KR970001065B1 - Sintered body of silicon nitride for cutting tools having high hardness and tension and their preparation - Google Patents

Sintered body of silicon nitride for cutting tools having high hardness and tension and their preparation Download PDF

Info

Publication number
KR970001065B1
KR970001065B1 KR1019940014239A KR19940014239A KR970001065B1 KR 970001065 B1 KR970001065 B1 KR 970001065B1 KR 1019940014239 A KR1019940014239 A KR 1019940014239A KR 19940014239 A KR19940014239 A KR 19940014239A KR 970001065 B1 KR970001065 B1 KR 970001065B1
Authority
KR
South Korea
Prior art keywords
sintered body
tin
silicon nitride
sintered
weight
Prior art date
Application number
KR1019940014239A
Other languages
Korean (ko)
Other versions
KR960000372A (en
Inventor
이기성
김진영
서병창
Original Assignee
쌍용양회공업 주식회사
우덕창
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쌍용양회공업 주식회사, 우덕창 filed Critical 쌍용양회공업 주식회사
Priority to KR1019940014239A priority Critical patent/KR970001065B1/en
Publication of KR960000372A publication Critical patent/KR960000372A/en
Application granted granted Critical
Publication of KR970001065B1 publication Critical patent/KR970001065B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

Silicon nitrate sinter body for cutting tools having a good hardness and ductility, is manufactured by mixing 45-85 wt.% of SiN4 powder with 8-20 wt.% of Er203, 2-5 wt.% of SiO2 and 5-30 wt.% of TiN and sintering. In an example, a mixture of Er2O3 and SiO2 is grinded in a planetary mill. 8 wt.% of Grinded mixture and 5 wt.% of SiO2 is mixed with 77 wt.% of Si3N4(0.8 microns of particle dia, 16-18m2/g) and 5 wt.% of TiN(1.4 microns of particle diameter) in a ball mill. The obtained mixture is mixed with conventional dispersing agent, binder, and release agent, dried, formed under the pressure of 300-2,000kg/gm2, and sintered at 1,700-1,810 deg.C.

Description

고경도, 고인성의 절삭공구용 질화규소 소결체 및 그의 제조방법High hardness, high toughness silicon nitride sintered body for cutting tools and manufacturing method thereof

제1도는 본 발명에 의한 Si3N4소결체의 단면(a)과 종래기술에 의한 Si3N4소결체의 단면(b)을 비교한 사진이다.1 is a photograph comparing the cross section (a) of the Si 3 N 4 sintered body according to the present invention with the cross section (b) of the Si 3 N 4 sintered body according to the prior art.

본 발명은 고경도, 고인성의 절삭공구용 질화규소 소결체 및 그의 제조방법에 관한 것으로서, 특히 질화규소 분말에 Er2O3, SiO2와 TiN 첨가에 의해 제조된 경도 및 인성이 높고 윤활성이 우수하여 절삭성능이 우수한 절삭공구용 질화규소 소결체와 그의 제조방법에 관한 것이다.The present invention relates to a silicon nitride sintered body for high hardness and high toughness cutting tool and a method of manufacturing the same, and particularly, the hardness and toughness of the silicon nitride powder prepared by the addition of Er 2 O 3 , SiO 2 and TiN are high, and the lubricity is excellent, thereby cutting performance. The excellent silicon nitride sintered compact for a cutting tool, and its manufacturing method are related.

최근, 질화규소 소결체는 내열성, 내열충격성이 높고, 화학적으로 안정하여 구조세라믹스 재료로 많은 각광을 받아왔고, 또한 경도가 높아 절삭공구로의 응용이 확대되고 있는 소재이다.In recent years, silicon nitride sintered bodies have been attracting much attention as structural ceramic materials due to their high heat resistance, high thermal shock resistance, chemical stability, and high hardness, and are widely used for cutting tools.

그러나, 질화규소 소결체는 이와같은 우수한성질을 갖고있음에도 불구하고, 공유결합성이 높아 소결성이 나쁘고, 취성파괴로 인한 낮은 인성으로 인하여 실제 응용에 큰 제한이 되고있다.However, although the silicon nitride sintered body has such excellent properties, the covalent bondability is high, the sinterability is bad, and due to the low toughness due to brittle fracture, the silicon nitride sintered body has a great limitation in practical applications.

상기의 질화규소 소결체의 문제점을 해결하기 위하여 일본특개소 55-32785호, 일본특개소 56-73670호 등에서는 질화규소 소결체의 소결성을 높이기 위해, Y2O3, Al2O3등의 산화물을 첨가하는 방법을 제안하여 현재까지 많은 응용을 하였으나, 이들은 소결하는 과정에 있어서 첨가된 Y2O3, Al2O3가 SiO2성분 표면이 SiO2와 반응하여 액상을 형성하고, 냉각후 유리상으로 잔존하게 되므로 질화규소 소결체의 파괴인성이 저하되고, 고온에서 장시간 사용시 소결체의 물성이 저하되는 원인이 되어왔다.In order to solve the problems of the silicon nitride sintered body, in Japanese Patent Laid-Open No. 55-32785, Japanese Patent Laid-Open No. 56-73670, an oxide such as Y 2 O 3 and Al 2 O 3 is added to increase the sinterability of the silicon nitride sintered body. Although the number of applications to propose a method to date, all of which are to added in the process of sintering Y 2 O 3, Al 2 O 3 a SiO 2 component surface is cooled to form a liquid, reacts with the SiO 2 remain in the vitreous Therefore, the fracture toughness of the silicon nitride sintered compact is lowered, and the physical properties of the sintered compact have been deteriorated when used at a high temperature for a long time.

또한, 상기와 같은 문제점을 해결하기 위해 일본특개평 4-209763호에서는 Y2O3대신 Er, Yb, Sc, Dy, Ho의 산화물을 첨가하여 강도 및 내마모성이 우수한 절삭공구용 소결체를 제조하였다.In addition, in order to solve the above problems, Japanese Patent Laid-Open No. 4-209763 prepared an sintered compact for cutting tools having excellent strength and wear resistance by adding oxides of Er, Yb, Sc, Dy, and Ho instead of Y 2 O 3 .

그러나, 소결조제로서 Er2O3를 첨가한 경우에는 Er2O3가 SiO2와 반응하여 치밀화를 돕는 액상 형성 온도가 매우 높으므로(1680℃ 이상) 균일한 소결이 어려워 일반적인 상압소결 방법으로는 소결의 균일화가 어렵고, 양산시의 품질이 균일하지 못하다는 단점이 있었다.However, when Er 2 O 3 is added as a sintering aid, the liquid phase formation temperature that Er 2 O 3 reacts with SiO 2 to help densification is very high (above 1680 ° C.), so that uniform sintering is difficult, and thus, the normal atmospheric sintering method. The uniformity of the sintering was difficult, and the quality during mass production was not uniform.

따라서, 본 발명은 기존의 Er2O3첨가에 의해 제조한 Si3N4소결체의 소결성 및 물성을 향상시키기 위해 추가로 TiN을 첨가하여 경도, 인성 및 윤활성이 높아진 균질한 절삭공구용 질화규소 소결체와 이를 제조하는 방법을 제공하는데 그 목적이 있는 것이다.Therefore, the present invention provides a silicon nitride sintered compact for homogeneous cutting tools, in which hardness, toughness and lubricity are increased by adding TiN to improve the sinterability and physical properties of the Si 3 N 4 sintered compact manufactured by the conventional Er 2 O 3 addition. The purpose is to provide a method for producing the same.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 Si3N4분말 45 내지 85중량%에 희토류 원소로서 Er2O38 sowl 20중량%, SiO22 내지 5중량% 및 TiN 5 내지 30중량%를 혼합 소결하는 것으로 제조됨을 특징으로 하는 절삭공구용 질화규소 소결체이다.The present invention is prepared by mixing and sintering 20 wt% Er 2 O 3 8 sowl, SiO 2 2-5 wt% and TiN 5-30 wt% as a rare earth element to 45 to 85 wt% of Si 3 N 4 powder. Silicon nitride sintered body for cutting tools.

또한, 본 발명은 Si3N4분말 45 내지 85중량%에 평균입경 0.6㎛의 Er2O13 8 내지 20중량%, 평균입경 0.6㎛의 SiO22 내지 5중량% 및 평균입경 1㎛ 내지 2㎛의 TiN을 5 내지 30중량%을 유기 성형 조제물과 함께 혼합 분쇄한후, 성형하고, 약 1750 내지 1850℃ 온도에서 2 내지 6시간 동안 질소 분위기하에서 소결하여서 되는 것을 특징으로하는 절삭공구용 질화규소 소결체의 제조방법이다.In addition, the present invention is 45 to 85% by weight of Si 3 N 4 powder Er 2 O 1 3 8 to 20% by weight with an average particle diameter of 0.6㎛, SiO 2 2 to 5% by weight with an average particle diameter of 0.6㎛ and 1㎛ to 5-30% by weight of 2 µm TiN together with an organic molding formulation, followed by shaping, and then sintering under a nitrogen atmosphere at a temperature of about 1750 to 1850 ° C. for 2 to 6 hours. It is a manufacturing method of a silicon nitride sintered compact.

이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

즉, 본 발명은 Si3N4분말 45 내지 85중량%에 Er2O38 내지 20중량%, SiO22 내지 5중량% 및 TiN 5 내지 30중량%를 통상의 유기 성형 조제물과 함께 혼합하여 분쇄한다.That is, the present invention is mixed with 45 to 85% by weight of Si 3 N 4 powder Er 2 O 3 8 to 20% by weight, SiO 2 2 to 5% by weight and TiN 5 to 30% by weight with a conventional organic molding formulation To grind.

여기서, Er2O3및 SiO2분말은 원심분쇄기(centrifugal mill)에서 분리분쇄하여 평균 입경이 0.6㎛정도 되도록 조절하며, TiN은 평균입경이 1㎛ 내지 2㎛인 분말을 사용하여, 상기 각 원료 분말을 조성에 맞추어 칭량한 후 적정한 유기 성형조제물과 함계 혼합한다.Here, Er 2 O 3 and SiO 2 powder is separated and milled in a centrifugal mill to adjust the average particle size of about 0.6㎛, TiN using a powder having an average particle diameter of 1㎛ to 2㎛, each raw material The powder is weighed to the composition and mixed together with the appropriate organic molding preparation.

이때, 사용되는 유기 성형 조제물로는 질화규소 소결체에서 사용되는 통상의 분산제,바인더, 이형제, 메탄올 등의 알콜류 등을 사용한다.At this time, as the organic molding aid to be used, conventional dispersing agents, binders, mold release agents, alcohols such as methanol and the like used in the silicon nitride sintered body are used.

혼합된 원료 슬러리를 조합한 후, 가압성형, 주입성형, 사출성형 또는 압출성형 등의 방법에 의해 일정형상의 절삭공구 형상으로 성형하고, 첨가된 유기물은 가열소결에 의해 제거한다.After the mixed raw material slurry is combined, it is molded into a cutting tool shape of a certain shape by pressure molding, injection molding, injection molding or extrusion molding, and the added organic substance is removed by heat sintering.

상기의 공정에서 소결온도는 1750 내지 1850℃ 온도범위이고, 소결시간은 2 내지 6시간동안 N2분위기에서 소결을 실행한다. 또한, 1차 소결된 소결체는 신터-HIP(Sinter-HIP) 공정을 행하여 보다 치밀한 소결체를 얻는다.In the above process, the sintering temperature is in the temperature range of 1750 to 1850 ℃, the sintering time is carried out in the N 2 atmosphere for 2 to 6 hours. In addition, the primary sintered sintered body is subjected to a Sinter-HIP (Sinter-HIP) process to obtain a denser sintered body.

상기와 같은 본 발명에 의한 제조공정을 소결후 존재하는 2차상인 TiN의 함량 및 혼합방법, 입도를 변화시키므로써, Er2O3및 SiO2만을 소결하였을때 일어나는 소결액상이 표면으로 이송되는 스웨팅(sweating) 현상을 방지하여 균질한 소결체의 특성을 갖는 제품을 제조할 수 있다.The sintered liquid phase generated when sintering only Er 2 O 3 and SiO 2 is transferred to the surface by changing the content, mixing method, and particle size of the secondary phase TiN existing after sintering the manufacturing process according to the present invention as described above. Wetting can be prevented to produce a product having the properties of a homogeneous sintered body.

또한, 상기의 제조공정에서 TiN을 5중량% 미만, 또는 30중량% 이상 첨가하였을 경우와 TiN의 평균입경이 상기 범위를 벗어날 경우에는 균일한 소결체의 제조가 불가능하게 된다.In addition, when TiN is added in less than 5% by weight, or 30% by weight or more in the manufacturing process, and when the average particle diameter of TiN is out of the above range, it is impossible to produce a uniform sintered body.

즉, 소결체의 소결성을 돕고, 성분원료처리시 침강현상을 방지하기 위해 평균입경을 감소시킨 Er2O3및 SiO2의 입도에 비해 TiN의 입도를 크게하여 첨가혼합시킴으로써 스웨팅(sweating) 형상을 방지할 수 있다. 그 이유는 Er2O3만 첨가하는 경우, 액상 형성 온도가 높아, 그후 진행되는 소결과정 동안 형성된 액상의 재분포가 균일하게 일어나지 않기 때문에 TiN 첨가로 형성된 액상의 재분포를 이루는 역할을 하기 때문이다.That is, in order to help the sinterability of the sintered body and to prevent the sedimentation during the ingredient material treatment, the sweating shape is increased by adding and mixing TiN with a larger particle size than that of Er 2 O 3 and SiO 2 , which has reduced the average particle diameter. You can prevent it. The reason is that when only Er 2 O 3 is added, the liquid phase formation temperature is high, and since the redistribution of the liquid phase formed during the subsequent sintering process does not occur uniformly, it plays a role of redistribution of the liquid phase formed by TiN addition. .

즉, 반경 r인 구형간에 액상이 존재할 경우 액상은 P=2γ/r의 모세관압에 의해 표면으로의 이송이 이루어지게 되는데, 본 발명에 의한 바와 같이 입경(r)이 큰 TiN 입자가 존재하게 되면 상대적으로 모세관압을 감소히키는 역할을 하게 되어 표면으로의 급속한 액상의 이송을 막고, 따라서 소결체 표면으로의 스웨팅(sweating) 현상을 방지하게 되므로 소결체의 불균질 현상을 해결할 수 있게 된다.That is, when a liquid phase is present between the spheres with a radius r, the liquid phase is transferred to the surface by a capillary pressure of P = 2γ / r. When TiN particles having a large particle diameter (r) exist according to the present invention, It serves to reduce the capillary pressure relatively to prevent the rapid transfer of liquid to the surface, and thus to prevent the sweating phenomenon to the surface of the sintered body to solve the heterogeneous phenomenon of the sintered body.

뿐만 아니라 Er2O3및 SiO2간에 형성된 액상이 자연냉각시 결정화(Er2Si3N4O3결정상 형성)를 유발하며, Y2O3, Al2O3첨가시 보다 고온 강도 및 경도가 높다는 점, 기지상인 SiO2와 분산상인 TiN간의 열팽창계수 차이에 의해 발생하는 잔류응력이 크랙(crack)의 경로를 길게 해주는 역할을 하게 됨으로써, 기계적 충격에 강한 재질의 제조가 가능한 점, TiN 자체의 마찰계수가 Si3N4개질보다 낮아 윤활성이 높다는 점등에 의해 소결체의 절삭성능의 증진이 가능하게 된다.In addition, the liquid phase formed between Er 2 O 3 and SiO 2 causes crystallization during natural cooling (Er 2 Si 3 N 4 O 3 crystal phase formation), the higher temperature strength and hardness than the addition of Y 2 O 3 , Al 2 O 3 It is high, the residual stress caused by the difference in thermal expansion coefficient between the known phase SiO 2 and the dispersed phase TiN plays a role of lengthening the crack path, it is possible to manufacture a material resistant to mechanical impact, TiN itself It is possible to improve the cutting performance of the sintered body by lighting that the friction coefficient is lower than that of Si 3 N 4 modification and high lubricity.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

실시예 1Example 1

원심분쇄기(centrifugal mill)에서 분쇄된 Er2O3와 SiO2의 분말을 입도분포를 크게 해주기 위해 평판 밀(Planetrary mill)을 사용하여 90분간 밀링시켜 입도를 평균 0.6㎛정도로 감소시켰다. 감소시킨 1(8중량%) 및 SiO2(5중량%)를 Si3N4(입도 0.8∼0.95㎛, 16∼18m2/g) 77중량%, TiN(입도 1.4㎛) 5중량%를 함께 볼밀(Ball mill)에서 혼합하였다.The powder of Er 2 O 3 and SiO 2 ground in a centrifugal mill was milled for 90 minutes using a plane mill to increase the particle size distribution, and the particle size was reduced to about 0.6 μm. Ball mill with reduced 1 (8% by weight) and SiO 2 (5% by weight) 77% by weight of Si 3 N 4 (particles 0.8 to 0.95 μm, 16 to 18 m 2 / g) and 5% by weight of TiN (particle size 1.4 μm) (Ball mill) was mixed.

상기의 성분 혼합물은 유기 성형조제물 예를 들면, 통상의 분산제 및 바인더, 이형제등과 함게 메탄올(methanol)에 분산시킨후 밀링(milling)하였다.The above component mixture was dispersed in methanol with an organic molding preparation, for example, a conventional dispersant, a binder, a mold release agent and the like, and then milled.

상기에서 얻어진 슬러리를 건조 및 조립시킨후, 일정형상의 성형체로 가압성형하였는데, 300kg/cm2로 압축가압 성형한후, 2000kg/cm2로 등방가압성형하였다.After drying and assembly of the slurry obtained above were press-molding into a shaped body of a predetermined shape, and then press-molding by compression 300kg / cm 2, the press-molding was isotropic to 2000kg / cm 2.

상기와 같이 제조된 성형체를 최고 1810℃까지 승온시켜 N2상압 분위기하에서 소결시켰으며, 이때 성형체와 동일한 조성의 분말을 매립시켜 Si3N4의 분해를 방지하였다. 또 제조된 소결체는 1700℃ 온도에서, 1시산동안, 1750바아(bar)의 조건으로 신터-HIP(Sinter-HIP)을 행하여 보다 물성이 우수한 제품을 얻었다.The molded article prepared as described above was heated up to 1810 ° C. and sintered under an N 2 atmospheric pressure atmosphere, whereby powder of the same composition as the molded article was embedded to prevent decomposition of Si 3 N 4 . In addition, the produced sintered compact was subjected to Sinter-HIP (Sinter-HIP) under a condition of 1750 bar during one trial at 1700 ° C to obtain a product having better physical properties.

상기와 같이 제조한 소결체의 조성 및 기계적 특성의 결과를 다음 표 1에 나타내었다.The results of the composition and mechanical properties of the sintered body prepared as described above are shown in Table 1 below.

실시예 2 내지 3Examples 2 to 3

표 1에 나타낸 조성비로 소결체를 제조하는 것을 제외하고는 상기 실시예 1과 동일하게 실행하였다.The same procedure as in Example 1 was carried out except that the sintered compact was produced at the composition ratios shown in Table 1.

각 실시예의 소결체의 조성 및 기계적 특성의 결과를 다음 표 1에 나타내었다.The results of the composition and mechanical properties of the sintered compact of each example are shown in Table 1 below.

비교예 1 내지 4Comparative Examples 1 to 4

표 1에 나타낸 조성비로 소결체를 제조하는 것을 제외하고는 상기 실시예 1과 동일하게 실행하였다(비교예 3과 4는 일본특개평 4-209763호에 공지된 방법임).The same procedure as in Example 1 was carried out except that the sintered body was produced at the composition ratio shown in Table 1 (Comparative Examples 3 and 4 are methods known from Japanese Patent Application Laid-Open No. 4-209763).

각 비교예의 소결체의 조성 및 기계적 특성의 결과를 다음 표 1에 나타내었다.The results of the composition and the mechanical properties of the sintered compact of each comparative example are shown in Table 1 below.

실험예 1Experimental Example 1

상기의 실시예 및 비교예로 제조된 소결체의 특성을 나타낸 표 1에서 측정된 경도 및 인성은 제조된 소결체의 표면부위를 측정한 것으로서, TiN을 첨가한 본 발명에 의한 소결체와 TiN을 첨가하지 않은 소결체의 내부특성(시편 내부의 경도 및 인성특성) 비교하기 위하여 상기 실시예 2와 비교예 1로 제조된 소결체의 특성을 측정하였고, 그 결과를 다음의 표 2에 나타내었다.The hardness and toughness measured in Table 1 showing the characteristics of the sintered compacts prepared by the above Examples and Comparative Examples were measured by measuring the surface area of the manufactured sintered compact, and the sintered compact and TiN were not added according to the present invention. In order to compare the internal characteristics (hardness and toughness characteristics of the specimen) of the sintered body, the characteristics of the sintered body prepared in Example 2 and Comparative Example 1 were measured, and the results are shown in Table 2 below.

상기 표 2에서 비교예 1과 같이 ErO만 첨가된 경우는 소결체 내부부위의 물성이, TiN이 첨가된 실시예 1에 의한 소결체와 비교해 낮은 경도 및 인성을 갖는 것으로 측정되었다. 이 사실을 실제로 확인하기 위하여 제1도와 같이 실시예 2의 소결체와 비교예 1의 소결체의 단면을 촬영하였다. 즉 TiN을 10중량% 첨가한 실시예 2(제1a도)의 소결체가, 첨가하지 않은 비교예 1(제1b도)의 소결체보다 균일한 소결층을 형성한 것을 확인할 수 있었다.In Table 2, when only ErO was added as in Comparative Example 1, the physical properties of the internal parts of the sintered body were measured to have low hardness and toughness compared to the sintered body according to Example 1 to which TiN was added. In order to confirm this fact actually, the cross section of the sintered compact of Example 2 and the sintered compact of Comparative Example 1 was image | photographed like FIG. That is, it was confirmed that the sintered compact of Example 2 (FIG. 1a) to which 10 weight% of TiN was added formed a more uniform sintered layer than the sintered compact of Comparative Example 1 (FIG. 1B) not added.

즉, 상기에서 확인된 바와 같이 ErO만 첨가된 경우에 비해, ErO와 TiN을 동시에 첨가함으로써 소결체 내부에 균일한 소결층을 형성시키면서(시편 내,외부간에 Er 함량의 차이가 거의 없음) 절삭에 필요한 물성을 향상시킨 제품의 제작이 가능하였다.That is, as compared with the case where only ErO is added as described above, by adding both ErO and TiN simultaneously, a uniform sintered layer is formed inside the sintered body (there is almost no difference in the Er content between the inside and the outside of the specimen). Production of products with improved physical properties was possible.

시험예 2Test Example 2

본 발명에 의한 실시예와 비교예로 제조한 소결체의 절삭성능을 비교하기 위하여 실시예의 2의 소결체와 비교예 1과 비교예 2에 해당하는 소결체를 절삭공구 형상으로하여 상하(上下)면, 측면, 모서리 가공한후, 다음과 같은 조건으로 절삭 시험을 실시하였다.In order to compare the cutting performance of the sintered compact manufactured by the Example and the comparative example which concerns on this invention, the sintered compact of Example 2 and the sintered compact corresponding to Comparative Example 1 and Comparative Example 2 were made into the shape of a cutting tool, and the upper and lower surfaces After the corner processing, the cutting test was performed under the following conditions.

절삭조건Cutting condition

파삭재 지질 : FS 25Crisp Lipids: FS 25

절삭 속도 : 883m/분Cutting speed: 883m / min

이송 속도 : 0.3mm/revFeed speed: 0.3mm / rev

절삭 깊이 : 2.0mmCutting depth: 2.0mm

총 가공기간 : 200분Total processing period: 200 minutes

상기의 시험 결과를 다음 표 3에 나타내었다. 표 3에 절삭성능은 피삭재를 1개당 8초씩 가공하였을때, 절삭공구 하나의 절삭가능한 피삭재의 수량을 상대화하여 나타내었다.The test results are shown in Table 3 below. Table 3 shows the cutting performance relative to the number of cuttable workpieces of one cutting tool when the workpiece is processed for 8 seconds per piece.

상기 비교예 2의 절삭성능을 100으로 기준으로 하여 상대 비교한 시험결과에서 본 발명에 의한 실시예 2의 ErO및 TiN 첨가에 의해 제조된 SiO계의 절삭공구용 소결체는 비교예 1과 비교예 2에 비교해 절삭성능이 우수함을 알수 있고, SiN계 소결체의 절삭성능은 ErO첨가에 의해서와, 또한 추가로 TiN 첨가에 의해 큰 향상을 보이는 것으로 나타났다.The sintered compact for SiO-based cutting tools manufactured by the addition of ErO and TiN of Example 2 according to the present invention in the comparative test results based on the cutting performance of Comparative Example 2 based on 100 was Comparative Example 1 and Comparative Example 2 Compared to the above, it was found that the cutting performance was excellent, and the cutting performance of the SiN-based sintered compact was greatly improved by the addition of ErO and further by the addition of TiN.

Claims (1)

Si3N4분말 45 내지 85중량%에 희토류 원소로서 Er2O38 내지 20중량%, SiO22 내지 5중량% 및 TiN 5 내지 30중량%를 혼합 소결하는 것으로 제조됨을 특징으로 하는 절삭공구용 질화규소 소결체.45 to 85% by weight of Si 3 N 4 powder is a cutting tool, characterized in that by mixing and sintering Er 2 O 3 8 to 20% by weight, SiO 2 2 to 5% by weight and TiN 5 to 30% by weight as a rare earth element Silicon nitride sintered body.
KR1019940014239A 1994-06-22 1994-06-22 Sintered body of silicon nitride for cutting tools having high hardness and tension and their preparation KR970001065B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940014239A KR970001065B1 (en) 1994-06-22 1994-06-22 Sintered body of silicon nitride for cutting tools having high hardness and tension and their preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940014239A KR970001065B1 (en) 1994-06-22 1994-06-22 Sintered body of silicon nitride for cutting tools having high hardness and tension and their preparation

Publications (2)

Publication Number Publication Date
KR960000372A KR960000372A (en) 1996-01-25
KR970001065B1 true KR970001065B1 (en) 1997-01-25

Family

ID=19385925

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940014239A KR970001065B1 (en) 1994-06-22 1994-06-22 Sintered body of silicon nitride for cutting tools having high hardness and tension and their preparation

Country Status (1)

Country Link
KR (1) KR970001065B1 (en)

Also Published As

Publication number Publication date
KR960000372A (en) 1996-01-25

Similar Documents

Publication Publication Date Title
KR100417967B1 (en) Abrasion resistance materials and preparation method therefor
US4879263A (en) Sliding member of high strength and high abrasion resistance
US5767028A (en) Aluminum nitride sintered body and method for manufacturing the same
EP0385509B1 (en) Process for producing ceramic composites
EP0268721B1 (en) Pulverulent silicon nitride composition reinforced with silicon carbide whiskers and its use for the manufacturing of sintered parts
WO2017030360A1 (en) Silicon nitride sintered compact with high thermal conductivity, and method for manufacturing same
KR960016070B1 (en) Sintered aluminium nitride and its production
EP2636659A1 (en) High rigidity ceramic material and method for producing same
US5401450A (en) β-silicon nitride sintered body and method of producing same
EP0310342A2 (en) SiC-Al2O3 composite sintered bodies and method of producing the same
KR970001065B1 (en) Sintered body of silicon nitride for cutting tools having high hardness and tension and their preparation
US6136738A (en) Silicon nitride sintered body with region varying microstructure and method for manufacture thereof
TW202130603A (en) Machinable ceramic composite and method for preparing the same
CN113233903A (en) Silicon nitride ceramic substrate and preparation method thereof
JPH06329474A (en) Sintered aluminum nitride and its production
JPS61256963A (en) High strength alumina sintered body and manufacture
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board
KR102156575B1 (en) Machinable ceramic composite material having a low coefficient of thermal expansion and manufacturing method thereof
KR102068172B1 (en) Machinable ceramic and manufacturing method of the same
KR920006112B1 (en) Making method for high p carbide si sintering parts
JPH09278526A (en) Setter for ceramic firing
JPH0812443A (en) Superplastic silicon nitride sintered compact
JPH0680473A (en) Production of aluminum nitride substrate
JPH0559073B2 (en)
JPH0559074B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130128

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 18

EXPY Expiration of term