JPH0680473A - Production of aluminum nitride substrate - Google Patents

Production of aluminum nitride substrate

Info

Publication number
JPH0680473A
JPH0680473A JP4228883A JP22888392A JPH0680473A JP H0680473 A JPH0680473 A JP H0680473A JP 4228883 A JP4228883 A JP 4228883A JP 22888392 A JP22888392 A JP 22888392A JP H0680473 A JPH0680473 A JP H0680473A
Authority
JP
Japan
Prior art keywords
aluminum nitride
aln
molded body
raw material
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4228883A
Other languages
Japanese (ja)
Inventor
Seiji Katsube
成二 勝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4228883A priority Critical patent/JPH0680473A/en
Publication of JPH0680473A publication Critical patent/JPH0680473A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an aluminum nitride substrate having a small amount of molded article contracted during sintering and having high dimensional precision. CONSTITUTION:A mixture of aluminum nitride raw material powder, a sintering auxiliary and an organic component such as binder is molded to mold a primary molded article and the prepared primary molded article is adjusted to a given density by pressurizing. Then the prepared secondary molded article is defatted and sintered in a nonoxidizing atmosphere. When the primary molded article is pressurized, the primary molded article is heated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化アルミニウム基板の
製造方法に係り、特に焼結時における成形体の収縮量が
小さく高い寸法精度を有する窒化アルミニウム基板の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aluminum nitride substrate, and more particularly to a method for manufacturing an aluminum nitride substrate having a small amount of shrinkage of a compact during sintering and having high dimensional accuracy.

【0002】[0002]

【従来の技術】従来の金属材料と比較して強度、耐熱
性、耐食性、耐摩耗性、軽量性などの諸特性に優れた窒
化けい素(Si3 4 )、アルミナ(Al2 3 )や窒
化アルミニウム(AlN)などのセラミックス焼結体
が、半導体、電子機器材料、エンジン用部材、高速切削
工具用材料、ノズル、ベアリングなど、従来の金属材料
の及ばない苛酷な温度、応力、摩耗条件下で使用される
機械部品、機能部品、構造材や装飾品材料として広く利
用されている。
2. Description of the Related Art Silicon nitride (Si 3 N 4 ) and alumina (Al 2 O 3 ) are superior in properties such as strength, heat resistance, corrosion resistance, wear resistance, and lightness to conventional metal materials. Sintered ceramics such as aluminum and aluminum nitride (AlN) are used in semiconductors, electronic equipment materials, engine parts, high-speed cutting tool materials, nozzles, bearings, etc. Widely used as mechanical parts, functional parts, structural materials and decorative materials used below.

【0003】従来、半導体用セラミックス基板として
は、一般にアルミナ(Al2 3 )製のものが一般的に
使用されている。現在アルミナ(Al2 3 )は窒化ア
ルミニウム(AlN)と比較して原料価格が1/20〜
1/50と安価であり、また粉末の粒度分布等の特性値
が異なる原料粉末が多種類用意されている。そのため粗
大粒子の間隙に微細粒子を充填することにより高密度成
形体を形成することが可能であり、したがって焼結時の
収縮率制御は、比較的に容易である。このため一般的な
成形方法であるドクターブレード法によって、種々のシ
ート状成形体を得ることができる。また上記のシート状
成形体を多層化した半導体パッケージも容易に製造する
ことができる。
Conventionally, as a ceramic substrate for semiconductors, a substrate made of alumina (Al 2 O 3 ) is generally used. Currently, alumina (Al 2 O 3 ) has a raw material price of 1/20 to 20% compared to aluminum nitride (AlN).
It is cheap as 1/50, and many kinds of raw material powders having different characteristic values such as particle size distribution are prepared. Therefore, it is possible to form a high-density molded body by filling fine particles into the gaps between coarse particles, and therefore control of the shrinkage rate during sintering is relatively easy. Therefore, various sheet-shaped molded products can be obtained by the doctor blade method which is a general molding method. Further, a semiconductor package in which the above-mentioned sheet-shaped molded body is multilayered can be easily manufactured.

【0004】一方窒化アルミニウム(AlN)焼結体は
高熱伝導性を有する絶縁体であり、シリコン(Si)に
近い熱膨張係数を有することから高出力化、高集積化し
た半導体装置の放熱板や基板として、その用途を拡大し
ている。
On the other hand, an aluminum nitride (AlN) sintered body is an insulator having a high thermal conductivity, and has a thermal expansion coefficient close to that of silicon (Si). Its use is expanding as a substrate.

【0005】従来AlN基板は一般的に下記の製造方法
によって量産されている。すなわち、まず窒化アルミニ
ウム粉末に焼結助剤と、有機バインダと、必要に応じて
各種添加剤や溶媒、分散剤とを添加して原料混合体を調
製し、得られた原料混合体をドクターブレード法やロー
ル成形法によって成形し、薄板状ないしシート状の成形
体としたり、原料混合体をプレス成形して厚板状ないし
大型の成形体を形成する。次に得られた成形体は、空気
または窒素ガス雰囲気において加熱され脱脂処理され、
有機バインダとして使用された炭化水素成分等が成形体
から排除脱脂される。そして脱脂された成形体は窒素ガ
ス雰囲気等で高温度に加熱され緻密化焼結されて窒化ア
ルミニウム焼結体が形成される。
Conventionally, AlN substrates are generally mass-produced by the following manufacturing method. That is, first, a sintering aid, an organic binder, and if necessary various additives and solvents, and a dispersant are added to aluminum nitride powder to prepare a raw material mixture, and the obtained raw material mixture is doctor blade. Or a roll forming method to form a thin plate-shaped or sheet-shaped molded product, or a raw material mixture is press-molded to form a thick plate-shaped or large-sized molded product. Next, the obtained molded body is heated in an air or nitrogen gas atmosphere to be degreased,
The hydrocarbon component used as the organic binder is removed and degreased from the molded body. The degreased compact is heated to a high temperature in a nitrogen gas atmosphere or the like and densified and sintered to form an aluminum nitride sintered compact.

【0006】上記製造方法において、原料AlN粉末と
して平均粒径が0.3μm以下程度の超微細な原料粉末
を使用する場合は、AlN粉末単独でもかなりの緻密な
焼結体が得られる。しかしながら、原料粉末表面等に付
着した多量の酸素等の不純物が焼結時に、AlN結晶格
子中に固溶したり、格子振動の伝播を妨げるAl−O−
N化合物等の複合酸化物を生成する結果、焼結助剤を使
用しないAlN焼結体の熱伝導率は比較的に低かった。
In the above manufacturing method, when an ultrafine raw material powder having an average particle size of about 0.3 μm or less is used as the raw material AlN powder, a considerably dense sintered body can be obtained by the AlN powder alone. However, a large amount of impurities such as oxygen adhering to the surface of the raw material powder and the like are solid-solved in the AlN crystal lattice at the time of sintering, or Al-O- which hinders the propagation of lattice vibration.
As a result of producing a compound oxide such as an N compound, the thermal conductivity of the AlN sintered body that did not use a sintering aid was relatively low.

【0007】一方原料粉末として平均粒径0.5μm以
上のAlN粉末を使用する場合は、その原料粉末単独で
は焼結性が良好でないため、ホットプレス法以外には助
剤無添加では緻密な焼結体を得ることが困難であり、量
産性が低い欠点があった。そこで常圧焼結法によって効
率的に焼結体を製造しようとする場合には、焼結体の緻
密化およびAlN原料粉末中の不純物酸素がAlN結晶
粒子内へ固溶することを防止するために、焼結助剤とし
て、酸化イットウリム(Y2 3 )などの希土類酸化物
や酸化カルシウムなどのアルカリ土類金属酸化物等を添
加することが一般に行なわれている。
On the other hand, when an AlN powder having an average particle size of 0.5 μm or more is used as the raw material powder, the raw material powder alone does not have good sinterability. It was difficult to obtain a bound body and there was a drawback that mass productivity was low. Therefore, in order to efficiently manufacture a sintered body by the atmospheric pressure sintering method, in order to prevent the densification of the sintered body and the impurity oxygen in the AlN raw material powder from forming a solid solution in the AlN crystal grains. In addition, rare earth oxides such as yttrium oxide (Y 2 O 3 ) and alkaline earth metal oxides such as calcium oxide are generally added as a sintering aid.

【0008】これらの焼結助剤は、AlN原料粉末に含
まれる不純物酸素やAl2 3 と反応して液相を形成
し、焼結体の緻密化を達成するとともに、この不純物酸
素を粒界相として固定し、高熱伝導率化も達成するもの
と考えられている。
[0008] These sintering aids react with impurity oxygen and Al 2 O 3 contained in the AlN raw material powder to form a liquid phase, achieve densification of the sintered body, and at the same time, the impurity oxygen is granulated. It is believed that it can be fixed as a phase phase and achieve high thermal conductivity.

【0009】[0009]

【発明が解決しようとする課題】しかしながら窒化アル
ミニウムは、上記のように原料粉末段階における酸素や
不純物の含有量によって窒化アルミニウム基板の熱伝導
率等の物性が大きく変化する性質がある。特に粉砕処理
することによって原料粉末の酸素含有量が急激に増加
し、また粗大なAlN原料粉末についても不純物や酸素
が多く、結果として基板の熱伝導率が低下してしまう欠
点がある。このようにAlN焼結体の基本特性である熱
伝導率の低下を防止するため、通常は粒径が1〜2μm
で粒径分布が狭く、酸素含有量が少ない還元窒化法によ
る微細な単一原料粉の使用を余儀なくされていた。その
ため粒度分布が異なる原料粉を配合して成形体の密度を
調整することが困難であり、必然的に焼結時の収縮率の
制御が煩雑となり高い寸法精度を有するAlN基板を得
ることが困難であった。
However, as described above, aluminum nitride has a property that the physical properties such as the thermal conductivity of the aluminum nitride substrate greatly change depending on the contents of oxygen and impurities in the raw material powder stage. In particular, the pulverization treatment causes a rapid increase in the oxygen content of the raw material powder, and the coarse AlN raw material powder also has a large amount of impurities and oxygen, resulting in a decrease in the thermal conductivity of the substrate. As described above, in order to prevent a decrease in thermal conductivity, which is a basic characteristic of the AlN sintered body, the grain size is usually 1 to 2 μm.
Therefore, it was necessary to use a fine single raw material powder by a reduction nitriding method with a narrow particle size distribution and a low oxygen content. Therefore, it is difficult to mix the raw material powders having different particle size distributions to adjust the density of the compact, and it is inevitable that the shrinkage rate during sintering becomes complicated and it is difficult to obtain an AlN substrate having high dimensional accuracy. Met.

【0010】特にシート状成形体を量産できるドクター
ブレード法を使用する場合には、成形体の密度を任意に
高めたり、所定値に厳密に調整することは実質的に困難
であり、AlN焼結体に反り等の欠陥が生じ易く、いず
れにしろ高い寸法精度を有するAlN基板を高い歩留り
で製造することが困難となる問題点があった。
Particularly when using a doctor blade method capable of mass-producing sheet-shaped compacts, it is practically difficult to arbitrarily increase the density of the compacts or strictly adjust it to a predetermined value, and AlN sintering is performed. There is a problem that defects such as warp are likely to occur on the body, and it is difficult to manufacture an AlN substrate having high dimensional accuracy at a high yield in any case.

【0011】本発明は上記の問題点を解決するためにな
されたものであり、特に焼結時における成形体の収縮量
が小さく、高い寸法精度を有する窒化アルミニウム基板
を容易に製造することができる窒化アルミニウム基板の
製造方法を提供することを目的とする。
The present invention has been made to solve the above problems, and in particular, an aluminum nitride substrate having a small amount of shrinkage of a compact during sintering and having high dimensional accuracy can be easily manufactured. An object is to provide a method for manufacturing an aluminum nitride substrate.

【0012】[0012]

【課題を解決するための手段】本願発明者は、成形体の
密度が焼結時の寸法収縮量に及ぼす影響を検討し、成形
体の密度が焼結体の理論密度に近い程収縮量は小さくな
り、高精度の基板が得られることを突きとめた。そし
て、ドクターブレード法等によって形成した一次成形体
を加圧することにより成形体の密度を適正に調整でき、
高い寸法精度を有する基板が得られることが判明した。
The inventor of the present application has examined the influence of the density of the molded body on the dimensional shrinkage during sintering, and the shrinkage amount decreases as the density of the molded body approaches the theoretical density of the sintered body. We have found that it becomes smaller and a highly accurate substrate can be obtained. Then, by pressing the primary molded body formed by the doctor blade method or the like, the density of the molded body can be appropriately adjusted,
It has been found that a substrate having high dimensional accuracy can be obtained.

【0013】本発明は上記知見に基づいて完成されたも
のである。すなわち本発明に係る窒化アルミニウム基板
の製造方法は、窒化アルミニウム原料粉末と焼結助剤と
結合剤などの有機成分との混合体を成形して一次成形体
を形成し、得られた一次成形体を加圧することにより所
定密度に調整した二次成形体を形成し、しかる後に得ら
れた二次成形体を脱脂し、非酸化性雰囲気において焼結
することを特徴とする。また上記一次成形体を加圧する
際に一次成形体を加熱するとよい。
The present invention has been completed based on the above findings. That is, the method for producing an aluminum nitride substrate according to the present invention, a primary molded body is formed by molding a mixture of an aluminum nitride raw material powder, a sintering aid, and an organic component such as a binder. Is pressed to form a secondary molded body having a predetermined density, after which the obtained secondary molded body is degreased and sintered in a non-oxidizing atmosphere. Moreover, it is advisable to heat the primary molded body when pressing the primary molded body.

【0014】本発明方法において使用され、焼結体の主
成分となる窒化アルミニウム原料(AlN)粉末として
は、焼結性および熱伝導性を考慮して不純物酸素含有量
が3重量%以下に抑制され平均粒径が0.05〜5μm
程度、好ましくは3μm以下のものを使用する。
The aluminum nitride raw material (AlN) powder used in the method of the present invention, which is the main component of the sintered body, has an impurity oxygen content of 3% by weight or less in consideration of sinterability and thermal conductivity. The average particle size is 0.05-5 μm
The thickness is preferably about 3 μm or less.

【0015】焼結助剤としては希土類元素(Y,Sc,
Ce,Dyなど)の酸化物、窒化物、アルカリ土類金属
(Ca)の酸化物、もしくは焼結操作によりこれらの化
合物となる物質が使用され、特に酸化イットリウム(Y
2 3 )、酸化セリウム(CeO)や酸化カルシウム
(CaO)が好ましい。
As a sintering aid, rare earth elements (Y, Sc,
Ce, Dy, etc.) oxides, nitrides, oxides of alkaline earth metals (Ca), or substances that become these compounds by a sintering operation are used, particularly yttrium oxide (Y
2 O 3 ), cerium oxide (CeO) and calcium oxide (CaO) are preferred.

【0016】一次成形体の成形法としては、特に一次成
形体の密度を調整することが困難であるドクターブレー
ド法を使用する場合に本発明方法は極めて有効となる。
すなわちドクターブレード法によって調製された低密度
のシート状一次成形体を加圧することにより、一次成形
体より密度が高い二次成形体を形成することができる。
上記加圧力としては原料混合体の組成にもよるが、10
0〜500kg/cm2 、より好ましくは200〜300kg
/cm2 の範囲がよい。
As the method for molding the primary molded body, the method of the present invention is extremely effective especially when the doctor blade method, which is difficult to control the density of the primary molded body, is used.
That is, by pressurizing the sheet-shaped primary compact having a low density prepared by the doctor blade method, a secondary compact having a higher density than the primary compact can be formed.
The pressing force depends on the composition of the raw material mixture, but is 10
0-500 kg / cm 2 , more preferably 200-300 kg
The range of / cm 2 is good.

【0017】また一次成形体の加圧時に一次成形体を3
0〜150℃程度に加熱することにより、より短時間に
成形体の密度を高めることが可能であり、成形工程の所
要時間をより短縮することができる。
When the primary molded body is pressed, the primary molded body is crushed by 3 times.
By heating to about 0 to 150 ° C., the density of the molded product can be increased in a shorter time, and the time required for the molding process can be further shortened.

【0018】さらに上記のように調製した高密度の二次
成形体の段階でスルーホール(導通孔)やスクライブラ
イン(割り溝)を形成することにより、位置精度や寸法
精度が高いスルーホールおよびスクライブラインが形成
され、動作信頼性が高い多層窒化アルミニウム基板を形
成することも可能である。
Further, by forming through holes (conduction holes) and scribe lines (split grooves) at the stage of the high-density secondary molded body prepared as described above, through holes and scribes having high positional accuracy and dimensional accuracy are obtained. It is also possible to form a multilayer aluminum nitride substrate in which lines are formed and operation reliability is high.

【0019】上記二次成形操作に引き続いて、二次成形
体を空気中または非酸化性雰囲気中、例えば窒素ガス雰
囲気中で温度400〜800℃に加熱して、予め添加し
ていた有機バインダを充分に除去する。
Subsequent to the above secondary molding operation, the secondary molded body is heated in air or in a non-oxidizing atmosphere, for example, in a nitrogen gas atmosphere to a temperature of 400 to 800 ° C. to add the organic binder added in advance. Remove enough.

【0020】次に脱脂処理された複数のシート状の二次
成形体は、例えばAlN,BN等のセラミックス焼結粉
から成るしき粉を介して焼成炉内において多段に積層さ
れ、この配置状態で複数の二次成形体は一括して所定温
度で焼結される。焼結操作は、窒素ガスなどの非酸化性
雰囲気で成形体を温度1700〜2000℃に2〜10
時間程度加熱して実施される。焼結雰囲気は、窒素ガ
ス、または窒素ガスを含む還元性雰囲気で行なう。還元
性ガスとしてはH2 ガス、COガスを使用してもよい。
なお、焼結は真空(僅かな還元雰囲気を含む)、減圧、
加圧および常圧を含む雰囲気で行なってもよい。焼結温
度が1700℃未満と低温状態で焼成すると、原料粉末
の粒径、含有酸素量によって異なるが、緻密な焼結体が
得にくい一方、2000℃より高温度で焼成すると、焼
成炉内におけるAlN自体の蒸気圧が高くなり緻密化が
困難になるおそれがあるため、焼結温度は上記範囲に設
定される。
Next, the degreased sheet-shaped secondary compacts are stacked in multiple stages in the firing furnace through the interstitial powder made of sintered ceramic powder such as AlN or BN. The plurality of secondary compacts are collectively sintered at a predetermined temperature. For the sintering operation, the molded body is heated to a temperature of 1700 to 2000 ° C. for 2 to 10 in a non-oxidizing atmosphere such as nitrogen gas.
It is carried out by heating for about an hour. The sintering atmosphere is nitrogen gas or a reducing atmosphere containing nitrogen gas. H 2 gas or CO gas may be used as the reducing gas.
Sintering is performed under vacuum (including a slight reducing atmosphere), reduced pressure,
You may perform in the atmosphere containing pressurization and normal pressure. When sintered at a low temperature of 1700 ° C. or lower, it depends on the particle size of the raw material powder and the amount of oxygen contained, but it is difficult to obtain a dense sintered body. Since the vapor pressure of AlN itself becomes high and densification may become difficult, the sintering temperature is set within the above range.

【0021】[0021]

【作用】上記構成に係る窒化アルミニウム基板の製造方
法によれば、低密度の一次成形体をさらに加圧して高密
度の二次成形体としているため、焼結時における反りや
収縮が少ない高い寸法精度を有する窒化アルミニウム基
板を得ることができる。
According to the method of manufacturing an aluminum nitride substrate having the above-described structure, since the low-density primary compact is further pressed into a high-density secondary compact, a high dimension with less warpage or shrinkage during sintering is obtained. It is possible to obtain a precision aluminum nitride substrate.

【0022】また一次成形体を加圧する際に一次成形体
を加熱することにより、さらに短かい成形時間で高密度
の二次成形体を形成することが可能となる。さらに高密
度の二次成形体の段階でスルーホール等を形成すること
によりスルーホール等の位置形状精度も高まり、動作信
頼性がより高い基板が得られる。
Further, by heating the primary compact when pressing the primary compact, it becomes possible to form a high-density secondary compact in a shorter molding time. Further, by forming the through holes and the like at the stage of the high-density secondary molded body, the positional shape accuracy of the through holes and the like is improved, and a substrate having higher operation reliability can be obtained.

【0023】[0023]

【実施例】次に下記の実施例を参照して本発明に係る窒
化アルミニウム基板の製造方法による効果をより具体的
に説明する。
EXAMPLES The effects of the method for manufacturing an aluminum nitride substrate according to the present invention will be described more specifically with reference to the following examples.

【0024】実施例1 純度99.0%以上で平均粒径1.5μmの窒化アルミ
ニウム(AlN)粉末を用意し、所定量の焼結助剤、有
機溶剤およびアクリルバインダを添加した後に、ボール
ミルにて30分間混合し均一な原料スラリーを調製し
た。次に得られた原料スラリーの粘度調整を実施した後
にドクターブレード装置によって厚さ0.8mmのAlN
製シート状一次成形体を多数調製した。得られた一次成
形体の密度は1.80g/cm3 であった。
Example 1 An aluminum nitride (AlN) powder having a purity of 99.0% or more and an average particle size of 1.5 μm was prepared, and a predetermined amount of a sintering aid, an organic solvent and an acrylic binder were added thereto, and then the mixture was placed in a ball mill. And mixed for 30 minutes to prepare a uniform raw material slurry. Next, after adjusting the viscosity of the obtained raw material slurry, a doctor blade device was used to make AlN having a thickness of 0.8 mm.
A large number of sheet-shaped primary moldings were prepared. The density of the obtained primary molded product was 1.80 g / cm 3 .

【0025】次に得られた一次成形体を温度50℃に加
熱保持しながら加圧力200kgf/cm2 で20分間加圧す
ることにより、密度が1.95g/cm3 の二次成形体を
形成した。
Then, the obtained primary compact was heated and maintained at a temperature of 50 ° C. and pressed at a pressure of 200 kgf / cm 2 for 20 minutes to form a secondary compact having a density of 1.95 g / cm 3 . .

【0026】次に得られた二次成形体を金型プレスを使
用して押圧穿孔して直径0.5mmのスルーホールを形成
するとともに縦50mm×横50mmの正方形状に外形切断
して基板成形体とした。
Next, the secondary molded body thus obtained is pressed and punched using a die press to form a through hole having a diameter of 0.5 mm, and the outer shape is cut into a square shape of 50 mm length × 50 mm width to form a substrate. I made it a body.

【0027】次に得られた基板成形体を空気中にて温度
500℃で1時間脱脂した後に窒素ガス雰囲気中で温度
1800℃で5時間焼結して、実施例1に係るAlN基
板を製造した。
Next, the obtained molded substrate was degreased in air at a temperature of 500 ° C. for 1 hour and then sintered in a nitrogen gas atmosphere at a temperature of 1800 ° C. for 5 hours to produce an AlN substrate according to Example 1. did.

【0028】実施例2 実施例1においてドクターブレード法を使用して調製し
た厚さ0.8mmのAlN製シート状一次成形体を温度1
00℃に加熱保持しながら加圧力200kgf/cm2 で20
分間加圧することにより、密度が2.00g/cm3 の二
次成形体を形成した。
Example 2 A 0.8 mm-thick sheet-shaped primary molded article made of AlN prepared by using the doctor blade method in Example 1 was heated to 1 ° C.
20 at a pressure of 200 kgf / cm 2 while heating and holding at 00 ℃
By pressurizing for a minute, a secondary molded body having a density of 2.00 g / cm 3 was formed.

【0029】次に得られた二次成形体を、実施例1と同
様に金型プレスでスルーホールを形成するとともに、正
方形状に外形切断し、得られた基板成形体を同一条件で
脱脂焼結して実施例2に係るAlN基板を多数製造し
た。
Next, the through hole of the obtained secondary compact was formed by a die press in the same manner as in Example 1, the outer shape was cut into a square shape, and the obtained substrate compact was degreased and baked under the same conditions. Then, a large number of AlN substrates according to Example 2 were manufactured.

【0030】比較例1 実施例1において調製した厚さ0.8mmのAlN製シー
ト状一次成形体を、加熱加圧せずに、そのまま実施例1
と同様にスルーホール穿孔し外形切断し、さらに脱脂焼
結して従来製法による比較例1のAlN基板を多数製造
した。
Comparative Example 1 The AlN sheet-form primary molded article having a thickness of 0.8 mm prepared in Example 1 was directly subjected to Example 1 without heating and pressing.
In the same manner as above, through holes were punched, the outer shape was cut, and degreasing and sintering were performed to manufacture a large number of AlN substrates of Comparative Example 1 by the conventional manufacturing method.

【0031】こうして得られた実施例1〜2および比較
例1に係るAlN基板の仕上り寸法精度を評価するため
に、各AlN基板の外形仕上り寸法およびスルーホール
の仕上り寸法をそれぞれ測定し、その規格値からのばら
つきの大小を比較し、下記表1に示す結果を得た。
In order to evaluate the finished dimension accuracy of the AlN substrates according to Examples 1 and 2 and Comparative Example 1 thus obtained, the outer dimension finished dimension of each AlN substrate and the finished dimension of the through hole were measured, respectively, and their standards The magnitudes of variations from the values were compared and the results shown in Table 1 below were obtained.

【0032】[0032]

【表1】 [Table 1]

【0033】表1に示す結果から明らかなように、一次
成形体を所定温度条件下で加圧して密度調整を実施した
実施例1〜2のAlN成形体を焼結した基板において
は、密度調整を実施しない比較例1の場合と比較してス
ルーホール径および外形寸法のばらつきが1/2〜1/
5程度に大幅に低減され、高い寸法精度を有するAlN
基板が得られることが実証された。
As is clear from the results shown in Table 1, in the substrate obtained by sintering the AlN compacts of Examples 1 and 2 in which the primary compact was pressed under a predetermined temperature condition to adjust the density, the density was adjusted. As compared with the case of Comparative Example 1 in which the above-described procedure is not performed, the variation in the through-hole diameter and the outer dimension is 1/2 to 1 /
AlN, which has been greatly reduced to about 5 and has high dimensional accuracy
It was demonstrated that a substrate was obtained.

【0034】このように本実施例に係る製造方法によれ
ば、高い寸法精度の基板が得られるとともに金型に合せ
て成形体密度を調整することによって所定寸法規格のA
lN基板を高い歩留りで製造することができた。
As described above, according to the manufacturing method of this embodiment, a substrate having a high dimensional accuracy can be obtained, and the density of the molded body can be adjusted according to the mold so that A of a predetermined dimensional standard can be obtained.
It was possible to manufacture the 1N substrate with a high yield.

【0035】[0035]

【発明の効果】以上説明の通り本発明に係る窒化アルミ
ニウム基板の製造方法によれば、低密度の一次成形体を
さらに加圧して高密度の二次成形体としているため、焼
結時における反りや収縮が少ない高い寸法精度を有する
窒化アルミニウム基板を得ることができる。
As described above, according to the method for manufacturing an aluminum nitride substrate of the present invention, since the low-density primary compact is further pressed to form the high-density secondary compact, warpage during sintering It is possible to obtain an aluminum nitride substrate having high dimensional accuracy with less shrinkage.

【0036】また一次成形体を加圧する際に一次成形体
を加熱することにより、さらに短かい成形時間で高密度
の二次成形体を形成することが可能となる。さらに高密
度の二次成形体の段階でスルーホール等を形成すること
によりスルーホール等の位置形状精度も高まり、動作信
頼性がより高い基板が得られる。
Further, by heating the primary compact when pressing the primary compact, it is possible to form a high-density secondary compact in a shorter molding time. Further, by forming the through holes and the like at the stage of the high-density secondary molded body, the positional shape accuracy of the through holes and the like is improved, and a substrate having higher operation reliability can be obtained.

【手続補正書】[Procedure amendment]

【提出日】平成4年10月7日[Submission date] October 7, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】実施例1 純度99.0%以上で平均粒径1.5μmの窒化アルミ
ニウム(AlN)粉末を用意し、所定量の焼結助剤、有
機溶剤およびアクリルバインダを添加した後に、ボール
ミルにて24時間混合し均一な原料スラリーを調製し
た。次に得られた原料スラリーの粘度調整を実施した後
にドクターブレード装置によって厚さ0.8mmのAlN
製シート状一次成形体を多数調製した。得られた一次成
形体の密度は1.80g/cm3 であった。
Example 1 An aluminum nitride (AlN) powder having a purity of 99.0% or more and an average particle size of 1.5 μm was prepared, and a predetermined amount of a sintering aid, an organic solvent and an acrylic binder were added thereto, and then the mixture was placed in a ball mill. And mixed for 24 hours to prepare a uniform raw material slurry. Next, after adjusting the viscosity of the obtained raw material slurry, a doctor blade device was used to make AlN having a thickness of 0.8 mm.
A large number of sheet-shaped primary moldings were prepared. The density of the obtained primary molded product was 1.80 g / cm 3 .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム原料粉末と焼結助剤と
結合剤などの有機成分との混合体を成形して一次成形体
を形成し、得られた一次成形体を加圧することにより所
定密度に調整した二次成形体を形成し、しかる後に得ら
れた二次成形体を脱脂し、非酸化性雰囲気において焼結
することを特徴とする窒化アルミニウム基板の製造方
法。
1. A primary compact is formed by molding a mixture of aluminum nitride raw material powder, a sintering aid and an organic component such as a binder, and the obtained primary compact is pressed to a predetermined density. A method for producing an aluminum nitride substrate, which comprises forming an adjusted secondary molded body, degreasing the obtained secondary molded body, and sintering in a non-oxidizing atmosphere.
【請求項2】 一次成形体はドクターブレード法を使用
して形成することを特徴とする請求項1記載の窒化アル
ミニウム基板の製造方法。
2. The method for producing an aluminum nitride substrate according to claim 1, wherein the primary compact is formed by using a doctor blade method.
【請求項3】 一次成形体を加圧する際に一次成形体を
加熱することを特徴とする請求項1記載の窒化アルミニ
ウム基板の製造方法。
3. The method for producing an aluminum nitride substrate according to claim 1, wherein the primary compact is heated when the primary compact is pressed.
【請求項4】 所定密度に調整した二次成形体にスルー
ホールおよびスクラブラインの少なくとも一方を形成す
ることを特徴とする請求項1記載の窒化アルミニウム基
板の製造方法。
4. The method for manufacturing an aluminum nitride substrate according to claim 1, wherein at least one of a through hole and a scrub line is formed in the secondary molded body adjusted to have a predetermined density.
JP4228883A 1992-08-27 1992-08-27 Production of aluminum nitride substrate Pending JPH0680473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4228883A JPH0680473A (en) 1992-08-27 1992-08-27 Production of aluminum nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4228883A JPH0680473A (en) 1992-08-27 1992-08-27 Production of aluminum nitride substrate

Publications (1)

Publication Number Publication Date
JPH0680473A true JPH0680473A (en) 1994-03-22

Family

ID=16883358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4228883A Pending JPH0680473A (en) 1992-08-27 1992-08-27 Production of aluminum nitride substrate

Country Status (1)

Country Link
JP (1) JPH0680473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815646B2 (en) 2000-07-25 2004-11-09 Ibiden Co., Ltd. Ceramic substrate for semiconductor manufacture/inspection apparatus, ceramic heater, electrostatic clampless holder, and substrate for wafer prober
US7078655B1 (en) 1999-08-12 2006-07-18 Ibiden Co., Ltd. Ceramic substrate, ceramic heater, electrostatic chuck and wafer prober for use in semiconductor producing and inspecting devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078655B1 (en) 1999-08-12 2006-07-18 Ibiden Co., Ltd. Ceramic substrate, ceramic heater, electrostatic chuck and wafer prober for use in semiconductor producing and inspecting devices
US6815646B2 (en) 2000-07-25 2004-11-09 Ibiden Co., Ltd. Ceramic substrate for semiconductor manufacture/inspection apparatus, ceramic heater, electrostatic clampless holder, and substrate for wafer prober

Similar Documents

Publication Publication Date Title
JP5444387B2 (en) Semiconductor device heat sink
JP3100871B2 (en) Aluminum nitride sintered body
KR960016070B1 (en) Sintered aluminium nitride and its production
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
JP3472585B2 (en) Aluminum nitride sintered body
EP2733132B9 (en) Aln substrate and method for producing same
JPH0680473A (en) Production of aluminum nitride substrate
JPH07172921A (en) Aluminum nitride sintered material and its production
JP3742661B2 (en) Aluminum nitride sintered body and method for producing the same
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board
JP2003201179A (en) Aluminum nitride sintered compact and production method therefor
EP0279861B1 (en) Boron nitride sinter and process for its production
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JP4753195B2 (en) Method for producing aluminum nitride sintered body
JP4702978B2 (en) Aluminum nitride sintered body
JP3606923B2 (en) Aluminum nitride sintered body and method for producing the same
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JPH08157262A (en) Aluminum nitride sintered compact and its production
JP2000302556A (en) Aluminum nitride sintered compact and its production
JPH05330924A (en) Production of aluminum nitride base plate and sintering vessel
JPH08157261A (en) Aluminum nitride sintered compact and its production
JPH03242379A (en) Production of sintered body of aluminum nitride and granulated powder of aluminum nitride
JPH05238832A (en) Production of sintered ceramic and baking vessel to be used therein
JPH05229872A (en) Production of ceramic sintered compact
JPH07309663A (en) Aluminum nitride sintered compact and its production