JPH05229872A - Production of ceramic sintered compact - Google Patents

Production of ceramic sintered compact

Info

Publication number
JPH05229872A
JPH05229872A JP4033515A JP3351592A JPH05229872A JP H05229872 A JPH05229872 A JP H05229872A JP 4033515 A JP4033515 A JP 4033515A JP 3351592 A JP3351592 A JP 3351592A JP H05229872 A JPH05229872 A JP H05229872A
Authority
JP
Japan
Prior art keywords
powder
sintered body
sintering
carbon
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4033515A
Other languages
Japanese (ja)
Inventor
Michiyasu Komatsu
通泰 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4033515A priority Critical patent/JPH05229872A/en
Publication of JPH05229872A publication Critical patent/JPH05229872A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently provide a high-strength, high-thermal conductivity ceramic sintered compact excellent in heat-releasing characteristics and little in the development of deformation and color unevenness. CONSTITUTION:Plural ceramic forms 4 consisting mainly of aluminum nitride are laminatedly arranged in tiers through spread powder 5, 5a comprising (A) one or both of aluminum nitride powder and boron nitride powder as the major component and (B) a noncrystalline carbon as the minor component, and the resulting laminated ceramic forms are simultaneously sintered in a nonoxidative atmosphere, thus obtaining the objective ceramic sintered compact. It is recommended that the noncrystalline carbon content of the spread powder be set at 5-20wt%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス焼結体の製
造方法に係り、特に窒化アルミニウムを主成分とし、変
形や色むらの発生が少なく、高強度で熱伝導率も高く放
熱特性に優れたセラミックス焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramics sintered body, which contains aluminum nitride as a main component, is free from deformation and color unevenness, has high strength, high thermal conductivity and excellent heat dissipation characteristics. The present invention relates to a method for manufacturing a ceramic sintered body.

【0002】[0002]

【従来の技術】従来の金属材料と比較して強度、耐熱
性、耐食性、耐摩耗性、軽量性などの諸特性に優れたセ
ラミックス焼結体が、半導体、電子機器材料、エンジン
用部材、高速切削工具用材料、ノズル、ベアリングな
ど、従来の金属材料の及ばない苛酷な温度、応力、摩耗
条件下で使用される機械部品、構造材や装飾品材料とし
て広く利用されている。
2. Description of the Related Art Sintered ceramics, which are superior in properties such as strength, heat resistance, corrosion resistance, wear resistance, and lightness to conventional metal materials, are used in semiconductors, electronic equipment materials, engine parts, high speed It is widely used as a material for cutting tools, nozzles, bearings, and other mechanical parts, structural materials, and ornamental materials used under severe temperature, stress, and wear conditions that conventional metal materials do not have.

【0003】特に窒化アルミニウム(AlN)焼結体は
高熱伝導性を有する絶縁体であり、シリコン(Si)に
近い熱膨張係数を有することから高集積化した半導体装
置の放熱板や基板として、その用途を拡大している。
Particularly, an aluminum nitride (AlN) sintered body is an insulator having a high thermal conductivity and has a coefficient of thermal expansion close to that of silicon (Si), so that it is used as a heat sink or a substrate of a highly integrated semiconductor device. Expanding applications.

【0004】従来上記セラミックス焼結体は一般的に下
記の製造方法によって量産されている。すなわち、セラ
ミックス原料として窒化アルミニウムを使用する場合に
は、まず窒化アルミニウム粉末に焼結助剤と、有機バイ
ンダと、必要に応じて各種添加剤や溶媒、分散剤とを添
加して原料混合体を調製し、得られた原料混合体をドク
ターブレード法によって成形し、薄板状ないしシート状
の成形体としたり、原料混合体をプレス成形して厚板状
ないし大型の成形体を形成する。次に得られた成形体
は、空気または窒素ガス雰囲気において加熱され脱脂処
理され、有機バインダとして使用された炭素、水素成分
等が成形体から排除脱脂される。そして脱脂された成形
体は窒素ガス雰囲気等で高温度に加熱され緻密化焼結さ
れて窒化アルミニウム焼結体が形成される。
Conventionally, the above-mentioned ceramics sintered body is generally mass-produced by the following manufacturing method. That is, when using aluminum nitride as a ceramic raw material, first, a sintering aid, an organic binder, and if necessary, various additives, solvents, and dispersants are added to the aluminum nitride powder to form a raw material mixture. The raw material mixture thus prepared is molded by a doctor blade method to obtain a thin plate-shaped or sheet-shaped molded body, or the raw material mixture is press-molded to form a thick plate-shaped or large-sized molded body. Next, the obtained molded product is heated and degreased in an air or nitrogen gas atmosphere to remove and degrease the carbon and hydrogen components used as the organic binder from the molded product. The degreased compact is heated to a high temperature in a nitrogen gas atmosphere or the like and densified and sintered to form an aluminum nitride sintered compact.

【0005】上記焼結操作は、一般に図2に示すような
焼成炉1の炉床2上に板状の焼成用治具(セッタ)3を
配置し、この焼成用治具3上に脱脂した複数のセラミッ
クス成形体4を、しき粉(敷粉)5を介して多段に積層
した状態で高温度に加熱して実施される。
In the above sintering operation, generally, a plate-shaped firing jig (setter) 3 is placed on a hearth 2 of a firing furnace 1 as shown in FIG. 2, and degreasing is performed on the firing jig 3. It is carried out by heating a plurality of ceramic compacts 4 in a multi-layered manner with a spread powder (laying powder) 5 at a high temperature.

【0006】上記セラミックス成形体4と接触する焼成
用治具3や炉床2は、高温焼結時に成形体と反応して焼
結体の特性を低下させることを防止するために、成形体
と同一材料である窒化アルミニウム(AlN)焼結体や
窒化硼素(BN)焼結体で形成される。
The firing jig 3 and the hearth 2 which come into contact with the above-mentioned ceramic molded body 4 are formed with a molded body in order to prevent the characteristics of the sintered body from being deteriorated by reacting with the molded body during high temperature sintering. It is formed of an aluminum nitride (AlN) sintered body or a boron nitride (BN) sintered body which are the same material.

【0007】また、しき粉5は、焼成工程途中でセラミ
ックス成形体4同士、またはセラミックス成形体4と焼
成用治具3とが、その接触箇所において溶着することを
防止するために各接触界面部に介在充填されるものであ
る。しき粉5としては、成形体4と反応することが少な
い窒化アルミニウム粉末または窒化硼素(BN)粉末が
使用されている。
[0007] In addition, in order to prevent the ceramic powder compacts 4 from being welded to each other or the ceramic powder compact 4 and the firing jig 3 at their contact points during the firing process, the contact powders 5 contact each other. Is interposed and filled. As the powdered powder 5, aluminum nitride powder or boron nitride (BN) powder that rarely reacts with the molded body 4 is used.

【0008】上記しき粉5を介在させることにり、高温
度の焼成工程においても、隣接する成形体4が溶着接合
を起こすことが効果的に防止され、焼成完了後において
も、各セラミックス製品を容易に取り外すことができ、
溶着による製品歩留りの低下を防止することができる。
By interposing the above-mentioned powdery powder 5, it is possible to effectively prevent the adjoining compacts 4 from being weld-bonded to each other even in the high temperature firing step, and even after the firing is completed, each ceramic product is Can be easily removed,
It is possible to prevent a reduction in product yield due to welding.

【0009】上記製造方法において、原料AlN粉末と
して平均粒径が0.3μm以下程度の超微細な原料粉末
を使用する場合は、AlN粉末単独でもかなりの緻密な
焼結体が得られる。しかしながら、原料粉末表面等に付
着した多量の酸素等の不純物が焼結時に、AlN結晶格
子中に固溶したり、格子振動の伝播を妨げるAl−O−
N化合物等の複合酸化物を生成する結果、焼結助剤を使
用しないAlN焼結体の熱伝導率は比較的に低かった。
In the above manufacturing method, when an ultrafine raw material powder having an average particle diameter of about 0.3 μm or less is used as the raw material AlN powder, a considerably dense sintered body can be obtained by using the AlN powder alone. However, a large amount of impurities such as oxygen adhering to the surface of the raw material powder form a solid solution in the AlN crystal lattice at the time of sintering, or Al-O- which hinders the propagation of lattice vibration.
As a result of producing a complex oxide such as an N compound, the thermal conductivity of the AlN sintered body that did not use a sintering aid was relatively low.

【0010】一方原料粉末として平均粒径0.5μm以
上のAlN粉末を使用する場合は、その原料粉末単独で
は焼結性が良好でないため、ホットプレス法以外には助
剤無添加では緻密な焼結体を得ることが困難であり、量
産性が低い欠点があった。そこで常圧焼結法によって効
率的に焼結体を製造しようとする場合には、焼結体の緻
密化およびAlN原料粉末中の不純物酸素がAlN結晶
粒子内へ固溶することを防止するために、焼結助剤とし
て、酸化イットウリム(Y2 3 )などの希土類酸化物
や酸化カルシウムなどのアルカリ土類金属酸化物等を添
加することが一般に行なわれている。
On the other hand, when an AlN powder having an average particle size of 0.5 μm or more is used as the raw material powder, the raw material powder alone does not have good sinterability, so that a dense firing without an auxiliary agent other than the hot pressing method is performed. It was difficult to obtain a bound body, and there was a drawback that mass productivity was low. Therefore, in order to efficiently produce a sintered body by the atmospheric pressure sintering method, in order to prevent the densification of the sintered body and the impurity oxygen in the AlN raw material powder from forming a solid solution in the AlN crystal grains. In addition, rare earth oxides such as yttrium oxide (Y 2 O 3 ) and alkaline earth metal oxides such as calcium oxide are generally added as sintering aids.

【0011】これらの焼結助剤は、AlN原料粉末に含
まれる不純物酸素と反応して液相を形成し、焼結体の緻
密化を達成するとともに、この不純物酸素を粒界相とし
て固定し、高熱伝導率化も達成するものと考えられてい
る。
These sintering aids react with the impurity oxygen contained in the AlN raw material powder to form a liquid phase, achieve densification of the sintered body, and fix this impurity oxygen as a grain boundary phase. It is believed that high thermal conductivity will also be achieved.

【0012】[0012]

【発明が解決しようとする課題】しかしながら従来の製
造方法においては、各種不純物の量的管理が極めて困難
であり、各成形体の焼結性(密度)に大きなばらつきを
生じたり、変形量が大きくなって製品歩留りや熱伝導率
が低下してしまう問題点があった。例えば、多数のセラ
ミックス成形体を加熱炉中で一括して脱脂処理する場
合、1回の脱脂操作で加熱炉内に仕込む成形体数の多少
によって成形体中に残留する炭素量や酸素量が異なり、
また加熱炉の上方に配置した成形体と下方に配置した成
形体との間でも残留炭素量に差異が生じて均一な脱脂操
作が困難であった。そして炭素などの不純物の残留によ
って焼結体の色調が変化したり色むらを生じるなど外観
品質が低下する場合が多く、特に焼結体が装飾用材料と
して使用される場合には歩留りがさらに低下する欠点が
あった。特に原料粉末中の不純物として含まれていた
り、製造工程で混入した酸素は、焼結時にAlN結晶格
子中の窒素と置換して固溶するため、AlNの最大利用
特性である高熱伝導性が低下する場合が多かった。
However, in the conventional manufacturing method, it is extremely difficult to quantitatively control various impurities, resulting in a large variation in the sinterability (density) of each molded body and a large amount of deformation. Therefore, there is a problem in that the product yield and the thermal conductivity decrease. For example, when a large number of ceramic compacts are collectively degreased in a heating furnace, the amount of carbon and oxygen remaining in the compacts will vary depending on the number of compacts charged in the heating furnace in one degreasing operation. ,
Further, the residual carbon amount is different between the molded body arranged above the heating furnace and the molded body arranged below the heating furnace, which makes uniform degreasing operation difficult. The appearance quality often deteriorates due to changes in the color tone of the sintered body or uneven color due to the retention of impurities such as carbon, and the yield further decreases especially when the sintered body is used as a decorative material. There was a drawback to In particular, oxygen contained in the raw material powder as an impurity or mixed in the manufacturing process substitutes for nitrogen in the AlN crystal lattice during solidification to form a solid solution, so the high thermal conductivity, which is the maximum utilization characteristic of AlN, decreases. It was often done.

【0013】本発明は上記問題点を解決するためになさ
れたものであり、高強度で熱伝導率が高く放熱特性が優
れ、かつ変形や色むらの発生が少ない焼結体を効率的に
製造することが可能なセラミックス焼結体の製造方法を
提供することを目的とする。
The present invention has been made to solve the above problems, and efficiently manufactures a sintered body having high strength, high thermal conductivity, excellent heat dissipation characteristics, and little deformation or color unevenness. It is an object of the present invention to provide a method for manufacturing a ceramics sintered body that can be manufactured.

【0014】[0014]

【課題を解決するための手段】本願発明者らは上記目的
を達成するため、原料窒化アルミニウム粉末に添加する
焼結助剤や添加物の種類、不純物の残留量、しき粉の組
成、焼結体の組成等を種々変えて、それらが焼結体特性
に及ぼす影響や関係について実験検討を進め、以下に示
すように知見を得た。
In order to achieve the above-mentioned object, the inventors of the present invention, in order to achieve the above-mentioned object, the types of sintering aids and additives to be added to the raw material aluminum nitride powder, the residual amount of impurities, the composition of powder, and the sintering The composition of the body was changed variously, and the effects and relations of the effects on the properties of the sintered body were studied experimentally, and the findings were obtained as shown below.

【0015】すなわち本発明者らは焼結前の成形体すな
わち脱脂体中の残留カーボン量の多少が、最終的に製造
される焼結体の品質特性に大きな影響を及ぼすことを突
き止めた。図1は脱脂体中の残留カーボン量に対する焼
結体の熱伝導率、焼結性、変形量、色むらの程度の変化
を示したグラフである。
That is, the present inventors have found that the amount of residual carbon in the green body before sintering, that is, the degreased body has a great influence on the quality characteristics of the finally produced sintered body. FIG. 1 is a graph showing changes in the thermal conductivity, sinterability, amount of deformation, and degree of color unevenness of the sintered body with respect to the amount of residual carbon in the degreased body.

【0016】図1に示す通り、脱脂体中の残留カーボン
量を可及的に低減することにより、成形体の焼結性すな
わち焼結体の密度は改善されるとともに変形量、色むら
は解消される。一方、熱伝導率を高く維持するためには
ある程度の残留カーボン量が必要であることが判明し
た。少量の残留カーボンは、原料粉末表面に付着した酸
素や酸化物とし存在する酸素を還元してCOやCO2
して系外に除去する作用を有する。ところが、過量の残
留カーボンは、他の不純物と同様に熱伝導を阻害する炭
化物を形成したり、焼結時に必要な液相の生成を阻害し
て焼結性を低下せしめ、緻密度の低い低強度の焼結体を
形成する。
As shown in FIG. 1, by reducing the amount of residual carbon in the degreased body as much as possible, the sinterability of the molded body, that is, the density of the sintered body is improved, and the amount of deformation and color unevenness are eliminated. To be done. On the other hand, it has been found that a certain amount of residual carbon is necessary to maintain high thermal conductivity. A small amount of residual carbon has a function of reducing oxygen adhering to the surface of the raw material powder and oxygen existing as an oxide to remove it as CO or CO 2 out of the system. However, an excessive amount of residual carbon forms carbides that impede heat conduction like other impurities, and inhibits the formation of a liquid phase required during sintering to reduce sinterability, resulting in low compactness and low density. Form a strong sintered body.

【0017】したがって上記のように脱脂体中の残留カ
ーボン量を適性な範囲に調整することにより、変形、色
むらが少なく、高密度で高熱伝導性を有する焼結体が得
られることがわかる。しかしながら従来の製造方法にお
いては、残留カーボン量を適正範囲に設定することは極
めて困難であった。例えば有機バインダを添加した原料
混合体を成形してシート状成形体を形成し、この成形体
を空気中で温度400℃程度で脱脂した場合において、
脱脂体に残留するカーボン量は0.01重量%程度と極
めて小さくなる一方、大型の成形体では不純物の放出が
困難となり、逆に残留カーボン量が過大になり、いずれ
にしろ最適範囲に設定することが困難であった。
Therefore, it is understood that by adjusting the amount of residual carbon in the degreased body to an appropriate range as described above, it is possible to obtain a sintered body having high density and high thermal conductivity with little deformation and color unevenness. However, in the conventional manufacturing method, it was extremely difficult to set the residual carbon amount within an appropriate range. For example, when a raw material mixture to which an organic binder is added is molded to form a sheet-shaped molded body and the molded body is degreased in air at a temperature of about 400 ° C.,
While the amount of carbon remaining in the degreased body is extremely small, about 0.01% by weight, it becomes difficult to release impurities in a large-sized molded body, and on the contrary, the amount of residual carbon becomes too large. Was difficult.

【0018】そこで、焼結時に使用するしき粉中に予め
炭素源となる物質を所定量添加しておくことにより、焼
結時に成形体に作用するカーボン量を所定範囲に保持
し、そのカーボンの還元作用により焼結時に酸素等の不
純物を還元除去することが焼結体の特性を高める上で非
常に有効であることが確認された。
Therefore, by adding a predetermined amount of a substance serving as a carbon source in advance to the powder used during sintering, the amount of carbon acting on the compact during sintering can be kept within a predetermined range, and It was confirmed that reducing and removing impurities such as oxygen during sintering by the reducing action is very effective in improving the characteristics of the sintered body.

【0019】すなわち、予めしき粉中に所定量の非結晶
質炭素を添加して焼結時に成形体に作用するカーボン量
を所定範囲に設定することにより、成形体および焼結体
中の不純物酸素量を大幅に低減することができ、かつ高
強度で変形や色むらの発生が少ない焼結体が得られるこ
とが判明した。
That is, by adding a predetermined amount of amorphous carbon to the powder beforehand and setting the amount of carbon acting on the compact during sintering to a predetermined range, the impurity oxygen in the compact and the sintered body is It was found that the amount of the sintered body can be significantly reduced, and a sintered body having high strength and less deformation and color unevenness can be obtained.

【0020】本発明は上記知見に基づいて完成されたも
のである。すなわち本発明に係るセラミックス焼結体の
製造方法は、窒化アルミニウムを主成分とする複数のセ
ラミックス成形体を、窒化アルミニウム粉末および窒化
硼素粉末の少なくとも一方を主成分とし非結晶質炭素を
従成分として含有するしき粉を介して多段に積層配置
し、積層した複数のセラミックス成形体を同時に非酸化
雰囲気中で焼結することを特徴とする。
The present invention has been completed based on the above findings. That is, the method for producing a ceramics sintered body according to the present invention, a plurality of ceramics molded body containing aluminum nitride as a main component, at least one of aluminum nitride powder and boron nitride powder as a main component and amorphous carbon as a secondary component. The present invention is characterized in that a plurality of stacked ceramics compacts are simultaneously sintered in a non-oxidizing atmosphere by stacking and arranging them in multiple stages through the contained powder.

【0021】またしき粉中の非結晶質炭素含有量を5〜
20重量%に設定するとよい。
Further, the content of amorphous carbon in the sushi flour should be 5 to 5.
It may be set to 20% by weight.

【0022】さらに非結晶質炭素を含有するしき粉は、
予め粒径が20〜150μmとなるように造粒し、仮焼
結したものを使用するとよい。
Further, the sashimi powder containing amorphous carbon is
It is advisable to use a granulated product having a particle size of 20 to 150 μm and pre-sintered.

【0023】本発明方法において使用され、焼結体の主
成分となる窒化アルミニウム(AlN)粉末としては、焼
結性および熱伝導性を考慮して不純物酸素含有量が3重
量%以下に抑制され平均粒径が0.05〜5μm程度、
好ましくは3μm以下のものを使用する。
The aluminum nitride (AlN) powder used in the method of the present invention, which is the main component of the sintered body, has an impurity oxygen content suppressed to 3% by weight or less in consideration of sinterability and thermal conductivity. The average particle size is about 0.05 to 5 μm,
It is preferably 3 μm or less.

【0024】焼結助剤としては希土類元素(Y,Sc,
Ce,Dyなど)の酸化物、窒化物、アルカリ土類金属
(Ca)の酸化物、もしくは焼結操作によりこれらの化
合物となる物質が使用され、特に酸化イットリウム(Y
2 3 )や酸化カルシウム(CaO)が好ましい。焼結
助剤の添加量は0.5〜7.5重量%の範囲で調整され
る。添加量が0.5重量%未満の場合は、焼結性の改善
効果が充分に発揮されず、焼結体が緻密化されず低強度
の焼結体が形成されたり、AlN結晶中に酸素が固溶
し、高い熱伝導率を有する焼結体が形成できない。一方
添加量が7.5wt%を超える過量となると、粒界相が
焼結体中に残存したり、熱処理により除去される粒界相
の体積が大きいため、焼結体中に空孔が残ったりして収
縮率が増大し、変形を生じ易くなる。
As a sintering aid, rare earth elements (Y, Sc,
Ce, Dy, etc.) oxides, nitrides, alkaline earth metal (Ca) oxides, or substances that become these compounds by a sintering operation are used, particularly yttrium oxide (Y
2 O 3 ) and calcium oxide (CaO) are preferred. The addition amount of the sintering aid is adjusted in the range of 0.5 to 7.5% by weight. If the addition amount is less than 0.5% by weight, the effect of improving the sinterability is not sufficiently exerted, the sintered body is not densified and a low-strength sintered body is formed, or oxygen is not contained in the AlN crystal. However, it cannot form a sintered body having a high thermal conductivity. On the other hand, if the added amount exceeds 7.5 wt%, the grain boundary phase remains in the sintered body, or the volume of the grain boundary phase removed by the heat treatment is large, so that voids remain in the sintered body. As a result, the shrinkage rate increases and deformation is likely to occur.

【0025】焼結時に使用するしき粉としては、AlN
成形体と反応しない窒化アルミニウム(AlN)粉末お
よび窒化硼素(BN)粉末の少なくとも一方を主成分と
し、さらに所定量の非結晶質炭素を従成分として添加し
て調製される。
AlN is a powder used for sintering.
It is prepared by using at least one of aluminum nitride (AlN) powder and boron nitride (BN) powder that do not react with the compact as a main component, and further adding a predetermined amount of amorphous carbon as a secondary component.

【0026】非結晶質炭素は、成形体中に残存する酸素
等の不純物を焼結時において還元処理して系外に除去す
るために、しき粉中に5〜20重量%の範囲で添加され
る。添加量が5重量%未満と過少の場合は、焼結時に成
形体に作用する炭素蒸気量が少なく、非結晶質炭素によ
る焼結時の脱酸効果が不充分となり高熱伝導性の焼結体
が得られなくなる一方、添加量が20重量%を超える過
量となる場合には、成形体に付着する炭素蒸気量が増大
し、焼結体の変形や色むらを生じ易くなり、焼結性およ
び熱伝導性も低下してしまう。より好ましくは、焼結時
において成形体に作用する炭素蒸気量が、全成形体重量
に対して0.15〜0.3重量%の範囲になるようにし
き粉中の非結晶質炭素含有量を設定することにより、変
形、色むら、焼結性、熱伝導率の諸特性がバランスした
高品質の焼結体が得られる。
Amorphous carbon is added to the powder in a range of 5 to 20% by weight in order to remove impurities such as oxygen remaining in the compact by reducing during sintering and removing it from the system. It When the addition amount is too small, less than 5% by weight, the amount of carbon vapor acting on the compact during sintering is small, and the deoxidizing effect of the amorphous carbon during sintering is insufficient, resulting in a high thermal conductivity sintered body. On the other hand, when the addition amount exceeds 20% by weight, the amount of carbon vapor adhering to the molded body increases and deformation and color unevenness of the sintered body tend to occur. The thermal conductivity also decreases. More preferably, the amount of carbon vapor acting on the compact during sintering should be in the range of 0.15 to 0.3 wt% with respect to the total weight of the compact, and the amorphous carbon content in the flour should be controlled. By setting, it is possible to obtain a high-quality sintered body in which various characteristics such as deformation, color unevenness, sinterability, and thermal conductivity are balanced.

【0027】なお、結晶質炭素の代表例である黒鉛(グ
ラファイト)は、高い焼結温度で処理しても分解蒸発せ
ずに焼結体表面に付着して不純物酸化物等を形成するた
め、好ましくない。
Since graphite, which is a typical example of crystalline carbon, does not decompose and evaporate even when treated at a high sintering temperature and adheres to the surface of a sintered body to form an impurity oxide or the like, Not preferable.

【0028】また上記非結晶質炭素を含有するしき粉
は、予め粒径が20〜150μmとなるように造粒し仮
焼結したものを使用することが、脱酸効率を改善するた
めに有効である。すなわち粒径が20μm未満の微細な
しき粉を隣接する成形体間に介在充填した場合には、隣
接する成形体が気密に密着して、その間隙に炭素蒸気が
充分に流通せず、成形体表面における還元窒化反応が円
滑に進行しないおそれがある。また成形体表面部におい
て酸素と化合した炭素(CO,CO2 )が間隙部から効
率的に放出されず、脱酸効率が低下してしまう。一方、
粒径が150μmを超える粗大な造粒しき粉を使用した
場合においては、各成形体表面に炭素蒸気が均一に作用
せず脱酸効率が低下してしまうため、しき粉の粒径は上
記範囲に設定される。
Further, it is effective for improving the deoxidation efficiency to use the above-mentioned non-crystalline carbon-containing powder which is previously granulated so as to have a particle size of 20 to 150 μm and pre-sintered. Is. That is, in the case where fine powder having a particle size of less than 20 μm is interstitially filled between the adjacent molded bodies, the adjacent molded bodies adhere to each other in an airtight manner, and the carbon vapor does not sufficiently flow into the gap, and The reductive nitriding reaction on the surface may not proceed smoothly. Further, carbon (CO, CO 2 ) combined with oxygen on the surface portion of the molded body is not efficiently released from the gap portion, and the deoxidizing efficiency is reduced. on the other hand,
When a coarse granulated powder having a particle size of more than 150 μm is used, the carbon powder does not act uniformly on the surface of each molded product and the deoxidizing efficiency decreases, so the particle size of the powder is within the above range. Is set to.

【0029】また高温焼結時に非結晶質炭素が燃焼する
ことによって発生する灰分による焼結体の伝熱特性劣化
を防止するために、灰分含有量が1重量%以下の非結晶
質炭素粉末を使用するとよい。具体例としてカーボンブ
ラックR−30(三菱化成(株)製)などがある。
Further, in order to prevent deterioration of heat transfer characteristics of the sintered body due to ash generated by combustion of amorphous carbon during high temperature sintering, an amorphous carbon powder having an ash content of 1% by weight or less is used. Good to use. Specific examples include carbon black R-30 (manufactured by Mitsubishi Kasei Co., Ltd.).

【0030】成形法としては、汎用の金型プレス法、静
水圧プレス法、あるいはドクターブレード法のようなシ
ート成形法などが適用できる。
As a molding method, a general-purpose die pressing method, a hydrostatic pressing method, or a sheet forming method such as a doctor blade method can be applied.

【0031】上記成形操作に引き続いて、成形体を非酸
化性雰囲気中、例えば窒素ガス雰囲気中で温度375〜
450℃に加熱して、予め添加していた有機バインダを
充分に除去する。
Subsequent to the above molding operation, the molded body is heated in a non-oxidizing atmosphere, for example, in a nitrogen gas atmosphere at a temperature of 375 to 375.
By heating to 450 ° C., the previously added organic binder is sufficiently removed.

【0032】次に脱脂処理された成形体は、図2に示す
ように非結晶質炭素を含有させたしき粉5aを介して焼
成炉1内において多段に積層され、この配置状態で複数
の成形体4は一括して所定温度で焼結される。焼結操作
は、窒素ガスなどの非酸化性雰囲気で成形体を温度17
00〜2000℃に2〜10時間程度加熱して実施され
る。焼結雰囲気は、窒素ガス、または窒素ガスを含む還
元性雰囲気で行なう。還元性ガスとしてはH2 ガス、C
Oガスを使用してもよい。なお、焼結は真空(僅かな還
元雰囲気を含む)、減圧、加圧および常圧を含む雰囲気
で行なってもよい。焼結温度が1700℃未満と低温状
態で焼成すると、原料粉末の粒径、含有酸素量によって
異なるが、緻密な焼結体が得にくい一方、2000℃よ
り高温度で焼成すると、焼成炉内におけるAlN自体の
蒸気圧が高くなり緻密化が困難になるおそれがあるた
め、焼結温度は上記範囲に設定される。
Next, as shown in FIG. 2, the degreased compacts are laminated in multiple stages in the firing furnace 1 through the non-crystalline carbon-containing powder 5a, and a plurality of compacts are formed in this arrangement. The body 4 is collectively sintered at a predetermined temperature. For the sintering operation, the molded body is heated to a temperature of 17 in a non-oxidizing atmosphere such as nitrogen gas.
It is carried out by heating to 00 to 2000 ° C. for about 2 to 10 hours. The sintering atmosphere is nitrogen gas or a reducing atmosphere containing nitrogen gas. H 2 gas, C as reducing gas
O gas may be used. The sintering may be performed in an atmosphere including vacuum (including a slight reducing atmosphere), reduced pressure, increased pressure and normal pressure. When firing at a low sintering temperature of less than 1700 ° C, it is difficult to obtain a dense sintered body although it depends on the particle size of the raw material powder and the amount of oxygen contained. Since the vapor pressure of AlN itself becomes high and densification may become difficult, the sintering temperature is set within the above range.

【0033】上記焼結操作において緻密な焼結体を得る
ためにも、また焼結体の熱伝導率を向上させるために
も、ある程度の焼結助剤の添加は必要である。しかしな
がら、焼結助剤はAlNや不純物酸素と反応してAl5
3 12,AlYO3 ,Al2 4 9 などの酸化物を
形成して粒界相に析出する。これら粒界相の酸化物は熱
伝導を妨げる作用を有することが確認されている。
In order to obtain a dense sintered body in the above-mentioned sintering operation and to improve the thermal conductivity of the sintered body, it is necessary to add a certain amount of sintering aid. However, the sintering aid reacts with AlN and impurity oxygen to cause Al 5
Oxides such as Y 3 O 12 , AlYO 3 and Al 2 Y 4 O 9 are formed and precipitated in the grain boundary phase. It has been confirmed that these oxides in the grain boundary phase have a function of hindering heat conduction.

【0034】しかるに本願発明方法のようにしき粉中に
所定量の非結晶質炭素を含有させておくことにより、高
温焼結時に非結晶質炭素から発生した炭素蒸気によって
上記不純物酸素が還元されてCOとなって成形体外部に
放出除去される。また炭素蒸気は窒素とともに上記酸化
物を還元窒化してAlNと窒化イットリウム(YN)と
する。このYNはAlN焼結体表面に被膜状に形成され
るが、このYN被膜は加水分解により焼結体表面か容易
に除去することができる。上記還元窒化反応は主として
焼結体表面で進行すると考えられるが焼結体内での物質
拡散が進むに連れて焼結体全体から粒界相が徐々に除去
され、熱抵抗が少ないAlNセラミックス焼結体が得ら
れる。
However, by incorporating a predetermined amount of amorphous carbon into the powder as in the method of the present invention, the above-mentioned impurity oxygen is reduced by the carbon vapor generated from the amorphous carbon during high temperature sintering, and CO And is discharged and removed to the outside of the molded body. Further, the carbon vapor is reduced and nitrided together with nitrogen to the above oxide to form AlN and yttrium nitride (YN). This YN is formed as a film on the surface of the AlN sintered body, and this YN film can be easily removed from the surface of the sintered body by hydrolysis. It is considered that the above reduction nitriding reaction mainly proceeds on the surface of the sintered body, but as the material diffusion in the sintered body progresses, the grain boundary phase is gradually removed from the entire sintered body, and AlN ceramics sintering with a small thermal resistance. The body is obtained.

【0035】上記製法によって製造された窒化アルミニ
ウム焼結体は多結晶体として非常に高い200w/m・
k(25℃)以上の熱伝導率を有し、高強度で変形や色
むらはいずれも少ない。
The aluminum nitride sintered body produced by the above-mentioned production method has a very high polycrystal weight of 200 w / m ·
It has a thermal conductivity of k (25 ° C.) or higher, high strength, and little deformation or color unevenness.

【0036】[0036]

【作用】上記構成に係るセラミックス焼結体の製造方法
によれば、セラミックス成形体相互の溶着を防止するし
き粉中に所定量の非結晶質炭素が含有されており、この
非結晶質炭素が高温焼結時に成形体表面およびその近傍
に存在する不純物酸素と化合し成形体が脱酸される一
方、粒界相に形成された酸化物が上記非結晶質炭素によ
って還元され焼結体から粒界相が低減除去される。した
がって焼結体中に熱伝導の妨げとなる酸化物の生成また
は残留が少なく高い熱伝導率を有するセラミックス焼結
体が得られる。
According to the method for manufacturing a ceramics sintered body having the above structure, a predetermined amount of amorphous carbon is contained in the powder that prevents the ceramic compacts from being welded to each other. During high-temperature sintering, the compact is deoxidized by combining with the impurity oxygen existing on the surface of the compact and its vicinity, while the oxide formed in the grain boundary phase is reduced by the amorphous carbon and the grains are removed from the sintered body. The phase is reduced and removed. Therefore, it is possible to obtain a ceramics sintered body having a high thermal conductivity with less generation or residual of oxides which hinder the heat conduction in the sintered body.

【0037】また上記成形体の脱酸および酸化物還元に
必要な炭素量は、しき粉中における非結晶質炭素の含有
量を調整することによって容易に制御することが可能で
あり、従来のように過大な残留炭素による焼結体の変
形、色むらの発生、焼結性および熱熱伝導率の低下とい
う問題および過少な残留炭素による脱酸不充分に起因す
る熱伝導率の低迷という問題が解消され、高品質のセラ
ミックス焼結体が得られる。
Further, the amount of carbon required for deoxidation and oxide reduction of the above-mentioned molded body can be easily controlled by adjusting the content of amorphous carbon in the sawdust, which is different from the conventional case. In addition, there are problems such as deformation of the sintered body due to excessive residual carbon, occurrence of color unevenness, decrease in sinterability and thermal thermal conductivity, and poor thermal conductivity due to insufficient deoxidation due to excessive residual carbon. As a result, a high quality ceramic sintered body can be obtained.

【0038】[0038]

【実施例】次に下記の実施例を参照して本発明に係るセ
ラミックス焼結体の製造方法による効果をより具体的に
説明する。
EXAMPLES The effects of the method for producing a ceramics sintered body according to the present invention will be described more specifically with reference to the following examples.

【0039】実施例1〜4 不純物として酸素を1.0重量%含有し、平均粒径1.
5μmの窒化アルミニウム粉末に対して、焼結助剤とし
てのY2 3 (酸化イットリウム)を5重量%添加し、
エチルアルコール中で30時間湿式混合した後に乾燥し
て原料粉末混合体を調製した。次に乾燥して得た原料粉
末混合体をプレス成形機の成形用金型内に充填して12
00kg/cm2 の加圧力にて圧縮成形して円板状放熱板の
成形体を多数調製し、引き続き各成形体を空気中で温度
375℃で2時間加熱して脱脂処理した。
Examples 1 to 4 Oxygen was added as an impurity in an amount of 1.0% by weight, and the average particle size was 1.
5% by weight of Y 2 O 3 (yttrium oxide) as a sintering aid was added to 5 μm of aluminum nitride powder,
A raw material powder mixture was prepared by wet-mixing in ethyl alcohol for 30 hours and then drying. Next, the raw material powder mixture obtained by drying is filled in a molding die of a press molding machine and
A large number of disk-shaped radiator plate molded bodies were prepared by compression molding under a pressure of 00 kg / cm 2 , and subsequently each molded body was heated in air at a temperature of 375 ° C. for 2 hours for degreasing treatment.

【0040】一方、表1の左欄に示すように平均粒径が
75μmのAlN顆粒状粉末または平均粒径1μmのB
N粉末に、平均粒径0.3μmの非結晶質炭素(カーボ
ンブラック:R30、灰分量0.01重量%以下)C
を、それぞれ5〜20重量%の範囲でそれぞれ添加し、
実施例1〜4の焼結体を形成するための4種類のしき粉
5aを調製した。
On the other hand, as shown in the left column of Table 1, AlN granular powder having an average particle size of 75 μm or B having an average particle size of 1 μm.
N powder, non-crystalline carbon with an average particle size of 0.3 μm (carbon black: R30, ash content 0.01 wt% or less) C
Respectively in the range of 5 to 20% by weight,
Four kinds of powdered powder 5a for forming the sintered bodies of Examples 1 to 4 were prepared.

【0041】次に脱脂処理した成形体を、図2に示すよ
うに5個ずつまとめ、N2 ガスを封入した焼成炉内に多
段に積層配置した。各焼結回分処理毎に各隣接する成形
体4,4の間および焼成用治具3と成形体4との間に
は、同一種類のしき粉5aを介在させた。そして焼成炉
1内の温度を1815℃まで高めた状態で4時間保持
し、緻密化焼結を実施し、それぞれ直径120mm、厚さ
3.0mmである実施例1〜4に係るAlNセラミックス
焼結体を5個ずつ調製した。
Next, as shown in FIG. 2, the degreased compacts were put together in groups of 5, and were stacked in multiple stages in a firing furnace filled with N 2 gas. The same kind of powdered powder 5a was interposed between the adjacent molded bodies 4 and 4 and between the firing jig 3 and the molded body 4 for each sintering batch process. Then, the temperature in the firing furnace 1 was maintained at 1815 ° C. for 4 hours to perform densification sintering, and the AlN ceramics sintering according to Examples 1 to 4 having a diameter of 120 mm and a thickness of 3.0 mm, respectively. Five bodies were prepared.

【0042】比較例1 一方、非結晶質炭素をしき粉中に添加せず、AlN粉末
のみから成るしき粉を使用した点以外は実施例1と同一
条件で焼結処理して同一寸法を有する比較例1に係るA
lNセラミックス焼結体を調製した。
Comparative Example 1 On the other hand, sintering treatment was performed under the same conditions as in Example 1 except that amorphous carbon was not added to the powder and powder containing only AlN powder was used. A according to Comparative Example 1
An IN ceramics sintered body was prepared.

【0043】比較例2 また、非結晶質炭素をしき粉中に添加せず、BN粉末の
みから成るしき粉を使用した以外は実施例4と同一条件
で焼結処理して同一寸法を有する比較例2に係るAlN
セラミックス焼結体を調製した。
Comparative Example 2 Further, a comparison was made in which sintering was performed under the same conditions as in Example 4 except that amorphous carbon was not added to the powder and powder containing only BN powder was used. AlN according to Example 2
A ceramic sintered body was prepared.

【0044】比較例3 さらに非結晶質炭素を30重量%と過量に添加したAl
N粉末系のしき粉を使用した以外は実施例3と同一条件
で処理して同一寸法の比較例3に係るセラミックス焼結
体を調製した。
Comparative Example 3 Further, Al was added with an excessive amount of 30% by weight of amorphous carbon.
A ceramic sintered body according to Comparative Example 3 having the same dimensions was prepared by treating under the same conditions as in Example 3 except that N powder-based powder was used.

【0045】そして得られた実施例1〜4および比較例
1〜3に係る各AlNセラミックス焼結体の特性を評価
するため、その変形量の大小、色むら発生の有無、焼結
密度および熱伝導率を測定し、下記表1右欄に示す結果
を得た。
Then, in order to evaluate the characteristics of each of the obtained AlN ceramics sintered bodies according to Examples 1 to 4 and Comparative Examples 1 to 3, the amount of deformation thereof, the presence or absence of color unevenness, the sintering density and the heat were evaluated. The conductivity was measured, and the results shown in the right column of Table 1 below were obtained.

【0046】[0046]

【表1】 [Table 1]

【0047】表1に示す結果から明らかなように、実施
例1〜4に係るセラミックス焼結体においては、比較例
1〜2と比較してしき粉中に適量の非結晶質炭素が添加
されており、この非結晶質炭素が高温焼結時において還
元作用を発揮して脱脂体表面部の不純物酸素および酸化
物を効果的に除去する脱酸作用が進行するため、変形や
色むらの発生が少なく、高密度(高強度)、高熱伝導度
を有する放熱性の高い焼結体が得られた。
As is clear from the results shown in Table 1, in the ceramic sintered bodies according to Examples 1 to 4, an appropriate amount of amorphous carbon was added to the powder as compared with Comparative Examples 1 and 2. This amorphous carbon exerts a reducing action during high-temperature sintering to promote the deoxidizing action that effectively removes oxygen and oxide impurities on the surface of the degreased body, resulting in deformation and uneven coloring. In addition, a sintered body having high heat dissipation, high density (high strength) and high thermal conductivity was obtained.

【0048】一方、比較例1および2のように非結晶質
炭素をしき粉中に添加しない場合には、変形、色むらの
発生は少ないものの、炭素による成形体の脱酸作用が充
分に働かないため、成形体内の不純物酸素によって結晶
粒界に酸化物相が形成されて熱伝導率が低下してしまっ
た。
On the other hand, when the amorphous carbon is not added to the sawdust as in Comparative Examples 1 and 2, deformation and color unevenness are less likely to occur, but the deoxidizing action of the molded article by carbon is sufficient. Therefore, the impurity oxygen in the compact formed an oxide phase at the crystal grain boundary, and the thermal conductivity decreased.

【0049】また比較例3のようにしき粉中への非結晶
質炭素の添加量を過大に設定した場合、焼結体表面部に
余剰の炭素分が残留し易くなり、焼結体の変形や色むら
が顕著になり、焼結性が低下して強度および熱伝導率も
低下した。
When the amount of the amorphous carbon added to the powder is set excessively as in Comparative Example 3, excessive carbon content is likely to remain on the surface of the sintered body, resulting in deformation of the sintered body. Color unevenness became remarkable, sinterability was lowered, and strength and thermal conductivity were also lowered.

【0050】なお、以上説明した実施例においては、焼
結体の量産性を改善するために、複数の成形体を多段に
積層配置した状態で一括して焼結処理した例で示してい
るが、大型の成形体の場合には1個の成形体を焼成炉内
に配置し、成形体と焼成炉の炉床または焼成用治具との
間に、非結晶質炭素を含有するしき粉を介在させて焼結
しても同様な効果が得られる。
In the examples described above, in order to improve the mass productivity of the sintered body, an example is shown in which a plurality of molded bodies are stacked in a multi-layered state and sintered together. In the case of a large molded body, one molded body is placed in the firing furnace, and a powder containing amorphous carbon is placed between the molded body and the furnace floor of the firing furnace or the firing jig. The same effect can be obtained by interposing and sintering.

【0051】しかしながら本発明方法において非結晶質
炭素による不純物酸素および酸化物の還元除去反応は主
として成形体の表面で進行し、物質拡散が遅いときは緩
速に反応が進行するため、大型成形体の場合には中心部
まで充分に脱酸還元作用が進行しないおそれがある。し
たがって本発明方法は特に厚さが小さい平板状のいわゆ
る薄物焼結体の製法として極めて有効である。
However, in the method of the present invention, the reduction and removal reaction of the impurity oxygen and oxides by the amorphous carbon mainly proceeds on the surface of the compact, and when the substance diffusion is slow, the reaction proceeds slowly, so that a large compact is obtained. In this case, the deoxidizing / reducing action may not proceed sufficiently to the central portion. Therefore, the method of the present invention is extremely effective especially as a method for producing a flat plate-shaped so-called thin sintered body having a small thickness.

【0052】[0052]

【発明の効果】以上説明の通り本発明に係るセラミック
ス焼結体の製造方法によれば、セラミックス成形体相互
の溶着を防止するしき粉中に所定量の非結晶質炭素が含
有されており、この非結晶質炭素が高温度の焼結時に成
形体表面およびその近傍に存在する不純物酸素と化合し
成形体が脱酸される一方、粒界相に形成された酸化物が
上記非結晶質炭素によって還元され焼結体から粒界相が
低減除去される。したがって焼結体中に熱伝導の妨げと
なる酸化物の生成または残留が少なく高い熱伝導率を有
するセラミックス焼結体が得られる。
As described above, according to the method for producing a ceramics sintered body of the present invention, a predetermined amount of amorphous carbon is contained in the swarf that prevents the mutual welding of the ceramics compacts, This amorphous carbon is combined with impurity oxygen existing on and near the surface of the compact during high temperature sintering to deoxidize the compact, while the oxide formed in the grain boundary phase is And the grain boundary phase is reduced and removed from the sintered body. Therefore, it is possible to obtain a ceramics sintered body having a high thermal conductivity with less generation or residual of oxides which hinder the heat conduction in the sintered body.

【0053】また上記成形体の脱酸および酸化物還元に
必要な炭素量は、しき粉中における非結晶質炭素の含有
量を調整することによって容易に制御することが可能で
あり、従来のように過大な残留炭素による焼結体の変
形、色むらの発生、焼結性および熱熱伝導率の低下とい
う問題および過少な残留炭素による脱酸不充分に起因す
る熱伝導率の低迷という問題が解消され、高品質のセラ
ミックス焼結体が得られる。
Further, the amount of carbon required for deoxidation and oxide reduction of the above-mentioned molded article can be easily controlled by adjusting the content of amorphous carbon in the sawdust, which is different from the conventional method. In addition, there are problems such as deformation of the sintered body due to excessive residual carbon, occurrence of color unevenness, decrease in sinterability and thermal thermal conductivity, and poor thermal conductivity due to insufficient deoxidation due to excessive residual carbon. As a result, a high quality ceramic sintered body can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱脂体中の残留カーボン量に対する焼結体の熱
伝導率、焼結性、変形量、色むらの程度の変化を示すグ
ラフ。
FIG. 1 is a graph showing changes in thermal conductivity, sinterability, amount of deformation, and degree of color unevenness of a sintered body with respect to the amount of residual carbon in the degreased body.

【図2】焼成炉を使用して複数の成形体を同時に焼成す
る状態を示す断面図。
FIG. 2 is a cross-sectional view showing a state in which a plurality of molded bodies are simultaneously fired using a firing furnace.

【符号の説明】[Explanation of symbols]

1 焼成炉 2 炉床 3 焼成用治具(セッタ) 4 成形体 5,5a しき粉(敷粉) 1 Baking Furnace 2 Hearth 3 Baking Jig (Setter) 4 Molded Body 5, 5a Skim Flour (Flour)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウムを主成分とする複数の
セラミックス成形体を、窒化アルミニウムおよび窒化硼
素の少なくとも一方を主成分とし非結晶質炭素を従成分
として含有するしき粉を介して多段に積層配置し、積層
した複数のセラミックス成形体を同時に非酸化雰囲気中
で焼結することを特徴とするセラミックス焼結体の製造
方法。
1. A plurality of ceramic compacts containing aluminum nitride as a main component are laminated in a multi-step manner with a swarf containing at least one of aluminum nitride and boron nitride as a main component and amorphous carbon as a minor component. Then, a method for producing a ceramics sintered body, comprising simultaneously sintering a plurality of stacked ceramics formed bodies in a non-oxidizing atmosphere.
【請求項2】 しき粉中の非結晶質炭素含有量を5〜2
0重量%に設定することを特徴とする請求項1記載のセ
ラミックス焼結体の製造方法。
2. The content of amorphous carbon in the sushi flour is 5 to 2
The method for producing a ceramics sintered body according to claim 1, wherein the amount is set to 0% by weight.
【請求項3】 非結晶質炭素を含有するしき粉は、予め
粒径が20〜150μmとなるように造粒し、仮焼結し
てなることを特徴とする請求項1記載のセラミックス焼
結体の製造方法。
3. The ceramic sintered product according to claim 1, wherein the powdered powder containing amorphous carbon is formed by pre-granulating so as to have a particle size of 20 to 150 μm and pre-sintering. Body manufacturing method.
【請求項4】 窒化アルミニウムおよび窒化硼素の少な
くとも一方を主成分とし、非晶質炭素を従成分として含
有したことを特徴とする窒化アルミニウム焼結用しき
粉。
4. A powder for sintering aluminum nitride, comprising at least one of aluminum nitride and boron nitride as a main component and amorphous carbon as a secondary component.
JP4033515A 1992-02-20 1992-02-20 Production of ceramic sintered compact Pending JPH05229872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4033515A JPH05229872A (en) 1992-02-20 1992-02-20 Production of ceramic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4033515A JPH05229872A (en) 1992-02-20 1992-02-20 Production of ceramic sintered compact

Publications (1)

Publication Number Publication Date
JPH05229872A true JPH05229872A (en) 1993-09-07

Family

ID=12388684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4033515A Pending JPH05229872A (en) 1992-02-20 1992-02-20 Production of ceramic sintered compact

Country Status (1)

Country Link
JP (1) JPH05229872A (en)

Similar Documents

Publication Publication Date Title
US7662736B2 (en) High thermally conductive aluminum nitride sintered product
JP2024500914A (en) High thermal conductivity silicon nitride ceramic insulating board and method for manufacturing the same
JP3100871B2 (en) Aluminum nitride sintered body
JP3472585B2 (en) Aluminum nitride sintered body
JPH07172921A (en) Aluminum nitride sintered material and its production
JPH05229871A (en) Production of ceramic sintered compact
JP4593062B2 (en) Aluminum nitride sintered body and method for producing the same
JPH05229872A (en) Production of ceramic sintered compact
JPH06329474A (en) Sintered aluminum nitride and its production
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board
JP2797372B2 (en) Manufacturing method of aluminum nitride substrate
JPH05238832A (en) Production of sintered ceramic and baking vessel to be used therein
JPH05330927A (en) Production of ceramic substrate
JP2003201179A (en) Aluminum nitride sintered compact and production method therefor
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JP4702978B2 (en) Aluminum nitride sintered body
JPH05330924A (en) Production of aluminum nitride base plate and sintering vessel
JP2541150B2 (en) Aluminum nitride sintered body
JPH08157262A (en) Aluminum nitride sintered compact and its production
JPH0583515B2 (en)
JP2536448B2 (en) Aluminum nitride sintered body
JP2005187235A (en) Highly heat-conductive aluminum nitride sintered compact
JPH11236266A (en) Production of silicon carbide-base sheet
JPH0678195B2 (en) Aluminum nitride sintered body