JPH08261240A - Sliding bearing made of aluminium alloy - Google Patents

Sliding bearing made of aluminium alloy

Info

Publication number
JPH08261240A
JPH08261240A JP6319995A JP6319995A JPH08261240A JP H08261240 A JPH08261240 A JP H08261240A JP 6319995 A JP6319995 A JP 6319995A JP 6319995 A JP6319995 A JP 6319995A JP H08261240 A JPH08261240 A JP H08261240A
Authority
JP
Japan
Prior art keywords
alloy
thickness
bearing
layer
sliding bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6319995A
Other languages
Japanese (ja)
Inventor
Hiroe Okawa
川 広 衛 大
Masahiko Shioda
田 正 彦 塩
Shunichi Aoyama
山 俊 一 青
Kenji Ushijima
嶋 研 史 牛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nissan Motor Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP6319995A priority Critical patent/JPH08261240A/en
Publication of JPH08261240A publication Critical patent/JPH08261240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE: To provide an aluminium alloy sliding bearing which has the both of antinomic properties of high fatigue resistance and high surface performance. CONSTITUTION: This sliding bearing is composed of a laminated material of an alloy 1 and an alloy 2, where the composition of the alloy 1 is Sn: 0.1-12%, at least one of Pb or Sb: 0.1-3.0%, Si: 0.1-6.0%, at least one of Cu, Cr, Zn, Mn: 1.0-5.0%, the rest: substantially Al, and the composition of the alloy 2 is Pb: 4.0-12%, Sn 0.1-3.0%, Si: 3.1-5.0%, at least one of Cu or Cr: 0.1-3.0, the rest: substantially Al, by weight% respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車,工作機械,農
業機械等々の各種機械装置の構造部品として使用される
軸受ならびに摺動部材用の素材として適するAl合金製
すべり軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing used as a structural part of various mechanical devices such as automobiles, machine tools, agricultural machines and the like, and an Al alloy slide bearing suitable as a material for sliding members.

【0002】[0002]

【従来の技術】近年、とくに内燃機関用の軸受合金とし
て、耐熱・耐摩耗性,耐腐食性,耐疲労性,耐焼付性等
の観点から、Al系の軸受合金が注目されている。なか
でも、Al−Sn−Pb系、Al−Pb−Sn系のもの
は、上記性能の点で他の材質のものに比べてかなり優れ
ているため、最近に至り急速にその使用量が増加してい
る。
2. Description of the Related Art Recently, as a bearing alloy for an internal combustion engine, an Al-based bearing alloy has been attracting attention from the viewpoint of heat resistance, wear resistance, corrosion resistance, fatigue resistance, seizure resistance and the like. Among them, the Al-Sn-Pb type and the Al-Pb-Sn type are much superior to those of other materials in terms of the above performance, and thus the amount of use thereof has been rapidly increasing recently. ing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Al系
の軸受合金にケルメット(Kelmet;軟鋼製の台金
に約1mmの厚さで高鉛青銅(Pbを20〜45重量%
含むCu合金)を裏付けした軸受の商品名)並みあるい
はケルメット以上の耐疲労性を持たせるためには、Sn
やPb等の軟質成分量を少なくする必要があるが、その
場合には、耐焼付性が低下するため、ケルメットと同様
に、Pb−Sn系のオーバーレイ層を表面に形成させる
必要があった。
However, Al-based bearing alloys with Kelmet (mild steel base metal with a thickness of about 1 mm and high lead bronze (Pb 20-45 wt%).
In order to have the same level of fatigue resistance as the trade name of bearings backed by Cu alloys), including that of Kelmet, or Sn.
It is necessary to reduce the amount of soft components such as Pb and Pb, but in that case, since the seizure resistance is lowered, it was necessary to form a Pb-Sn-based overlay layer on the surface like Kermet.

【0004】ところが、高速・高荷重域では、Pb−S
n系のオーバーレイ層を表面にもつものは、熱伝導性の
良いAl系軸受合金の表面層より著しい摩擦増加を示す
ことが実験にて確認された。
However, in the high speed and high load range, Pb-S
It was confirmed by experiments that those having an n-based overlay layer on the surface exhibit a marked increase in friction than the surface layer of an Al-based bearing alloy having good thermal conductivity.

【0005】従来の常識によれば、高速・高荷重域で
は、潤滑油が高温になると油粘度が低下して、油膜が薄
くなり、その結果、油のせん断抵抗力としての摩擦が減
少する。この際、軸受材質の違いは影響しない。
According to the conventional wisdom, in the high speed / high load range, when the temperature of the lubricating oil becomes high, the oil viscosity decreases, and the oil film becomes thin, and as a result, the friction as the shearing resistance of the oil decreases. At this time, the difference in bearing material has no effect.

【0006】本発明者らの一部は、潤滑油が高温になっ
た場合の軸受の摩擦挙動について研究を重ねた結果、高
速・高荷重域では、油が高温になると粘度が低下し、油
膜が薄くなるが、油膜圧力が増大することになり、その
結果、高圧下での油粘度が著しく増大し、かえって、油
のせん断抵抗力としての摩擦が増大することを見いだし
た。また、このような条件下では、局所的な高い油膜圧
力のため、当然のことながら軸受の耐疲労性を損ねるこ
とになる。
As a result of some research conducted by the present inventors on the frictional behavior of the bearing when the temperature of the lubricating oil becomes high, the viscosity decreases as the temperature of the oil becomes high, and the oil film However, it was found that the oil film pressure was increased, and as a result, the oil viscosity under high pressure was significantly increased, which in turn increased the friction as the shear resistance of the oil. Further, under such a condition, the local high oil film pressure naturally impairs the fatigue resistance of the bearing.

【0007】[0007]

【発明の目的】本発明は、このような従来の課題にかん
がみてなされたもので、高速・高荷重域での摩擦を低減
するには、メカニズムの発端である油膜の温度を下げる
ことが有効であり、そのためには、従来は無関係とされ
ていた軸受材質に関して、介在する油の局所的な発熱を
すばやく抜熱する役目も担っている軸受合金層の熱伝導
率を高くすることが重要であることに基づいている。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and it is effective to lower the temperature of the oil film, which is the starting point of the mechanism, in order to reduce friction in a high speed / high load range. For that purpose, it is important to increase the thermal conductivity of the bearing alloy layer, which has the role of quickly removing the local heat generation of the intervening oil, with respect to the bearing material that was conventionally irrelevant. It is based on something.

【0008】軸受合金を高熱伝導率にすることで、高速
・高荷重域での潤滑油中の摩擦損失を従来のすべり軸受
より大幅に低減させることができる。
By making the bearing alloy have high thermal conductivity, the friction loss in the lubricating oil in the high speed / high load range can be greatly reduced as compared with the conventional slide bearing.

【0009】さらに、軸受合金の強度向上に加え、高熱
伝導率の本発明の軸受を使用することによる介在する油
膜圧力の低減によっても、耐疲労性を向上させるととも
に、表面性能も従来にない水準で実現できる。
Further, in addition to improving the strength of the bearing alloy, by reducing the intervening oil film pressure by using the bearing of the present invention having a high thermal conductivity, the fatigue resistance is improved and the surface performance is at a level not seen in the past. Can be achieved with.

【0010】したがって、本発明の目的は、耐疲労性お
よび表面性能という二律背反的な特性の両方共が従来に
ない高い水準で得ることができるAl合金製すべり軸受
を提供することにある。
Therefore, an object of the present invention is to provide a sliding bearing made of an Al alloy which can obtain both anti-fatigue properties and surface properties, which are trade-off characteristics, at a high level which has never been obtained.

【0011】[0011]

【課題を解決するための手段】本発明に係わるAl合金
製すべり軸受は、請求項1に記載しているように、重量
%で、Sn:0.1〜12%、Pb,Sbのうちの1種
または2種:0.1〜3.0%、Si:0.1〜6.0
%、Cu,Cr,Zn,Mnのうちから選ばれる1種ま
たは2種以上:1.0〜5.0%を含み、残部が実質的
にAlからなる合金Iと、重量%で、Pb:4.0〜1
2%、Sn:0.1〜3.0%、Si:3.1〜5.0
%、Cu,Crのうちの1種または2種:0.1〜3.
0%を含み、残部が実質的にAlからなる合金IIを積
層してなる構成としたことを特徴としている。
The Al alloy slide bearing according to the present invention has a weight percentage of Sn: 0.1 to 12%, of Pb and Sb, as set forth in claim 1. 1 type or 2 types: 0.1 to 3.0%, Si: 0.1 to 6.0
%, One or more selected from Cu, Cr, Zn and Mn: an alloy I containing 1.0 to 5.0% and the balance substantially Al, and Pb: 4.0-1
2%, Sn: 0.1 to 3.0%, Si: 3.1 to 5.0
%, Cu, one or two of Cr: 0.1 to 3.
It is characterized in that an alloy II containing 0% and the balance being substantially Al is laminated.

【0012】そして、本発明に係わるAl合金製すべり
軸受の実施態様においては、請求項2に記載しているよ
うに、合金Iと合金IIの間に、重量%で、Pb:0.
1〜6.0%、Sn:0.1〜3.0%、Si:0.1
〜5.0%、Cu,Crのうちの1種または2種:0.
1〜3.0%を含み、残部が実質的にAlからなりかつ
PbとSnの合計量が合金IIよりも少ない合金III
からなる中間層を設けたものとしたり、請求項3に記載
しているように、合金Iと合金IIの間に、実質的にA
lのみからなる中間層を設けたものとしたり、請求項4
に記載しているように、合金Iと合金IIの間に、P
b,Snを含まないAl合金からなる中間層を設けたも
のとしたりすることができる。
In an embodiment of the Al alloy slide bearing according to the present invention, as described in claim 2, between the alloy I and the alloy II, in weight%, Pb: 0.
1-6.0%, Sn: 0.1-3.0%, Si: 0.1
~ 5.0%, one or two of Cu and Cr: 0.
Alloy III containing 1 to 3.0%, the balance consisting essentially of Al and having a total amount of Pb and Sn less than Alloy II
Or an alloy layer substantially consisting of alloy A and alloy II is provided between the alloy I and the alloy II.
An intermediate layer consisting of only 1 is provided, or
Between alloy I and alloy II, P
An intermediate layer made of an Al alloy containing no b or Sn may be provided.

【0013】[0013]

【発明の作用】本発明に係わるAl合金製すべり軸受
は、請求項1に記載しているように、重量%で、Sn:
0.1〜12%、Pb,Sbのうちの1種または2種:
0.1〜3.0%、Si:0.1〜6.0%、Cu,C
r,Zn,Mnのうちから選ばれる1種または2種以
上:1.0〜5.0%を含み、残部が実質的にAlから
なる合金Iと、重量%で、Pb:4.0〜12%、S
n:0.1〜3.0%、Si:3.1〜5.0%、C
u,Crのうちの1種または2種:0.1〜3.0%を
含み、残部が実質的にAlからなる合金IIを積層して
なる構成としたものであるが、以下に、それぞれの成分
および数値の限定理由について各元素の作用と共に説明
する。
The Al alloy slide bearing according to the present invention has the Sn:
0.1 to 12%, one or two of Pb and Sb:
0.1 to 3.0%, Si: 0.1 to 6.0%, Cu, C
One or more selected from r, Zn and Mn: Alloy I containing 1.0 to 5.0% and the balance substantially consisting of Al, and Pb: 4.0 in weight%. 12%, S
n: 0.1 to 3.0%, Si: 3.1 to 5.0%, C
One or two of u and Cr: 0.1 to 3.0% is included, and the balance is made of a structure in which an alloy II substantially consisting of Al is laminated. The reason for limiting the components and numerical values will be described together with the action of each element.

【0014】まず、合金Iの成分および数値の限定理由
について各元素の作用と共に説明する。
First, the reasons for limiting the components and numerical values of alloy I will be explained together with the action of each element.

【0015】(I−1)Sn:0.1〜12%、Pb,
Sbのうちの1種または2種:0.1〜3.0% Sn,Pb,Sbは潤滑成分として有効であり、耐焼付
性に優れたものであるが、合金Iの場合は、これを第2
層として合金IIを表面層として積層するときに、なじ
み性や異物埋収性は必要でなく、合金IIが摩耗した場
合の焼付防止のためにSn,Pb,Sbを添加するもの
である。そして、疲労強度の点からはこれらの潤滑成分
はできるだけ少ない方がよい。また、熱伝導率を高め本
発明のすべり軸受の特徴の1つである高温の潤滑油中で
の摩擦損失の増大の抑制のためにもこれらの潤滑成分は
できるだけ少ない方がよい。
(I-1) Sn: 0.1 to 12%, Pb,
One or two kinds of Sb: 0.1 to 3.0% Sn, Pb, and Sb are effective as a lubricating component and have excellent seizure resistance. Second
When the alloy II is laminated as a surface layer as the surface layer, the conformability and the foreign substance embedding property are not required, and Sn, Pb, and Sb are added to prevent seizure when the alloy II is worn. From the viewpoint of fatigue strength, it is better that these lubricating components are as small as possible. Further, in order to improve the thermal conductivity and suppress the increase of friction loss in high temperature lubricating oil, which is one of the features of the sliding bearing of the present invention, it is preferable that these lubricating components are as small as possible.

【0016】したがって、Sn:0.1〜12%、P
b,Sbのうちの1種または2種:0.1〜3.0%と
した。
Therefore, Sn: 0.1 to 12%, P
One or two of b and Sb: 0.1 to 3.0%.

【0017】(I−2)Si:0.1〜6.0% SiはAlマトリックスを強化すると共に、Sn,P
b,Sbと同様に、合金IIを表面層として積層すると
きにこの合金IIが摩耗した場合の焼付・摩耗防止に寄
与する。しかし、0.1%未満ではその効果が少なく、
6.0%を超えると機械的性質、特に、伸びを減じ、摺
動性能ないしは軸受性能を低下させる。
(I-2) Si: 0.1-6.0% Si strengthens the Al matrix, and Sn, P
Similar to b and Sb, it contributes to the prevention of seizure and wear when the alloy II is worn when the alloy II is laminated as a surface layer. However, if less than 0.1%, the effect is small,
If it exceeds 6.0%, mechanical properties, particularly elongation, are reduced and sliding performance or bearing performance is deteriorated.

【0018】(I−3)Cu,Cr,Zn,Mnのうち
から選ばれる1種または2種以上:1.0〜5.0% Cu,Cr,Zn,Mnは、Alマトリックスの強度を
高めるのに有効である。しかし、1.0%未満ではその
効果が少なく、5.0%を超えるとSiと同様に機械的
性質、特に、伸びを減じ、摺動性能ないしは軸受性能を
低下させる。
(I-3) One or more selected from Cu, Cr, Zn and Mn: 1.0 to 5.0% Cu, Cr, Zn and Mn increase the strength of the Al matrix. It is effective for However, if it is less than 1.0%, its effect is small, and if it exceeds 5.0%, mechanical properties, particularly elongation, are reduced like Si, and sliding performance or bearing performance is deteriorated.

【0019】次に、合金IIの成分および数値の限定理
由について各元素の作用と共に説明する。
Next, the reasons for limiting the components and numerical values of Alloy II will be described together with the action of each element.

【0020】(II−1)Pb:4.0〜12% Pbは潤滑成分として有効であり、耐焼付性に優れたも
のである。また、合金IIを表面層としたときのなじみ
性、異物埋収性を高める。
(II-1) Pb: 4.0-12% Pb is effective as a lubricating component and has excellent seizure resistance. Further, when the alloy II is used as the surface layer, the compatibility and the foreign matter embedding property are enhanced.

【0021】しかし、4.0%未満ではその効果が少な
く、12%を超えると、熱伝導率が低下し、本発明のす
べり軸受の特徴の1つである高温の潤滑油中での摩擦損
失の増大を抑制する能力が損なわれる。
However, if it is less than 4.0%, its effect is small, and if it exceeds 12%, the thermal conductivity decreases, and friction loss in high temperature lubricating oil, which is one of the features of the sliding bearing of the present invention. The ability to control the increase in the

【0022】(II−2)Sn:0.1〜3.0% Snは、Pbと同様に、耐焼付性に優れ、合金IIを表
面層としたときのなじみ性、異物埋収性も高めるととも
に、Pbに耐腐食性を与える。しかし、0.1%未満で
はその効果が少なく、3.0%を超えるとPbに対する
Sn量が多くなり、低融点のPb−Sn共晶成分が多く
なるため、使用中に軸受表面に薄いハンダ被膜が生成
し、熱伝導率が低下するので、本発明のすべり軸受の特
徴の1つである高温の潤滑油中での摩擦損失の増大を抑
制する能力が損なわれる。
(II-2) Sn: 0.1 to 3.0% Similar to Pb, Sn has excellent seizure resistance and enhances the conformability and foreign matter embeddability when Alloy II is used as the surface layer. At the same time, it imparts corrosion resistance to Pb. However, if it is less than 0.1%, its effect is small, and if it exceeds 3.0%, the amount of Sn with respect to Pb is large, and the Pb-Sn eutectic component with a low melting point is large, so that a thin solder on the bearing surface during use. Since the coating film is formed and the thermal conductivity is lowered, the ability to suppress the increase of friction loss in high temperature lubricating oil, which is one of the features of the sliding bearing of the present invention, is impaired.

【0023】(II−3)Si:3.1〜5.0% Siは合金IIを表面層としたときの耐焼付性の向上に
寄与するが、3.1%未満ではその効果が少なく、5.
0%を超えるとなじみ性、圧延等の加工性が低下する。
(II-3) Si: 3.1 to 5.0% Si contributes to the improvement of seizure resistance when alloy II is used as the surface layer, but if it is less than 3.1%, its effect is small. 5.
If it exceeds 0%, the conformability and workability such as rolling deteriorate.

【0024】(II−4)Cu,Crのうちの1種また
は2種:0.1〜3.0% Cu,Crは合金IIを表面層としたときの耐荷重性、
耐熱性を向上させるが、0.1%未満ではその効果が少
なく、3.0%を超えるとなじみ性、圧延等の加工性が
低下する。
(II-4) One or two kinds of Cu and Cr: 0.1 to 3.0% Cu and Cr are load-bearing when alloy II is used as a surface layer,
Although the heat resistance is improved, if it is less than 0.1%, its effect is small, and if it exceeds 3.0%, the conformability and workability such as rolling deteriorate.

【0025】次に、本発明によるAl合金製すべり軸受
において、表面層として使用することができる合金II
の製造法については、通常は粉末圧延,焼結法で作った
板材を圧延していく方法をとるが、溶射により合金Iの
上に直接に積層することも可能である。
Next, alloy II which can be used as the surface layer in the Al alloy sliding bearing according to the present invention
Regarding the manufacturing method of (1), usually, a method of rolling a plate material produced by powder rolling or sintering is used, but it is also possible to directly laminate it on the alloy I by thermal spraying.

【0026】また、合金II中のPb,Sn量が多くな
ると、クラッド条件によっては、合金Iとの密着が悪く
なることがある。この場合は、請求項2に記載している
ように、合金Iと合金IIの間に、重量%で、Pb:
0.1〜6.0%、Sn:0.1〜3.0%、Si:
0.1〜5.0%、Cu,Crのうちの1種または2
種:0.1〜3.0%を含み、残部が実質的にAlから
なりかつPbとSnの合計量が合金IIよりも少ない合
金IIIからなる中間層を設けたり、請求項3に記載し
ているように、合金Iと合金IIの間に、実質的にAl
のみからなる中間層を設けたり、請求項4に記載してい
るように、合金Iと合金IIの間に、Pb,Snを含ま
ないAl合金からなる中間層を設けたりしてもよい。
Further, when the amounts of Pb and Sn in the alloy II are large, the adhesion with the alloy I may be deteriorated depending on the cladding conditions. In this case, as stated in claim 2, between alloy I and alloy II, in% by weight, Pb:
0.1-6.0%, Sn: 0.1-3.0%, Si:
0.1 to 5.0%, one or two of Cu and Cr
Species: an intermediate layer comprising 0.1 to 3.0%, the balance consisting essentially of Al, and the total amount of Pb and Sn consisting of alloy III being smaller than alloy II; As shown in FIG.
An intermediate layer made of only Al may be provided, or, as described in claim 4, an intermediate layer made of an Al alloy containing no Pb or Sn may be provided between the alloy I and the alloy II.

【0027】この場合、中間層として設ける合金III
において、Pbが0.1%未満では表面層である合金I
Iが摩耗した場合の焼付・摩耗防止効果がなくなり、
6.0%超過では密着性が悪くなるので、Pbは0.1
〜6.0%とするのが良く、Snが0.1%未満では表
面層である合金IIが摩耗した場合の焼付・摩耗防止効
果がなくなり、3.0%超過では密着性が悪くなるの
で、Snは0.1〜3.0%とするのが良く、Siが
0.1%未満では表面層である合金IIが摩耗した場合
の焼付・摩耗防止効果がなくなり、5.0%超過では圧
延等の加工性が低下するので、Siは0.1〜5.0%
とするのが良く、Cu,Crの合計が0.1%未満では
耐荷重性の向上に寄与しなくなり、3.0%超過である
と圧延等の加工性が低下するので、Cu,Crは合計で
0.1〜3.0%とするのが良く、さらには、合金Iと
合金IIの密着性向上のためには、合金IIIのPbと
Sn量の合計は合金IIより少なくする必要がある。
In this case, alloy III provided as the intermediate layer
Alloy with a Pb content of less than 0.1% as a surface layer
When I is worn out, the effect of preventing seizure and wear is lost,
If it exceeds 6.0%, the adhesion will deteriorate, so Pb is 0.1.
It is preferable to be up to 6.0%. When Sn is less than 0.1%, the effect of preventing seizure and wear when the alloy II, which is the surface layer, is worn is lost, and when it exceeds 3.0%, the adhesion is deteriorated. , Sn is preferably 0.1 to 3.0%. When Si is less than 0.1%, the effect of preventing seizure and wear when the alloy II as the surface layer is worn is lost, and when it exceeds 5.0%. Since the workability such as rolling decreases, Si is 0.1-5.0%.
If the total content of Cu and Cr is less than 0.1%, it will not contribute to the improvement of load resistance, and if it exceeds 3.0%, the workability such as rolling will be deteriorated. The total amount is preferably 0.1 to 3.0%, and further, in order to improve the adhesion between the alloy I and the alloy II, the total amount of Pb and Sn of the alloy III needs to be smaller than that of the alloy II. is there.

【0028】また、同様に、合金Iと裏金となる鋼板と
の間にも、合金層IIIあるいは実質的にAlのみから
なる層あるいはPb,Snを含まないAl合金層を密着
性向上のために介在させてもよい。
Similarly, between the alloy I and the steel plate serving as the back metal, an alloy layer III, a layer consisting essentially of Al, or an Al alloy layer containing no Pb or Sn is used to improve adhesion. You may intervene.

【0029】これらの中間層については、通常、合金層
IIとともに粉末圧延で合わせ板を作る方法をとるが、
クラッド,溶射などにより合金Iあるいは合金IIの合
金Iと接する側の上に直接積層しても何ら問題はない。
Regarding these intermediate layers, a method of making a laminated plate by powder rolling is usually used together with the alloy layer II.
There is no problem even if it is directly laminated on the side of the alloy I or alloy II which is in contact with the alloy I by clad, thermal spraying or the like.

【0030】なお、本発明によるすべり軸受の各合金層
の中にAl合金の結晶粒微細化元素であるTi,B,Z
r,Ca,REM(Y,Scを含む希土類元素の1種以
上)などや、強化元素であるMg,Ni,V,Fe,C
oなどを必要に応じて添加してもよいことはもちろんで
ある。
In each of the alloy layers of the sliding bearing according to the present invention, Ti, B, Z, which are crystal grain refining elements of the Al alloy, are contained.
r, Ca, REM (one or more rare earth elements including Y and Sc), etc., and strengthening elements Mg, Ni, V, Fe, C
Of course, o and the like may be added if necessary.

【0031】[0031]

【実施例】次に、実施例について比較例と共に説明す
る。
EXAMPLES Next, examples will be described together with comparative examples.

【0032】実施例1,2、比較例1,2 まず、表1の合金Iに示す組成のAl−Sn系合金を連
続鋳造により厚さ20mmの板状材として鋳造し、各鋳
造ビレットの上下面を1mm面切削し、続いて冷間圧延
により8mmの厚さまで圧下した。この状態で200〜
300℃の熱処理を行ってひずみを除去した。
Examples 1 and 2 and Comparative Examples 1 and 2 First, an Al-Sn alloy having a composition shown in alloy I of Table 1 was cast by continuous casting as a plate-like material having a thickness of 20 mm, and each of the cast billets was cast. The lower surface was cut by 1 mm and then cold-rolled to a thickness of 8 mm. 200-in this state
Strain was removed by heat treatment at 300 ° C.

【0033】続いて、表1の合金IIに示す組成のAl
−Pb系合金粉末と、重量%で、3.0%Pb、0.3
%Sn、0.9%Si、0.5%Cu、残部実質的にA
lからなる合金IIIの粉末とを粉末圧延によって厚さ
2mmの合わせ板とし、540℃で焼結した後、冷間圧
延により1mmの厚さまで圧下した。この状態で200
〜300℃の熱処理を行ってひずみを除去した。
Subsequently, Al having the composition shown in alloy II of Table 1 was used.
-Pb-based alloy powder, 3.0% Pb, 0.3% by weight
% Sn, 0.9% Si, 0.5% Cu, balance substantially A
The alloy III powder consisting of 1 was made into a laminated plate having a thickness of 2 mm by powder rolling, sintered at 540 ° C., and then cold rolled to a thickness of 1 mm. 200 in this state
Strain was removed by performing a heat treatment at ˜300 ° C.

【0034】この2種の合金について各々圧延による端
割れ部を除去し、密着面を清浄にした後、合金Iと合金
IIIとが接するようにクラッドし、続いて1mmの厚
さまで冷間圧延した。
Edge cracks were removed from each of the two alloys by rolling, the contact surfaces were cleaned, clad so that alloy I and alloy III were in contact with each other, and then cold rolled to a thickness of 1 mm. .

【0035】その後、この積層材を焼鈍した後、鋼板の
上に合金IIを表層としてクラッドして焼鈍した。その
後、さらに表面を機械的に除去し、その結果、裏金とし
ての鋼板の厚さが約1.2mm、合金層Iの厚さが約
0.25mm、合金層IIと合金層IIIとの合計厚さ
が約0.05mmで合計厚さが約1.5mmのすべり軸
受を得た。
After this laminated material was annealed, the alloy II was clad as a surface layer on a steel sheet and annealed. After that, the surface is further mechanically removed, and as a result, the thickness of the steel plate as the backing metal is about 1.2 mm, the thickness of the alloy layer I is about 0.25 mm, and the total thickness of the alloy layer II and the alloy layer III. A plain bearing having a thickness of about 0.05 mm and a total thickness of about 1.5 mm was obtained.

【0036】実施例3,4、比較例3,4 まず、表1の合金Iに示す組成のAl−Sn系合金を連
続鋳造により厚さ20mmの板状材として鋳造し、各鋳
造ビレットの上下面を1mm面切削し、続いて冷間圧延
により8mmの厚さまで圧下した。この状態で200〜
300℃の熱処理を行ってひずみを除去した。
Examples 3 and 4 and Comparative Examples 3 and 4 First, an Al-Sn alloy having the composition shown in alloy I of Table 1 was cast by continuous casting into a plate-like material having a thickness of 20 mm, and each cast billet was cast. The lower surface was cut by 1 mm and then cold-rolled to a thickness of 8 mm. 200-in this state
Strain was removed by heat treatment at 300 ° C.

【0037】続いて、表1の合金IIに示す組成のAl
−Pb系合金粉末と、実質的にAlのみからなる純Al
粉末とを粉末圧延によって厚さ2mmの合わせ板とし、
540℃で焼結した後、冷間圧延により1mmの厚さま
で圧下した。この状態で200〜300℃の熱処理を行
ってひずみを除去した。
Subsequently, Al having the composition shown in Alloy II of Table 1 was used.
-Pb-based alloy powder and pure Al consisting essentially of Al
The powder and powder are rolled into a laminated plate having a thickness of 2 mm,
After sintering at 540 ° C., it was cold rolled to a thickness of 1 mm. In this state, heat treatment was performed at 200 to 300 ° C. to remove strain.

【0038】この2種の合金について各々圧延による端
割れ部を除去し、密着面を清浄にした後、合金Iと純A
l層とが接するようにクラッドし、続いて1mmの厚さ
まで冷間圧延した。
After the edge cracks caused by rolling were removed from these two alloys and the contact surfaces were cleaned, Alloy I and Pure A were used.
It was clad so as to be in contact with the 1-layer, and subsequently cold-rolled to a thickness of 1 mm.

【0039】その後、この積層材を焼鈍した後、鋼板の
上に合金IIを表層としてクラッドして焼鈍した。その
後、さらに表面を機械的に除去し、その結果、裏金とし
ての鋼板の厚さが約1.2mm、合金層Iの厚さが約
0.25mm、合金層IIと純Al層との合計厚さが約
0.05mmで合計厚さが約1.5mmのすべり軸受を
得た。
After this laminated material was annealed, it was annealed by clad alloy II as a surface layer on a steel plate. After that, the surface is further mechanically removed, and as a result, the thickness of the steel plate as the back metal is about 1.2 mm, the thickness of the alloy layer I is about 0.25 mm, and the total thickness of the alloy layer II and the pure Al layer is A plain bearing having a thickness of about 0.05 mm and a total thickness of about 1.5 mm was obtained.

【0040】実施例5,6、比較例5 まず、表1の合金Iに示す組成のAl−Sn系合金を連
続鋳造により厚さ20mmの板状材として鋳造し、各鋳
造ビレットの上下面を1mm面切削し、続いて冷間圧延
により8mmの厚さまで圧下した。この状態で200〜
300℃の熱処理を行ってひずみを除去した。
Examples 5, 6 and Comparative Example 5 First, an Al-Sn alloy having a composition shown in Table 1 as an alloy I was cast by continuous casting as a plate-like material having a thickness of 20 mm, and the upper and lower surfaces of each cast billet were The surface was cut by 1 mm and then cold-rolled to a thickness of 8 mm. 200-in this state
Strain was removed by heat treatment at 300 ° C.

【0041】続いて、表1の合金IIに示す組成のAl
−Pb系合金粉末を粉末圧延して厚さ2mmの板とし、
540℃で焼結した後、冷間圧延により1mmの厚さま
で圧下した。この状態で200〜300℃の熱処理を行
ってひずみを除去した。
Subsequently, Al having the composition shown in Alloy II of Table 1 was used.
-Pb alloy powder is powder-rolled into a plate having a thickness of 2 mm,
After sintering at 540 ° C., it was cold rolled to a thickness of 1 mm. In this state, heat treatment was performed at 200 to 300 ° C. to remove strain.

【0042】この2種の合金について各々圧延による端
割れ部を除去し、密着面を清浄にした後、クラッドし、
続いて1mmの厚さまで冷間圧延した。
For these two alloys, the edge cracks caused by rolling were removed, the adhered surfaces were cleaned, and then clad,
Subsequently, it was cold rolled to a thickness of 1 mm.

【0043】その後、この積層材を焼鈍した後、鋼板の
上に合金IIを表層としてクラッドして焼鈍した。その
後、さらに表面を機械的に除去し、その結果、裏金とし
ての鋼板の厚さが約1.2mm、合金層Iの厚さが約
0.25mm、合金層IIの厚さが約0.05mmで合
計厚さが約1.5mmのすべり軸受を得た。
Thereafter, this laminated material was annealed, and then the alloy II was clad on the steel sheet as a surface layer and annealed. Then, the surface is further mechanically removed. As a result, the thickness of the steel plate as the backing metal is about 1.2 mm, the thickness of the alloy layer I is about 0.25 mm, and the thickness of the alloy layer II is about 0.05 mm. Thus, a plain bearing having a total thickness of about 1.5 mm was obtained.

【0044】比較例6 表1の合金Iの欄に示す比較例6(実施例1と同じ)の
Al−Sn系合金を連続鋳造により厚さ20mmの板状
材として鋳造し、鋳造ビレットの上下面を1mm面切削
し、続いて冷間圧延により1mmの厚さまで圧下した。
この状態で200〜300℃の熱処理を行ってひずみを
除去した。
Comparative Example 6 The Al—Sn alloy of Comparative Example 6 (same as Example 1) shown in the column of Alloy I in Table 1 was cast by continuous casting as a plate-shaped material having a thickness of 20 mm, and was cast on a cast billet. The lower surface was cut by 1 mm and then cold-rolled to a thickness of 1 mm.
In this state, heat treatment was performed at 200 to 300 ° C. to remove strain.

【0045】その後、鋼板の上にクラッドした後、表面
を機械的に除去し、その結果、裏金としての鋼板の厚さ
が約1.2mm、合金層1の厚さが約0.3mmで合計
厚さが約1.5mmのすべり軸受を得た。
After that, after clad on the steel plate, the surface is mechanically removed. As a result, the thickness of the steel plate as the backing metal is about 1.2 mm and the thickness of the alloy layer 1 is about 0.3 mm, which is a total. A plain bearing having a thickness of about 1.5 mm was obtained.

【0046】比較例7 表1の合金IIの欄に示す比較例7(実施例1と同じ)
のAl−Pb系合金粉末を粉末圧延にて厚さ4mmの板
とし、540℃で焼結した後、冷間圧延により1mmの
厚さまで圧下した。この状態で200〜300℃の熱処
理を行ってひずみを除去した。その後、鋼板の上にクラ
ッドして焼鈍した後、表面を機械的に除去し、その結
果、裏金としての鋼板の厚さが約1.2mm、合金層1
Iの厚さが約0.3mmで合計厚さが約1.5mmのす
べり軸受を得た。
Comparative Example 7 Comparative Example 7 shown in the column of Alloy II in Table 1 (same as Example 1)
The Al-Pb based alloy powder of No. 3 was powder-rolled into a plate having a thickness of 4 mm, which was sintered at 540 ° C. and then cold-rolled to a thickness of 1 mm. In this state, heat treatment was performed at 200 to 300 ° C. to remove strain. Then, after clad on the steel plate and annealed, the surface is mechanically removed. As a result, the thickness of the steel plate as the backing metal is about 1.2 mm, and the alloy layer 1
A plain bearing having a thickness of I of about 0.3 mm and a total thickness of about 1.5 mm was obtained.

【0047】比較例8 比較例6で得たすべり軸受の表面に脱脂等の前処理をし
た後、亜鉛置換処理を施し、その上に10重量%Sn、
2重量%Cuを含むPb−Sn−Cuめっきを20μm
の厚さで施し、合計厚さが約1.5mmのすべり軸受を
得た。
Comparative Example 8 The surface of the sliding bearing obtained in Comparative Example 6 was subjected to pretreatment such as degreasing, and then subjected to zinc substitution treatment, on which 10 wt% Sn,
20 μm Pb-Sn-Cu plating containing 2 wt% Cu
To obtain a plain bearing having a total thickness of about 1.5 mm.

【0048】比較例9 25重量%Pb、3重量%Sn、残部実質的にCuから
なる合金(ケルメット対応の合金)を溶解し、連続的に
鋼板上に注湯し、注湯後すぐに鋼板の下面より水冷却に
より急冷し、鋼板上にデンドライト組織をもつCu−P
b−Sn合金を積層した材料を作製した。そして、さら
に寸法調整した後、その上に10重量%Sn、2重量%
Cuを含むPb−Sn−Cuめっきを20μmの厚さで
施し、合計厚さが約1.5mmのすべり軸受を得た。
Comparative Example 9 An alloy consisting of 25 wt% Pb, 3 wt% Sn and the balance substantially Cu (Kelmet compatible alloy) was melted and continuously poured onto a steel plate, and immediately after the pouring, the steel plate was poured. Cu-P with dendrite structure on the steel plate
The material which laminated the b-Sn alloy was produced. And after further dimensional adjustment, 10 wt% Sn, 2 wt% on it
Pb—Sn—Cu plating containing Cu was applied to a thickness of 20 μm to obtain a plain bearing having a total thickness of about 1.5 mm.

【0049】[0049]

【表1】 [Table 1]

【0050】(耐焼付性試験)実施例1〜6、比較例1
〜9で得た各すべり軸受から、幅35mm,長さ35m
mの試験片を切り出し、鈴木式摩耗試験機を用いて、表
2に示す条件で耐焼付性試験を行なった。その結果を表
3に示す。
(Seizure resistance test) Examples 1 to 6 and Comparative Example 1
From each slide bearing obtained in ~ 9, width 35mm, length 35m
A test piece of m was cut out, and a seizure resistance test was performed using a Suzuki abrasion tester under the conditions shown in Table 2. Table 3 shows the results.

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【表3】 [Table 3]

【0053】表3より明らかなように、本発明実施例1
〜6のすべり軸受は、従来より耐焼付性に優れるとされ
てきた比較例8,9のすべり軸受以上の耐焼付性を有し
ていることがわかる。
As is clear from Table 3, Example 1 of the present invention
It can be seen that the slide bearings of Nos. 6 to 6 have seizure resistance higher than that of the slide bearings of Comparative Examples 8 and 9, which have been considered to be more excellent in seizure resistance than before.

【0054】一方、表面層である合金IIの成分が本発
明から外れる比較例2,3,6のすべり軸受は、本発明
実施例のすべり軸受よりも耐焼付性が劣っていることが
明らかである。
On the other hand, it is clear that the sliding bearings of Comparative Examples 2, 3 and 6 in which the component of the alloy II as the surface layer is out of the present invention are inferior in seizure resistance to the sliding bearings of the examples of the present invention. is there.

【0055】(高温摩擦性)実施例1〜6、比較例8,
9で得た各すべり軸受を半割軸受形状に加工し、本発明
者らの一部が開発した軸受単体試験機(日本機械学会
第71期全国大会講演論文集 vol.D,1993年
p332−334)により、表4に示す条件で、摺動
面が高温になった場合の摩擦力を測定した。摺動面が1
30℃の時の摩擦トルクを表5に示す。
(High Temperature Friction) Examples 1 to 6, Comparative Example 8,
Each plain bearing obtained in No. 9 was processed into a half bearing shape, and a bearing unit testing machine developed by some of the present inventors (Japan Society of Mechanical Engineers)
Proceedings of the 71st National Convention vol. D, 1993, p. 332-334), the frictional force when the sliding surface became high temperature was measured under the conditions shown in Table 4. Sliding surface is 1
Table 5 shows the friction torque at 30 ° C.

【0056】[0056]

【表4】 [Table 4]

【0057】[0057]

【表5】 [Table 5]

【0058】表5より明らかなように、本発明実施例1
〜6のすべり軸受は、表面にPb−Sn−Cuオーバー
レイ層を有する比較例8,9のすべり軸受よりも優れた
耐摩擦性を有することがわかる。
As is clear from Table 5, Example 1 of the present invention
It can be seen that the slide bearings of Nos. 6 to 6 have better abrasion resistance than the slide bearings of Comparative Examples 8 and 9 having the Pb-Sn-Cu overlay layer on the surface.

【0059】(耐疲労試験)実施例1〜6、比較例1〜
8で得た各すべり軸受をエンジン部品として適用するべ
く半割軸受形状に加工し、表6に示す条件でアンダーウ
ッド試験を行なった。その結果を表7に示す。
(Fatigue Resistance Test) Examples 1 to 6 and Comparative Examples 1 to 1
Each slide bearing obtained in No. 8 was processed into a half bearing shape so as to be applied as an engine part, and an underwood test was conducted under the conditions shown in Table 6. The results are shown in Table 7.

【0060】[0060]

【表6】 [Table 6]

【0061】[0061]

【表7】 [Table 7]

【0062】表7より明らかなように、第2層(合金
I)の合金成分が本発明から外れる比較例1,4,5,
7のすべり軸受は、実施例のすべり軸受よりも耐疲労性
が劣っている。
As is clear from Table 7, Comparative Examples 1, 4, 5 in which the alloy component of the second layer (alloy I) is out of the present invention.
The slide bearing of No. 7 is inferior in fatigue resistance to the slide bearings of the examples.

【0063】また、第2層(合金I)の合金成分が本発
明を満足するものであっても、比較例2,3,6のよう
に表面層(合金II)の合金成分が本発明から外れたす
べり軸受は、実施例のすべり軸受よりも耐疲労性が劣っ
ている。
Even if the alloy composition of the second layer (alloy I) satisfies the present invention, the alloy composition of the surface layer (alloy II) is from the present invention as in Comparative Examples 2, 3 and 6. The disengaged slide bearing is inferior in fatigue resistance to the slide bearings of the examples.

【0064】これら3種の試験結果より、本発明による
すべり軸受が耐焼付性、耐疲労性および高温潤滑油中で
の摩擦損失の低減を同時に成立させていることが明らか
であり、従来の各種軸受合金では不可能であった性能を
有していることがわかった。
From these three types of test results, it is clear that the sliding bearing according to the present invention simultaneously achieves seizure resistance, fatigue resistance and reduction of friction loss in high temperature lubricating oil, and it is clear that various conventional sliding bearings are used. It was found that the bearing alloy had performances that were impossible.

【0065】[0065]

【発明の効果】以上説明してきたように、本発明に係わ
るAl合金製すべり軸受は、請求項1に記載しているよ
うに、重量%で、Sn:0.1〜12%、Pb,Sbの
うちの1種または2種:0.1〜3.0%、Si:0.
1〜6.0%、Cu,Cr,Zn,Mnのうちから選ば
れる1種または2種以上:1.0〜5.0%を含み、残
部が実質的にAlからなる合金Iと、重量%で、Pb:
4.0〜12%、Sn:0.1〜3.0%、Si:3.
1〜5.0%、Cu,Crのうちの1種または2種:
0.1〜3.0%を含み、残部が実質的にAlからなる
合金IIを積層してなる構成としたものであるから、耐
疲労性および表面性能という二律背反的な特性の両方共
が従来にない高い水準で実現され、特に、高温の潤滑条
件において、流体潤滑性能の向上による耐疲労性の向
上、および摩擦発熱の低減による温度上昇の抑制、など
が従来の摺動部材に比べ、著しく優れているという顕著
な効果がもたらされる。
As described above, the Al alloy slide bearing according to the present invention has, as described in claim 1, Sn: 0.1 to 12% by weight, Pb and Sb. One or two of them: 0.1 to 3.0%, Si: 0.
1 to 6.0%, 1 or 2 or more selected from Cu, Cr, Zn and Mn: 1.0 to 5.0%, Alloy I containing the balance substantially Al, and weight %, Pb:
4.0-12%, Sn: 0.1-3.0%, Si: 3.
1 to 5.0%, one or two of Cu and Cr:
Since alloy II containing 0.1 to 3.0% and the balance substantially consisting of Al is laminated, both conventional anti-fatigue characteristics such as fatigue resistance and surface performance are conventional. In comparison with the conventional sliding member, it is realized at a high level that does not exist, especially in high temperature lubrication conditions, such as improved fluid lubrication performance to improve fatigue resistance and reduced friction heat generation to suppress temperature rise. The remarkable effect of being excellent is brought about.

【0066】そして、本発明に係わるAl合金製すべり
軸受の実施態様においては、請求項2に記載しているよ
うに、合金Iと合金IIの間に、重量%で、Pb:0.
1〜6.0%、Sn:0.1〜3.0%、Si:0.1
〜5.0%、Cu,Crのうちの1種または2種:0.
1〜3.0%を含み、残部が実質的にAlからなりかつ
PbとSnの合計量が合金IIよりも少ない合金III
からなる中間層を設けたり、請求項3に記載しているよ
うに、合金Iと合金IIの間に、実質的にAlのみから
なる中間層を設けたり、請求項4に記載しているよう
に、合金Iと合金IIの間に、Pb,Snを含まないA
l合金からなる中間層を設けたりすることによって、合
金Iと合金IIとの間における密着性をより一層向上さ
せることが可能になるという著しく優れた効果がもたら
される。
In an embodiment of the Al alloy slide bearing according to the present invention, as described in claim 2, between the alloy I and the alloy II, in weight%, Pb: 0.
1-6.0%, Sn: 0.1-3.0%, Si: 0.1
~ 5.0%, one or two of Cu and Cr: 0.
Alloy III containing 1 to 3.0%, the balance consisting essentially of Al and having a total amount of Pb and Sn less than Alloy II
Or an intermediate layer consisting essentially of Al is provided between alloy I and alloy II as described in claim 3, or as described in claim 4. In addition, between alloy I and alloy II, A containing no Pb or Sn
The provision of the intermediate layer made of the 1-alloy has a remarkably excellent effect that the adhesion between the alloy I and the alloy II can be further improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青 山 俊 一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 牛 嶋 研 史 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunichi Aoyama 2 Takaracho, Kanagawa-ku, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Inventor Ken Ushijima 2 Takara-cho, Kanagawa-ku, Yokohama Kanagawa Within the corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Sn:0.1〜12%、P
b,Sbのうちの1種または2種:0.1〜3.0%、
Si:0.1〜6.0%、Cu,Cr,Zn,Mnのう
ちから選ばれる1種または2種以上:1.0〜5.0%
を含み、残部が実質的にAlからなる合金Iと、重量%
で、Pb:4.0〜12%、Sn:0.1〜3.0%、
Si:3.1〜5.0%、Cu,Crのうちの1種また
は2種:0.1〜3.0%を含み、残部が実質的にAl
からなる合金IIを積層してなることを特徴とするAl
合金製すべり軸受。
1. Sn: 0.1-12% by weight, P
One or two of b and Sb: 0.1 to 3.0%,
Si: 0.1-6.0%, one or more selected from Cu, Cr, Zn, Mn: 1.0-5.0%
Alloy I with the balance substantially consisting of Al, and weight%
And Pb: 4.0-12%, Sn: 0.1-3.0%,
Si: 3.1 to 5.0%, one or two of Cu and Cr: 0.1 to 3.0%, with the balance substantially Al
Al, which is formed by stacking alloy II
Alloy plain bearings.
【請求項2】 合金Iと合金IIの間に、重量%で、P
b:0.1〜6.0%、Sn:0.1〜3.0%、S
i:0.1〜5.0%、Cu,Crのうちの1種または
2種:0.1〜3.0%を含み、残部が実質的にAlか
らなりかつPbとSnの合計量が合金IIよりも少ない
合金IIIからなる中間層を設けたことを特徴とする請
求項1に記載のAl合金製すべり軸受。
2. Between alloy I and alloy II, in% by weight, P
b: 0.1 to 6.0%, Sn: 0.1 to 3.0%, S
i: 0.1 to 5.0%, one or two of Cu and Cr: 0.1 to 3.0%, the balance substantially consisting of Al, and the total amount of Pb and Sn is The sliding bearing made of Al alloy according to claim 1, further comprising an intermediate layer composed of alloy III less than alloy II.
【請求項3】 合金Iと合金IIの間に、実質的にAl
のみからなる中間層を設けたことを特徴とする請求項1
に記載のAl合金製すべり軸受。
3. Between alloy I and alloy II, substantially Al
An intermediate layer consisting of only one is provided.
The sliding bearing made of Al alloy as described in 1.
【請求項4】 合金Iと合金IIの間に、Pb,Snを
含まないAl合金からなる中間層を設けたことを特徴と
する請求項1に記載のAl合金製すべり軸受。
4. The slide bearing made of an Al alloy according to claim 1, wherein an intermediate layer made of an Al alloy containing no Pb or Sn is provided between the alloy I and the alloy II.
JP6319995A 1995-03-22 1995-03-22 Sliding bearing made of aluminium alloy Pending JPH08261240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6319995A JPH08261240A (en) 1995-03-22 1995-03-22 Sliding bearing made of aluminium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6319995A JPH08261240A (en) 1995-03-22 1995-03-22 Sliding bearing made of aluminium alloy

Publications (1)

Publication Number Publication Date
JPH08261240A true JPH08261240A (en) 1996-10-08

Family

ID=13222316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6319995A Pending JPH08261240A (en) 1995-03-22 1995-03-22 Sliding bearing made of aluminium alloy

Country Status (1)

Country Link
JP (1) JPH08261240A (en)

Similar Documents

Publication Publication Date Title
JP2657143B2 (en) Multi-layer plain bearing with excellent fatigue resistance and conformability with Al-Sn based bearing alloy sliding layer
KR930002532B1 (en) Aluminium base alloy for use as sliding material superior in fatigue resistance & anti-seizure property
JP2007297706A (en) Material composite in strip form and its use, composite sliding element consisting of the material composite in strip form
GB2367070A (en) An aluminium bearing alloy
JP3472284B2 (en) Aluminum bearing alloy
JPH0819946B2 (en) Multi-layer aluminum base alloy bearing with excellent compatibility and fatigue resistance
JP2532790B2 (en) Copper-lead alloy bearing with overlay
JP2769421B2 (en) Copper-lead bearing alloy material excellent in corrosion resistance and method for producing the same
JPH0672278B2 (en) Aluminum-based bearing alloy with excellent fatigue resistance and seizure resistance
EP2041327B1 (en) Aluminium bearing alloy aluminiumlagerlegierung
US5665480A (en) Copper-lead alloy bearing
JP2901218B2 (en) Aluminum alloy bearing
US5512242A (en) Tin-base white metal bearing alloy excellent in heat resistance and fatigue resistance
JPS60230952A (en) Sliding aluminum alloy
JPS627258B2 (en)
US4296183A (en) Al-Sn Base bearing alloy and composite
JP3351181B2 (en) Wear-resistant aluminum alloy sliding member
JPH0810012B2 (en) Bearing material
JPS5844140B2 (en) Composite sliding material
JP3776228B2 (en) Heat treatment reinforced aluminum sliding material and method for producing the same
JPH08261240A (en) Sliding bearing made of aluminium alloy
JPH08157993A (en) Sliding member and plain bearing, made of al-sn alloy
US5766777A (en) Composite copper alloy bearing
JPS58113342A (en) Bearing aluminum alloy
JPH09202932A (en) Sliding member made of al alloy and plain bearing