. A method of testing saturation of gas-liquid two-phase saturated coal rock samples according to claim 6, wherein, in the method of testing saturation of coal rock samples, a saturation test is d first performed on coal rock samples having different structures and physical properties to obtain corresponding saturation division standards, then the LU101541 saturation measurement is carried out; for samples of coal rock with a structure with a low pore and low permeability, penetration and saturation by spraying are favored; and the experimental process is carried out at normal temperature and 5 conditions de pression variable.5 variable pressure conditions.
LU101541A 2019-01-22 2019-05-22 Gas-liquid two-phase saturated coal rock sample experimental device and saturation test method LU101541B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910059348.0A CN109632557B (en) 2019-01-22 2019-01-22 Gas-liquid two-phase saturated coal rock sample experimental device and saturation testing method

Publications (2)

Publication Number Publication Date
LU101541A1 true LU101541A1 (en) 2020-04-17
LU101541B1 LU101541B1 (en) 2020-05-08

Family

ID=66062908

Family Applications (1)

Application Number Title Priority Date Filing Date
LU101541A LU101541B1 (en) 2019-01-22 2019-05-22 Gas-liquid two-phase saturated coal rock sample experimental device and saturation test method

Country Status (5)

Country Link
CN (1) CN109632557B (en)
BE (1) BE1026550B1 (en)
LU (1) LU101541B1 (en)
NL (1) NL2024554B1 (en)
WO (1) WO2020151138A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632557B (en) * 2019-01-22 2021-11-16 中国矿业大学 Gas-liquid two-phase saturated coal rock sample experimental device and saturation testing method
CN110411905A (en) * 2019-05-28 2019-11-05 西南石油大学 A kind of high temperature and pressure shale unstable state air water mutually seeps test device and method
CN114166714A (en) * 2021-11-11 2022-03-11 河北工程大学 Penetration test device for simulating gas-liquid two-phase flow in coal body
CN114279800B (en) * 2021-12-10 2023-07-14 太原理工大学 Preparation method of coal-rock combination body model sample considering interlayer interface property
CN115165951B (en) * 2022-05-23 2024-04-16 中国科学院武汉岩土力学研究所 Supercritical CO determination under reservoir temperature and pressure conditions 2 Method and device for displacing shale gas efficiency
CN115508250B (en) * 2022-09-05 2024-08-13 中国石油大学(华东) Porous medium gas adsorption capacity evaluation system and method considering water rock effect
CN115615878B (en) * 2022-09-23 2024-01-23 浙江大学 Automatic saturation device of high-range tensiometer and saturation manufacturing method
CN117433977B (en) * 2023-12-08 2024-03-26 西南石油大学 Supercritical CO 2 Device and method for detecting in-situ permeability of shale reaction

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD154639A1 (en) * 1980-11-20 1982-04-07 Kretzschmar Hans Juergen METHOD AND DEVICE FOR SAFETY DETERMINATION OF POROESES ROCK SAMPLES
JPH07190917A (en) * 1993-12-24 1995-07-28 Rigaku Corp Controller and control method for partial pressure of steam
CN2879174Y (en) * 2005-11-26 2007-03-14 中国石化胜利油田有限公司采油工艺研究院 High-temperature phase effusion measuring device and weighting apparatus
CN101109726A (en) * 2006-07-21 2008-01-23 中国石油化工股份有限公司 Analyzing method for rock core water containing saturability
CN101012747A (en) * 2007-02-02 2007-08-08 中国石油大学(华东) Gas-liquid ratio control method of rock core displacement test
JP5194944B2 (en) * 2008-03-28 2013-05-08 東京電力株式会社 CO2 mineral fixation system
CN102980828B (en) * 2012-08-27 2015-07-15 中国石油大学(华东) Apparatus and method for measuring gas phase saturation degree of single tube core during foam flooding process
CN203050688U (en) * 2012-11-30 2013-07-10 中国石油天然气股份有限公司 Water-gas dispersion injection device for core gas injection displacement experiment
CN203130056U (en) * 2013-03-26 2013-08-14 中国石油大学(北京) Micro-dispersion water control air driving fluidity device
CN104122181B (en) * 2013-04-26 2016-09-07 中国石油天然气集团公司 Working fluid is to reservoir permeability damage appraisement device
CN104155157B (en) * 2013-12-26 2017-01-04 中国石油天然气集团公司 A kind of reservoir core sample preparation system and the preparation method of reservoir core sample
CN204064753U (en) * 2013-12-26 2014-12-31 中国石油天然气集团公司 A kind of reservoir core sample preparation system
CN103760081B (en) * 2013-12-31 2016-01-06 中国石油天然气股份有限公司 Gas reservoir prediction method and system for carbonate reservoir based on pore structure characteristics
CN104729948B (en) * 2014-04-21 2017-06-16 河南理工大学 Coal containing methane gas aqueous vapor two phase fluid flow experimental system and method
CN104198228B (en) * 2014-08-18 2017-01-11 中国石油天然气股份有限公司 Unconventional reservoir rock nano adsorbed gas extraction and hydrocarbon analysis method
CN104330344A (en) * 2014-10-27 2015-02-04 中国石油天然气股份有限公司 Core gas-water two-phase seepage dynamic testing method and device
CN104359819A (en) * 2014-11-10 2015-02-18 中国石油天然气股份有限公司 Device and method for measuring gas-water relative permeability of low-permeability compact rock core
CN104568678B (en) * 2015-01-13 2017-04-05 西南石油大学 HTHP acid gas reservoir gas-liquid sulphur phase percolation curve test device and method
CN204514769U (en) * 2015-04-10 2015-07-29 中国石油大学(华东) A kind of steady state flow method measures supercritical CO 2the device of emulsion three phase permeability
CN104912525B (en) * 2015-05-11 2017-11-14 中国石油大学(北京) Oil displacement experiment device and method for low permeability sandstone reservoir
CN104897543A (en) * 2015-06-03 2015-09-09 河海大学 Multi-phase permeameter and rock permeability determination method
CN106248545A (en) * 2015-06-04 2016-12-21 中国石油化工股份有限公司 The determinator of the Test Liquid Permeability of Core of tight rock and method under reservoir conditions
WO2017106301A1 (en) * 2015-12-14 2017-06-22 Saudi Arabian Oil Company Method and device for determining gas permeability of a subsurface formation
CN105699273B (en) * 2016-03-28 2018-05-15 河南理工大学 A kind of test device and method of steam drive coal gas Desorption And Seepage
CN105842275B (en) * 2016-03-28 2018-07-03 河南理工大学 A kind of test method of steam drive coal gas desorption heat transfer
CN106126899B (en) * 2016-06-20 2017-05-17 中国石油大学(华东) Method for determining well positions of infilled wells of water-drive reservoir
CN206038673U (en) * 2016-08-04 2017-03-22 中国石油大学(北京) A device for evaluating mobile lower limit of reservoir
JP6712200B2 (en) * 2016-08-25 2020-06-17 大陽日酸株式会社 Slurry ice manufacturing method
CN106383221B (en) * 2016-11-02 2019-06-11 中国石油大学(北京) A kind of reservoir stress sensitive experiment test method and device
CN106501155A (en) * 2016-11-23 2017-03-15 中国地质大学(武汉) Rock core gas liquid two purpose permeability test device and reservoir damage evaluation method
CN206330804U (en) * 2016-11-25 2017-07-14 中国石油大学(北京) The equipment that different water cut saturation degree shale samples are quickly prepared using microwave
CN106525690B (en) * 2016-12-02 2020-01-07 中国石油天然气股份有限公司 Method for measuring gas-water relative permeability curve by tight sandstone steady-state method
CN108458957B (en) * 2017-02-21 2022-06-17 中国石油化工股份有限公司 Device and method for simulating water rock reaction
CN106769790B (en) * 2017-02-23 2023-10-31 西南石油大学 Shale permeability testing device and method based on liquid pressure pulse under ultrasonic action
CN107036953A (en) * 2017-03-31 2017-08-11 太原理工大学 The experimental rig and test method of gas-liquid two-phase seepage flow in a kind of simulation coal body
CN206609743U (en) * 2017-04-06 2017-11-03 重庆科技学院 Water drive gas reservoir water enchroachment (invasion) dynamic holdup loses experiment test system
CN107402286B (en) * 2017-08-01 2019-09-03 东北石油大学 Delay swollen performance test experimental method in a kind of polymer microballoon rock core
CN107807078B (en) * 2017-09-13 2019-11-08 中国石油天然气股份有限公司 Rock core movable water saturation online detection method under stratum condition
CN207379891U (en) * 2017-11-14 2018-05-18 北京科技大学 Fractured shale gas-water phases flowing fracture condudtiviy evaluating apparatus
CN108007954A (en) * 2017-11-29 2018-05-08 西南石油大学 The experimental provision and test method that a kind of compact rock core constraint water environment is established
CN108152105B (en) * 2017-12-26 2020-04-14 西南石油大学 Saturation device and method for compact rock
CN207586099U (en) * 2017-12-28 2018-07-06 西南石油大学 A kind of driving device mutually oozed using steady state method measure air water
CN108469396A (en) * 2018-02-07 2018-08-31 中国石油天然气股份有限公司 Gas content physical simulation device and method for coal rock and shale
CN109142683A (en) * 2018-09-19 2019-01-04 中国海洋石油集团有限公司 A kind of displacement test device and experimental method
CN109238938B (en) * 2018-09-21 2019-10-29 中国石油大学(北京) Stress sensitive experimental provision and its method under triaxial state of stress
CN109164032A (en) * 2018-11-01 2019-01-08 中国矿业大学 Full-automatic saline-supercritical CO rock2Two-phase permeability testing system and method
CN109632557B (en) * 2019-01-22 2021-11-16 中国矿业大学 Gas-liquid two-phase saturated coal rock sample experimental device and saturation testing method

Also Published As

Publication number Publication date
NL2024554B1 (en) 2020-11-23
LU101541B1 (en) 2020-05-08
BE1026550A1 (en) 2020-03-13
WO2020151138A1 (en) 2020-07-30
CN109632557B (en) 2021-11-16
NL2024554A (en) 2020-08-18
BE1026550B1 (en) 2021-03-03
CN109632557A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
LU101541A1 (en) Gas-liquid two-phase saturated coal rock sample experimental device and saturation test method
CN103776979B (en) A kind of coal seam water infusion suppresses analog detection method and the device of desorption of mash gas effect
CN102879290B (en) Coal rock desorption testing method
WO2017113947A1 (en) Natural gas hydrate density measuring device
CN102323196A (en) Design manufacturing and application of triaxial penetration tester
CN108871876B (en) Gas production column for monitoring carbon dioxide flux of soil in gas-filled zone of gas injection oil displacement well site
CN203870077U (en) Secondary cold trap enrichment device and GC-FID (Gas Chromatography-Flame Ionization Detector) combined device for detecting trace phosphine
CN102147348A (en) Device and method for measuring gas permeation in coal
CN108692994A (en) Device and method for monitoring carbon dioxide flux of gas-filled zone soil in gas injection oil displacement well site
CN107389530A (en) A kind of Dispersion Test equipment suitable for hypotonicity soil
CN205280548U (en) Simple and easy detection device of concrete porosity of permeating water
CN103529186A (en) Device and method for determining dissolved methane in seawater
CN104007196A (en) Secondary cold trap enrichment and GC-FID (Gas Chromatography-Flame Ionization Detector) combining device and method for detecting trace hydrogen phosphide
CN112881230A (en) Shale gas vibration desorption test evaluation device and method
CN105259328A (en) Physical simulation test device for influence of hydraulic measures on coal gas seepage characteristics
CN214121930U (en) Dust concentration detection device
CN102841192B (en) Desorption analysis experimental facility of coal rock
CN110320140A (en) CO2Imbibition experimental provision and method under effect
CN110187011B (en) Simulation experiment device and simulation method for dynamic adsorption and desorption research
CN205580919U (en) Survey system
CN107991215B (en) Method for testing natural aperture and specific surface area of large-size low-permeability rock sample
CN204964496U (en) Water conservancy measure is to physical simulation test device of coal body gas seepage flow characteristic influence
CN107179393B (en) A kind of pore water pressure force test method of low water content densification rock soil medium
CN207020049U (en) A kind of Dispersion Test equipment suitable for hypotonicity soil
CN105717255A (en) Composite solvent soaking huff-puff circulation experiment device and simulated mining method

Legal Events

Date Code Title Description
FG Patent granted

Effective date: 20200508