JPH08157261A - Aluminum nitride sintered compact and its production - Google Patents

Aluminum nitride sintered compact and its production

Info

Publication number
JPH08157261A
JPH08157261A JP6298360A JP29836094A JPH08157261A JP H08157261 A JPH08157261 A JP H08157261A JP 6298360 A JP6298360 A JP 6298360A JP 29836094 A JP29836094 A JP 29836094A JP H08157261 A JPH08157261 A JP H08157261A
Authority
JP
Japan
Prior art keywords
oxide
weight
sintered body
aluminum nitride
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP6298360A
Other languages
Japanese (ja)
Inventor
Michiyasu Komatsu
通泰 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6298360A priority Critical patent/JPH08157261A/en
Priority to PCT/JP1995/002449 priority patent/WO1996016916A1/en
Priority to EP95938619A priority patent/EP0747332B1/en
Priority to US08/666,475 priority patent/US5763344A/en
Priority to DE69522674T priority patent/DE69522674T2/en
Priority to KR1019960703766A priority patent/KR0168302B1/en
Publication of JPH08157261A publication Critical patent/JPH08157261A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To obtain an AlN sintered compact maintaining high heat conductivity peculiar to an AlN sintered compact, having denseness comparable to or higher than that of a conventional AlN sintered compact and also having improved corrosion resistance and mechanical strength even in the case of production by sintering at a low temp. especially of <=1,650 deg.C. CONSTITUTION: This aluminum nitride sintered compact is obtd. by firing at a low temp. of <=1,650 deg.C and consists of, by weight, 0.5-7% oxide of at least one kind of group IIIa element of the Periodic Table, 0.5-3% calcium oxide, <=1.5% aluminum oxide, 0.2-1% glass frit, <=0.5% at least one selected from among manganese oxide, chromium oxide, zirconium oxide, strontium oxide and titanium oxide, <=1% (expressed in terms of oxide) tungsten and the balance aluminum nitride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板等の電子部
品や構造部品として使用される窒化アルミニウム焼結体
およびその製造方法に係り、特に1650℃以下の低温
度で焼結して形成した場合であっても、窒化アルミニウ
ム(AlN)焼結体本来の高熱伝導性を備え、また従来
のAlN焼結体と同等以上の緻密さを有し、さらに耐食
性を改善した窒化アルミニウム焼結体および製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body used as an electronic component such as a semiconductor substrate or a structural component and a method for manufacturing the same, and in particular, it is formed by sintering at a low temperature of 1650 ° C. or lower. Even in such a case, an aluminum nitride sintered body having high thermal conductivity inherent to an aluminum nitride (AlN) sintered body, having a density equal to or higher than that of a conventional AlN sintered body, and further having improved corrosion resistance, It relates to a manufacturing method.

【0002】[0002]

【従来の技術】従来の金属材料と比較して強度、耐熱
性、耐食性、耐摩耗性、軽量性などの諸特性に優れたセ
ラミックス焼結体が、半導体基板、電子機器材料、エン
ジン用部材、高速切削工具用材料、ノズル、ベアリング
など、従来の金属材料の及ばない苛酷な温度、応力、摩
耗条件下で使用される機械部品、機能部品、構造材や装
飾品材料として広く利用されている。
2. Description of the Related Art Sintered ceramics, which are superior in properties such as strength, heat resistance, corrosion resistance, wear resistance, and lightness, compared with conventional metal materials, are used in semiconductor substrates, electronic equipment materials, engine members, It is widely used as materials for high speed cutting tools, nozzles, bearings, etc. as mechanical parts, functional parts, structural materials and decoration materials used under severe temperature, stress and wear conditions that conventional metal materials do not reach.

【0003】特に窒化アルミニウム(AlN)焼結体は
高熱伝導性を有する絶縁体であり、シリコン(Si)に
近い熱膨張係数を有することから高集積化した半導体装
置の放熱板や基板として、その用途を拡大している。
In particular, an aluminum nitride (AlN) sintered body is an insulator having a high thermal conductivity and has a coefficient of thermal expansion close to that of silicon (Si). Therefore, the aluminum nitride (AlN) sintered body is used as a heat sink or a substrate of a highly integrated semiconductor device. Expanding applications.

【0004】従来上記窒化アルミニウム焼結体は一般的
に下記の製造方法によって量産されている。すなわち、
窒化アルミニウム原料粉末に焼結助剤と、有機バインダ
と、必要に応じて各種添加剤や溶媒、分散剤とを添加し
て原料混合体を調製し、得られた原料混合体をドクター
ブレード法や泥漿鋳込み法によって成形し、薄板状ない
しシート状の成形体としたり、原料混合体をプレス成形
して厚板状ないし大型の成形体を形成する。次に得られ
た成形体は、空気または窒素ガス雰囲気において加熱さ
れ脱脂処理され、有機バインダとして使用された炭化水
素成分等が成形体から排除脱脂される。そして脱脂され
た成形体は窒素ガス等の非酸化性雰囲気中で1700〜
1900℃程度の高温度に加熱され緻密化焼結されて窒
化アルミニウム焼結体が形成される。
Conventionally, the above-mentioned aluminum nitride sintered body is generally mass-produced by the following manufacturing method. That is,
A sintering aid to the aluminum nitride raw material powder, an organic binder, and various additives and solvents as required, to prepare a raw material mixture by adding a dispersant, the resulting raw material mixture doctor blade method or A thin plate-shaped or sheet-shaped molded body is formed by the slurry casting method, or a raw material mixture is press-molded to form a thick plate-shaped or large-sized molded body. Next, the obtained molded product is heated and degreased in an atmosphere of air or nitrogen gas to remove and degrease the hydrocarbon components and the like used as the organic binder from the molded product. Then, the degreased compact is 1700 to 1700 in a non-oxidizing atmosphere such as nitrogen gas.
It is heated to a high temperature of about 1900 ° C. and densified and sintered to form an aluminum nitride sintered body.

【0005】上記製造方法において、原料AlN粉末と
して平均粒径が0.5μm以下程度の超微細な原料粉末
を使用する場合は、AlN粉末単独でもかなりの緻密な
焼結体が得られる。しかしながら、原料粉末表面等に付
着した多量の酸素等の不純物が焼結時に、AlN結晶格
子中に固溶したり、格子振動の伝播を妨げるAl−O−
N化合物等の複合酸化物を生成する結果、焼結助剤を使
用しないAlN焼結体の熱伝導率は比較的に低かった。
In the above manufacturing method, when an ultrafine raw material powder having an average particle diameter of about 0.5 μm or less is used as the raw material AlN powder, a considerably dense sintered body can be obtained by using the AlN powder alone. However, a large amount of impurities such as oxygen adhering to the surface of the raw material powder and the like are solid-solved in the AlN crystal lattice at the time of sintering, or Al-O- which hinders the propagation of lattice vibration.
As a result of producing a compound oxide such as an N compound, the thermal conductivity of the AlN sintered body that did not use a sintering aid was relatively low.

【0006】一方原料粉末として平均粒径1μm以上の
AlN粉末を使用する場合は、その原料粉末単独では焼
結性が良好でないため、ホットプレス法以外には助剤無
添加では緻密な焼結体を得ることが困難であり、量産性
が低い欠点があった。そこで常圧焼結法によって効率的
に焼結体を製造しようとする場合には、焼結体の緻密化
およびAlN原料粉末中の不純物酸素がAlN結晶粒子
内へ固溶することを防止するために、焼結助剤として、
酸化イットウリム(Y2 3 )などの希土類酸化物等を
添加することが一般に行なわれている。
On the other hand, when AlN powder having an average particle size of 1 μm or more is used as the raw material powder, the sinterability of the raw material powder alone is not good. Was difficult to obtain, and there was a drawback that mass productivity was low. Therefore, in order to efficiently manufacture a sintered body by the atmospheric pressure sintering method, in order to prevent the densification of the sintered body and the impurity oxygen in the AlN raw material powder from forming a solid solution in the AlN crystal grains. In addition, as a sintering aid,
It is common practice to add rare earth oxides such as yttrium oxide (Y 2 O 3 ).

【0007】これらの焼結助剤は、AlN原料粉末に含
まれる不純物酸素やAl2 3 と反応して液相を形成
し、焼結体の緻密化を達成するとともに、この不純物酸
素を粒界相として固定し、高熱伝導化も達成するものと
考えられている。
These sintering aids react with the impurity oxygen and Al 2 O 3 contained in the AlN raw material powder to form a liquid phase to achieve the densification of the sintered body, and at the same time, to form the impurity oxygen into particles. It is believed to be fixed as a phase phase and to achieve high thermal conductivity.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の製造方法においては、焼結温度が1700〜1900
℃と極めて高いため、焼成炉を含めた製造設備費が高く
なるとともに連続式の製造プロセスを採用することが困
難であり、AlN焼結体の製造コストの上昇および量産
性の低下は避けられない状況であった。すなわち焼結温
度が高いため、焼成炉の断熱材やヒータ材料として耐熱
性に優れた高価な黒鉛(カーボン)材を使用した高温度
対応の焼成炉が必須であった。ところがこの黒鉛材を使
用しても熱影響が大きいため、焼成炉の寿命が短い難点
があり、2〜3年に1度の頻度で断熱材を交換する必要
があり、いずれにしても製造設備費および保守費が膨大
になる問題点があった。また密閉した高温度雰囲気を効
果的に維持するためには、バッチ式(回分式)の焼成炉
を採用せざるを得ず、連続式の製造プロセスを導入する
ことは困難となり、焼結体の量産性が低くなる難点があ
った。
However, in the above conventional manufacturing method, the sintering temperature is 1700 to 1900.
Since the temperature is extremely high, the manufacturing equipment cost including the firing furnace is high, and it is difficult to adopt a continuous manufacturing process. Therefore, an increase in the manufacturing cost of the AlN sintered body and a decrease in mass productivity cannot be avoided. It was a situation. That is, since the sintering temperature is high, a high temperature firing furnace using an expensive graphite (carbon) material having excellent heat resistance as a heat insulating material or a heater material of the firing furnace is essential. However, even if this graphite material is used, there is a problem that the life of the firing furnace is short because it has a large thermal effect, and it is necessary to replace the heat insulating material once every 2-3 years. There was a problem that the cost and maintenance cost became huge. Further, in order to effectively maintain a closed high temperature atmosphere, a batch type (batch type) firing furnace must be adopted, which makes it difficult to introduce a continuous manufacturing process. There was a problem that mass productivity was low.

【0009】特に熱伝導率が高いAlN焼結体を得るた
めには、カーボンや窒素を含む1900℃程度の高温度
で成形体を20〜100時間と長時間にわたって焼成
し、熱抵抗となる粒界相を除去する必要があるため、上
記のような設備上の問題および量産性の問題は、より深
刻化する。
In order to obtain an AlN sintered body having a particularly high thermal conductivity, the molded body is fired at a high temperature of about 1900 ° C. containing carbon and nitrogen for a long time of 20 to 100 hours, and particles having a thermal resistance are obtained. Since it is necessary to remove the phase phase, the above-mentioned equipment problems and mass production problems become more serious.

【0010】また上記従来の製造方法においては、本
来、AlNと液相化合物との濡れ性が低く、また液相自
体が偏析し易い性質を有することから、焼結後に液相が
凝固する際に、液相はAlN粒子の間隙部に偏在するよ
うに残留し、凝固して粗大で脆弱な粒界相を形成する傾
向がある。また、結晶粒の粒成長が進行し易く、平均粒
径が5〜10μmと粗大な結晶粒が形成され易く、また
微小な気孔が消滅せずに結晶粒内に残存し、焼結体の緻
密化を阻害し、最終的に3点曲げ強度が350〜400
MPa程度の低強度の窒化アルミニウム焼結体しか得ら
れない問題点があった。
In the above conventional manufacturing method, the wettability between AlN and the liquid phase compound is originally low, and the liquid phase itself tends to segregate. Therefore, when the liquid phase solidifies after sintering. The liquid phase remains so as to be unevenly distributed in the interstices of the AlN particles and tends to solidify to form a coarse and brittle grain boundary phase. Further, the grain growth of the crystal grains is likely to proceed, coarse crystal grains having an average grain size of 5 to 10 μm are easily formed, and minute pores do not disappear but remain in the crystal grains, resulting in a dense sintered body. And the final three-point bending strength is 350-400.
There is a problem that only a low-strength aluminum nitride sintered body of about MPa is obtained.

【0011】近年、半導体素子の高集積化、高出力化に
伴って増加する発熱量に対応するために、高熱伝導性
(高放熱性)を有する上記窒化アルミニウム材料が普及
しつつあり、その放熱性については大体満足する結果が
得られている。しかしながら上記のように構造部材とし
ての強度が不足するため、例えば窒化アルミニウム焼結
体で形成した半導体基板を実装ボードに装着する際に作
用する僅かな曲げ応力や取扱時に作用する衝撃力にって
半導体基板が損傷し、半導体回路基板の製造歩留りが大
幅に低下してしまう問題点もあった。
In recent years, the above-mentioned aluminum nitride material having high thermal conductivity (high heat dissipation) is becoming widespread in order to cope with the amount of heat generation that increases with the high integration and high output of semiconductor elements. As for sex, generally satisfactory results have been obtained. However, as described above, the strength as a structural member is insufficient. Therefore, for example, a slight bending stress that acts when mounting a semiconductor substrate formed of an aluminum nitride sintered body on a mounting board or an impact force that acts during handling There is also a problem that the semiconductor substrate is damaged and the manufacturing yield of the semiconductor circuit substrate is significantly reduced.

【0012】また上記AlN焼結体は酸やアルカリに対
する耐食性が未だ不充分であり、半導体装置材料として
加工する場合にアルカリ性のエッチング液を使用した回
路形成処理や酸洗浄処理においてダメージを受け易い欠
点があった。また構造材料として使用した場合において
も、使用環境によっては薬品等の化学物質による酸化や
アルカリ脆化が進行し易く、充分な耐久性や信頼性が得
られないという問題点もあった。
Further, the AlN sintered body is still insufficient in corrosion resistance to acids and alkalis, and when processed as a semiconductor device material, it is easily damaged by a circuit forming process or an acid cleaning process using an alkaline etching solution. was there. Even when it is used as a structural material, there is a problem that depending on the use environment, oxidation and alkali embrittlement due to chemical substances such as chemicals easily progress, and sufficient durability and reliability cannot be obtained.

【0013】本発明は上記の問題点を解決するためにな
されたものであり、特に1650℃以下の低温度で焼結
して形成した場合であっても、AlN焼結体本来の高熱
伝導性を維持するとともに、従来のAlN焼結体と同等
以上の緻密さを有し、さらに耐食性と機械的強度とを改
善したAlN焼結体およびその製造方法を提供すること
を目的とする。
The present invention has been made in order to solve the above problems, and in particular, even when it is formed by sintering at a low temperature of 1650 ° C. or lower, the high thermal conductivity inherent to the AlN sintered body is obtained. It is an object of the present invention to provide an AlN sintered body which has the same or higher density as that of a conventional AlN sintered body and which has improved corrosion resistance and mechanical strength, and a manufacturing method thereof.

【0014】[0014]

【課題を解決するための手段】本願発明者は上記目的を
達成するため、原料窒化アルミニウム粉末に添加する焼
結助剤や添加物の種類や添加量および焼結温度を種々変
えて、それらが焼結体の耐食性,密度,強度特性および
伝熱特性に及ぼす影響について実験検討を進めた。
In order to achieve the above object, the inventors of the present invention have variously changed the types and amounts of sintering aids and additives to be added to the raw material aluminum nitride powder, and the sintering temperature. Experimental studies were conducted on the effects of the sintered body on corrosion resistance, density, strength characteristics, and heat transfer characteristics.

【0015】その結果、所定の焼結助剤の他に添加剤と
してのガラスフリットを複合的に微量添加したときに、
焼結性が大幅に改善され、1650℃以下の低温焼結で
あっても、従来品と同等以上の熱伝導性,密度,強度を
有し、耐食性が大幅に改善されたAlN焼結体が得られ
るという知見を得た。またガラスフリットの微量添加に
より、AlN焼結体を構成するAlN結晶粒子表面にガ
ラスフリット成分から成る保護皮膜が形成されAlN焼
結体の耐食性が大幅に改善されるとともに、上記皮膜に
よりAlN結晶粒子同士の界面接合強度が高まり、機械
的強度特性が優れたAlN焼結体が得られるものと考え
られる。本発明は上記知見に基づいて完成されたもので
ある。
As a result, when a small amount of glass frit as an additive is added in addition to the predetermined sintering aid,
An AlN sintered body having significantly improved sinterability and having thermal conductivity, density and strength equal to or higher than those of conventional products and having significantly improved corrosion resistance even at low temperature sintering of 1650 ° C. or lower is obtained. We obtained the finding that we can obtain it. Further, by adding a small amount of glass frit, a protective film made of a glass frit component is formed on the surface of the AlN crystal particles constituting the AlN sintered body, and the corrosion resistance of the AlN sintered body is greatly improved. It is considered that the interfacial bonding strength between them is increased and an AlN sintered body having excellent mechanical strength characteristics can be obtained. The present invention has been completed based on the above findings.

【0016】すなわち本発明に係る第1の窒化アルミニ
ウム焼結体は、1650℃以下で低温焼成して成る窒化
アルミニウム焼結体であり、周期律表IIIa族元素から選
択される少なくとも1種の元素の酸化物を0.5〜7重
量%と、酸化カルシウムを0.5〜3重量%と、酸化ア
ルミニウムを1.5重量%以下と、ガラスフリットを
0.2〜1重量%と、酸化マンガン,酸化クロム,酸化
ジルコニウム,酸化ストロンチウムおよび酸化チタンか
ら選択される少なくとも1種を0.5重量%以下と、タ
ングステンを酸化物換算で1重量%以下と、残部を構成
する窒化アルミニウムとから成ることを特徴とする。
That is, the first aluminum nitride sintered body according to the present invention is an aluminum nitride sintered body obtained by firing at a low temperature of 1650 ° C. or lower, and at least one element selected from Group IIIa elements of the periodic table. Oxide of 0.5 to 7% by weight, calcium oxide of 0.5 to 3% by weight, aluminum oxide of 1.5% by weight or less, glass frit of 0.2 to 1% by weight, and manganese oxide of , 0.5% by weight or less of at least one selected from chromium oxide, zirconium oxide, strontium oxide and titanium oxide, 1% by weight or less of tungsten in terms of oxide, and the balance aluminum nitride. Is characterized by.

【0017】また本発明に係る第2の窒化アルミニウム
焼結体は、1650℃以下で低温焼成して成る窒化アル
ミニウム焼結体であり、周期律表IIIa族元素から選択さ
れる少なくとも1種の元素の酸化物を0.5〜5重量%
と、Ca,SrおよびBaから選択される少なくとも1
種の元素の酸化物を0.1〜1重量%と、タングステン
酸カルシウムを1〜3重量%と、酸化アルミニウムを
1.5重量%以下と、ガラスフリットを0.2〜1重量
%と、酸化マンガン,酸化クロム,酸化ジルコニウム,
酸化ストロンチウムおよび酸化チタンから選択される少
なくとも1種を0.5重量%以下と、残部を構成する窒
化アルミニウムとから成ることを特徴とする。
The second aluminum nitride sintered body according to the present invention is an aluminum nitride sintered body obtained by firing at a low temperature of 1650 ° C. or lower, and at least one element selected from Group IIIa elements of the periodic table. 0.5 to 5% by weight of oxide
And at least one selected from Ca, Sr and Ba
0.1 to 1% by weight of oxides of seed elements, 1 to 3% by weight of calcium tungstate, 1.5% by weight or less of aluminum oxide, and 0.2 to 1% by weight of glass frit, Manganese oxide, chromium oxide, zirconium oxide,
It is characterized in that at least one selected from strontium oxide and titanium oxide is 0.5 wt% or less and the balance is aluminum nitride.

【0018】またガラスフリットは、ホウケイ酸ガラ
ス,アルミノホウケイ酸ガラス,96%石英ガラス,ソ
ーダ石灰ガラス,鉛ガラス,アルミノケイ酸塩ガラスお
よび特殊ガラスから選択される少なくとも1種である。
特殊ガラスとしては結晶化ガラスや耐アルカリ性ガラス
等が好適である。
The glass frit is at least one selected from borosilicate glass, aluminoborosilicate glass, 96% quartz glass, soda lime glass, lead glass, aluminosilicate glass and special glass.
As the special glass, crystallized glass and alkali resistant glass are suitable.

【0019】またFe,Mg等の不純物陽イオンの含有
量は0.2重量%以下にするとよい。特にMgはAlN
組織中に熱抵抗が大きいスピネル化合物を形成し焼結体
の熱伝導率を下げ易いため、注意を要する。さらに焼結
体の平均結晶粒径は1〜4μmの範囲が好適である。そ
して上記組成から成るAlN焼結体は、熱伝導率が11
0W/(m・K)以上であり、また焼結体を10%濃度
の塩酸(HCl)溶液中に常温(25℃)で24時間浸
漬した場合に、浸漬前後における焼結体の重量減少が、
従来と比較して1/3以下であるとともに、焼結体を1
0%濃度の苛性ソーダ(NaOH)溶液中に常温(25
℃)で24時間浸漬した場合に、浸漬前後における焼結
体の重量減少が、従来と比較して1/2以下となるよう
に、酸およびアルカリに対して優れた耐食性を発揮す
る。
The content of impurity cations such as Fe and Mg is preferably 0.2% by weight or less. Especially Mg is AlN
Care must be taken because a spinel compound having a high thermal resistance is formed in the structure to easily reduce the thermal conductivity of the sintered body. Further, the average crystal grain size of the sintered body is preferably in the range of 1 to 4 μm. The AlN sintered body having the above composition has a thermal conductivity of 11
0 W / (m · K) or more, and when the sintered body is immersed in a 10% hydrochloric acid (HCl) solution at room temperature (25 ° C.) for 24 hours, the weight loss of the sintered body before and after the immersion is reduced. ,
Compared with the conventional one, it is 1/3 or less and the sintered body is 1
In a 0% strength caustic soda (NaOH) solution at room temperature (25
When it is immersed for 24 hours at (° C.), the weight loss of the sintered body before and after the immersion is 1/2 or less as compared with the conventional one, and thus excellent corrosion resistance against acid and alkali is exhibited.

【0020】また本発明に係る第1の窒化アルミニウム
焼結体の製造方法は、窒化アルミニウム原料粉末に、周
期律表IIIa族元素から選択される少なくとも1種の元素
の酸化物を0.5〜7重量%と、酸化カルシウムを0.
5〜3重量%と、酸化アルミニウムを1.5重量%以下
と、ガラスフリットを0.2〜1重量%と、酸化マンガ
ン,酸化クロム,酸化ジルコニウム,酸化ストロンチウ
ムおよび酸化チタンから選択される少なくとも1種を
0.5重量%以下と、タングステンを酸化物換算で1重
量%以下とを添加した原料混合体を成形し、得られた成
形体を非酸化性雰囲気中で1650℃以下の低温度で焼
結せしめることを特徴とする。
In the first method for producing an aluminum nitride sintered body according to the present invention, the aluminum nitride raw material powder contains 0.5 to 0.5% of an oxide of at least one element selected from Group IIIa elements of the periodic table. 7% by weight and calcium oxide of 0.
5 to 3% by weight, aluminum oxide to 1.5% by weight or less, glass frit to 0.2 to 1% by weight, and at least 1 selected from manganese oxide, chromium oxide, zirconium oxide, strontium oxide and titanium oxide. A raw material mixture containing 0.5% by weight or less of a seed and 1% by weight or less of tungsten in terms of oxide is molded, and the obtained molded product is heated at a low temperature of 1650 ° C. or lower in a non-oxidizing atmosphere. It is characterized by being sintered.

【0021】また本発明に係る第2の窒化アルミニウム
焼結体の製造方法は、窒化アルミニウム原料粉末に、周
期律表IIIa族元素から選択される少なくとも1種の元素
の酸化物を0.5〜5重量%と、タングステン酸カルシ
ウムを1〜3重量%と、酸化アルミニウムを1.5重量
%以下と、ガラスフリットを0.2〜1重量%と、酸化
マンガン,酸化クロム,酸化ジルコニウム,酸化ストロ
ンチウムおよび酸化チタンから選択される少なくとも1
種を0.5重量%以下とを添加した原料混合体を成形
し、得られた成形体を非酸化性雰囲気中で1650℃以
下の低温度で焼結せしめることを特徴とする。
In the second method for producing an aluminum nitride sintered body according to the present invention, 0.5 to 0.5 of an oxide of at least one element selected from Group IIIa elements of the periodic table is added to the aluminum nitride raw material powder. 5% by weight, calcium tungstate 1 to 3% by weight, aluminum oxide 1.5% by weight or less, glass frit 0.2 to 1% by weight, manganese oxide, chromium oxide, zirconium oxide, strontium oxide. And at least one selected from titanium oxide
A raw material mixture containing 0.5% by weight or less of a seed is formed, and the obtained formed body is sintered at a low temperature of 1650 ° C. or less in a non-oxidizing atmosphere.

【0022】本発明方法において使用され、焼結体の主
成分となる窒化アルミニウム(AlN)原料粉末としては、
焼結性および熱伝導性を考慮して不純物酸素含有量が
1.3重量%以下に抑制され、かつ平均粒径が0.5〜
2μm程度、好ましくは1.5μm以下の微細なAlN
粉末を使用するとよい。
The aluminum nitride (AlN) raw material powder used in the method of the present invention, which is the main component of the sintered body, includes:
Considering sinterability and thermal conductivity, the content of impurity oxygen is suppressed to 1.3 wt% or less, and the average particle size is 0.5 to
Fine AlN of about 2 μm, preferably 1.5 μm or less
Powder may be used.

【0023】周期律表(長周期型)のIIIa族元素の酸化
物は、焼結助剤として作用し、AlN焼結体を緻密化す
るために、AlN原料粉末に対して0.5〜7重量%の
範囲で添加される。上記焼結助剤の具体例としては希土
類元素(Y,Sc,Ce,Dyなど)の酸化物、もしく
は焼結操作によりこれらの化合物となる物質が使用さ
れ、特に酸化イットリウム(Y2 3 )が好ましい。上
記焼結助剤の添加量が0.5重量%未満の場合は、焼結
性の改善効果が充分に発揮されず、焼結体が緻密化され
ず低強度の焼結体が形成されたり、AlN結晶中に酸素
が固溶し、高い熱伝導率を有する焼結体が形成できな
い。一方添加量が7重量%を超える過量となると、焼結
助剤としての効果は飽和状態に達して無意味となるばか
りでなく、却って焼結して得られるAlN焼結体の熱伝
導率が低下する一方、粒界相が焼結体中に多量に残存し
たり、熱処理により除去される粒界相の体積が大きいた
め、焼結体中に空孔が残ったりして収縮率が増大し、変
形を生じ易くなる。また高密度の焼結体とするために
は、焼結温度を高く設定する必要があり、焼成炉の構成
部品の耐熱仕様を高度化したり、連続焼成操作が困難に
なり、いずれも焼結体の製造コストおよび量産性が低下
してしまう。IIIa族元素酸化物のより好ましい添加量は
1〜2重量%である。
The oxide of the group IIIa element of the periodic table (long period type) acts as a sintering aid, and in order to make the AlN sintered body dense, 0.5 to 7 relative to the AlN raw material powder. It is added in the range of weight%. As specific examples of the above-mentioned sintering aid, oxides of rare earth elements (Y, Sc, Ce, Dy, etc.) or substances which become these compounds by the sintering operation are used, and particularly yttrium oxide (Y 2 O 3 ) Is preferred. If the amount of the sintering aid added is less than 0.5% by weight, the effect of improving the sinterability is not sufficiently exerted, the sintered body is not densified, and a low-strength sintered body is formed. , Oxygen is solid-dissolved in the AlN crystal, and a sintered body having high thermal conductivity cannot be formed. On the other hand, if the addition amount exceeds 7% by weight, not only the effect as a sintering aid reaches a saturated state and becomes meaningless, but also the thermal conductivity of the AlN sintered body obtained by sintering is rather increased. While decreasing, the grain boundary phase remains in the sintered body in a large amount, and the volume of the grain boundary phase removed by heat treatment is large, so pores remain in the sintered body and the shrinkage rate increases. , Easily deformed. In addition, in order to obtain a high-density sintered body, it is necessary to set the sintering temperature high, which makes the heat-resistant specifications of the components of the firing furnace more sophisticated and makes continuous firing operation difficult. Manufacturing cost and mass productivity are reduced. The more preferable addition amount of the group IIIa element oxide is 1 to 2% by weight.

【0024】なお、第2の窒化アルミニウム焼結体にお
けるIIIa族元素酸化物の添加量は、他の成分の添加量と
の関係から、0.5〜5重量%の範囲に,より好ましく
は1〜2重量%の範囲に設定される。
The addition amount of the Group IIIa element oxide in the second aluminum nitride sintered body is in the range of 0.5 to 5% by weight, more preferably 1%, in consideration of the addition amount of other components. It is set in the range of up to 2% by weight.

【0025】ガラスフリットは、焼結温度を下げて焼結
性を改善する一方、AlN焼結体を構成するAlN結晶
粒子表面に保護皮膜を形成し、AlN焼結体の耐食性を
大幅に改善すると同時に、AlN結晶粒子同士の界面接
合強度を高め機械的強度を増加させるのに有効な成分で
ある。
While the glass frit lowers the sintering temperature to improve the sinterability, it forms a protective film on the surface of the AlN crystal grains constituting the AlN sintered body, thereby significantly improving the corrosion resistance of the AlN sintered body. At the same time, it is an effective component for increasing the interfacial bonding strength between AlN crystal grains and increasing the mechanical strength.

【0026】上記ガラスフリットの具体例としては、下
記表1に記号A〜Iで示すような化学組成を有する合成
ガラス粉末が好適である。
As a specific example of the above glass frit, synthetic glass powder having a chemical composition as shown by symbols A to I in Table 1 below is suitable.

【0027】[0027]

【表1】 [Table 1]

【0028】上記各ガラスフリットは、それぞれ所定の
化学組成に調整した混合粉を空気中で約1500℃の温
度で溶融し、次に冷却凝固した固化体を微粉砕して合成
製造される。ガラスフリットの粒径は1μm前後に調整
するとよい。
Each of the glass frits is synthetically produced by melting a mixed powder adjusted to a predetermined chemical composition in air at a temperature of about 1500 ° C. and then finely pulverizing a solidified body which is cooled and solidified. The particle size of the glass frit may be adjusted to around 1 μm.

【0029】上記ガラスフリットは、AlN焼結体中に
0.2〜1重量%の範囲で添加される。ガラスフリット
の添加量が0.2重量%未満の場合には、焼結温度の低
減効果,耐食性および強度の改善効果が不充分となる。
一方、添加量を1重量%超と過大にした場合には、Al
N焼結体の熱伝導率が低下してしまうため、添加量は上
記範囲に設定されるが、0.2〜0.5重量%の範囲が
より好ましい。
The above glass frit is added to the AlN sintered body in the range of 0.2 to 1% by weight. If the amount of glass frit added is less than 0.2% by weight, the effect of reducing the sintering temperature and the effect of improving corrosion resistance and strength will be insufficient.
On the other hand, if the amount added is too large, exceeding 1% by weight, Al
Since the thermal conductivity of the N sintered body decreases, the addition amount is set within the above range, but the range of 0.2 to 0.5% by weight is more preferable.

【0030】酸化カルシウム(CaO)は、特にIIIa族
元素の酸化物やWO3 と複合添加した場合に、より効果
的に焼結温度を下げ焼結性を改善できる成分であり、本
発明では0.5〜3重量%の範囲で添加される。添加量
が0.5重量%未満と過少な場合には、焼結性の改善効
果が少ない。一方、添加量が3重量%を超えると酸やア
ルカリに対する焼結体の耐食性が低下するとともに、熱
伝導率が低下し、ある所定の密度を得るためには焼結温
度を高く設定する必要が生じる。したがって添加量は上
記範囲に設定されるが、0.5〜1.5重量%の範囲が
より好ましい。
Calcium oxide (CaO) is a component that can more effectively lower the sintering temperature and improve the sinterability, especially when it is added in combination with the oxide of the group IIIa element and WO 3. It is added in the range of 0.5 to 3% by weight. If the addition amount is too small, less than 0.5% by weight, the effect of improving the sinterability is small. On the other hand, if the addition amount exceeds 3% by weight, the corrosion resistance of the sintered body against acids and alkalis decreases, and the thermal conductivity decreases, so that the sintering temperature must be set high in order to obtain a certain density. Occurs. Therefore, the addition amount is set within the above range, but the range of 0.5 to 1.5% by weight is more preferable.

【0031】酸化アルミニウム(Al2 3 )は焼結温
度を下げるとともに、AlN焼結体の破壊靭性値を向上
させる効果を有し、このAl2 3 の含有量は1.5重
量%以下の範囲に調整される。Al2 3 の含有量が
1.5重量%を超える過量となると、焼結体の熱伝導率
が低下してしまう。Al2 3 のより好ましい含有量は
1重量%以下である。なお、このAl2 3 成分の添加
方法としては、添加剤として別途添加したり、AlN原
料の粉砕時に酸化によって生成するAl2 3 を混入添
加させる方法や、AlN原料粉末を酸素含有雰囲気中で
加熱し、表面酸化によって生成するAl2 3 成分を添
加する方法でもよい。
Aluminum oxide (Al 2 O 3 ) has the effect of lowering the sintering temperature and improving the fracture toughness value of the AlN sintered body. The content of Al 2 O 3 is 1.5% by weight or less. Adjusted to the range of. If the content of Al 2 O 3 exceeds 1.5% by weight, the thermal conductivity of the sintered body will decrease. The more preferable content of Al 2 O 3 is 1% by weight or less. The Al 2 O 3 component may be added separately as an additive, by adding Al 2 O 3 generated by oxidation during pulverization of the AlN raw material, or by adding the AlN raw material powder in an oxygen-containing atmosphere. Alternatively, a method may be used in which the Al 2 O 3 component generated by surface oxidation is added after heating with.

【0032】酸化マンガン(MnO),酸化クロム(C
2 3 ),酸化ジルコニウム(ZrO2 ),酸化スト
ロンチウム(SrO)および酸化チタン(TiO2
も、焼結温度を下げて焼結性を向上させるために有効で
あり、0.5重量%以下の範囲で添加される。添加量が
0.5重量%を超える過量となると、他の不純物と同様
にAlN焼結体の熱伝導率を低下させる。
Manganese oxide (MnO), chromium oxide (C
r 2 O 3 ), zirconium oxide (ZrO 2 ), strontium oxide (SrO) and titanium oxide (TiO 2 ).
Is also effective for lowering the sintering temperature and improving the sinterability, and is added in the range of 0.5 wt% or less. If the added amount exceeds 0.5% by weight, the thermal conductivity of the AlN sintered body is lowered like other impurities.

【0033】WO3 などのタングステン酸化物は、特に
酸化カルシウム(CaO)とともに複合添加した場合
に、より効果的に焼結温度を下げ焼結性を改善できる成
分であり、上記第1のAlN焼結体においては、1重量
%以下の範囲で添加される。添加量を1重量%超と過大
にした場合には、他の不純物と同様にAlN焼結体の熱
伝導率を低下させる。
Tungsten oxide such as WO 3 is a component that can more effectively lower the sintering temperature and improve the sinterability, especially when it is added together with calcium oxide (CaO). In the bound body, it is added in the range of 1% by weight or less. When the amount added is too large, more than 1% by weight, the thermal conductivity of the AlN sintered body is lowered like other impurities.

【0034】なお第1のAlN焼結体において添加した
酸化カルシウム(CaO)およびタングステン酸化物
(WO3 )に代えて、タングステン酸カルシウム(Ca
WO4)を添加したものが第2のAlN焼結体である。
前記の通り、CaOとWO3 とを複合添加することによ
り、焼結温度の低減効果が特に顕著になる。この場合C
aWO4 の添加量は1〜3重量%の範囲に設定される。
この添加量が1重量%未満の場合には、焼結温度の低減
効果が少ない。一方、3重量%を超えると、AlN焼結
体の熱伝導率が低下してしまう。
In place of calcium oxide (CaO) and tungsten oxide (WO 3 ) added in the first AlN sintered body, calcium tungstate (Ca) is used.
The material to which WO 4 ) is added is the second AlN sintered body.
As described above, the combined effect of adding CaO and WO 3 makes the effect of reducing the sintering temperature particularly remarkable. In this case C
The addition amount of aWO 4 is set in the range of 1 to 3% by weight.
If the addition amount is less than 1% by weight, the effect of reducing the sintering temperature is small. On the other hand, if it exceeds 3% by weight, the thermal conductivity of the AlN sintered body will decrease.

【0035】またFe,Mg等の不純物陽イオンはAl
N焼結体の熱伝導を阻害する化合物を形成し易いため、
AlN焼結体中の含有量は0.2重量%以下に設定され
る。
Impurity cations such as Fe and Mg are Al
Since it is easy to form a compound that inhibits the heat conduction of the N sintered body,
The content in the AlN sintered body is set to 0.2% by weight or less.

【0036】上記AlN原料粉末、各種焼結助剤および
ガラスフリット成分は、例えばボールミル等の粉砕混合
機に投入され、所定時間混合されることによって均一な
原料混合体となる。次に得られた原料混合体を所定形状
の金型に充填し加圧成形して成形体が形成される。この
とき予め原料混合体にパラフィン、ステアリン酸等の有
機バインダを5〜10重量%添加しておくことにより、
成形操作を円滑に実施することができる。
The above AlN raw material powder, various sintering aids and glass frit components are put into a pulverizing mixer such as a ball mill and mixed for a predetermined time to form a uniform raw material mixture. Next, the obtained raw material mixture is filled in a mold having a predetermined shape and pressure-molded to form a molded body. At this time, by adding 5 to 10% by weight of an organic binder such as paraffin and stearic acid to the raw material mixture in advance,
The molding operation can be carried out smoothly.

【0037】成形法としては、汎用の金型プレス法、泥
漿鋳込み法、静水圧プレス法、あるいはドクターブレー
ド法のようなシート成形法などが適用できる。
As a forming method, a general-purpose die pressing method, a slurry casting method, a hydrostatic pressing method, or a sheet forming method such as a doctor blade method can be applied.

【0038】上記成形操作に引き続いて、成形体を空気
中で400〜550℃に加熱したり、または非酸化性雰
囲気中、例えば窒素ガス雰囲気中で温度400〜800
℃に加熱して、予め添加していた有機バインダを充分に
脱脂除去する。
Subsequent to the above molding operation, the molded body is heated to 400 to 550 ° C. in air or in a non-oxidizing atmosphere such as a nitrogen gas atmosphere at a temperature of 400 to 800.
By heating to 0 ° C., the previously added organic binder is thoroughly degreased and removed.

【0039】次に脱脂処理された複数のシート状の成形
体は、例えばセラミックス焼結粉から成るしき粉を介し
て焼成炉内において多段に積層され、この配置状態で複
数の成形体は一括して所定温度で焼結される。焼結操作
は、窒素ガスなどの非酸化性雰囲気で成形体を1650
℃以下の低温度で2〜10時間程度加熱して実施され
る。特にガラスフリット成分を添加することにより、1
500〜1650℃程度と従来より大幅に低い温度で焼
結することが可能となる。
Next, a plurality of sheet-shaped compacts that have been degreased are laminated in multiple stages in a firing furnace through a sieving powder made of, for example, ceramics sintered powder, and the plurality of compacts are collectively packaged in this arrangement state. And sintered at a predetermined temperature. For the sintering operation, the molded body was 1650 in a non-oxidizing atmosphere such as nitrogen gas.
It is carried out by heating at a low temperature of ℃ or less for about 2 to 10 hours. Especially by adding a glass frit component,
It becomes possible to sinter at a temperature of 500 to 1650 ° C., which is much lower than the conventional temperature.

【0040】焼結雰囲気は、AlNと反応しない非酸化
性雰囲気あればよいが、通常は窒素ガス、または窒素ガ
スを含む還元性雰囲気で行なう。還元性ガスとしてはH
2 ガス、COガスを使用してもよい。なお、焼結は真空
(僅かな還元雰囲気を含む)、減圧、加圧および常圧を
含む種々の圧力条件の雰囲気で行なってもよい。
The sintering atmosphere may be a non-oxidizing atmosphere that does not react with AlN, but is usually a nitrogen gas or a reducing atmosphere containing nitrogen gas. H as reducing gas
You may use 2 gas and CO gas. The sintering may be performed in an atmosphere of various pressure conditions including vacuum (including a slight reducing atmosphere), reduced pressure, pressurization and normal pressure.

【0041】焼結温度が1500℃未満であるような低
温状態で焼成すると、原料粉末の粒径、含有酸素量によ
って異なるが、緻密化が困難であり、強度および熱伝導
性などの特性に難点が生じ易い。
When fired at a low temperature such that the sintering temperature is less than 1500 ° C., although it depends on the particle size of the raw material powder and the amount of oxygen contained, it is difficult to densify and there are difficulties in properties such as strength and thermal conductivity. Is likely to occur.

【0042】一方、1650℃を超える高温度で焼成す
ると、焼成炉の耐熱仕様をより高温側に設定する必要が
あり、製造設備が高額になるとともに、連続式の製造プ
ロセスの採用が困難になる。したがって焼結温度は15
00〜1650℃の範囲に設定される。
On the other hand, when firing at a high temperature exceeding 1650 ° C., it is necessary to set the heat resistance specification of the firing furnace to a higher temperature side, the manufacturing equipment becomes expensive, and it becomes difficult to adopt a continuous manufacturing process. . Therefore, the sintering temperature is 15
It is set in the range of 00 to 1650 ° C.

【0043】そして上記AlN原料粉末に焼結助剤およ
びガラスフリットを添加した所定の組成を有する原料混
合体を上記条件で成形、脱脂、焼結することにより、1
650℃以下の低温度焼成であっても、耐食性に優れた
緻密な結晶組織を有し、熱伝導率が110W/(m・
K)以上である高強度のAlN焼結体が得られる。
Then, a raw material mixture having a predetermined composition in which a sintering aid and a glass frit are added to the above AlN raw material powder is molded, degreased and sintered under the above conditions to obtain 1
Even if it is fired at a low temperature of 650 ° C or lower, it has a dense crystal structure with excellent corrosion resistance and a thermal conductivity of 110 W / (m ·
A high-strength AlN sintered body having a temperature of K) or higher is obtained.

【0044】[0044]

【作用】上記構成に係る窒化アルミニウム焼結体および
その製造方法によれば、周期律表IIIa族元素の酸化物等
から成る焼結助剤や添加剤とともに所定量のガラスフリ
ットを複合添加してAlN焼結体としているため、焼結
性が大幅に改善され、1650℃以下の低温焼結であっ
ても、従来例と同等以上の熱伝導性,密度,強度を有す
るAlN焼結体が得られる。特に1650℃以下の低温
度で焼成することが可能となるため、高温度仕様の高価
な焼成炉を使用する必要なく、安価な断熱材を使用した
通常の焼成炉を使用してAlN焼結体を連続的に製造す
ることが可能となる。したがって、AlN焼結体の製造
コストおよび量産性を飛躍的に改善することができる。
According to the aluminum nitride sintered body and the method for producing the same having the above-described structure, a predetermined amount of glass frit is added together with a sintering aid or additive made of an oxide of a group IIIa element of the periodic table. Since it is an AlN sintered body, the sinterability is significantly improved, and an AlN sintered body having the same or higher thermal conductivity, density and strength as the conventional example can be obtained even at low temperature sintering of 1650 ° C or lower. To be In particular, since it becomes possible to perform firing at a low temperature of 1650 ° C. or lower, it is not necessary to use an expensive firing furnace with high temperature specifications, and an AlN sintered body can be used using an ordinary firing furnace that uses an inexpensive heat insulating material. Can be continuously manufactured. Therefore, the manufacturing cost and mass productivity of the AlN sintered body can be dramatically improved.

【0045】またガラスフリットの添加によりAlN焼
結体を構成するAlN結晶粒子表面にガラスフリット成
分から成る保護皮膜が形成され、酸やアルカリに対する
AlN焼結体の耐食性が大幅に改善される。また上記皮膜
によりAlN結晶粒子同士の界面接合強度が高まり、高
強度で緻密な結晶組織が得られる。したがって、窒化ア
ルミニウム焼結体本来の高熱伝導性を有し、さらに耐食
性および強度特性に優れた窒化アルミニウム焼結体が得
られる。
Further, by adding glass frit, a protective film made of a glass frit component is formed on the surface of the AlN crystal particles constituting the AlN sintered body, which protects against acid and alkali.
The corrosion resistance of the AlN sintered body is greatly improved. Further, the above-mentioned coating enhances the interfacial bonding strength between the AlN crystal particles, so that a high-strength and dense crystal structure can be obtained. Therefore, it is possible to obtain an aluminum nitride sintered body which has the original high thermal conductivity of the aluminum nitride sintered body and is excellent in corrosion resistance and strength characteristics.

【0046】[0046]

【実施例】次に下記の実施例を参照して本発明に係る窒
化アルミニウム焼結体をより具体的に説明する。
EXAMPLES Next, the aluminum nitride sintered body according to the present invention will be described more specifically with reference to the following examples.

【0047】実施例1〜21 不純物として酸素を0.8重量%含有し、平均粒径1μ
mの窒化アルミニウム粉末に対して、表2および表3に
示すようにガラスフリット成分および焼結助剤としての
2 3 ,CeO,WO3 ,TiO2 ,ZrO2 ,Al
2 3 ,MnO,Cr2 3 ,CaO,SrO,Nd2
3 をそれぞれ所定量ずつ添加し、エチルアルコールを
溶媒としてボールミルで20時間混合して原料混合体を
調製した。なおガラスフリットの種類は表1に示す記号
A〜Iで示す組成のものを使用した。次にこの原料混合
体に有機バインダとしてのパラフィンを5.5重量%添
加して造粒粉を調製した。
Examples 1 to 21 Oxygen was added as an impurity in an amount of 0.8% by weight, and the average particle size was 1 μ
added to aluminum nitride powder of m, Table 2 and Table 3 glass frit, as shown in component and Y 2 O 3 as a sintering aid, CeO, WO 3, TiO 2 , ZrO 2, Al
2 O 3 , MnO, Cr 2 O 3 , CaO, SrO, Nd 2
A predetermined amount of each O 3 was added, and the mixture was mixed in a ball mill for 20 hours using ethyl alcohol as a solvent to prepare a raw material mixture. The types of glass frit used had the compositions shown by symbols A to I in Table 1. Next, 5.5% by weight of paraffin as an organic binder was added to this raw material mixture to prepare granulated powder.

【0048】次に得られた造粒粉をプレス成形機の成形
用金型内に充填して1200kg/cm2 の加圧力にて一軸方向
に圧縮成形して、縦50mm×横50mm×厚さ5mmの角板
状成形体を多数調製した。引き続き各成形体を空気雰囲
気中で450℃で1時間加熱して脱脂処理した。
Next, the obtained granulated powder is filled in a molding die of a press molding machine and compression-molded in a uniaxial direction with a pressing force of 1200 kg / cm 2 , to obtain a length of 50 mm × width of 50 mm × thickness. A large number of 5 mm square plate-shaped compacts were prepared. Subsequently, each molded body was heated in an air atmosphere at 450 ° C. for 1 hour to be degreased.

【0049】次に脱脂処理した各成形体をAlN製焼成
容器内に収容し、焼成炉において表2および表3に示す
焼結温度1525〜1650℃で4時間緻密化焼結を実
施し、その後、冷却速度200℃/hrで冷却してそれぞ
れ実施例1〜21に係る AlN焼結体を製造した。
Next, the degreased compacts were housed in an AlN firing container and densified and sintered at a sintering temperature of 1525 to 1650 ° C. shown in Tables 2 and 3 for 4 hours in a firing furnace. Then, the AlN sintered bodies according to Examples 1 to 21 were manufactured by cooling at a cooling rate of 200 ° C./hr.

【0050】比較例1 一方、ガラスフリット,CaOおよびWO3 を全く添加
せず、IIIa族元素酸化物から成る焼結助剤(Y2 3
のみを添加し、1780℃で焼結した以外は実施例3と
同一条件で原料調整、成形、脱脂、焼結処理して同一寸
法を有する比較例1に係るAlN焼結体を製造した。
Comparative Example 1 On the other hand, a sintering aid (Y 2 O 3 ) made of a Group IIIa element oxide without adding glass frit, CaO and WO 3 at all.
A raw material was prepared, molded, degreased, and sintered under the same conditions as in Example 3 except that only Al was added and the mixture was sintered at 1780 ° C. to produce an AlN sintered body according to Comparative Example 1 having the same dimensions.

【0051】比較例2 ガラスフリットおよびWO3 を全く添加せず、焼結助剤
(Y2 3 )およびCaOを添加し、1680℃で焼結
した以外は実施例10と同一条件で原料調整、成形、脱
脂、焼結処理して同一寸法を有する比較例2に係るAl
N焼結体を製造した。
Comparative Example 2 Preparation of raw materials under the same conditions as in Example 10 except that the glass frit and WO 3 were not added at all, the sintering aid (Y 2 O 3 ) and CaO were added, and sintering was performed at 1680 ° C. According to Comparative Example 2 having the same dimensions after molding, degreasing and sintering
An N sintered body was manufactured.

【0052】比較例3 ガラスフリットを全く添加せず、3重量%のY2 3
1重量%のCaOおよび1重量%のAl2 3 を添加
し、1680℃で焼結した以外は実施例2と同一条件で
原料調整、成形、脱脂、焼結処理して同一寸法を有する
比較例3に係るAlN焼結体を製造した。
Comparative Example 3 3% by weight of Y 2 O 3 , without adding glass frit,
Comparison having the same dimensions after raw material preparation, molding, degreasing and sintering under the same conditions as in Example 2 except that 1% by weight of CaO and 1% by weight of Al 2 O 3 were added and sintered at 1680 ° C. An AlN sintered body according to Example 3 was manufactured.

【0053】比較例4 CaOを過剰量(4重量%)添加し、またCr2 3
添加せず、1700℃で焼結した以外は実施例10と同
一条件で原料調整,成形,脱脂,焼結処理して同一寸法
を有する比較例4に係る窒化アルミニウム焼結体を製造
した。
Comparative Example 4 Preparation of raw materials, molding, degreasing under the same conditions as in Example 10 except that an excessive amount (4% by weight) of CaO was added and that Cr 2 O 3 was not added and sintering was performed at 1700 ° C. The aluminum nitride sintered body according to Comparative Example 4 having the same dimensions was manufactured by sintering.

【0054】比較例5 また、Al2 3 を過剰量(2重量%)添加した以外は
実施例1と同一条件で処理して比較例5に係るAlN焼
結体を製造した。
[0054] Comparative Example 5 also excess Al 2 O 3 (2 wt%), except that the addition to produce an AlN sintered body according to Comparative Example 5 was treated under the same conditions as in Example 1.

【0055】比較例6 また、ガラスフリットを過剰量(2重量%)添加し、1
500℃で焼結した以外は実施例1と同一条件で処理し
て比較例6に係るAlN焼結体を製造した。
Comparative Example 6 Further , an excessive amount (2% by weight) of glass frit was added, and 1
An AlN sintered body according to Comparative Example 6 was manufactured by treating under the same conditions as in Example 1 except that sintering was performed at 500 ° C.

【0056】比較例7 Al2 3 に代えて過剰量(1重量%)のMnOを添加
し、1600℃で焼結した以外は実施例1と同一条件で
処理して比較例7に係るAlN焼結体を製造した。
[0056] was added MnO in excess in place of Comparative Example 7 Al 2 O 3 (1 wt%), AlN according to Comparative Example 7 was treated under the same conditions as in Example 1, except that the sintered at 1600 ° C. A sintered body was manufactured.

【0057】比較例8 焼結助剤としてのY2 3 を過剰量(10重量%)添加
し、かつ1725℃で焼結した以外は実施例1と同様に
処理して比較例8に係るAlN焼結体を製造した。
Comparative Example 8 Comparative Example 8 was carried out in the same manner as in Example 1 except that Y 2 O 3 as a sintering aid was added in an excessive amount (10% by weight) and was sintered at 1725 ° C. An AlN sintered body was manufactured.

【0058】比較例9 CaOを全く添加せず、焼結助剤として3重量%のY2
3 に加えてAl2 3 を1重量%添加し、かつ170
0℃で焼結した以外は実施例3と同様に処理して比較例
9に係るAlN焼結体を製造した。
Comparative Example 9 CaO was not added at all, and 3% by weight of Y 2 was used as a sintering aid.
1% by weight of Al 2 O 3 in addition to O 3 and 170
An AlN sintered body according to Comparative Example 9 was manufactured by performing the same process as in Example 3 except that sintering was performed at 0 ° C.

【0059】比較例10 焼結助剤としてのIIIa族元素酸化物を全く添加せず、1
750℃で焼結した以外は実施例5と同様に処理して比
較例10に係るAlN焼結体を製造した。
Comparative Example 10 No addition of Group IIIa element oxide as a sintering aid was performed, and 1
An AlN sintered body according to Comparative Example 10 was manufactured by performing the same process as in Example 5 except that sintering was performed at 750 ° C.

【0060】なお上記比較例1〜10のうち、比較例1
〜4および比較例8〜10に係るAlN成形体を、温度
1600℃に加熱し4時間の緻密化焼結を実施したが、
いずれも充分に緻密化されないため、表3に示す焼結温
度まで上昇させて緻密化焼結を実施した。
Of the above Comparative Examples 1 to 10, Comparative Example 1
4 and Comparative Examples 8 to 10 were heated to a temperature of 1600 ° C. and densified and sintered for 4 hours.
Since neither of them was sufficiently densified, the sintering temperature was raised to the sintering temperature shown in Table 3 to carry out the densification sintering.

【0061】こうして得られた実施例1〜21および比
較例1〜10に係る各AlN焼結体の強度特性および放
熱特性を評価するために、各試料の強度に対応する密度
および熱伝導率を測定し、下記表2および表3に示す結
果を得た。
In order to evaluate the strength characteristics and heat dissipation characteristics of the AlN sintered bodies according to Examples 1 to 21 and Comparative Examples 1 to 10 thus obtained, the density and thermal conductivity corresponding to the strength of each sample were measured. The measurement was performed, and the results shown in Tables 2 and 3 below were obtained.

【0062】[0062]

【表2】 [Table 2]

【0063】[0063]

【表3】 [Table 3]

【0064】上記表2および表3に示す結果から明らか
なように、Y2 3 ,CaO等の焼結助剤に加えてガラ
スフリット成分を微量ずつ複合添加した実施例1〜21
に係るAlN焼結体においては、1650℃以下の低温
焼結によって製造したにも拘らず、結晶組織が緻密で微
細であり、密度および熱伝導率が共に優れていることが
判明した。ちなみに密度は3.25〜3.38と従来と
同等以上であり、また熱伝導率は118〜145W/
(m・K)と優れていることが確認できた。
As is clear from the results shown in Tables 2 and 3, Examples 1 to 21 in which a glass frit component was added in a small amount in addition to a sintering aid such as Y 2 O 3 or CaO
It was found that the AlN sintered body according to (1) had a dense and fine crystal structure, and was excellent in both density and thermal conductivity, despite being manufactured by low temperature sintering at 1650 ° C. or lower. By the way, the density is 3.25 to 3.38, which is equal to or higher than the conventional one, and the thermal conductivity is 118 to 145 W /
It was confirmed that it was excellent as (m · K).

【0065】また、各焼結体における耐食性を耐酸性と
耐アルカリ性との2面から評価するために、次のような
浸漬試験を実施した。すなわち各焼結体を10%濃度の
塩酸(HCl)水溶液に常温(25℃)で24時間浸漬
して、その浸漬前後における焼結体の酸化腐食による単
位面積当りの重量減少を測定した。また焼結体を10%
濃度の苛性ソーダ(NaOH)水溶液中に常温(25
℃)で24時間浸漬して、その浸漬前後における焼結体
のアルカリ腐食による単位面積当りの重量減少を測定し
た。
Further, in order to evaluate the corrosion resistance of each sintered body from the two aspects of acid resistance and alkali resistance, the following immersion test was carried out. That is, each sintered body was immersed in a 10% aqueous solution of hydrochloric acid (HCl) at room temperature (25 ° C.) for 24 hours, and the weight loss per unit area due to oxidative corrosion of the sintered body before and after the immersion was measured. Also, the sintered body is 10%
Concentrated caustic soda (NaOH) solution at room temperature (25
C.) for 24 hours, and the weight loss per unit area due to alkali corrosion of the sintered body before and after the immersion was measured.

【0066】その結果、各実施例に係るAlN焼結体に
おいては、塩酸による重量減少がいずれも1.5mg/cm
2 以下であり、比較例1〜3で示す従来のAlN焼結体
と比較して1/3以下となり、優れた耐酸性を示した。
また苛性ソーダによる重量減少がいずれも50mg/cm2
以下であり、従来のAlN焼結体と比較して1/2以下
となり、良好な耐アルカリ性を示すことが判明した。
As a result, in the AlN sintered bodies according to the respective examples, the weight loss due to hydrochloric acid was 1.5 mg / cm 3.
It was 2 or less, which was 1/3 or less as compared with the conventional AlN sintered bodies shown in Comparative Examples 1 to 3, and showed excellent acid resistance.
In addition, the weight loss due to caustic soda is 50 mg / cm 2
It was below, which was 1/2 or less as compared with the conventional AlN sintered body, and it was proved that good alkali resistance was exhibited.

【0067】一方、ガラスフリットを全く添加しない比
較例1〜3に係るAlN焼結体は、1650℃以下の低
温焼成では緻密化できず、1680〜1780℃の高温
焼成が必要となるため、本発明が目的とする低温焼成に
よる設備費低減および量産性の改善効果は得られない。
またCaOを4重量%と過量に添加した比較例4に係る
AlN焼結体においても、1700℃以上の高温焼成が
必要となる。さらにAl2 3 を過量に添加した比較例
5の試料においては、低温焼成は可能であるが熱伝導率
の低下が著しくなった。
On the other hand, the AlN sintered bodies according to Comparative Examples 1 to 3 to which no glass frit is added cannot be densified by low temperature firing at 1650 ° C. or lower, and high temperature firing at 1680 to 1780 ° C. is required. The effect of reducing the facility cost and improving the mass productivity by the low temperature firing, which is the object of the invention, cannot be obtained.
Further, the AlN sintered body according to Comparative Example 4 in which CaO is added in an excessive amount of 4% by weight also requires high temperature firing at 1700 ° C. or higher. Further, in the sample of Comparative Example 5 in which an excessive amount of Al 2 O 3 was added, low temperature firing was possible, but the thermal conductivity markedly decreased.

【0068】またガラスフリットを過量に添加した比較
例6の試料では、熱伝導率が不充分となり、さらにMn
Oを過量に添加した比較例7の試料においては、熱伝導
率がさらに悪化した。また焼結助剤としてのY2 3
10重量%と過量に添加した比較例8の試料では、ガラ
スフリットを添加したにも拘らず、1700℃以上の高
温焼結が必要になるとともに、耐アルカリ腐食性が低下
することが確認された。
Further, in the sample of Comparative Example 6 in which the glass frit was added in an excessive amount, the thermal conductivity became insufficient, and Mn
In the sample of Comparative Example 7 in which O was added in an excessive amount, the thermal conductivity was further deteriorated. Further, in the sample of Comparative Example 8 in which Y 2 O 3 as a sintering aid was added in an excessive amount of 10% by weight, high temperature sintering at 1700 ° C. or higher was required in spite of the addition of the glass frit, It was confirmed that the alkali corrosion resistance was lowered.

【0069】さらに焼結助剤としてのCaOを全く添加
しない比較例9に係るAlN焼結体は、1700℃以上
の高温焼成が必要であることが判明した。またIIIa族元
素酸化物を全く添加しない比較例10に係るAlN焼結
体においては、CaOおよびWO3 を添加し、かつガラ
スフリットを添加したにも拘らず、1750℃以上の高
温焼成が必要であり、またCaOの添加に起因する腐食
が急増することが判明した。同様にCaOを過剰量添加
した比較例4に係るAlN焼結体においても、1700
℃以上の高温焼成が必要であり、アルカリ耐食性が低下
することが確認できた。
Further, it was found that the AlN sintered body according to Comparative Example 9 in which no CaO as a sintering aid was added needed to be fired at a high temperature of 1700 ° C. or higher. In addition, in the AlN sintered body according to Comparative Example 10 in which no group IIIa element oxide was added, high temperature firing at 1750 ° C. or higher was necessary despite addition of CaO and WO 3 and addition of glass frit. It was found that the corrosion caused by the addition of CaO increased rapidly. Similarly, in the AlN sintered body according to Comparative Example 4 in which CaO is added in an excessive amount, 1700
It was confirmed that a high temperature baking of ℃ or more was required and the alkali corrosion resistance was lowered.

【0070】一方、各実施例に係るAlN焼結体の製造
方法によれば、原料粉末中にガラスフリットを配合して
いるため、1525〜1650℃程度の低温度焼結の場
合であっても、緻密で高強度,高熱伝導性および高耐食
性を有するAlN焼結体が得られた。したがって高温度
用の焼成炉を用いることなく、通常の安価な耐熱部品で
構成した焼成炉を使用して連続運転が可能であり、Al
N焼結体の製造コストおよび量産性を大幅に改善するこ
とが可能となった。
On the other hand, according to the manufacturing method of the AlN sintered body according to each example, since the glass frit is mixed in the raw material powder, even in the case of low temperature sintering of about 1525 to 1650 ° C. A dense, high-strength, high thermal conductivity, and high corrosion resistance AlN sintered body was obtained. Therefore, continuous operation is possible without using a high-temperature firing furnace, and using a firing furnace composed of ordinary inexpensive heat-resistant parts.
It has become possible to significantly improve the manufacturing cost and mass productivity of the N sintered body.

【0071】また表2および表3において実施例1,
2,3,7,14,16,19,21に示す結果から明
らかなように、焼結助剤としてのIIIa族元素酸化物およ
びガラスフリットに加えて、CaO,Al2 3 ,Mn
O,ZrO2 ,Cr2 3 ,SrO,WO3 ,TiO2
などを複合添加することにより、焼結温度を1525〜
1625℃程度まで下げることが可能となり、低温焼結
による製造条件の緩和がより効果的に実現することが実
証された。
Further, in Tables 2 and 3, Example 1,
As is clear from the results shown in 2, 3 , 7, 14, 16, 19, and 21, CaO, Al 2 O 3 , and Mn were added in addition to the Group IIIa element oxide and the glass frit as the sintering aid.
O, ZrO 2 , Cr 2 O 3 , SrO, WO 3 , TiO 2
Sintering temperature of 1525 to
It became possible to lower the temperature to about 1625 ° C., and it was proved that the relaxation of the manufacturing conditions by the low temperature sintering was realized more effectively.

【0072】また実施例1〜21に係る各AlN焼結体
表面部を走査型電子顕微鏡(SEM)にて観察したとこ
ろ、いずれも微細なAlN結晶粒子の周辺に粒界相が均
一に分散形成されており、またAlN結晶粒子の表面に
はガラスフリット成分から成る保護皮膜が形成されてい
ることが確認された。一方、比較例1〜3に係る焼結体
においては、ガラスフリットの添加による焼結性改善効
果が少ないため、AlN粒子自体も粗大であり、隣接す
るAlN粒子の周辺に粗大な粒界相が凝集されるように
形成されていた。
When the surface of each AlN sintered body according to Examples 1 to 21 was observed with a scanning electron microscope (SEM), the grain boundary phase was uniformly dispersed around the fine AlN crystal grains. It was also confirmed that a protective film made of a glass frit component was formed on the surface of the AlN crystal particles. On the other hand, in the sintered bodies according to Comparative Examples 1 to 3, since the effect of improving the sinterability by adding the glass frit is small, the AlN particles themselves are also coarse, and the coarse grain boundary phase is present around the adjacent AlN particles. It was formed to be aggregated.

【0073】[0073]

【発明の効果】以上説明の通り本発明に係る窒化アルミ
ニウム焼結体およびその製造方法によれば、周期律表II
Ia族元素の酸化物等から成る焼結助剤や添加剤とともに
所定量のガラスフリットを複合添加してAlN焼結体と
しているため、焼結性が大幅に改善され、1650℃以
下の低温焼結であっても、従来例と同等以上の熱伝導
性,密度,強度を有するAlN焼結体が得られる。特に
1650℃以下の低温度で焼成することが可能となるた
め、高温度仕様の高価な焼成炉を使用する必要なく、安
価な断熱材を使用した通常の焼成炉を使用してAlN焼
結体を連続的に製造することが可能となる。したがっ
て、AlN焼結体の製造コストおよび量産性を飛躍的に
改善することができる。
As described above, according to the aluminum nitride sintered body and the manufacturing method thereof according to the present invention, the periodic table II
Since a predetermined amount of glass frit is added together with sintering aids and additives consisting of oxides of Group Ia elements to form an AlN sintered body, the sinterability is greatly improved, and low temperature firing at 1650 ° C or lower is performed. Even with the consolidation, an AlN sintered body having the same or higher thermal conductivity, density and strength as the conventional example can be obtained. In particular, since it becomes possible to perform firing at a low temperature of 1650 ° C. or lower, it is not necessary to use an expensive firing furnace with high temperature specifications, and an AlN sintered body can be used using an ordinary firing furnace that uses an inexpensive heat insulating material. Can be continuously manufactured. Therefore, the manufacturing cost and mass productivity of the AlN sintered body can be dramatically improved.

【0074】またガラスフリットの添加によりAlN焼
結体を構成するAlN結晶粒子表面にガラスフリット成
分から成る保護皮膜が形成され、酸やアルカリに対する
AlN焼結体の耐食性が大幅に改善される。また上記皮膜
によりAlN結晶粒子同士の界面接合強度が高まり、高
強度で緻密な結晶組織が得られる。したがって、窒化ア
ルミニウム焼結体本来の高熱伝導性を有し、さらに耐食
性および強度特性に優れた窒化アルミニウム焼結体が得
られる。
Further, by adding glass frit, a protective film made of a glass frit component is formed on the surface of the AlN crystal particles constituting the AlN sintered body, which protects against acid and alkali.
The corrosion resistance of the AlN sintered body is greatly improved. Further, the above-mentioned coating enhances the interfacial bonding strength between the AlN crystal particles, so that a high-strength and dense crystal structure can be obtained. Therefore, it is possible to obtain an aluminum nitride sintered body which has the original high thermal conductivity of the aluminum nitride sintered body and is excellent in corrosion resistance and strength characteristics.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 1650℃以下で低温焼成して成る窒化
アルミニウム焼結体であり、周期律表IIIa族元素から選
択される少なくとも1種の元素の酸化物を0.5〜7重
量%と、酸化カルシウムを0.5〜3重量%と、酸化ア
ルミニウムを1.5重量%以下と、ガラスフリットを
0.2〜1重量%と、酸化マンガン,酸化クロム,酸化
ジルコニウム,酸化ストロンチウムおよび酸化チタンか
ら選択される少なくとも1種を0.5重量%以下と、タ
ングステンを酸化物換算で1重量%以下と、残部を構成
する窒化アルミニウムとから成ることを特徴とする窒化
アルミニウム焼結体。
1. An aluminum nitride sintered body obtained by firing at a low temperature of 1650 ° C. or lower, wherein 0.5 to 7% by weight of an oxide of at least one element selected from Group IIIa elements of the periodic table, From 0.5 to 3% by weight of calcium oxide, 1.5% by weight or less of aluminum oxide, 0.2 to 1% by weight of glass frit, and from manganese oxide, chromium oxide, zirconium oxide, strontium oxide and titanium oxide. An aluminum nitride sintered body comprising at least 0.5% by weight or less of selected one, 1% by weight or less of tungsten in terms of oxide, and aluminum nitride constituting the balance.
【請求項2】 1650℃以下で低温焼成して成る窒化
アルミニウム焼結体であり、周期律表IIIa族元素から選
択される少なくとも1種の元素の酸化物を0.5〜5重
量%と、タングステン酸カルシウムを1〜3重量%と、
酸化アルミニウムを1.5重量%以下と、ガラスフリッ
トを0.2〜1重量%と、酸化マンガン,酸化クロム,
酸化ジルコニウム,酸化ストロンチウムおよび酸化チタ
ンから選択される少なくとも1種を0.5重量%以下
と、残部を構成する窒化アルミニウムとから成ることを
特徴とする窒化アルミニウム焼結体。
2. An aluminum nitride sintered body obtained by firing at a low temperature of 1650 ° C. or lower, containing 0.5 to 5% by weight of an oxide of at least one element selected from Group IIIa elements of the periodic table, 1-3% by weight of calcium tungstate,
Aluminum oxide 1.5% by weight or less, glass frit 0.2 to 1% by weight, manganese oxide, chromium oxide,
An aluminum nitride sintered body, which comprises 0.5% by weight or less of at least one selected from zirconium oxide, strontium oxide and titanium oxide, and the balance aluminum nitride.
【請求項3】 熱伝導率が110W/(m・K)以上で
あることを特徴とする請求項1または2記載の窒化アル
ミニウム焼結体。
3. The aluminum nitride sintered body according to claim 1, which has a thermal conductivity of 110 W / (m · K) or more.
【請求項4】 ガラスフリットが、ホウケイ酸ガラス,
アルミノホウケイ酸ガラス,96%石英ガラス,ソーダ
石灰ガラス,鉛ガラス,アルミノケイ酸塩ガラスおよび
特殊ガラスから選択される少なくとも1種であることを
特徴とする請求項1または2記載の窒化アルミニウム焼
結体。
4. The glass frit is borosilicate glass,
The aluminum nitride sintered body according to claim 1 or 2, which is at least one selected from aluminoborosilicate glass, 96% quartz glass, soda-lime glass, lead glass, aluminosilicate glass and special glass. .
【請求項5】 窒化アルミニウム原料粉末に、周期律表
IIIa族元素から選択される少なくとも1種の元素の酸化
物を0.5〜7重量%と、酸化カルシウムを0.5〜3
重量%と、酸化アルミニウムを1.5重量%以下と、ガ
ラスフリットを0.2〜1重量%と、酸化マンガン,酸
化クロム,酸化ジルコニウム,酸化ストロンチウムおよ
び酸化チタンから選択される少なくとも1種を0.5重
量%以下と、タングステンを酸化物換算で1重量%以下
とを添加した原料混合体を成形し、得られた成形体を非
酸化性雰囲気中で1650℃以下の低温度で焼結せしめ
ることを特徴とする窒化アルミニウム焼結体の製造方
法。
5. A periodic table is added to aluminum nitride raw material powder.
An oxide of at least one element selected from Group IIIa elements is 0.5 to 7% by weight, and calcium oxide is 0.5 to 3%.
% By weight, 1.5% by weight or less of aluminum oxide, 0.2 to 1% by weight of glass frit, and at least one selected from manganese oxide, chromium oxide, zirconium oxide, strontium oxide and titanium oxide. 0.5% by weight or less and 1% by weight or less of tungsten in terms of oxide are added to form a raw material mixture, and the obtained formed body is sintered at a low temperature of 1650 ° C. or lower in a non-oxidizing atmosphere. A method for manufacturing an aluminum nitride sintered body, comprising:
【請求項6】 窒化アルミニウム原料粉末に、周期律表
IIIa族元素から選択される少なくとも1種の元素の酸化
物を0.5〜5重量%と、タングステン酸カルシウムを
1〜3重量%と、酸化アルミニウムを1.5重量%以下
と、ガラスフリットを0.2〜1重量%と、酸化マンガ
ン,酸化クロム,酸化ジルコニウム,酸化ストロンチウ
ムおよび酸化チタンから選択される少なくとも1種を
0.5重量%以下とを添加した原料混合体を成形し、得
られた成形体を非酸化性雰囲気中で1650℃以下の低
温度で焼結せしめることを特徴とする窒化アルミニウム
焼結体の製造方法。
6. The aluminum nitride raw material powder is added to the periodic table.
0.5 to 5% by weight of an oxide of at least one element selected from Group IIIa elements, 1 to 3% by weight of calcium tungstate, 1.5% by weight or less of aluminum oxide, and a glass frit. A raw material mixture obtained by adding 0.2 to 1% by weight and 0.5% by weight or less of at least one selected from manganese oxide, chromium oxide, zirconium oxide, strontium oxide and titanium oxide is obtained. A method for producing an aluminum nitride sintered body, comprising sintering the formed body at a low temperature of 1650 ° C. or lower in a non-oxidizing atmosphere.
【請求項7】 窒化アルミニウム原料粉末の酸素含有量
を1.3重量%以下に設定したことを特徴とする請求項
5または6記載の窒化アルミニウム焼結体の製造方法。
7. The method for producing an aluminum nitride sintered body according to claim 5, wherein the oxygen content of the aluminum nitride raw material powder is set to 1.3% by weight or less.
JP6298360A 1994-12-01 1994-12-01 Aluminum nitride sintered compact and its production Abandoned JPH08157261A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6298360A JPH08157261A (en) 1994-12-01 1994-12-01 Aluminum nitride sintered compact and its production
PCT/JP1995/002449 WO1996016916A1 (en) 1994-12-01 1995-11-30 Aluminum nitride sinter and process for producing the same
EP95938619A EP0747332B1 (en) 1994-12-01 1995-11-30 Aluminum nitride sinter and process for producing the same
US08/666,475 US5763344A (en) 1994-12-01 1995-11-30 Aluminum nitride sintered body and method of manufacturing the same
DE69522674T DE69522674T2 (en) 1994-12-01 1995-11-30 ALUMINUM NITRIDE SINTER PRODUCT AND METHOD FOR PRODUCING THE SAME
KR1019960703766A KR0168302B1 (en) 1994-12-01 1995-11-30 Aluminum nitride sintered body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6298360A JPH08157261A (en) 1994-12-01 1994-12-01 Aluminum nitride sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH08157261A true JPH08157261A (en) 1996-06-18

Family

ID=17858687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6298360A Abandoned JPH08157261A (en) 1994-12-01 1994-12-01 Aluminum nitride sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH08157261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190096798A (en) 2018-02-08 2019-08-20 엔지케이 인슐레이터 엘티디 Heaters for Semiconductor Manufacturing Equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190096798A (en) 2018-02-08 2019-08-20 엔지케이 인슐레이터 엘티디 Heaters for Semiconductor Manufacturing Equipment
KR20200103888A (en) 2018-02-08 2020-09-02 엔지케이 인슐레이터 엘티디 Heater for semiconductor manufacturing apparatus
US11437260B2 (en) 2018-02-08 2022-09-06 Ngk Insulators, Ltd. Heater for semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
KR0168303B1 (en) Aluminum nitride sinter and process for the production thereof
JP5444387B2 (en) Semiconductor device heat sink
KR0168302B1 (en) Aluminum nitride sintered body and method of manufacturing the same
TW200948743A (en) Polycrystalline mgo sintered compact, process for producing the polycrystalline mgo sintered compact, and mgo target for sputtering
KR960016070B1 (en) Sintered aluminium nitride and its production
JP5172738B2 (en) Semiconductor module and electronic device using the same
JP3472585B2 (en) Aluminum nitride sintered body
JP3742661B2 (en) Aluminum nitride sintered body and method for producing the same
JPH07172921A (en) Aluminum nitride sintered material and its production
JP4384101B2 (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same
JP3606923B2 (en) Aluminum nitride sintered body and method for producing the same
JPH08157261A (en) Aluminum nitride sintered compact and its production
JPH08157262A (en) Aluminum nitride sintered compact and its production
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board
JP2003201179A (en) Aluminum nitride sintered compact and production method therefor
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JP4702978B2 (en) Aluminum nitride sintered body
JPH06263544A (en) Sialon-based composite sintered compact and its production
JP4221006B2 (en) Silicon nitride ceramic circuit board
JP4753195B2 (en) Method for producing aluminum nitride sintered body
JPH09278526A (en) Setter for ceramic firing
JP2000302556A (en) Aluminum nitride sintered compact and its production
JPH05330924A (en) Production of aluminum nitride base plate and sintering vessel
JPH0680473A (en) Production of aluminum nitride substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040909