JPH09202932A - Sliding member made of al alloy and plain bearing - Google Patents

Sliding member made of al alloy and plain bearing

Info

Publication number
JPH09202932A
JPH09202932A JP1222596A JP1222596A JPH09202932A JP H09202932 A JPH09202932 A JP H09202932A JP 1222596 A JP1222596 A JP 1222596A JP 1222596 A JP1222596 A JP 1222596A JP H09202932 A JPH09202932 A JP H09202932A
Authority
JP
Japan
Prior art keywords
alloy
bearing
thickness
sliding member
plain bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1222596A
Other languages
Japanese (ja)
Inventor
Hiroe Okawa
川 広 衛 大
Masahiko Shioda
田 正 彦 塩
Shunichi Aoyama
山 俊 一 青
Kenji Ushijima
嶋 研 史 牛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nissan Motor Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP1222596A priority Critical patent/JPH09202932A/en
Publication of JPH09202932A publication Critical patent/JPH09202932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a sliding member made of an Al alloy capable of obtaining antinomic characteristics of fatigue resistance and surface performance on the higher standards which can not be attained heretofore and to produce a plain bearing. SOLUTION: This is a sliding member made of an Al alloy obtd. by laminating an Al-Zn-Mg base Al alloy I contg., by weight, 4.0 to 5.5% Zn and 0.5 to 2.5% Mg with an Al-Sn-Pb, Sb-Si-Cu, Cr base Al alloy II contg. one or two kinds of 8 to <15% Sn, one or two kinds selected from among Pb and Sb by 0.5 to 10%, 0.1 to 4.5% Si, one or >= two kinds selected from among Cu and Cr by 0.1 to 3.0%. Furthermore, a plain bearing made of an Al alloy obtd. by furthermore laminating a back plate (such as a steel plate) according to necessary is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車,工作機
械,農業機械等々の各種機械装置の構造部品として使用
される軸受ならびに摺動部材用の素材として適するAl
合金製摺動部材およびすべり軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Al suitable as a material for bearings and sliding members used as structural parts of various mechanical devices such as automobiles, machine tools and agricultural machines.
The present invention relates to an alloy sliding member and a slide bearing.

【0002】[0002]

【従来の技術】近年、とくに内燃機関用の軸受合金とし
て、耐熱・耐摩耗性,耐腐食性,耐疲労性,耐焼付性等
の観点から、Al系の軸受合金が注目され、最近に至り
急速にその使用量が増加している。
2. Description of the Related Art Recently, as a bearing alloy for an internal combustion engine, an Al-based bearing alloy has been attracting attention from the viewpoints of heat resistance, wear resistance, corrosion resistance, fatigue resistance, seizure resistance, etc. Its usage is increasing rapidly.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Al系
の軸受合金にケルメット(Kelmet;軟鋼製の台金
に約1mmの厚さで高鉛青銅(Pbを20〜45重量%
含むCu合金)を裏付けした軸受の商品名)並みあるい
はケルメット以上の耐疲労性を持たせるためには、Sn
やPb等の軟質成分量を少なくする必要があるが、その
場合には、耐焼付性が低下するため、ケルメットと同様
に、Pb−Sn系のオーバーレイ層を表面に形成させる
必要があった。
However, Al-based bearing alloys with Kelmet (mild steel base metal with a thickness of about 1 mm and high lead bronze (Pb 20-45 wt%).
In order to have the same level of fatigue resistance as the trade name of bearings backed by Cu alloys), including that of Kelmet, or Sn.
It is necessary to reduce the amount of soft components such as Pb and Pb, but in that case, since the seizure resistance is lowered, it was necessary to form a Pb-Sn-based overlay layer on the surface like Kermet.

【0004】ところが、高速・高荷重域では、Pb−S
n系のオーバーレイ層を表面にもつものは、熱伝導性の
良いAl系軸受合金の表面層より著しい摩擦増加を示す
ことが実験にて確認された。
However, in the high speed and high load range, Pb-S
It was confirmed by experiments that those having an n-based overlay layer on the surface exhibit a marked increase in friction than the surface layer of an Al-based bearing alloy having good thermal conductivity.

【0005】従来の常識によれば、高速・高荷重域で
は、潤滑油が高温になると油粘度が低下して、油膜が薄
くなり、その結果、油のせん断抵抗力としての摩擦が減
少するが、この際、軸受材質の違いは影響しないとされ
てきた。
According to the conventional wisdom, in the high-speed and high-load range, when the temperature of the lubricating oil becomes high, the oil viscosity decreases and the oil film becomes thin, and as a result, the friction as the shearing resistance of the oil decreases. At this time, it has been said that the difference in bearing material has no effect.

【0006】本発明者らの一部は、潤滑油が高温になっ
た場合の軸受の摩擦挙動について研究を重ねた結果、高
速・高荷重域では、油が高温になると粘度が低下し、油
膜が薄くなるが、油膜圧力が増大することになり、その
結果、高圧下での油粘度が著しく増大し、かえって、油
のせん断抵抗力としての摩擦が増大することを見いだし
た。また、このような条件下では、局所的な高い油膜圧
力のため、当然のことながら軸受の耐疲労性を損ねるこ
とになる。
As a result of some research conducted by the present inventors on the frictional behavior of the bearing when the temperature of the lubricating oil becomes high, the viscosity decreases as the temperature of the oil becomes high, and the oil film However, it was found that the oil film pressure was increased, and as a result, the oil viscosity under high pressure was significantly increased, which in turn increased the friction as the shear resistance of the oil. Further, under such a condition, the local high oil film pressure naturally impairs the fatigue resistance of the bearing.

【0007】[0007]

【発明の目的】本発明は、このような従来の課題にかん
がみてなされたもので、高速・高荷重域での摩擦を低減
するには、メカニズムの発端である油膜の温度を下げる
ことが有効であり、そのためには、従来は無関係とされ
ていた軸受材質に関して、介在する油の局所的な発熱を
すばやく抜熱する役目も担っている軸受合金層の熱伝導
率を高くすることが重要であることに基づいている。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and it is effective to lower the temperature of the oil film, which is the starting point of the mechanism, in order to reduce friction in a high speed / high load range. For that purpose, it is important to increase the thermal conductivity of the bearing alloy layer, which is also irrelevant in the past, which also plays a role of quickly removing the local heat generation of the intervening oil. It is based on something.

【0008】軸受合金を高熱伝導率にすることで、高速
・高荷重域での潤滑油中の摩擦損失を従来のすべり軸受
より大幅に低減させることができる。
By making the bearing alloy have high thermal conductivity, the friction loss in the lubricating oil in the high speed / high load range can be greatly reduced as compared with the conventional slide bearing.

【0009】さらに、軸受合金の強度向上に加え、高熱
伝導率の本発明の軸受を使用することによる介在する油
膜圧力の低減によっても、耐疲労性を向上させるととも
に、表面性能も従来にない水準で実現できる。
Further, in addition to improving the strength of the bearing alloy, by using the bearing of the present invention having high thermal conductivity to reduce the intervening oil film pressure, the fatigue resistance is improved and the surface performance is at a level unprecedented. Can be achieved with.

【0010】したがって、本発明の目的は、耐疲労性お
よび表面性能という二律背反的な特性の両方共が従来に
ない高い水準で得ることができるAl−Sn系合金製摺
動部材およびすべり軸受を提供することにある。
Therefore, an object of the present invention is to provide a sliding member and a slide bearing made of an Al--Sn alloy which can obtain both anti-fatigue properties such as fatigue resistance and surface performance at an unprecedented high level. To do.

【0011】[0011]

【課題を解決するための手段】本発明に係わるAl−S
n系合金製摺動部材は、請求項1に記載しているよう
に、重量%で、Zn:4.0〜5.5%、Mg:0.5
〜2.5%を含むAl−Zn−Mg系Al合金Iと、重
量%で、Sn:8〜15未満%、Pb,Sbのうちから
選ばれる1種または2種:0.5〜10%、Si:0.
1〜4.5%、Cu,Crのうちから選ばれる1種また
は2種:0.1〜3.0%を含むAl−Sn−Pb,S
b−Si−Cu,Cr系Al合金IIを積層してなる構
成としたことを特徴としている。
Al-S according to the present invention
As described in claim 1, the n-based alloy sliding member has a weight ratio of Zn: 4.0 to 5.5% and Mg: 0.5.
Al-Zn-Mg-based Al alloy I containing ~ 2.5%, and Sn: 8-15% by weight, one or two kinds selected from Pb and Sb: 0.5-10%. , Si: 0.
1 to 4.5%, one or two selected from Cu and Cr: Al-Sn-Pb, S containing 0.1 to 3.0%
It is characterized in that it is configured by laminating b-Si-Cu, Cr-based Al alloy II.

【0012】本発明に係わるAl合金製すべり軸受は、
請求項2に記載しているように、重量%で、Zn:4.
0〜5.5%、Mg:0.5〜2.5%を含むAl−Z
n−Mg系Al合金Iと、重量%で、Sn:8〜15未
満%、Pb,Sbのうちから選ばれる1種または2種:
0.5〜10%、Si:0.1〜4.5%、Cu,Cr
のうちから選ばれる1種または2種:0.1〜3.0%
を含むAl−Sn−Pb,Sb−Si−Cu,Cr系A
l合金IIを積層してなる構成としたことを特徴として
いる。
The Al alloy slide bearing according to the present invention is
%, Zn: 4.
Al-Z containing 0 to 5.5% and Mg: 0.5 to 2.5%
n-Mg-based Al alloy I and Sn: 8 to less than 15% by weight, and one or two selected from Pb and Sb:
0.5-10%, Si: 0.1-4.5%, Cu, Cr
1 type or 2 types selected from among: 0.1 to 3.0%
Al-Sn-Pb, Sb-Si-Cu, Cr-based A containing
It is characterized in that it is configured by laminating the 1-alloy II.

【0013】[0013]

【発明の作用】本発明に係わるAl合金製摺動部材およ
びすべり軸受は、請求項1および2に記載しているよう
に、重量%で、Zn:4.0〜5.5%、Mg:0.5
〜2.5%を含むAl−Zn−Mg系Al合金Iと、重
量%で、Sn:8〜15未満%、Pb,Sbのうちから
選ばれる1種または2種:0.5〜10%、Si:0.
1〜4.5%、Cu,Crのうちから選ばれる1種また
は2種:0.1〜3.0%を含むAl−Sn−Pb,S
b−Si−Cu,Cr系Al合金IIを積層してなる構
成としたものであるが、以下に、それぞれの成分および
数値の限定理由について各元素の作用と共に説明する。
As described in claims 1 and 2, the Al alloy sliding member and the sliding bearing according to the present invention have a weight ratio of Zn: 4.0 to 5.5% and Mg: 0.5
Al-Zn-Mg-based Al alloy I containing ~ 2.5%, and Sn: 8-15% by weight, one or two kinds selected from Pb and Sb: 0.5-10%. , Si: 0.
1 to 4.5%, one or two selected from Cu and Cr: Al-Sn-Pb, S containing 0.1 to 3.0%
The structure is made by stacking b-Si-Cu, Cr-based Al alloy II, and the reasons for limiting the respective components and numerical values will be described below together with the action of each element.

【0014】まず、Al−Zn−Mg系Al合金Iの成
分および数値の限定理由について各元素の作用と共に説
明する。
First, the reasons for limiting the components and numerical values of the Al-Zn-Mg Al alloy I will be explained together with the action of each element.

【0015】(I−1)Zn:4.0〜5.5% ZnはAl合金の強度を高めるのに有効な元素である
が、4.0%未満ではその効果が少なく、5.5%を超
えると圧延などの加工性が低下するので、4.0〜5.
5%とした。
(I-1) Zn: 4.0-5.5% Zn is an element effective for increasing the strength of the Al alloy, but if it is less than 4.0%, its effect is small and 5.5%. When it exceeds 4.0, workability such as rolling is deteriorated, so 4.0 to 5.
5%.

【0016】(I−2)Mg:0.5〜2.5% MgはAl合金の強度を高めるのに有効な元素である
が、0.5%未満ではその効果が少なく、2.5%を超
えると圧延などの加工性が低下するので、0.5〜2.
5%とした。
(I-2) Mg: 0.5 to 2.5% Mg is an element effective for increasing the strength of the Al alloy, but if it is less than 0.5%, its effect is small and 2.5%. If it exceeds 1.0, the workability such as rolling decreases, so 0.5-2.
5%.

【0017】(I−3)Cu,Cr,Mnのうちから選
ばれる1種または2種以上:0.1〜2.5% Cu,Cr,MnはAl合金の強度を高めるのに有効な
元素であるので、必要に応じてこれらの1種または2種
以上を含有させることもできる。この場合、これらの合
計で0.1%未満では効果がなく、2.5%を超えると
機械的性質とくに伸びを低下させるので、含有させると
しても0.1〜2.5%とするのが良い。
(I-3) One or more selected from Cu, Cr and Mn: 0.1 to 2.5% Cu, Cr and Mn are effective elements for increasing the strength of the Al alloy. Therefore, one kind or two or more kinds of these may be contained as necessary. In this case, if the total amount of these is less than 0.1%, there is no effect, and if it exceeds 2.5%, the mechanical properties, in particular elongation, are reduced, so even if it is contained, it should be 0.1-2.5%. good.

【0018】次に、Al−Sn−Pb,Sb−Si−C
u,Cr系Al合金IIの成分および数値の限定理由に
ついて各元素の作用と共に説明する。
Next, Al-Sn-Pb, Sb-Si-C
The reasons for limiting the components and numerical values of u, Cr-based Al alloy II will be described together with the action of each element.

【0019】(II−1)Sn:8〜15未満% Pb,Sbのうちから選ばれる1種または2種:0.5
〜10% Sn,Pb,Sbは潤滑成分として有効な元素であり、
耐焼付性に優れたものである。また、合金IIを表面層
としたときのなじみ性、異物埋収性を高める。
(II-1) Sn: 8 to less than 15% One or two selected from Pb and Sb: 0.5
-10% Sn, Pb, Sb are effective elements as a lubricating component,
It has excellent seizure resistance. Further, when the alloy II is used as the surface layer, the compatibility and the foreign matter embedding property are enhanced.

【0020】しかし、Snが8%未満、Pb,Sbの合
計が0.5%未満ではその効果が少なく、Snが15%
以上、Pb,Sbの合計が10%を超えると、熱伝導率
が低下し、本発明の摺動部材およびすべり軸受の特徴の
1つである高温の潤滑油中での摩擦損失の増大を抑制す
る能力が損なわれるので、Snは8〜15未満%、P
b,Sbのうちから選ばれる1種または2種の合計は
0.5〜10%とした。
However, when Sn is less than 8% and the total amount of Pb and Sb is less than 0.5%, the effect is small, and Sn is 15%.
As described above, when the total amount of Pb and Sb exceeds 10%, the thermal conductivity decreases, and the increase of friction loss in high temperature lubricating oil, which is one of the features of the sliding member and the sliding bearing of the present invention, is suppressed. Sn is less than 8-15%, P
The total of one or two selected from b and Sb was 0.5 to 10%.

【0021】(II−2)Si:0.1〜4.5% Siは合金IIを表面層としたときの耐焼付性の向上に
寄与するが、0.1%未満ではその効果が少なく、4.
5%を超えるとなじみ性、圧延等の加工性が低下するの
で、0.1〜4.5%とした。
(II-2) Si: 0.1 to 4.5% Si contributes to the improvement of seizure resistance when alloy II is used as the surface layer, but if it is less than 0.1%, its effect is small. 4.
If it exceeds 5%, the conformability and the workability such as rolling decrease, so 0.1 to 4.5% was set.

【0022】(II−3)Cu,Crのうちから選ばれ
る1種または2種:0.1〜3.0% Cu,Crは合金IIを表面層としたときの耐荷重性、
耐熱性を向上させるが、0.1%未満ではその効果が少
なく、3.0%を超えるとなじみ性、圧延等の加工性が
低下するので、0.1〜3.0%とした。
(II-3) One or two selected from Cu and Cr: 0.1 to 3.0% Cu and Cr are load-bearing when alloy II is used as the surface layer,
Although heat resistance is improved, if it is less than 0.1%, its effect is small, and if it exceeds 3.0%, the conformability and workability such as rolling deteriorate, so it was made 0.1 to 3.0%.

【0023】本発明によるAl合金製摺動部材およびす
べり軸受は、上述した組成になるものであるが、Al合
金の結晶粒微細化元素であるTi,Sr,B,Zr,C
a,REM(Y,Scを含む希土類元素の1種以上)な
どを添加してもよく、あるいは、Al合金の強化元素で
あるNi,V,Fe,Coなどを必要に応じて添加して
も良いことはもちろんである。
The Al alloy sliding member and the sliding bearing according to the present invention have the above-mentioned composition, but Ti, Sr, B, Zr and C which are crystal grain refining elements of the Al alloy.
a, REM (one or more rare earth elements including Y and Sc) or the like may be added, or Ni, V, Fe, Co and the like which are strengthening elements of the Al alloy may be added as necessary. Of course good things.

【0024】次に、本発明によるAl合金製摺動部材お
よびすべり軸受において、表面層として使用することが
できる合金IIの製造法については、通常は板状の鋳造
材を圧延していく方法をとるが、Pbが4%を超えると
鋳造法では偏析が生じ、均一な材料組織となりにくいた
め、板材を粉末圧延、焼結法で作っても良いし、合金I
を第2層とし合金IIを表面層とするときには溶射によ
り合金Iの上に直接に積層することも可能である。
Next, with respect to the method for producing the alloy II which can be used as the surface layer in the Al alloy sliding member and the sliding bearing according to the present invention, usually, a plate-shaped casting material is rolled. However, if Pb exceeds 4%, segregation occurs in the casting method and it is difficult to form a uniform material structure. Therefore, the plate material may be formed by powder rolling or sintering, or alloy I
When the alloy is used as the second layer and the alloy II is used as the surface layer, it can be directly laminated on the alloy I by thermal spraying.

【0025】そして、合金Iおよび合金IIに対して、
必要に応じてひずみ除去のための熱処理を行うこともで
きる。
And for alloy I and alloy II,
If necessary, heat treatment for strain removal can be performed.

【0026】また、本発明に係わるAl合金製すべり軸
受は、前記Al系合金IIと、Al系合金Iと、裏金と
を積層してなる構成を有するものとすることができ、こ
のような構成のすべり軸受とすることによって、耐疲労
性および表面性能という二律背反的な特性の両方共が従
来にない高い水準で得られることとなる。
The Al alloy slide bearing according to the present invention may have a structure in which the Al alloy II, the Al alloy I and the back metal are laminated. By using the plain bearing, it is possible to obtain both anti-fatigue resistance and surface performance, which are trade-off characteristics, at a high level that has never been achieved.

【0027】そして、この場合の裏金としては、鋼板を
用いることによって、軸受として必要な剛性をそなえた
ものとなる。
In this case, by using a steel plate as the back metal, the bearing has rigidity required for the bearing.

【0028】[0028]

【実施例】次に、実施例について比較例と共に説明す
る。
Next, examples will be described together with comparative examples.

【0029】実施例1〜4、比較例1〜3 まず、表1の合金IIの欄に示す実施例1〜4,比較例
1〜3の組成を有するAl−Sn系合金を連続鋳造によ
り厚さ20mmの板状材として鋳造し、各鋳造ビレット
の上下面を1mm面切削し、続いて冷間圧延により1m
mの厚さまで圧下した。この状態で200〜300℃の
熱処理を行なってひずみを除去した。
Examples 1 to 4 and Comparative Examples 1 to 3 First, Al-Sn alloys having the compositions of Examples 1 to 4 and Comparative Examples 1 to 3 shown in the column of alloy II in Table 1 were thickened by continuous casting. It is cast as a plate with a thickness of 20 mm, the upper and lower surfaces of each casting billet are cut by 1 mm, and then cold rolled to 1 m.
It was rolled down to a thickness of m. In this state, heat treatment was performed at 200 to 300 ° C. to remove strain.

【0030】次に、この合金IIと表1の合金Iの欄に
示す実施例1〜4,比較例1〜3の組成を有するAl−
Zn−Mg系合金の8mmの圧延材とを各々密着面を清
浄にした後クラッドし、続いて、冷間圧延により1mm
の厚さまで圧下した。
Next, Al-having the compositions of Examples 1 to 4 and Comparative Examples 1 to 3 shown in the column of this alloy II and alloy I of Table 1 were used.
Each of the Zn-Mg-based alloys and rolled material having a thickness of 8 mm was clad after cleaning the contact surface, and then 1 mm by cold rolling.
To the thickness of.

【0031】その後、この積層材を焼鈍したのち、裏金
となる鋼板の上に合金Iを第2層とし合金IIを表面層
としてクラッドした。続いて、さらに表面を機械的に除
去し、その結果、裏金としての鋼板の厚さが約1.20
mm、合金Iの層厚さが約0.25mm、合金IIの層
厚さが約0.05mmで合計厚さが約1.5mmのすべ
り軸受を得た。
After this laminated material was annealed, alloy I was used as the second layer and alloy II was used as the surface layer on the steel plate that served as the back metal. Subsequently, the surface is further mechanically removed, so that the thickness of the steel plate as the back metal is about 1.20.
mm, the layer thickness of the alloy I was about 0.25 mm, the layer thickness of the alloy II was about 0.05 mm, and a total thickness of about 1.5 mm was obtained.

【0032】比較例4 表1の合金Iの欄に示す比較例4の組成を有するAl−
Sn系合金を連続鋳造により厚さ20mmの板状材とし
て鋳造し、鋳造ビレットの上下面を1mm面切削し、続
いて冷間圧延により8mmの厚さまで圧下した。この状
態で200〜300℃の熱処理を行なってひずみを除去
した。
Comparative Example 4 Al-having the composition of Comparative Example 4 shown in the column of alloy I in Table 1
A Sn-based alloy was cast as a plate-shaped material having a thickness of 20 mm by continuous casting, the upper and lower surfaces of the cast billet were cut by 1 mm, and then cold rolled to reduce the thickness to 8 mm. In this state, heat treatment was performed at 200 to 300 ° C. to remove strain.

【0033】次に、表1の合金IIの欄に示す比較例4
の組成を有するAl−Sn系合金を連続鋳造により厚さ
20mmの板状材として鋳造し、鋳造ビレットの上下面
を1mm面切削し、続いて冷間圧延により1mmの厚さ
まで圧下した。この状態で200〜300℃の熱処理を
行ってひずみを除去した。
Next, Comparative Example 4 shown in the column of Alloy II in Table 1
An Al-Sn alloy having the composition of No. 1 was cast by continuous casting as a plate material having a thickness of 20 mm, the upper and lower surfaces of the cast billet were cut by 1 mm, and then cold-rolled to a thickness of 1 mm. In this state, a heat treatment at 200 to 300 ° C. was performed to remove the strain.

【0034】次いで、この2種の合金I,IIにおいて
各々密着面を清浄にした後、クラッドし、続いて1mm
の厚さまで冷間圧延した。
Next, the contact surfaces of the two alloys I and II were cleaned, clad, and then 1 mm.
Cold rolled to a thickness of

【0035】その後、この積層材を焼鈍したのち、裏金
となる鋼板の上に合金Iを第2層とし合金IIを表面層
としてクラッドした。続いて、さらに表面を機械的に除
去し、その結果、裏金としての鋼板の厚さが約1.20
mm、合金Iの層厚さが約0.25mm、合金IIの層
厚さが約0.05mmで合計厚さが約1.5mmのすべ
り軸受を得た。
After this laminated material was annealed, alloy I was used as the second layer and alloy II was used as the surface layer on the backing steel plate. Subsequently, the surface is further mechanically removed, so that the thickness of the steel plate as the back metal is about 1.20.
mm, the layer thickness of the alloy I was about 0.25 mm, the layer thickness of the alloy II was about 0.05 mm, and a total thickness of about 1.5 mm was obtained.

【0036】比較例5 表1の合金IIの欄に示す比較例5(実施例1と同じ)
の組成を有するAl−Sn系合金を連続鋳造により厚さ
20mmの板状材として鋳造し、各鋳造ビレットの上下
面を1mm面切削し、続いて冷間圧延により1mmの厚
さまで圧下した。この状態で200〜300℃の熱処理
を行ってひずみを除去した。
Comparative Example 5 Comparative Example 5 shown in the column of alloy II in Table 1 (same as Example 1)
An Al-Sn alloy having the composition of No. 1 was cast by continuous casting as a plate material having a thickness of 20 mm, the upper and lower surfaces of each cast billet were cut by 1 mm, and then cold-rolled to a thickness of 1 mm. In this state, a heat treatment at 200 to 300 ° C. was performed to remove the strain.

【0037】その後、裏金となる鋼板の上に合金IIを
クラッドした後、表面を機械的に除去し、その結果、裏
金としての鋼板の厚さが約1.2mm、表面層としての
合金IIの層厚さが約0.3mmで合計厚さが約1.5
mmのすべり軸受を得た。
After that, the alloy II was clad on the steel plate serving as the backing metal, and the surface was mechanically removed. As a result, the thickness of the steel plate serving as the backing metal was about 1.2 mm and the alloy II serving as the surface layer was formed. Layer thickness is about 0.3 mm and total thickness is about 1.5
A plain bearing of mm was obtained.

【0038】比較例6 表1の合金Iの欄に示す比較例6(実施例1と同じ)の
組成を有するAl−Zn−Mg系合金を1mmの厚さま
で圧延し、200〜300℃の熱処理を行ってひずみを
除去した。
Comparative Example 6 An Al—Zn—Mg-based alloy having the composition of Comparative Example 6 (same as Example 1) shown in the column of alloy I in Table 1 was rolled to a thickness of 1 mm and heat-treated at 200 to 300 ° C. Was performed to remove the strain.

【0039】その後、裏金となる鋼板の上に合金Iをク
ラッドした後、表面を機械的に除去し、さらにその表面
に脱脂等の前処理をした後、亜鉛置換処理を施し、無電
解ニッケルめっきを約1μm施し、その上に10重量%
Sn、2重量%Cuを含むPb−Sn−Cuめっきを2
0μmの厚さで施した。
After that, the alloy I is clad on the steel plate as the backing metal, the surface is mechanically removed, and the surface is pretreated by degreasing or the like, and then zinc substitution treatment is performed, and electroless nickel plating is performed. About 1 μm and 10% by weight on it
2 Pb-Sn-Cu plating containing Sn and 2 wt% Cu
It was applied to a thickness of 0 μm.

【0040】その結果、裏金としての鋼板の厚さが約
1.2mm、表面層としての合金Iの層厚さが約0.3
mmで合計厚さが約1.5mmのすべり軸受を得た。
As a result, the thickness of the steel plate as the back metal is about 1.2 mm, and the layer thickness of alloy I as the surface layer is about 0.3.
A plain bearing having a total thickness of about 1.5 mm in mm was obtained.

【0041】比較例7 25重量%Pb、3重量%Sn、残部実質的にCuから
なる合金(ケルメット対応の合金)を溶解し、連続的に
鋼板上に注湯し、注湯後すぐに鋼板の下面より水冷却に
より急冷し、鋼板上にデンドライト組織をもつCu−P
b−Sn合金を積層した材料を作製した。そして、さら
に寸法調整した後、無電解ニッケルめっきを1μmの厚
さで施し、その上に10重量%Sn、2重量%Cuを含
むPb−Sn−Cuめっきを20μmの厚さで施し、合
計厚さが約1.5mmのすべり軸受を得た。
Comparative Example 7 An alloy consisting of 25 wt% Pb, 3 wt% Sn and the balance substantially Cu (a Kelmet compatible alloy) was melted and continuously poured onto a steel sheet, and immediately after the pouring, the steel sheet was poured. Cu-P with dendrite structure on the steel plate
The material which laminated the b-Sn alloy was produced. Then, after further dimension adjustment, electroless nickel plating is applied to a thickness of 1 μm, and Pb—Sn—Cu plating containing 10 wt% Sn and 2 wt% Cu is applied thereon to a thickness of 20 μm to obtain a total thickness. A plain bearing having a size of about 1.5 mm was obtained.

【0042】[0042]

【表1】 [Table 1]

【0043】(耐焼付性試験)実施例1〜4、比較例1
〜7で得た各すべり軸受から、幅35mm,長さ35m
mの試験片を切り出し、リングオンプレート型の鈴木式
摩耗試験機を用いて、表2に示す条件で耐焼付性試験を
行なった。その結果を表3に示す。
(Seizure resistance test) Examples 1 to 4 and Comparative Example 1
From each slide bearing obtained in ~ 7, width 35mm, length 35m
A test piece of m was cut out, and a seizure resistance test was performed under the conditions shown in Table 2 using a ring-on-plate type Suzuki abrasion tester. Table 3 shows the results.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】表3より明らかなように、本発明実施例1
〜4のすべり軸受は、従来より耐焼付性に優れるとされ
てきた比較例6,7のすべり軸受と同等であるかあるい
はそれ以上の耐焼付性を有していることがわかる。
As is clear from Table 3, Example 1 of the present invention
It can be seen that the slide bearings Nos. 4 to 4 have seizure resistance equivalent to or higher than that of the slide bearings of Comparative Examples 6 and 7, which have been considered to be more excellent in seizure resistance than before.

【0047】一方、表面層である合金IIの成分が本発
明から外れる比較例1,2のすべり軸受は、本発明実施
例のすべり軸受よりも耐焼付性が劣っていることが明ら
かである。
On the other hand, it is clear that the sliding bearings of Comparative Examples 1 and 2 in which the component of the alloy II as the surface layer is out of the present invention are inferior in seizure resistance to the sliding bearings of the examples of the present invention.

【0048】(高温摩擦性)実施例1〜4、比較例6,
7で得た各すべり軸受を半割軸受形状に加工し、本発明
者らの一部が開発した軸受単体試験機(日本機械学会
第71期全国大会講演論文集 vol.D,1993年
p332−334)により、表4に示す条件で、摺動
面が高温になった場合の摩擦力を測定した。摺動面が1
30℃の時の摩擦トルクを表5に示す。
(High Temperature Friction) Examples 1 to 4, Comparative Example 6,
Each plain bearing obtained in No. 7 was processed into a half bearing shape, and a bearing unit testing machine developed by some of the inventors (Japan Society of Mechanical Engineers)
Proceedings of the 71st National Convention vol. D, 1993, p. 332-334), the frictional force when the sliding surface became high temperature was measured under the conditions shown in Table 4. Sliding surface is 1
Table 5 shows the friction torque at 30 ° C.

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】表5より明らかなように、本発明実施例1
〜4のすべり軸受は、表面にPb−Sn−Cuオーバー
レイ層を有する比較例6,7のすべり軸受よりも優れた
耐摩擦性を有することがわかる。
As is clear from Table 5, Example 1 of the present invention
It can be seen that the slide bearings of Nos. 4 to 4 have better abrasion resistance than the slide bearings of Comparative Examples 6 and 7 having the Pb-Sn-Cu overlay layer on the surface.

【0052】(耐疲労試験)実施例1〜4、比較例1〜
6で得た各すべり軸受をエンジン部品として適用するべ
く半割軸受形状に加工し、表6に示す条件でアンダーウ
ッド試験を行なった。その結果を表7に示す。
(Fatigue Resistance Test) Examples 1 to 4 and Comparative Examples 1 to 1
Each slide bearing obtained in No. 6 was processed into a half bearing shape so as to be applied as an engine part, and an underwood test was conducted under the conditions shown in Table 6. Table 7 shows the results.

【0053】[0053]

【表6】 [Table 6]

【0054】[0054]

【表7】 [Table 7]

【0055】表7より明らかなように、第2層(合金
I)の合金成分が本発明から外れる比較例3,4および
第2層(合金I)を設けない比較例5のすべり軸受は、
実施例のすべり軸受よりも耐疲労性が劣っている。
As is clear from Table 7, the sliding bearings of Comparative Examples 3 and 4 in which the alloy composition of the second layer (alloy I) deviates from the present invention and Comparative Example 5 in which the second layer (alloy I) is not provided,
Fatigue resistance is inferior to the sliding bearings of the examples.

【0056】また、第2層(合金I)の合金成分が本発
明を満足するものであっても、比較例1,2のように表
面層(合金II)の合金成分が本発明から外れたすべり
軸受は、実施例のすべり軸受よりも耐疲労性が劣ってい
る。
Even if the alloy composition of the second layer (alloy I) satisfies the present invention, the alloy composition of the surface layer (alloy II) is out of the invention as in Comparative Examples 1 and 2. The slide bearing is inferior in fatigue resistance to the slide bearings of the examples.

【0057】これら3種の試験結果より、本発明による
すべり軸受が耐焼付性、耐疲労性および高温潤滑油中で
の摩擦損失の低減を同時に成立させていることが明らか
であり、従来の各種軸受合金では不可能であった性能を
有していることがわかった。
From these three kinds of test results, it is clear that the sliding bearing according to the present invention simultaneously achieves seizure resistance, fatigue resistance and reduction of friction loss in high temperature lubricating oil, and it is clear that various conventional sliding bearings are used. It was found that the bearing alloy had performances that were impossible.

【0058】[0058]

【発明の効果】以上説明してきたように、本発明に係わ
るAl合金製摺動部材およびすべり軸受は、請求項1お
よび請求項2に記載しているように、重量%で、Zn:
4.0〜5.5%、Mg:0.5〜2.5%を含むAl
−Zn−Mg系Al合金Iと、重量%で、Sn:8〜1
5未満%、Pb,Sbのうちから選ばれる1種または2
種:0.5〜10%、Si:0.1〜4.5%、Cu,
Crのうちから選ばれる1種または2種:0.1〜3.
0%を含むAl−Sn−Pb,Sb−Si−Cu,Cr
系Al合金IIを積層してなる構成としたものであるか
ら、耐疲労性および表面性能という二律背反的な特性の
両方共が従来にない高い水準で実現され、特に、高温の
潤滑条件において、流体潤滑性能の向上による耐疲労性
の向上、および軸受合金の抜熱性向上による油膜温度上
昇の抑制などが従来の摺動部材およびすべり軸受に比べ
て非常に優れているという顕著な効果がもたらされる。
As described above, the Al alloy sliding member and the sliding bearing according to the present invention, as described in claims 1 and 2, have a Zn:
Al containing 4.0 to 5.5% and Mg: 0.5 to 2.5%
-Zn-Mg-based Al alloy I and Sn: 8 to 1 by weight%
Less than 5%, one or two selected from Pb and Sb
Species: 0.5-10%, Si: 0.1-4.5%, Cu,
One or two selected from Cr: 0.1-3.
Al-Sn-Pb, Sb-Si-Cu, Cr containing 0%
Since it is configured by laminating the system Al alloy II, both anti-fatigue properties of surface resistance and fatigue resistance are realized at a high level that has never been achieved in the past. The remarkable effects that the improvement of the fatigue resistance due to the improvement of the lubrication performance and the suppression of the oil film temperature rise due to the improvement of the heat removal property of the bearing alloy are extremely superior to the conventional sliding member and the sliding bearing are brought about.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青 山 俊 一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 牛 嶋 研 史 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunichi Aoyama 2 Takaracho, Kanagawa-ku, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Inventor Ken Ushijima 2 Takara-cho, Kanagawa-ku, Yokohama Kanagawa Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Zn:4.0〜5.5%、M
g:0.5〜2.5%を含むAl−Zn−Mg系Al合
金Iと、 重量%で、Sn:8〜15未満%、Pb,Sbのうちか
ら選ばれる1種または2種:0.5〜10%、Si:
0.1〜4.5%、Cu,Crのうちから選ばれる1種
または2種:0.1〜3.0%を含むAl−Sn−P
b,Sb−Si−Cu,Cr系Al合金IIを積層して
なることを特徴とするAl合金製摺動部材。
1. Zn: 4.0 to 5.5% by weight, M
g: Al-Zn-Mg-based Al alloy I containing 0.5 to 2.5%, and Sn: 8 to less than 15% by weight, one or two selected from Pb and Sb: 0 0.5-10%, Si:
Al-Sn-P containing 0.1 to 4.5%, one or two selected from Cu and Cr: 0.1 to 3.0%
b, Sb-Si-Cu, Cr-based Al alloy II is laminated to form an Al alloy sliding member.
【請求項2】 重量%で、Zn:4.0〜5.5%、M
g:0.5〜2.5%を含むAl−Zn−Mg系Al合
金Iと、 重量%で、Sn:8〜15未満%、Pb,Sbのうちか
ら選ばれる1種または2種:0.5〜10%、Si:
0.1〜4.5%、Cu,Crのうちから選ばれる1種
または2種:0.1〜3.0%を含むAl−Sn−P
b,Sb−Si−Cu,Cr系Al合金IIを積層して
なることを特徴とするAl合金製すべり軸受。
2. Zn: 4.0 to 5.5% by weight, M
g: Al-Zn-Mg-based Al alloy I containing 0.5 to 2.5%, and Sn: 8 to less than 15% by weight, one or two selected from Pb and Sb: 0 0.5-10%, Si:
Al-Sn-P containing 0.1 to 4.5%, one or two selected from Cu and Cr: 0.1 to 3.0%
A slide bearing made of Al alloy, characterized by being formed by laminating b-, Sb-Si-Cu, and Cr-based Al alloy II.
JP1222596A 1996-01-26 1996-01-26 Sliding member made of al alloy and plain bearing Pending JPH09202932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1222596A JPH09202932A (en) 1996-01-26 1996-01-26 Sliding member made of al alloy and plain bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1222596A JPH09202932A (en) 1996-01-26 1996-01-26 Sliding member made of al alloy and plain bearing

Publications (1)

Publication Number Publication Date
JPH09202932A true JPH09202932A (en) 1997-08-05

Family

ID=11799442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1222596A Pending JPH09202932A (en) 1996-01-26 1996-01-26 Sliding member made of al alloy and plain bearing

Country Status (1)

Country Link
JP (1) JPH09202932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193024A (en) * 2005-01-12 2006-07-27 Nisshin Steel Co Ltd Steering structure for automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193024A (en) * 2005-01-12 2006-07-27 Nisshin Steel Co Ltd Steering structure for automobile
JP4548832B2 (en) * 2005-01-12 2010-09-22 日新製鋼株式会社 Automotive steering structure

Similar Documents

Publication Publication Date Title
JP2679920B2 (en) Sliding bearing material with overlay with excellent anti-seizure property
EP0131428B1 (en) Aluminium based bearing alloys
GB2367070A (en) An aluminium bearing alloy
JP3472284B2 (en) Aluminum bearing alloy
US5028393A (en) Al-based alloy for use as sliding material, superior in fatigue resistance and anti-seizure property
JPH05302626A (en) Multilayer aluminum base alloy bearing excellent in conformability and fatigue resistance
JP2532790B2 (en) Copper-lead alloy bearing with overlay
JPH0672278B2 (en) Aluminum-based bearing alloy with excellent fatigue resistance and seizure resistance
JP2769421B2 (en) Copper-lead bearing alloy material excellent in corrosion resistance and method for producing the same
US5665480A (en) Copper-lead alloy bearing
GB2228011A (en) A bearing material
US5453244A (en) Aluminum alloy bearing
EP2041327A1 (en) Aluminium bearing alloy aluminiumlagerlegierung
JP2810057B2 (en) Aluminum bearing alloy
JPS60230952A (en) Sliding aluminum alloy
GB2285059A (en) A tin-base white metal bearing alloy
JP3351181B2 (en) Wear-resistant aluminum alloy sliding member
JPS627258B2 (en)
JPS6160906B2 (en)
JPH09202932A (en) Sliding member made of al alloy and plain bearing
JPS5844140B2 (en) Composite sliding material
JPH08157993A (en) Sliding member and plain bearing, made of al-sn alloy
JP3776228B2 (en) Heat treatment reinforced aluminum sliding material and method for producing the same
JP2863900B2 (en) Copper-based double-layer bearing
JPS58113342A (en) Bearing aluminum alloy