KR950015837A - 유기금속기 상성장법 및 발광소자 제작방법 - Google Patents

유기금속기 상성장법 및 발광소자 제작방법 Download PDF

Info

Publication number
KR950015837A
KR950015837A KR1019940031136A KR19940031136A KR950015837A KR 950015837 A KR950015837 A KR 950015837A KR 1019940031136 A KR1019940031136 A KR 1019940031136A KR 19940031136 A KR19940031136 A KR 19940031136A KR 950015837 A KR950015837 A KR 950015837A
Authority
KR
South Korea
Prior art keywords
organometallic
group
phase growth
growth method
compound
Prior art date
Application number
KR1019940031136A
Other languages
English (en)
Inventor
아쓰시 도다
다께하루 아사노
Original Assignee
오가 노리오
소니 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오가 노리오, 소니 가부시기가이샤 filed Critical 오가 노리오
Publication of KR950015837A publication Critical patent/KR950015837A/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • C23C16/306AII BVI compounds, where A is Zn, Cd or Hg and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • H01L33/0087Processes for devices with an active region comprising only II-VI compounds with a substrate not being a II-VI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/93Ternary or quaternary semiconductor comprised of elements from three different groups, e.g. I-III-V

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명의 유기금속기상(氣相)성장법은 330°K에 있어서의 증기압이 1.3×1OPa~1.3×102Pa인 비스시클로펜타디에닐 마그네슘계의 유기금속화합물을 사용하여 Ⅱ-Ⅵ 족 화합물반도체층을 형성 한다. 또한, 본 발명은 상기 유기금속기상성장법에 의한 발광소자제작방법을 제공한다. 본 발명의 방법에 의하면 마그네슘을 함유하는 화합 물반도체층의 조성제어를 정확하게 행할 수 있고, 화합물 반도체층에 그레이티드 구조를 용이하게 형성할 수 있다.

Description

유기금속기 상성장법 및 발광소자 제작방법
본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음
제1도는 비스메틸시클로펜타디에닐 마그네슘〔(MeCp)2Mg〕 가스의 공급량과, Mg 조성비율〔X/(1-X)〕 및 반도체층의 밴드갭 Eg과의 관계를 나타낸 도면,
제2도는 실시예 1에서 얻어진 Zn1-xMgxSSe시료의 77°K에서 측정한 전형적인 포토루미네센스 스펙트럼을 나타낸 도면,
제3도는 실시예 1에서 얻어진 Zn1-xMgxSSe 시료의 X선 로킹커브의 결과를 나타낸 도면.

Claims (22)

  1. 330°K에 있어서의 증기압이 1.3×1OPa~1.3×102Pa인 비스시클로펜타디에닐 마그네슘계의 유기금속화합물을 사용하여 Ⅱ-Ⅵ 족 화합물반도체층을 형성하는 것을 특징으로 하는 유기금속기상성장법.
  2. 제1항에 있어서, 비스시클로펜타디에닐 마그네슘계의 유기금속화합물은 비스메틸시클로펜타니에닐 마그네슘인 것을 특징으로 하는 유기금속기상성장법.
  3. 제1항에 있어서, 비스시클로펜타디에닐 마그네슘계의 유기금속화합물은 비스이소프로필시클로펜타디에닐마그네슘인 것을 특징으로 하는 유기금속기상성장법.
  4. 제1항에 있어서, Ⅱ-Ⅵ 족 화합물반도체층의 성장온도는 400~600℃인 것을 특징으로 하는 유기금속시상성장법.
  5. 제1항에 있어서, Ⅱ-Ⅵ족 화합물반도체층을 형성하기 위하여 사용되는 Ⅱ족 원소를 함유하는 원료가스에 대한 Ⅵ족 원소를 함유하는 원료가스의 공급량비가 2~5O인 것을 특징으로 하는 유기금속기상성장법.
  6. 제1항에 있어서, 비스시클로펜타디에닐 마그네슘계의 유기금속화합물을 증발시키기 위하여, 이 유기금속화합물을 융점 이상 비점 이하로 유지하는 것을 특징으로 하는 유기금속기상성장법.
  7. 제1항에 있어서, Ⅱ-Ⅵ족 화합물반도체층은 ZnMgSSe로 이루어지는 것을 특징으로 하는 유기금속기상성장법.
  8. 제7항에 있어서, Ⅱ-Ⅵ족 화합물반도체층에는 Zn1-xMgxSSe와 Zn1-yMgySSe(단, X≠Y)와의 헤테로계면이 형성되어 있는 것을 특징으로 하는 유기금속기상성장법.
  9. 2종류의 Ⅱ족 원소 및 2종류의 Ⅵ족 원소로 이루어지는 4원혼정계 화합물반도체층을 형성하는 유기금속기상성장법으로서, Ⅱ족 원소를 함유하는 2종류의 원료가스의 가스유량을 일정하게 유지한 상태에서, Ⅵ족 원소를 함유하는 2종류의 원료가스중 한쪽의 가스유량을 변화시킴으로써, 화합물 반도체층중의 조성비율을 변화시키는 것을 특징으로 하는 유기금속기상성장법.
  10. 2종류의 Ⅱ족 원소 및 2종류의 Ⅵ족 원소로 이루어지는 4원혼정계 화합물반도체층을 형성하는 유기금속기상성장법으로서, Ⅵ족 원소를 함유하는2종류의 원료가스의 가스유량을 일정하게 유지한 상태에서, Ⅱ족 원소를 함유하는2종류의 원료가스중 한쪽의 가스유량을 변화시킴으로써, 화합물 반도체층중의 조성비율을 변화시키는 것을 특징으로 하는 유기금속기상성장법.
  11. 제9항에 있어서, Ⅱ족원소를 함유하는 2종류의 원료가스중 한쪽의 원료가스는330°K에 있어서의 증기압이 1.3×1OPa~1.3×102Pa인 비스시클로펜타디에닐 마그네슘계의 유기금속화합물을 함유하는 원료가스인 것을 특징으로 하는 유기금속기상성장법.
  12. 제1O항에 있어서, Ⅱ족 원소를 함유하는 2종류의 원료가스중 한쪽의 원료가스는330°K에 있어서의 증기압이 1.3×1OPa~1.3×102Pa인 비스시클로펜타디에닐 마그네슘계의 유기금속화합물을 함유하는 원료가스인 것을 특징으로 하는 유기금속기상성장법.
  13. 제11항에 있어서, 비스시클로펜타디에닐 마그네슘계의 유기금속화합물은 비스메틸시클로펜타디에닐 마그네슘인 것을 특징으로 하는 유기금속기상성장법.
  14. 제12항에 있어서, 비스시클로펜타디에닐 마그네슘계의 유기금속화합물은 비스메틸시클로펜타디에닐 마그네슘인 것을 특징으로 하는 유기금속기상성장법.
  15. 제11항에 있어서, 비스시클로펜타디에닐 마그네슘계의 유기금속화합물은 이소프로필시클로펜타디에닐 마그네슘인 것을 특징으로 하는 유기금속기상성장법.
  16. 제12항에 있어서, 비스시클로펜타디에닐 마그네슘계의 유기금속화항물은 비스이소프로필시클로펜타디에닐 마그네슘인 것을 특징으로 하는 유기금속기상성장법.
  17. 제11항에 있어서, 2종류의 Ⅱ족 원소는 Zn 및 Mg로 이루어지고, 2중류의 Ⅵ족 원소는 S 및 Se로 이루어지는 것을 특징으로 하는 유기금속기상성장법.
  18. 제12항에 있어서, 2종류의 Ⅱ족 원소는 Zn 및 Mg로 이루어지고, 2종류의 Ⅵ족 원소는 S 및 Se로 이루어지는 것을 특징으로 하는 유기금속기상성장법.
  19. 제1항에 기재한 유기금속기상성장법을 이용하는 것을 특징으로 하는 발광소자제작방법.
  20. 제19항에 있어서, 발광소자를 구성하는 화합물반도체층에 더블헤테로구조를 형성하는 것을 특징으로 하는 발광소자제작방법.
  21. 제19항에 있어서, 발광소자를 구성하는 화합물반도체층에 그레이티드구조를 형성하는 것을 특징으로 하는 발광소자제작방법.
  22. 제19항에 있어서, 발광소자를 구성하는 화합물반도체층에 SCH(seprate confinement heterostructure)구조를 형성하는 것을 특징으로 하는 발광소자제작방법.
    ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.
KR1019940031136A 1993-11-26 1994-11-25 유기금속기 상성장법 및 발광소자 제작방법 KR950015837A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP93-321100 1993-11-26
JP32110093A JPH07153700A (ja) 1993-11-26 1993-11-26 有機金属気相成長法及び発光素子作製方法

Publications (1)

Publication Number Publication Date
KR950015837A true KR950015837A (ko) 1995-06-17

Family

ID=18128824

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940031136A KR950015837A (ko) 1993-11-26 1994-11-25 유기금속기 상성장법 및 발광소자 제작방법

Country Status (5)

Country Link
US (1) US5433170A (ko)
EP (2) EP0806495B1 (ko)
JP (1) JPH07153700A (ko)
KR (1) KR950015837A (ko)
DE (2) DE69431365D1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115877A (ja) * 1994-10-17 1996-05-07 Sony Corp 半導体エピタキシャル成長方法
JP3143040B2 (ja) * 1995-06-06 2001-03-07 三菱化学株式会社 エピタキシャルウエハおよびその製造方法
JPH09148341A (ja) * 1995-11-17 1997-06-06 Stanley Electric Co Ltd 2族―6族化合物半導体結晶の熱処理方法
US5686744A (en) * 1996-06-17 1997-11-11 Northern Telecom Limited Complementary modulation-doped field-effect transistors
US6066204A (en) * 1997-01-08 2000-05-23 Bandwidth Semiconductor, Llc High pressure MOCVD reactor system
JPH11204834A (ja) * 1997-11-14 1999-07-30 Sony Corp 半導体発光素子の製造方法
US20060093861A1 (en) * 2004-10-29 2006-05-04 The Penn State Research Foundation Method for producing doped, alloyed, and mixed-phase magnesium boride films
JP4101823B2 (ja) 2005-06-13 2008-06-18 株式会社東芝 半導体素子、電極形成方法及び半導体素子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211851A (ja) * 1984-04-05 1985-10-24 Nec Corp 2−4族化合物半導体装置
US4881979A (en) * 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
US4720560A (en) * 1984-10-25 1988-01-19 Morton Thiokol, Inc. Hybrid organometallic compounds, particularly for metal organic chemical vapor deposition
US5311533A (en) * 1992-10-23 1994-05-10 Polaroid Corporation Index-guided laser array with select current paths defined by migration-enhanced dopant incorporation and dopant diffusion

Also Published As

Publication number Publication date
EP0806495A2 (en) 1997-11-12
DE69419583T2 (de) 2000-01-20
EP0806495B1 (en) 2002-09-11
EP0656431B1 (en) 1999-07-21
EP0656431A2 (en) 1995-06-07
DE69431365D1 (de) 2002-10-17
DE69419583D1 (de) 1999-08-26
EP0806495A3 (en) 1998-01-28
EP0656431A3 (en) 1996-05-29
US5433170A (en) 1995-07-18
JPH07153700A (ja) 1995-06-16

Similar Documents

Publication Publication Date Title
DE4116563C2 (de) Siliciumcarbid-Leuchtdiode und Verfahren zu ihrer Herstellung
Moss Adducts in the growth of III–V compounds
Jacob et al. Effect of growth parameters on the properties of GaN: Zn epilayers
Brault et al. Polar and semipolar GaN/Al0. 5Ga0. 5N nanostructures for UV light emitters
KR950015837A (ko) 유기금속기 상성장법 및 발광소자 제작방법
DE60111077D1 (de) Abscheidungsverfahren mit verschiedenen quellen
Ludewig et al. MOVPE growth mechanisms of dilute bismide III/V alloys
Lopez-Lopez et al. Hillocks formation during the molecular beam epitaxial growth of ZnSe on GaAs substrates
Brault et al. Investigation of AlyGa1− yN/Al0. 5Ga0. 5N quantum dot properties for the design of ultraviolet emitters
Maruska et al. Microstructural Observations on Gallium Nitride Light‐Emitting Diodes
US4540451A (en) Method for manufacturing a luminescent diode having a high frequency and high limit frequency for its modulation capability
Ayabe et al. Very small temperature-dependent band-gap energy in TlInGaAs/InP double heterostructures grown by gas-source molecular-beam epitaxy
Kun et al. Some characteristics of the formation of high conductivity P-layers in ZnSe and ZnS x Se 1-x
Morii et al. MOVPE growth of short-period superlattices of AlP-GaP and its application for light-emitting diodes
Sritharan et al. MOCVD growth of ZnSe films using diethylselenide
Foxon et al. Arsenic-doped GaN grown by molecular beam epitaxy
EP0143957B1 (de) Verfahren zur Herstellung von A3B5-Lumineszenzdioden
KR970072478A (ko) 질소 함유 반도체 재료를 사용하는 구성요소
US4742022A (en) Method of diffusing zinc into III-V compound semiconductor material
Wilk et al. MBE growth of InAs/InAsSb/AlAsSb structures for mid-infrared lasers
Nuese et al. Vapor-grown In 1− x Ga x P electroluminescent junctions on GaAs
Chichibu et al. 2.51 eV photoluminescence from Zn‐doped CuAlSe2 epilayers grown by low‐pressure metalorganic chemical vapor deposition
KR930702779A (ko) 화합물반도체와 그 제조방법
Sallet et al. Evidence of O‐Polar (000 1¯) ZnO Surfaces Induced by In Situ Ga Doping
KR950001874A (ko) 반도체 에피택셜 기판 및 이의 제조 방법

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid