KR910003109B1 - 전기발전 설비를 순환하는 응축물의 가스제거장치 - Google Patents
전기발전 설비를 순환하는 응축물의 가스제거장치 Download PDFInfo
- Publication number
- KR910003109B1 KR910003109B1 KR1019860007836A KR860007836A KR910003109B1 KR 910003109 B1 KR910003109 B1 KR 910003109B1 KR 1019860007836 A KR1019860007836 A KR 1019860007836A KR 860007836 A KR860007836 A KR 860007836A KR 910003109 B1 KR910003109 B1 KR 910003109B1
- Authority
- KR
- South Korea
- Prior art keywords
- condensate
- steam
- condenser
- vapor
- degassing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0005—Degasification of liquids with one or more auxiliary substances
- B01D19/001—Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K9/00—Plants characterised by condensers arranged or modified to co-operate with the engines
- F01K9/02—Arrangements or modifications of condensate or air pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D11/00—Feed-water supply not provided for in other main groups
- F22D11/006—Arrangements of feedwater cleaning with a boiler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
- F28B9/10—Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Physical Water Treatments (AREA)
Abstract
내용 없음.
Description
제1도는 개략적인 설비의 도해.
제2도는 제1도의 A-A선에 따른 응축기의 확대단면도이다.
* 도면의 주요부분에 대한 부호의 설명
1 : 증기발생기 2 : 터어빈
3 : 응축기 4 : 응축 공간
6 : 응축물 수집용기 7 : 수위
8, 12 : 펌프 11, 13 : 예열기
20, 21, 22 : 벽 24 : 흐름챤넬
25 : 증기세척(소기)실 26 : 증기 분무 유닛
29 : 증기균형개구
본 발명은 주 순환부가 본질적으로 증기 발생기, 터어빈 응축기, 고, 저압 예열기 및 필요한 순환펌프로 구성되는 전기 발전설비를 순환하는 응축물의 가스제거를 위한 장치에 관한 것이다.
공급수에 용해된 산소, 공급수에 의해 수반된 용해된 동 및 기타 부식물이 가압수 반응 설비의 증기 발생기에서 부식을 촉진하는 작용제로 간주되어 왔다. 이런 이유로, 공급수 내의 산소함량을 가능한 적게 유지하고, 공급수 회로내의 모든 동합금관의 대체에 의해 용해된 동을 배제하며 또한 증기 발생기 전에서 부식물을 분리하기 위해 최근들어 많은 노력이 있었다. 이것들은 1,000MW급의 발전소의 증기 발생기가 대략 100만 달러의 비용을 요구하기 때문에 더욱 중요한 것이다. 공급수내의 산소함량의 감축은 또한 공급수 열(train) 및 예열기의 부식을 감소시킨다.
산소는 공기가 물과 접촉하는 때는 언제나 공급수 또는 응축물 내에 용해된다. 이런 경우는 예를 들면 다음과 같다:
-설비의 냉각 개시중, 설비의 모든 부품이 응축물로 충전되기 전에 공기압하에 있고 또한 개시배기(start-up evacuation)에 의한 공급수/증기 회로로부터 모든 공기를 제거한다는 것은 불가능하다:
-저부하 동작중, 도입된 공기에 대한 진공펌프의 흡입용량이, 경제적 사정으로 그리고 실현 가능성의 이유로, 증기와 함께 적당하게 세척되어지는 응축기군의 모든 부분을 위해 충분히 크게 선택될 수 없다:
-정상부하 동작중, 적당한 흡입용량에도 불구하고, 공기 농도는 응축물의 단부쪽을 향해, 이를테면, 산소농도 결과치를 측정할 수 있는 공기 냉각기쪽을 향해 크게 된다.
-정상부하 동작중에 조차 다수의 응축기는 공기가 수집되는 구역을 가진다:
-가공수의 처리중, 세정된 염분이 제거된 가공수(make-up water)는 이산화탄소를 추방하기 위해 공기와 함께 씻겨지고 따라서 100% 공기와 함께 포화된다.
동은 예컨데, 알루미나 및 산소의 존재에서 동합금의 가습 금속면으로부터 용해되어 이들 금속면의 부식에 의해 공급수에 운반된다. 주로 배출 주기중 부식물과 기타 불순물은 공급수에서 수집된다.
전문가들은 일반적으로 최대 산소함량의 목표치를 설비의 범위 전체에 걸쳐 10ppb(part per billion)이하로 하여야만 한다는 견해이다.
양호한 응축기, 즉, 증명된 양호한 가스제거능력을 갖는 응축기들은 40 내지 100%의 부하 범위에서 농축물이 5ppb이하의 산소함량을 가진다는 것은 알았다. 가공수는 자체의 응축기에서 가스가 제거된다. 그러나, 그와 같은 설비의 냉각 개시중 및 저부하 동작중, 응축기의 온수조 내에서는 약 70ppb가 측정되었다.
이들 산소함량은 더 이상 감소되어야만 한다.
부식문제를 해결하기 위한 다음의 제안이 1983년 6월 플로리다주 오르란도의 EPRI응축기 학교에서 거론되었다:
a) 응축기의 관에 걸쳐 재순환되는 공급수를 분무에 의해 급작 가스제거 및 저부하 가스제거화.
이 생각은 단지 이용 가능한 흡입 용량이 10ppb이하의 산소함량에 필요한 흡입용량보다 크다면 좋은 결과를 준다.
이것은 단지 30 내지 40%의 부하에서 기대될 수 있다.
그 이유는, 응축물이 응축물에 의해 횡단된 패스의 어떠한 부분에서 비교적 큰 공기 농도의 구역을 통과하지 않는 경우 응축기군에 가열된 응축물 분사만이 기대효과를 갖는다. 더 나아가, 응축물의 재순환에 의해 공급수 회로의 전체를 세척하기란 불가능하다는 것이다.
b) 혼합에 의한 응축을 이용하면서 흡입류의 증기함량을 감소시키므로써 저부하 범위에서 흡입용량을 증가시킴. 그러나, 혼합에 의한 응축이 흡입 혼합물로부터 수증기 부분을 단지 응축시킬 수 있다; 흡입유닛은 모든 공기를 끊임없이 제거하여야만 하고 그리고 이것은 응축기의 "아이들링 압력"위에 있는 응축기 압력에서만 일반적으로 가능하다.
c) 포함된 물방울 형상에 의해 온수조 내의 응축물의 여분의 가스제거화. 이와 같은 물방울 형상의 경우, 그들의 내포물에 충분한 높이가 이용되어져야만 한다.
d) 수위하에 있는 증기를 송풍시키므로써 온수조 내의 응축물의 여분의 가스 제거화. 증기 분출은 응축물의 충분히 큰 커버링과 응축물 내의 충분히 미세한 증기 분포를 요구한다.
특허청구 범위에서 특징화한 본 발명의 목적은 특히 정상동작 부하를 위해 그리고 이를 부분 부하로 최적하 하기위해, 증기 발생기 부식 문제들로 인해 특별히 요구된 응축물 또는 공급수의 가스제거를 제공하는데 그 목적이 있다.
본 발명은 따라서 설비의 개시전에 가스를 제거하기 위한 시간이 최소로 단축되고 가스 제거된 공급수가, 받아드려질 수 있는 응축기 진공의 어떠한 주목할만한 손실없이 동작범위 전체에 걸쳐서 제공되는 특별히 알맞은 해결을 제공한다.
본 발명의 실시예를 첨부 도면에 도시적으로 나타냈다.
본 발명을 이해하는데 필요치 않은 가령, 실질적인 증기사이클 및 파이프 기수에 필히 필요한 다수의 차단 밸브 등과 같은 설비의 모든 부분을 생략하였다. 각종 매체의 흐름 방향은 화살표로 나타냈다. 핵가열 증기 발생기는 부호 1로 나타냈다. 정상적인 동작중, 발생기에서 생성된 포화증기는 상세하게 나타내지 않은 터어빈 설비(2)내에서 응축 압력 이하로 팽창된다. 응축기(3)에서, 증기는 수냉식관군(5)쪽에 있는 응축 공간(4)에서 응결된다. 즉, 응축물은 응축물 수집 용기(6)내에 수집된다. 응축물 펌프(8)는 응축물 세척 설비(9)를 통하여 응축물을 압송하는데, 이곳으로부터 응축물은 온수조 제어 밸브(10)를 거쳐 저압 예열기(11)로 들어간다. 이에 대해 단지 일예로써 상징적으로 나타내었다.
본 예에서는, 혼합용 예열기가 없는 따라서 통상의 혼합 예열기의 가스 제거단계가 없는, 이를 테면, 미국에서 종종 볼 수 있는 설비도 역시 가능하다. 저압 예열기로부터 공급 펌프(12)는 공급수를 단지 1예만이 나타나 있는 고압예열기(13)를 거쳐 증기 발생기로 압송시킨다.
공기 냉각기역(35)은 응축역의 관군(5)내에 위치하며 이들 공기 냉각기역으로부터 비응축 가스는 어떠한 흐름부와 함께 가스 제거관(36)을 통해 추출된다. 이 추출은 진공펌프(37)에 의해 일어난다. 여기에는 진공 펌프(37)앞에 가스제거관 내에 부가의 응축기(38)가 존재하며 이것은 응축기(3)의 주냉각수보다 더 차거운 보조냉각수(39)와 함께 동작된다. 이 부가의 응축기(38)는 사이폰(40)을 통해 주 응축기(3)에 배수되게끔 되어 있다.
응축물 수집용기(6)는 중간충(29)에 의해 응축 공간(4)으로부터 분리된다. 2공간은 상호 증기 균형개구(29)에 의해 접속된다. 관군(5)에 나타나는 응축물은 중간층(38)에 우선적으로 모아진 다음 응축기의 벽의 바로 옆에 있는 홈형 응축물 배수 개구(23)를 통해 수직 하방으로 유동하여 용기(6)속으로 들어간다. 응축물은 응축기의 저부에 모아지는데, 이 응축기는 위어(14)에 의해 대격실(15)과 소격실(16)로 세분된다. 소격실(16)은 실질적인 온수조로서 통(17)을 갖추고 있다. 세분 및 오버 플로우는 한편으로는 응축물 펌프(8)에 대해 정교한 유입류 상태를 제공하며, 또 한편으로는 온수조 내의 수위 제어에 악영향을 주지 않는다.
수위 표시(삼각형)(7 및 7')는 각기 실제 수집용기 및 온수조 내의 수위를 나타낸다.
온수조는 경제벽(18 및 19)에 의해 대격실(15)로부터 격리된다. 경계벽은 수집용기의 밑바닥으로부터 중간층(28)의 하면까지 신장한다.
응축물은 대격실 내의 특정의 통로를 따른다. 이 목적을 위해, 실제 흐름 챤넬(24)가 벽(20, 21 및 22)에 의해 형성되며 이것은 위어(14)에서 종단한다. 흐름을 한정하는 벽돌은 또한 수집용기의 저부로부터 중간층(28)의 하면까지 신장한다. 실제 가스제거는 이 챤넬(24)내에서 행해진다.
가장 원만한 가스 제거를 위한 크기들을 수치적인 예를 들어 설명하겠다. 위어는 흐름 챤넬 내 즉 수집용기내의 물의 높이가 1,000㎜가 되는 크기이다. 응축기의 저부와 중간층 간의 전체 높이는 대략 1,400㎜로 하여서 400㎜의 명백한 높이를 갖는 주변 폐쇄형 증기 세척실(25)이 수위(7), 중간층(28) 및 벽돌 간에 형성되도록 한다.
이미 언급한 바 있는 증기 균형개구(29)가 흐름 챤넬에 대한 입구 영역내의 중간층(28)에 마련된다. 중간층(28)이 전체가 관형인 응축물 영역 밑을 통과하는 도시된 구조의 변경예로서, 실질적으로 가스가 제거된 수집용기 내의 응축물과 함께 혼합된 일단(bundle)으로부터 침전하는 응축물을 피하기 위하여, 흐름 챤넬을 단지 덮어버리는 것도 가능하다. 전 응축기의 폭에 걸쳐 신장하여 있는 응축물 배수개구(23)는 생략할 수 있으며, 1공동장치 내에서 증기 균형 개구(29)를 응축물 배수개구와 결합시키는 것도 가능하다.
도시한 예에서, 개구(29)는 굴뚝으로서 설계되었다(제1도). 이것은 판에 의해 응축물이 담겨지는 것을 방지하는 것이다.
즉, 증기류에 의해 도입된 증기세척실(25)의 응축물은 하부 충격판에서 분리된다.
고려된 전형적인 설비 내의 순환응축물의 최소량은 대략 40㎏/sec이다. 챤넬폭은 흐름 챤넬에서 최적으로 가스를 제거할 목적으로 초당 0.2m의 응축물 속도를 가지게끔 선택된다.
실질적인 가스 제거는 증기 분무 유닛(26)내에서 발생된 증기기포에 의해 이루어진다. 이들 유닛은 액체와 증기를 조건으로 하는 시판용의 2-상 노즐로 하는 것이 바람직하다. 이들은 대략 직경 1㎜의 증기 기포가 출구에서 형성되는 크기로 되어 있다. 0.5 내지 2㎜의 직경을 가지는 증기 기포가 근본적으로 적절하다. 이들 노즐 몇개가 흐름 챤넬(24)내에서 약 800 내지 1000㎜의 간격으로 배치된다. 이들은 응축물의 유동방향으로 유입류 역에서 시작해서 위어(14)의 영역에서 종료하면서 번갈아서 위치한다. 노즐들은 수위(7) 및 500 내지 1000㎜의 깊이, 가급적이면 900㎜의 길이로 고정시킨다. 이들의 출구는 여러가지 이유중, 이들이 응축물을 솟아오르게 하는데 경과되는 시간을 증가시키기 위해 각 케이스마다 수평방향으로 향하게 되어 있다.
각 노즐에 대한 공급은 수관(27)에 공급수 라인으로부터 관(39)을 통해 분기되는 순환용 2중관을 통해 형성되며, 바람직하기로는 응축물 펌프(8)다음에서 생긴다. 본 예에서는, 세척수가 각 케이스에서 이용되도록 온수조 제어밸브(10)와 응축물 세척 설비(9)사이에서 공급이 이루어진다.
고축기관(31)을 수관(30)내에 위치하도록 하여 현존하는 수압을 기포 발생을 위한 노즐 전에서 필요한 압력 이하로 고축시킨다. 순환용 2중관의 증기관(32)은 대응하는 압력을 가진 증기관(33)에 연결되고, 압력은 다시 감소시관에서 생성된다. 자체의 증기원은 몇개의 형식으로도 가능하다. 따라서 보조 증기 시스템(도시하지 않았음)을 구멍내게 하는 것도 가능하다. 이 시스템은 보일러(1)내의 실제 증기 발생전에 이미 작동되어지는 것으로서, 보조시스템은 보조증기 및/또는 스터핑 박스 증기(stuffing box steam)의 준비를 위해 필요한 것이다. 기타 가능한 증기원은 터어빈 설비(2)로부터 탭형 증기 또는 생증기(live steam)이다. 이 경우 이 터어빈 설비는 단지 저 산소 증기가 각 케이스에서 확실하게 분사되게 하는데 필요한 것이다.
가스제거 과정은 본 설비의 개시 절차를 이용하면서 기술된다. 따라서 본 설비가 완전히 충전된, 이를 테면 전 예열기 라인이 폐쇄형 증기 발생기 절연 밸브(43)의 바로 앞 위치까지 충전된 것을 가정한다. 응축물 펌프는 이때 응축물 펌프의 최소율, 이를 테면 공칭 부하율의 대략 20%을 이용하면서 최소율의 관(41)을 거쳐 물을 순환시킨다. 총비율의 믈이 응축물 세척설비(9)에 몇번이고 들어오게 되기 때문에, 특히 설비의 배설 주기 중, 저압 예열기(11)앞의 공급수 회로 중에 수집된 부식 생성물을 분리시키는 데는 대략 10번의 순환으로 충분하다.
공급수가 이때 표준점의 순도를 가지고 있기는 하나, 모든 공기가 개시 종료의 시기의 회로로부터 제거될 수 없기 때문에 공급수는 다수의 순환 중 산소를 풍부하게 한다.
응축물에 대한 에너지의 공급에 의해 시행된 실질적인 열적 가스제거는 이때 일어날 수 있다. 이 목적을 위해, 2-상 노즐(26)은 각기 관(27 및 32)으로부터 물과 증기로 동시에 공급된다. 사용된 형식에 따라, 노즐 전면의 압력은 1.5 내지 2.5바아 사이이다. 분사노즐에서 발생하는 압력의 감소 때문에, 도입된 응축물 부분은 증발하고 또한 도입된 증기와 함께 소정 직경의 증기 기포를 형성시키며, 이들은 응축물 전체에 걸쳐 균일하게 상승한다.
다시 언급하는 바, 지정된 물의 깊이에 대해 약 1㎜의 기포 직경이 최적이다. 그 이유는 우선, 기포가 응축기로부터 통(17)에 추출되는데 소요시간이 그다지 길지 않으며 또 한편으로는, 필요한 산소 탈착을 일으키는데 충분히 길기 때문이다. 이 산소 탈착에 대한 운동학은 충분하게 알려져 있으며 본 발명의 물질을 취급하는데는 이것은 필요치 않다.
기포의 형성에 대한 실제 증기 소모는 비교적 작다. 증기/물 질량비는 0.015 내지 0.025 사이의 값에서 변경된다. 대략 40㎏/sec의 응축물의 가스제거의 경우, 증기 소모는 약 7∼8g/sec이다.
기포가 5 내지 10초간의 체재주기 후 물의 표면에 도달하는 경우, 증기 버퍼가 증기 소기실(25)에서 생성되어 이것은 증기 균형개구(29)를 통해 이때까지 남아있는 공기와 대치된다. 개구(29)를 통해 유동하는 증기는 응축기탈기와 더불어 추출되고 보조 응축기(38)에서 침전된다.
이때에서, 새로운 대응류 장치의 특별한 잇점이 나타나기 시작한다. 통(17)의 방향으로 유동하는 응축물은 자체의 산소함량이 계속해서 줄어들도록 번갈아서 몇번 증기 기포와 교섭하게 된다. 이에 비해, 응축물로부터 빠져나오고 또한 증기 소기실(25)내의 특수 통로를 따라 안내된 세정 증기는 통(17)의 영역내에서 최저 산소 농도를 가진다. 이것이 유동함에 따라, 세정 증기내의 산소함량은 고정적으로 증가하여서 균형개구(29)의 영역에 있는 제1노즐(26) 앞에서 최대값에 달하게 된다.
필요한 수준으로 가스를 제거하는 공급수가, 예컨데, 응축물 수집용기(6)내 또는 그 다음에서 간단한 측정으로 나타낼 수 있는 10ppb보다 작은 산소함량을 나타낸다면, 주 세척 및 가스제거상은 따라서 종단에서 존재하게 된다. 다음 증기 발생기(1)의 충전이 따르고 증기 발생은 그 다음 일어난다.
설비의 개시중의 급격현상 및 이 목적에 필요한 터어빈의 바이패싱은 본 발명에 본질적인 것이 아니기 때문에 무시할 수 있다. 어떠한 부분 하중이 걸리고 있다는 것을 가정할때 응축목적상, 절대적으로 필요한 냉각수율은 단지 순환하는데 허용되는 값이다. 어떠한 부분 하중까지, 응축기의 동작중에 예컨데, 반씩 단지 일부의 하중을 주는 것이 바람직하다. 이 단계에서, 사실 최고 가능한 압력이 진공 펌프(37)의 흡입용량을 완전하게 유지하고 이용하기 위하여 응축공간(4)에 존재하는 것이 바람직하다. 이것은 도달한 증기가 응축 공간 내에서 완전히 응축될 뿐만 아니라 그 공간을 채우며 아직까지 존재하는 공기를 제거한다는 것을 의미한다. 가스제거관(36)을 통해 추출된 공기/증기 혼합물은 우선적으로 이미 언급한 바와같이 보조 냉각수(39)와 함께 동작된 보조 응축기(38)를 통해 유동하며, 이 보조 냉각수는 가급적 주 냉각수보다 낮은 온도를 가진다. 진공 펌프의 가스제거용량은 보조 응축기 내의 증기 함량의 감소에 의해 효과적으로 증가된다.
이것은 따라서 진공펌프가 항상 저부하 동작에서 부적당한 흡입 용량을 가지기 때문에 특별히 유익한 것이다. 보조 응축기(38)내에 침전된 응축물은 주 응축기로 피이드백된다; 사이폰(40)이 이목적을 위해 제공된 관내에 보조 응축기(38)와 응축 공간(4)간의 압력차 때문에 놓여진다.
바로 기술된 동작상에서, 관군(5)은 흡입 용량이 여전히 부적당하기 때문에 응축물 발생이 산소로 풍부하여 있는 공기계를 여전히 포함하고 있다. 이로 인해 응축물은 수집 용기내에서 동일한 방도로 수행되는 여분의 가스제거를 요한다.
이 목적을 위해, 증기관(32)속으로 생증기나 탭형 증기를 도입하는 것이 유익하다.
여분의 가스 제거를 위해, 이를 테면, 진공펌프(37)가 공기의 집적을 피할 수 있을 때까지, 약 40%부하의 동작상태로 남아 있는 것이 바람직하다. 그러나, 정상 부하 동작에서 조차 피할 수 없는 공기 포킷을 갖는 영역을 나타내는 열등한 응축기 설계의 경우, 여분의 가스 제거를 영구적으로 동작시켜야만 한다. 이 목적에 필요한 증기량이 터어빈 내의 팽창이나 예열에 이용될 수 없다는 사실을 내친김에 언급한다.
본 발명은 물론, 도시하고 기술한 응용예에만 국한되지 않는다. 따라서, 기술된 수평적인 증기기포 분사로부터의 일탈로서, 물의 필요 깊이가 존재한다면 수직 분사도 역시 고려될 수 있다. 이것은 예컨데, 공간 제한으로 인해 응축기 바닥에 걸쳐 충분한 면적이 없기 때문에 가스제거를 위해 분리 노즐이 이용되는 설비의 경우에 가능하다.
구불구불한 형상의 흐름 챤넬은 응축기 바닥 자체가 수준 제어형 온수조로서 작용하는 소위, 오버플로어(overfloor)장치에 특별히 받아질 수 있다. 앞서, 언급한 변형으로, 응축물은 주 가스제거 중 공급펌프(12)의 최소율로써(점선의) 관(42)을 통해 순환될 수 있다. 이에 의해 저압 예열기(11)내에 수집된 부식 생성물도 역시 응축물 세척설비(9)내에 침전된다.
마지막으로, 고압 예열기(13)와 절연 밸브(43) 사이에 분기하는 관을 통해 주 가스 제거를 위한 재순환을 수행하는 것도 받아질 수 있다. 이에 의해 예열기 라인으로부터의 모든 불순물은 제거될 수 있다.
Claims (4)
- 주 순환부가 본질적으로 증기 발생기(1), 터어빈(2), 응축기(3), 저압 및 고압 예열기(11, 13) 및 필요한 순환펌프(8, 12), 응축기의 수입용기(6)내의 수위(7)밑에 놓여 있는 증기 분무 수단(26)으로 구성된 것에 있어서, -응축물 펌프(8)로 유동하는 응축물의 흐름 챤넬(24)이 수집용기(6)의 전높이에 걸쳐 신장하는 벽(20, 21, 22)에 의해 형성되고, -응축물의 유동 방향으로 이격된 몇개의 증기 분무 수단(26)이 흐름 챤넬(24)내에 위치하며, -또한 주변 폐쇄형 세척 증기실(25)이 흐름 챤넬(24)의 수위(7)위에 제공되고, 상기 세척 증기실은 증기 균형개구(29)를 통해 응축기(3)의 응축공간(4)과 연통하며, 증기 균형개구(29)는 흐름 챤넬(24)의 유입류 영역에 놓여짐을 특징으로 하는 전기발전 설비를 순환하는 응축물의 가스제거 장치.
- 제1항에 있어서, 증기분무수단이 저산소증기 및 재순환된 응축물의 두 유체를 조건으로 하는 2-상(Two-phase)노즐임을 특징으로 하는 장치.
- 제2항에 있어서, 2-상 노즐이 수집용기(6)내의 수위(7)로부터 적어도 500㎜ 바람직하게는 약 900㎜ 아래의 위치에 놓여짐과 아울러 노즐의 출구가 수평방향을 향하도록 되어짐을 특징으로 하는 장치.
- 제2항에 있어서, 2-상 노즐이 0.5 내지 2㎜의 직경, 바람직하게는 1㎜의 직경을 갖는 증기 기포를 발생시키는 크기로 되어짐을 특징으로 하는 장치.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH409785 | 1985-09-20 | ||
CH4097 | 1985-09-20 | ||
CH04097/85-2 | 1985-09-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR870002857A KR870002857A (ko) | 1987-04-13 |
KR910003109B1 true KR910003109B1 (ko) | 1991-05-18 |
Family
ID=4269762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019860007836A KR910003109B1 (ko) | 1985-09-20 | 1986-09-17 | 전기발전 설비를 순환하는 응축물의 가스제거장치 |
Country Status (11)
Country | Link |
---|---|
US (1) | US4776170A (ko) |
EP (1) | EP0215230B1 (ko) |
KR (1) | KR910003109B1 (ko) |
CA (1) | CA1277877C (ko) |
DE (1) | DE3662612D1 (ko) |
ES (1) | ES2002361A6 (ko) |
FI (1) | FI89678C (ko) |
IN (1) | IN168650B (ko) |
PL (1) | PL154367B1 (ko) |
YU (1) | YU46022B (ko) |
ZA (1) | ZA867137B (ko) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3717521A1 (de) * | 1987-05-04 | 1988-11-17 | Siemens Ag | Kondensator fuer den wasser-dampf-kreislauf einer kraftwerksanlage, insbesondere kernkraftwerksanlage |
JPH04121401A (ja) * | 1990-09-12 | 1992-04-22 | Hitachi Ltd | コンバインドサイクル発電プラント |
US5165237A (en) * | 1991-03-08 | 1992-11-24 | Graham Corporation | Method and apparatus for maintaining a required temperature differential in vacuum deaerators |
DE4302486A1 (de) * | 1993-01-29 | 1994-08-04 | Abb Patent Gmbh | Verfahren und Vorrichtung zum Betrieb des Wasser-Dampf-Kreislaufs eines Wärmekraftwerkes |
US5495752A (en) * | 1995-02-01 | 1996-03-05 | Townsend; Johnnie V. | Erosion detector for a feed water steam nozzle |
DE19549139A1 (de) * | 1995-12-29 | 1997-07-03 | Asea Brown Boveri | Verfahren und Apparateanordnung zur Aufwärmung und mehrstufigen Entgasung von Wasser |
US20060266042A1 (en) * | 2005-05-27 | 2006-11-30 | Levine Michael R | Submerged condenser for steam power plant |
US7895839B2 (en) * | 2005-12-07 | 2011-03-01 | Steven Richard Miller | Combined circulation condenser |
CN101825360A (zh) * | 2010-05-10 | 2010-09-08 | 贵阳铝镁设计研究院 | 氧化铝生产中高压溶出稀释槽乏汽回收利用方法及装置 |
CA2742565C (en) * | 2011-06-10 | 2019-04-02 | Imperial Oil Resources Limited | Methods and systems for providing steam |
WO2013117730A2 (en) * | 2012-02-10 | 2013-08-15 | Alstom Technology Ltd | Water/steam cycle and method for operating the same |
CA2780670C (en) | 2012-06-22 | 2017-10-31 | Imperial Oil Resources Limited | Improving recovery from a subsurface hydrocarbon reservoir |
KR101392140B1 (ko) * | 2012-10-12 | 2014-05-07 | 한국수력원자력 주식회사 | 원자력 발전소 피동보조급수계통의 충수 장치 |
US10502492B2 (en) * | 2014-01-23 | 2019-12-10 | Mitsubishi Hitachi Power Systems, Ltd. | Condenser for condensing steam from a steam turbine |
EP3739176A1 (en) * | 2019-05-15 | 2020-11-18 | Siemens Aktiengesellschaft | Power plant and water cleaning method for a once-through water/steam cycle of a power plant |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3327774A (en) * | 1965-06-11 | 1967-06-27 | Ingersoll Rand Co | Steam surface condenser |
FR2229031B1 (ko) * | 1973-05-07 | 1975-12-26 | Cem Comp Electro Mec | |
DE2323533A1 (de) * | 1973-05-10 | 1974-11-28 | Rau Dieter | Behang, insbesondere rolladen, jalousie oder dgl |
FR2541441A1 (fr) * | 1983-02-22 | 1984-08-24 | Delas Weir Sa | Dispositif de degazage de condensats installe dans un puits de condenseur de centrale electrique |
CH665451A5 (de) * | 1983-07-19 | 1988-05-13 | Bbc Brown Boveri & Cie | Verfahren zum reinigen und entgasen des kondensates/speisewassers im kreislauf einer stromerzeugungsanlage. |
JPS60169084A (ja) * | 1984-02-14 | 1985-09-02 | Hitachi Ltd | 復水器の脱気方法と装置 |
DE29605135U1 (de) * | 1996-03-20 | 1996-06-13 | Union Special GmbH, 71282 Hemmingen | Nähmaschine mit einer Schneidvorrichtung |
-
1986
- 1986-07-16 EP EP86109757A patent/EP0215230B1/de not_active Expired
- 1986-07-16 DE DE8686109757T patent/DE3662612D1/de not_active Expired
- 1986-08-14 PL PL1986261040A patent/PL154367B1/pl unknown
- 1986-08-25 YU YU147986A patent/YU46022B/sh unknown
- 1986-09-09 IN IN724/MAS/86A patent/IN168650B/en unknown
- 1986-09-10 US US06/905,511 patent/US4776170A/en not_active Expired - Lifetime
- 1986-09-10 CA CA000517900A patent/CA1277877C/en not_active Expired - Fee Related
- 1986-09-17 KR KR1019860007836A patent/KR910003109B1/ko not_active IP Right Cessation
- 1986-09-19 FI FI863799A patent/FI89678C/fi not_active IP Right Cessation
- 1986-09-19 ZA ZA867137A patent/ZA867137B/xx unknown
- 1986-09-19 ES ES8602054A patent/ES2002361A6/es not_active Expired
Also Published As
Publication number | Publication date |
---|---|
PL261040A1 (en) | 1987-06-29 |
ES2002361A6 (es) | 1988-08-01 |
EP0215230B1 (de) | 1989-03-29 |
EP0215230A1 (de) | 1987-03-25 |
FI89678B (fi) | 1993-07-30 |
FI89678C (fi) | 1993-11-10 |
CA1277877C (en) | 1990-12-18 |
KR870002857A (ko) | 1987-04-13 |
DE3662612D1 (en) | 1989-05-03 |
US4776170A (en) | 1988-10-11 |
FI863799A0 (fi) | 1986-09-19 |
YU147986A (en) | 1988-08-31 |
YU46022B (sh) | 1992-12-21 |
FI863799A (fi) | 1987-03-21 |
IN168650B (ko) | 1991-05-11 |
ZA867137B (en) | 1987-05-27 |
PL154367B1 (en) | 1991-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910003109B1 (ko) | 전기발전 설비를 순환하는 응축물의 가스제거장치 | |
US3736234A (en) | High-purity distilled water producing apparatus | |
JPS6038506A (ja) | 発電プラントの循環系中の復水/給水を浄化および脱気する方法 | |
US3979220A (en) | Method for treating and rinsing metal articles | |
US4511376A (en) | Method of separating a noncondensable gas from a condensable vapor | |
US3892548A (en) | Apparatus for degassing a condenser operating in a thermal cycle | |
US4138468A (en) | Method and apparatus for producing or recovering alkanolamine from a mixture containing oxazolidone | |
CN216426792U (zh) | 一种剩余氨水蒸氨处理设备 | |
AU704083B2 (en) | Integral deaerator for a heat pipe steam condenser | |
KR0117732Y1 (ko) | 폐수처리용 농축기 | |
CN86101425A (zh) | 不用水蒸汽的大气式热力除氧方法 | |
US4927494A (en) | Apparatus for preparing high-concentration alkali | |
SU1262252A1 (ru) | Теплообменник | |
KR101040013B1 (ko) | 열회수 방식을 이용한 고효율 순수 생성장치 | |
RU2272959C2 (ru) | Способ термической деаэрации воды в деаэраторе котельной установки и устройство для его осуществления | |
US4830707A (en) | Method and apparatus for preparing high-concentration alkali | |
JP3636519B2 (ja) | 復水器 | |
JPS635826Y2 (ko) | ||
SU1147697A1 (ru) | Деаэрационна установка | |
SU1747842A1 (ru) | Теплова труба | |
SU1373689A1 (ru) | Деаэрационна колонка | |
CN117403025A (zh) | 一种连铸结晶器与转炉锅炉的热量交换系统及方法 | |
SU1052823A1 (ru) | Конденсатосборник деаэрационного конденсатора | |
DE102009007276A1 (de) | Behälter für Speisewasser | |
Bruce | Five Years of Experience With Desalinization at Morro Bay |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20030422 Year of fee payment: 13 |
|
LAPS | Lapse due to unpaid annual fee |