KR930002532B1 - Aluminium base alloy for use as sliding material superior in fatigue resistance & anti-seizure property - Google Patents
Aluminium base alloy for use as sliding material superior in fatigue resistance & anti-seizure property Download PDFInfo
- Publication number
- KR930002532B1 KR930002532B1 KR1019900008141A KR900008141A KR930002532B1 KR 930002532 B1 KR930002532 B1 KR 930002532B1 KR 1019900008141 A KR1019900008141 A KR 1019900008141A KR 900008141 A KR900008141 A KR 900008141A KR 930002532 B1 KR930002532 B1 KR 930002532B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- alloy
- fatigue resistance
- sliding material
- resistance
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/003—Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/121—Use of special materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
내용 없음.No content.
Description
제1도는 종래 기술과 본 발명의 각각의 복합베어링에 관한 피로시험 결과를 나타낸 표.1 is a table showing the fatigue test results for each of the composite bearing of the prior art and the present invention.
제2도(a) 및 (b)는 본 발명에 의한 복합베어링 각각을 제조하는 기본공정을 나타낸 블록도.Figure 2 (a) and (b) is a block diagram showing the basic process for manufacturing each of the composite bearing according to the present invention.
제3도는 배율 100으로 확대하여 촬영한 것으로 본 발명의 바람직한 실시예에 의해 생산된 복합베어링의 미세구조를 사진으로 본 복합베어링의 부분단면도이다.3 is a partial cross-sectional view of the composite bearing photographed at a magnification of 100, showing the microstructure of the composite bearing produced by the preferred embodiment of the present invention.
본 발명은 내피로성 및 비소부성(anti-seizure)이 우수한 미끄럼 알루미늄기 합금에 관한 것으로, 특히 미끄럼 베어링의 하프베어링, 실린더부시, 플랜지 베어링, 드러스트워셔 등에 적용되고 특히 고하중용 베어링으로 자동차 및 산업용 기계등 다양한 산업분야에 적절한 내피로성 및 비소부성이 우수한 미끄럼 재질용 알루미늄기 합금에 관한 것이다.The present invention relates to a sliding aluminum base alloy having excellent fatigue resistance and anti-seizure. In particular, the present invention is applied to half bearings, cylinder bushes, flange bearings, thrust washers, etc. of sliding bearings. The present invention relates to an aluminum base alloy for sliding material having excellent fatigue resistance and arsenic resistance suitable for various industrial fields such as machinery.
본 발명에 관한 선행기술로서 예를 들면 서독특허번호 1,533,413 및 1,558,696, 미국특허번호 4,170,469와 영국특허 1,593,006의 명세서에 개시되었다. 이들 선행기술에서 각 합금조성은 Zn 0.1-10중량%, Si 0.1-20중량%, Cu 0.1-10중량%, Pb 0.1-10중량%를 필수성분으로 구성하고 선택적 성분으로서 Ni, Bi및 Mg로 조성된 그룹에서 최소한 한성분의 합계가 0.1-7중량%의 첨가성분이고 잔부가 Al로 이루어진 베어링 재질용 Al기 합금에 관함 것이다. 주로 자동차용 내연기관은 급속한 진보를 가져왔고 고속, 고하중화되는 경함이 있다. 그러므로 미끄럼 재질로 상기 종래 기술의 Al기 합금을 특히 고속 내연기관용 베어링재질로 사용할 경우 조차도 윤활유 막이 얇아지며, 그 결과 비소부성 및 내피로성이 저하하는 결점이 생긴다. 따라서 본 발명의 목적은 미끄럼 재질로 사용되는 Al기 합금을 제공하며, 이것은 내피로성 및 비소부성이 우수하여 미끄럼 재질로 사용하기 위한 종래의 Al기 합금의 결점을 제거하는 것이다.As prior art related to the present invention, for example, the specifications of West German Patent Nos. 1,533,413 and 1,558,696, US Patent No. 4,170,469 and British Patent 1,593,006 are disclosed. In these prior arts, each alloy composition is composed of 0.1-10% by weight of Zn, 0.1-20% by weight of Si, 0.1-10% by weight of Cu, and 0.1-10% by weight of Pb, and optionally Ni, Bi and Mg. At least one component in the group consists of 0.1-7% by weight of additives, with the balance being Al-based alloys for bearing materials. Mostly, internal combustion engines for automobiles have made rapid progress and have high speed and high load. Therefore, even when the Al-based alloy of the prior art is used as a sliding material, especially as a bearing material for a high-speed internal combustion engine, the lubricating oil film becomes thin, and as a result, there is a disadvantage that the non-baking resistance and fatigue resistance are reduced. Therefore, an object of the present invention is to provide an Al-based alloy used as a sliding material, which is excellent in fatigue resistance and non-baking resistance to eliminate the defects of the conventional Al-based alloy for use as a sliding material.
상기 목적을 달성할 수 있는 Al기 합금은 다음 4종류의 Al기 합금이다.Al base alloy which can achieve the said objective is four types of Al base alloys.
(1) Zn 1-10중량%, Si 1-15중량%, Cu 0.1-5중량%, Pb 0.1-5중량%, Sr 0.005-0.5중량% 및 잔부가 실질적으로 Al로 이루어진 내피로성 및 비소부성이 우수한 미끄럼 재질용 Al기 합금.(1) Fatigue and non-baking resistance of 1-10% by weight of Zn, 1-15% by weight of Si, 0.1-5% by weight of Cu, 0.1-5% by weight of Pb, 0.005-0.5% by weight of Sr, and the balance being substantially Al. This excellent Al-based alloy for sliding materials.
(2) Zn 1-10중량%, Si 1-15중량%, Cu 0.1-5중량%, Pb 0.1-5중량%, Sr 0.005-0.5중량%를 필수성분으로 하고 여기에 선택적 첨가성분 A그룹으로서 Mg 0.05-5중량% 및 Ni 0.05-5중량%에서 선택된 최소한한 성분의 0.05-5중량%의 첨가성분과 잔부가 실질적으로 Al로 된 내피로성 및 비소부성이 우수한 미끄럼 재질용 Al기 합금.(2) Zn 1-10% by weight, Si 1-15% by weight, Cu 0.1-5% by weight, Pb 0.1-5% by weight, Sr 0.005-0.5% by weight as essential ingredients and as an optional additive ingredient A group An Al-based alloy for a sliding material having excellent fatigue resistance and non-baking resistance, in which 0.05-5% by weight of the additive component and the balance of the minimum components selected from 0.05-5% by weight of Mg and 0.05-5% by weight of Ni are substantially Al.
(3) Zn 1-10중량%, Si 1-15중량%, Cu 0.1-5중량%, Pb 0.1-5중량% 및 Sr 0.005-0.5중량%를 필수성분으로 하고, 여기에 Mn 0.05-2중량%, V 0.05-2중량%, Cr 0.05-2중량%로 이루어진 B그룹으로부터 선택된 최소한 한 성분으로 합계가 0.05-2중량%이고 잔부가 Al로 이루어진 내피로성 및 비소부성이 우수한 미끄럼 재질용 Al기 합금.(3) Zn 1-10% by weight, Si 1-15% by weight, 0.1-5% by weight of Cu, 0.1-5% by weight of Pb and 0.005-0.5% by weight of Sr are essential components, and Mn 0.05-2% by weight Al group for a sliding material having at least one component selected from the group B consisting of%, V 0.05-2% by weight and Cr 0.05-2% by weight, having a total of 0.05-2% by weight and having a balance of Al. alloy.
(4) Zn 1-10중량%, Si 1-15중량%, Cu 0.1-5중량%, Pb 0.1-5중랑%, Sr 0.005-0.5중량%를 필수성분으로 하고, Mg 0.05-5중량% 및 Ni 0.05-5중량%로 이루어진 A그룹으로 부터 선택된 최소한 한성분으로 합계가 0.05-5중량%의 첨가성분과, Mn 0.05-2중량%, V 0.05-2중량%, Cr 0.05-2중량%로 이루어진 B그룹으로 부터 선택된 최소한 한성분으로 합계가 0.05-2중량%의 첨가성분과, A그룹과 B그룹의 상기 성분의 총함유량이 0.05-4중량%의 범위이고 잔부가 Al로 이루어진 내피로성 및 비소부성이 우수한 미끄럼 재질용 Al기 합금.(4) Zn 1-10% by weight, Si 1-15% by weight, 0.1-5% by weight Cu, 0.1-5% by weight Pb, 0.005-0.5% by weight Sr as essential components, Mg 0.05-5% by weight and At least one component selected from group A consisting of 0.05-5% by weight of Ni with 0.05-5% by weight of additives, Mn 0.05-2% by weight, V 0.05-2% by weight and Cr 0.05-2% by weight At least one component selected from the group B consisting of an additive component having a total of 0.05-2% by weight, and a total content of the above-mentioned components of the group A and B in the range of 0.05-4% by weight, with the balance being Al; Al-based alloy for sliding materials with excellent sintering properties.
다음에 본 발명의 내피로성 및 비소부성이 우수한 미끄럼 재질용 Al기 합금의 각 성분을 특허청구 범위(1)-(4)로 한정하는 이유(상기 각 합금성분의 함량의 상한 및 하한결정이유)와 작용에 대해서 이하에 설명한다.Next, the reason for limiting each component of the Al-based alloy for sliding material having excellent fatigue resistance and arsenic resistance of the present invention to the claims (1)-(4) (reason of upper and lower limits of the content of each alloy component) The action of and will be described below.
(1) Si : 1 내지 15중량%(1) Si: 1 to 15% by weight
(a) 고경도(약 600Hv)를 가진 Si의 미세입자가 Al의 매트릭스에 점으로 존재할때 부드러운 표면을 가진 Al 매트릭스만이 마모되어 합금의 표면은 현미경으로 본 바와 같이 불규칙 형상으로 된다. 그래서 볼록한 실리콘 입자는 그 비용착성이 유지되어 고부하 하중을 견디어내는 동안에 오목부는 오일 저장소로서 역할을 한다. 그래서 합금은 고부하, 얇은 기름막 및 금속과의 접촉에 견딘다.(a) When fine particles of Si with high hardness (about 600 Hv) exist as dots in the matrix of Al, only the Al matrix having a smooth surface is worn out, and the surface of the alloy becomes irregularly shaped as seen under a microscope. Thus, the convex silicon particles retain their non-adhesiveness to withstand high load loads while the recess serves as an oil reservoir. The alloy thus withstands high loads, thin oil films and contact with metals.
(b) 미세하게 점으로 존재하는 Si 입자는 비소부성을 개선하도록 결합축의 A면의 모서리, 버(burr)등을 마모시키는 기능을 한다. 이 경우 Si 입자가 거칠 경우 축을 국부적으로 과도하게 마모시킬 뿐만 아니라 Si입자 자체가 탈락할 위험이 있다. 이것은 그 크기의 한계나 제어를 필요로 한다.(b) The finely present Si particles function to wear the corners, burrs, and the like on the A side of the coupling shaft to improve non-baking. In this case, when the Si particles are rough, there is a risk that the Si particles themselves fall off as well as locally excessive wear of the shaft. This requires a limit or control of its size.
(c) Al 매트릭스와 결합축 사이에서 순간적으로 금속접촉을 일으킬 경우 합금 베어링의 유동성 및 소부성은 코어로써 Si를 가진 Al 매트릭스의 비유동성 및 합금표면내의 실리콘의 비용착성 때문에 방지된다.(c) In the case of instantaneous metal contact between the Al matrix and the coupling shaft, the fluidity and bake of the alloy bearing are prevented due to the non-flowability of the Al matrix with Si as the core and the non-adhesion of silicon in the alloy surface.
(d) 실리콘의 함유량이 1% 이하일 경우 합금은 상기 (a),(b) 및 (c)항에 나타낸 유리한 특성 및 내마모성이 발휘되지 않는다. 실리콘의 함유량이 15%를 초과할 경우 합금은 깨지기 쉬우며 충격피로강도가 약화되고 인성이 부족하기 때문에 압연, 압출등 제조시 소성가공성이 낮다.(d) When the content of silicon is 1% or less, the alloy does not exhibit the advantageous properties and wear resistance shown in the above (a), (b) and (c). When the content of silicon exceeds 15%, the alloy is fragile, the impact fatigue strength is weakened, and the toughness is insufficient. Therefore, the plasticity is low in the manufacture of rolling and extrusion.
바람직하기로는 실리콘 함유량이 3 내지 8중량%가 좋다.Preferably the silicon content is 3 to 8% by weight.
(2) Zn : 1 내지 10중량%(2) Zn: 1 to 10% by weight
(a) Zn은 Al 매트릭스에서 고용상태로 있고 공간격자 간극을 변화시켜서 용착성이 저하된다.(a) Zn is in a solid solution state in the Al matrix and the weldability is lowered by changing the space lattice gap.
(b) Zn은 Al에 비하여 우선적으로 산화되어 견고한 Al 산화막의 유해성을 제거하다.(b) Zn is preferentially oxidized compared to Al to remove the harmfulness of the solid Al oxide film.
(c) Zn은 윤활유와 합금의 친화성을 증가시킨다.(c) Zn increases the affinity of the lubricant with the alloy.
(d) Zn의 함유량이 1중량% 이하일 경우 합금은 비소부성 및 내마모성이 낮아진다. Zn의 함유량이 10중량%를 초과할 경우 합금 베어링이 응력부식 크랙이 일어나기 쉽고 동시에 인성이 약화된다. 또한 오버레이와 같은 부드러운 재질을 합금 표면에 가할 경우 예를 들면 전기도금층의 용착을 만드는데 어려움이 있게된다. 게다가 이 경우를 압접의 접합성에 악영향을 미친다. 바람직하기로는 Zn 함유량은 2 내지 8중량%의범위이다.(d) When the content of Zn is 1% by weight or less, the alloy has low non-baking resistance and wear resistance. If the content of Zn exceeds 10% by weight, the alloy bearings are prone to stress corrosion cracking, and at the same time, the toughness is weakened. In addition, when a soft material such as an overlay is applied to the surface of the alloy, it is difficult to make an electrodeposition of, for example, an electroplating layer. In addition, this case adversely affects the adhesion of the pressure welding. Preferably Zn content is the range of 2-8 weight%.
(3) Cu : 0.1 내지 5중량%(3) Cu: 0.1 to 5% by weight
(a) Cu의 첨가는 Al 매트릭스의 강도를 증가시키고 내피로성을 증가시키는데 매우 효과적이다. 그러나 합금의 경도가 너무 크면 친화성의 문제가 생긴다. 또한 Ni에도 동일하게 적용된다.(a) The addition of Cu is very effective in increasing the strength of the Al matrix and increasing the fatigue resistance. However, if the hardness of the alloy is too large, there is a problem of affinity. The same applies to Ni.
(b) Cu의 함유량이 0.1중량% 이하면 Cu 첨가로 어떤 중요한 특성도 없고, Cu의 함유량이 5중량%를 초과하면 합금은 친화성이 감소하고 인성 또한 감소하는 결과로 경도가 매우 높게 된다. 바람직하기로는 Cu함유량이 0.5 내지 2중량%의 범위이다,(b) If the content of Cu is less than 0.1% by weight, there is no significant characteristic by addition of Cu. If the content of Cu is more than 5% by weight, the alloy has a very high hardness resulting in a decrease in affinity and toughness. Preferably the Cu content is in the range of 0.5 to 2% by weight,
(4) Pb : 0.1내지 5중량%(4) Pb: 0.1 to 5% by weight
Pb의 첨가는 합금의 비소부성 및 가공성을 증가시킨다. 그러나 Pb의 함유량이 0.1중량% 이하일 경우 Pb의 첨가로 중요한 효과가 없고, Pb의 함유량이 5중량% 이상일 경우 Al 매트릭스에 Pb의 균일한 분산을 얻기가 대단히 어렵고 합금의 강도에 악영향을 미친다.The addition of Pb increases the non-baking and workability of the alloy. However, when the Pb content is 0.1% by weight or less, the addition of Pb has no significant effect. When the Pb content is 5% by weight or more, it is very difficult to obtain a uniform dispersion of Pb in the Al matrix and adversely affect the strength of the alloy.
바람직하기로는 Pb 함유량이 0.5중량%와 3중량% 사이이다.Preferably the Pb content is between 0.5% and 3% by weight.
(5) Sr : 0.005 내지 0.5중량%(5) Sr: 0.005 to 0.5 wt%
(a) Sr은 실리콘의 입자를 미세하게 결정화시키는 효과가 있다.(a) Sr has the effect of finely crystallizing the particles of silicon.
(b) Sr은 기계적 성질 특히 합금의 신장을 개선한다.(b) Sr improves the mechanical properties, in particular the elongation of the alloy.
(c) Sr이 0.005중량% 이하일 경우 Sr의 첨가로 중요한 특성도 없고, Sr이 0.5중량% 이상일 경우 합금의 연성이 감소한다.(c) If Sr is less than 0.005% by weight, the addition of Sr is not important, and if Sr is more than 0.5% by weight, the ductility of the alloy is reduced.
바람직하기로는 Sr 함유량이 0.01중량%와 0.1중량% 사이이다.Preferably the Sr content is between 0.01% and 0.1% by weight.
(6) A그룹으로 부티 선택된 Mg 및/또는 Ni : 0.05 내지 5중량% (a) Mg 및/또는 Ni는 Al 매트릭스에서 고용상태에 있거나 금속화합물의 형태로 석출함으로써 그 피로강도를 증가시킨다.(6) Mg and / or Ni selected from Buty as group A: 0.05 to 5% by weight (a) Mg and / or Ni is in a solid solution state in the Al matrix or precipitates in the form of a metal compound to increase its fatigue strength.
(b) Mg 및/또는 Ni가 0.05중량% 이하일 경우 Mg 및/또는 Ni의 첨가로 실제적인 효과가 없고, Mg및/또는 Ni가 5중량% 이상일 경우 합금은 경도가 과도하게 높기 때문에 친화성이 낮고 인성이 감소한다.(b) When Mg and / or Ni is 0.05% by weight or less, there is no practical effect by the addition of Mg and / or Ni. When Mg and / or Ni is 5% by weight or more, the alloy has an excessively high hardness and therefore has affinity. Low and toughness decreases.
바람직하기로는 Mg 및/또는 Ni의 함유량은 0.1 내지 3중량%이다.Preferably the content of Mg and / or Ni is 0.1 to 3% by weight.
(7) Mn, V 및 Cr로 이루어진 B그룹에서 선택된 최소한 한성분 : 0.05 내지 2중량%(7) at least one component selected from the group B consisting of Mn, V and Cr: 0.05 to 2% by weight
(a) 이 성분은 Al 매트릭스에서 고용상태로 있거나 금속화합물의 형태로 석출하여 고온하에서 합금의 기계적 성질을 개선한다.(a) This component is dissolved in the Al matrix or precipitated in the form of a metal compound to improve the mechanical properties of the alloy at high temperatures.
(b) 성분의 함유량이 0.05중량% 이하일 경우 그 첨가로 실제적인 특성은 없다. 2중량% 이상일 경우 금속화합물의 입자는 합금이 취성이 있으므로 크기가 거칠어 진다.When content of (b) component is 0.05 weight% or less, the addition does not have the actual characteristic. If it is 2% by weight or more, the particles of the metal compound become rough because the alloy is brittle.
(8) A그룹 및 B그룹에서 선택된 성분의 총함유량이 : 0.05 내지 4중량%(8) Total content of components selected from Group A and Group B: 0.05 to 4% by weight
(a) 성분이 Al 매트릭스에서 고용상태에 있거나 금속화합물의 형태로 석출되어 내피로성을 개선한다.The component (a) is in solid solution in the Al matrix or precipitates in the form of a metal compound to improve fatigue resistance.
(b) 총함유량이 0.05중량% 이하일 경우 실제적으로 어떤 효과도 없고, 총함유량이 4중량%를 초과할 경우 합금은 경도가 너무 높기 때문에 이 합금은 친화성이 낮고 인성이 감소한다.(b) If the total content is less than 0.05% by weight, there is practically no effect. If the total content is more than 4% by weight, the alloy is too high in hardness and therefore has low affinity and reduced toughness.
바람직하기로는 총함유량은 0.1중량% 내지 3중량% 범위이다.Preferably the total content is in the range of 0.1% to 3% by weight.
이하에서 종래의 제품과 비교하여 다음 실시예에 의해 더 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.
[실시예 1]Example 1
표2에 나타낸 바와 같이 본 발명의 합금 No.16 내지 30과 비교합금 No.1 내지 15를 750℃ 내지 850℃의온도에서 10인치(25.4cm)의 직경을 갖는 로드로 각각 주조한다. 400℃ 내지 500℃의 온도에서 각 로드를 어닐링한후 35 내지 45의 압출비로 잔재로 압출한다. 이 잔재를 350℃ 내지 450℃ 온도로 어닐링한 다음 압연하여 압연재를 얻는다. 그후 압연재를 300℃ 내지 400℃의 온도로 어닐링한 다음 30 내지 50%의 압하율로 압력하에 강보강층(steel backing)으로 압접하여 바이메탈부재를 얻는다. 이 바이메탈부재를 300 내지 400℃의 온도에서 어닐링한 다음 반원형으로 소성 가공한다. 이 반원형 소성가공 부재의 내표면에 오버레이를 제공하도록 10 내지 20 미크론의 두께를 가진 Pb-10% Sn합금으로 도금한다. 그렇게하여 반원형 복합베어링을 얻는다. 이 복합베어링의 제조공정은 제2도(a)에 도시되는 반면에 복합베어링의 일부 단면은 제3도에 나타낸다.As shown in Table 2, alloy Nos. 16 to 30 and Comparative Alloy Nos. 1 to 15 of the present invention were cast into rods having a diameter of 10 inches (25.4 cm) at temperatures of 750 ° C to 850 ° C, respectively. Each rod is annealed at a temperature of 400 ° C. to 500 ° C. and then extruded into the residue at an extrusion ratio of 35 to 45. The residue is annealed at a temperature of 350 ° C. to 450 ° C. and then rolled to obtain a rolled material. Thereafter, the rolled material is annealed at a temperature of 300 ° C. to 400 ° C., and then press welded to a steel backing under pressure at a reduction ratio of 30 to 50% to obtain a bimetal member. The bimetal member is annealed at a temperature of 300 to 400 ° C. and then calcined into a semicircular shape. It is plated with a Pb-10% Sn alloy with a thickness of 10-20 microns to provide an overlay on the inner surface of this semi-circular plastic member. Thus, semicircular composite bearings are obtained. The manufacturing process of this composite bearing is shown in FIG. 2 (a) while some cross sections of the composite bearing are shown in FIG.
상기 반원형 복합베어링에 관하여 표1에 나타낸 조건하에서 피로시험 및 소부시험을 행하고 피로시험 결과를 제1도에 나타내며 소부시험 결과를 표3에 나타낸다. 또한 반원형상으로의 소성가공에 앞서 바이메탈부재를 기계적 성질에 관해 시험하고 그 결과를 표2에 나타낸다. 이 기계적 성질 중에서 접착강도를 다음방법으로 시험한다. 즉 폭이 B(mm)인 각 바이메탈 부재를 준비한 다음 바이메탈 부재에 L(mm)의 간극으로 두개의 평행 홈을 형성하고, 그 하나의 홈은 베어링 합금층의 외면에서 접착경계면으로 연장하고 다른 하나의 홈은 강보강층의 외면에서 접착 경계면으로 연장한다. 그 다음 대향측에서 2개의 시험편의 각 단부를 반대방향으로 인장한 다음 강보강층이 베어링 합금층에서 박리되었을때 측정한 인장하중을 BxL(㎟)의 접착면적으로 나누어 접착강도를 결정한다.The semicircular composite bearing was subjected to the fatigue test and the baking test under the conditions shown in Table 1, and the fatigue test results are shown in FIG. 1, and the results of the baking test are shown in Table 3. In addition, the bimetallic member is tested for mechanical properties prior to plastic working in a semicircular shape and the results are shown in Table 2. Among these mechanical properties, the bond strength is tested by the following method. That is, each bimetal member having a width of B (mm) is prepared, and then two parallel grooves are formed in the bimetal member with a gap of L (mm), and one groove extends from the outer surface of the bearing alloy layer to the adhesion boundary surface and the other one. Grooves extend from the outer surface of the reinforcement layer to the adhesive interface. Then, on the opposite side, each end of the two specimens is tensioned in the opposite direction, and then the tensile strength measured when the steel reinforcement layer is peeled off the bearing alloy layer is divided by the adhesion area of BxL (mm2) to determine the bond strength.
[실시예 2]Example 2
실시예 1과 같은 형상을 가진 각 바이메탈부재를 준비하고 실시예 1과 같은 형상을 가진 각 복합베어링을 동일 조건하에서 제2(b)도의 공정에서 상기 바이메탈부재로 부터 준비하고, 공정을 제2(a)도에 나타낸 실시예 1과 동일한 합금을 사용하는데 단지 제2(a)도에 나타낸 압출후 압출 및 어닐링 대신에 각각 300℃ 내지 400℃의 압연공정 및 어닐링을 사용한다. 실시예 1과 동일한 시험을 이렇게 얻어진 바이메탈부재와 복합베어링에 행하고 그 결과는 실시예 1과 사실상 동일하다. 실시예 1 및 2에서 접착강도를 얻기 위하여 베어링 합금층과 오버레이 사이에 1.5 미크론 두께를 가진 중간 Ni 도금층을 제공한다. 또한 이 중간 도금층을 Ni 대신에 Cu나 Cu 합금을 사용하여 제공할 수 있다. 또한 실시예 1 및 2에서 강보강층과 베어링합금층을 서로 직접 압접한다. 그러나 알려진 바로는 그 사이에 개재된 Ni 도금층 또는 Al 박막의 상호 압접으로 접착 강도를 크게 개선한다.Each bimetal member having the same shape as in Example 1 was prepared, and each composite bearing having the same shape as in Example 1 was prepared from the bimetal member in the process of FIG. 2 (b) under the same conditions, and the process was carried out in the second ( The same alloy as in Example 1 shown in a) is used, but instead of the post-extrusion extrusion and annealing shown in FIG. 2 (a), a rolling process and annealing of 300 ° C. to 400 ° C. is used, respectively. The same test as in Example 1 was carried out on the thus obtained bimetallic member and the composite bearing, and the result was substantially the same as in Example 1. In Examples 1 and 2, an intermediate Ni plating layer having a thickness of 1.5 microns was provided between the bearing alloy layer and the overlay to obtain adhesive strength. Moreover, this intermediate plating layer can be provided using Cu or Cu alloy instead of Ni. In addition, in Examples 1 and 2, the steel reinforcement layer and the bearing alloy layer are directly pressed against each other. However, it is known that the adhesion strength of the Ni plating layer or Al thin film interposed therebetween greatly improves the adhesive strength.
본 발명을 다음 우수한 효과를 갖는다.The present invention has the following excellent effects.
(A) 본 발명의 합금은 종래 합금과 비교하여 내피로성 및 비소부성을 개선한다(제1도 및 표3 참조).(A) The alloy of the present invention improves fatigue resistance and arsenic resistance as compared with conventional alloys (see FIG. 1 and Table 3).
(B) 베어링 성질에서 Zn이 고용상태로 있고 Si가 Sr의 첨가로 미세하게 결정화되고 분산되며 Pb가 Al매트릭스에서 분산되는 Al 매트릭스의 각각의 작용 때문에 특히 비소부성(비유동성 빛 비용착성)은 현저히 개선된다.(B) In particular, non-plasticity (non-flowable light non-adhesion) is remarkably due to the respective action of the Al matrix in which Zn is in solid solution, Si is crystallized and dispersed with the addition of Sr, and Pb is dispersed in the Al matrix. Is improved.
(C) 특히 본 발명의 경우에 있어서 거친 Si 입자가 사용시에 결합축을 손상시키는 것을 고려하여 Sr의 미소첨가에 의해 Si 결정입자의 크기를 15 미크론 이하로 제한하며, 종래 합금의 경우 보다 비소부성을 크게 개선할 수 있다.(C) In particular, in the case of the present invention, the Si grains are limited to 15 microns or less by microaddition of Sr in consideration of the coarse Si particles damaging the bonding axis during use, and the non-sintering properties are higher than those of conventional alloys. It can be greatly improved.
[표 1a]TABLE 1a
[표 1b]TABLE 1b
[표 2]TABLE 2
[표 3]TABLE 3
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1140284A JPH036345A (en) | 1989-06-02 | 1989-06-02 | Aluminum-base alloy for sliding use excellent in fatigue resistance and seizure resistance |
JP89-140284 | 1989-06-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR920000956A KR920000956A (en) | 1992-01-29 |
KR930002532B1 true KR930002532B1 (en) | 1993-04-03 |
Family
ID=15265201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019900008141A KR930002532B1 (en) | 1989-06-02 | 1990-06-02 | Aluminium base alloy for use as sliding material superior in fatigue resistance & anti-seizure property |
Country Status (5)
Country | Link |
---|---|
US (1) | US5028393A (en) |
JP (1) | JPH036345A (en) |
KR (1) | KR930002532B1 (en) |
DE (1) | DE4015593A1 (en) |
GB (1) | GB2233667B (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05332364A (en) * | 1992-06-01 | 1993-12-14 | Daido Metal Co Ltd | Aluminum alloy bearing excellent in wear resistance and manufacture thereof |
JP2901218B2 (en) * | 1992-07-16 | 1999-06-07 | 大同メタル工業 株式会社 | Aluminum alloy bearing |
JPH0826894B2 (en) * | 1992-08-28 | 1996-03-21 | 大同メタル工業株式会社 | Slide bearing for light alloy housing |
JPH0694036A (en) * | 1992-09-11 | 1994-04-05 | Daido Metal Co Ltd | Multilayer slide bearing excellent in fretting resistant characteristic |
JPH11136726A (en) | 1997-10-29 | 1999-05-21 | Nec Shizuoka Ltd | Radio selection call receiver and reception number display method |
AT407404B (en) * | 1998-07-29 | 2001-03-26 | Miba Gleitlager Ag | INTERMEDIATE LAYER, IN PARTICULAR BOND LAYER, FROM AN ALUMINUM-BASED ALLOY |
US6511226B2 (en) | 2000-09-05 | 2003-01-28 | Federal-Mogul World Wide, Inc. | Aluminum thrust washer |
JP4648559B2 (en) * | 2001-03-28 | 2011-03-09 | 本田技研工業株式会社 | Heat-resistant aluminum die-cast product |
AT410946B (en) | 2001-11-07 | 2003-08-25 | Miba Gleitlager Gmbh | ALUMINUM ALLOY FOR A SLIDE ELEMENT |
US6719859B2 (en) | 2002-02-15 | 2004-04-13 | Northwest Aluminum Company | High strength aluminum base alloy |
US20040099352A1 (en) * | 2002-09-21 | 2004-05-27 | Iulian Gheorghe | Aluminum-zinc-magnesium-copper alloy extrusion |
US7214281B2 (en) * | 2002-09-21 | 2007-05-08 | Universal Alloy Corporation | Aluminum-zinc-magnesium-copper alloy extrusion |
US20080299000A1 (en) * | 2002-09-21 | 2008-12-04 | Universal Alloy Corporation | Aluminum-zinc-copper-magnesium-silver alloy wrought product |
US20070029016A1 (en) * | 2002-09-21 | 2007-02-08 | Universal Alloy Corporation | Aluminum-zinc-magnesium-copper alloy wrought product |
JP5437703B2 (en) | 2009-06-08 | 2014-03-12 | 大同メタル工業株式会社 | Al-based sliding alloy |
JP2011236470A (en) | 2010-05-11 | 2011-11-24 | Daido Metal Co Ltd | Aluminum-based bearing alloy and production method of the same |
KR101124235B1 (en) * | 2010-05-29 | 2012-03-27 | 주식회사 인터프랙스퀀텀 | Aluminium alloy and aluminium alloy casting |
WO2013114582A1 (en) | 2012-02-01 | 2013-08-08 | 古河スカイ株式会社 | Aluminum alloy having excellent wear resistance, extrudability, and forging workability |
CN104561703B (en) * | 2015-02-10 | 2016-11-23 | 苏州劲元油压机械有限公司 | A kind of aluminum alloy materials with zinc-nickel element and Technology for Heating Processing thereof |
JP6646551B2 (en) * | 2015-12-25 | 2020-02-14 | 昭和電工株式会社 | Substrate for magnetic recording media |
JP6574740B2 (en) * | 2016-07-08 | 2019-09-11 | 昭和電工株式会社 | Magnetic recording medium substrate and hard disk drive |
JP6832179B2 (en) * | 2017-02-03 | 2021-02-24 | 昭和電工株式会社 | Magnetic recording medium board and hard disk drive |
CN107739913A (en) * | 2017-10-23 | 2018-02-27 | 北京泰科先锋科技有限公司 | Make alloy material of anti-take-off button and preparation method thereof |
CN114277289B (en) * | 2020-09-27 | 2023-05-02 | 比亚迪股份有限公司 | Die-casting aluminum alloy and preparation method thereof, anodic oxidation appearance piece and electronic equipment |
CN118064772B (en) * | 2024-04-24 | 2024-06-25 | 湖南卓创精材科技股份有限公司 | High-reflectivity Al-Mg-Si alloy, preparation method and application |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5428714A (en) * | 1977-08-09 | 1979-03-03 | Daido Metal Co Ltd | Aluminum base bearing alloy and composite bearing thereof |
JPS6041142B2 (en) * | 1977-12-09 | 1985-09-14 | 株式会社日軽技研 | Aluminum alloy for bearings |
JPS6031894B2 (en) * | 1978-01-28 | 1985-07-25 | 株式会社日軽技研 | High strength aluminum alloy for bearings |
SE8107535L (en) * | 1980-12-23 | 1982-06-24 | Aluminum Co Of America | ALUMINUM ALLOY AND PROCEDURE FOR ITS MANUFACTURING |
US4412870A (en) * | 1980-12-23 | 1983-11-01 | Aluminum Company Of America | Wrought aluminum base alloy products having refined intermetallic phases and method |
JPS58113342A (en) * | 1981-12-26 | 1983-07-06 | Toyota Motor Corp | Bearing aluminum alloy |
US4711762A (en) * | 1982-09-22 | 1987-12-08 | Aluminum Company Of America | Aluminum base alloys of the A1-Cu-Mg-Zn type |
JPS60230952A (en) * | 1984-04-27 | 1985-11-16 | Daido Metal Kogyo Kk | Sliding aluminum alloy |
JPS60250893A (en) * | 1984-05-25 | 1985-12-11 | Sumitomo Light Metal Ind Ltd | Aluminum alloy brazing filler metal for heat exchanger made of aluminum |
JPS6238796A (en) * | 1985-08-10 | 1987-02-19 | Furukawa Alum Co Ltd | Sheet for vacuum brazing |
-
1989
- 1989-06-02 JP JP1140284A patent/JPH036345A/en active Pending
-
1990
- 1990-04-19 US US07/511,367 patent/US5028393A/en not_active Expired - Lifetime
- 1990-05-15 DE DE4015593A patent/DE4015593A1/en active Granted
- 1990-06-01 GB GB9012214A patent/GB2233667B/en not_active Expired - Lifetime
- 1990-06-02 KR KR1019900008141A patent/KR930002532B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
GB9012214D0 (en) | 1990-07-18 |
US5028393A (en) | 1991-07-02 |
KR920000956A (en) | 1992-01-29 |
JPH036345A (en) | 1991-01-11 |
GB2233667B (en) | 1993-08-11 |
DE4015593A1 (en) | 1990-12-06 |
DE4015593C2 (en) | 1992-06-17 |
GB2233667A (en) | 1991-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930002532B1 (en) | Aluminium base alloy for use as sliding material superior in fatigue resistance & anti-seizure property | |
DE2928004C3 (en) | Use of a tin-containing aluminum alloy | |
US4189525A (en) | Bearing metal for large engines | |
KR910009871B1 (en) | Cu-alloy ring | |
US4452866A (en) | Aluminum-based alloy bearing | |
US20110224112A1 (en) | SLIDING PART MADE OF Pb-FREE Cu-Bi BASED SINTERED ALLOY | |
RU2732139C2 (en) | Lead-free high-strength brass alloy and article from high-strength brass alloy | |
US4170469A (en) | Aluminum base bearing alloy and a composite bearing made of the alloy with a steel backing plate | |
KR920006664B1 (en) | Multilayer sliding material | |
JPH05332364A (en) | Aluminum alloy bearing excellent in wear resistance and manufacture thereof | |
JPS6320903B2 (en) | ||
US4999257A (en) | Bearing material for an internal combustion engine and compressor | |
JP2901218B2 (en) | Aluminum alloy bearing | |
US5512242A (en) | Tin-base white metal bearing alloy excellent in heat resistance and fatigue resistance | |
US8182742B2 (en) | Bearing materials | |
JPS60230952A (en) | Sliding aluminum alloy | |
JP5017521B2 (en) | Bearing material | |
US4296183A (en) | Al-Sn Base bearing alloy and composite | |
DE3000772C2 (en) | Tin-containing aluminum bearing alloy | |
DE3000775C2 (en) | Tin-containing aluminum bearing alloy | |
GB2067219A (en) | Aluminium-tin base bearing alloys | |
DE3000774C2 (en) | Tin-containing aluminum bearing alloy | |
KR102577574B1 (en) | Special brass alloy and special brass alloy product | |
JPH08157993A (en) | Sliding member and plain bearing, made of al-sn alloy | |
JPH08261240A (en) | Sliding bearing made of aluminium alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20100210 Year of fee payment: 18 |
|
EXPY | Expiration of term |