KR910000560B1 - Method of manufacturing a cylinder liner - Google Patents

Method of manufacturing a cylinder liner Download PDF

Info

Publication number
KR910000560B1
KR910000560B1 KR1019840005470A KR840005470A KR910000560B1 KR 910000560 B1 KR910000560 B1 KR 910000560B1 KR 1019840005470 A KR1019840005470 A KR 1019840005470A KR 840005470 A KR840005470 A KR 840005470A KR 910000560 B1 KR910000560 B1 KR 910000560B1
Authority
KR
South Korea
Prior art keywords
cylinder liner
liner
gas
cylinder
mild steel
Prior art date
Application number
KR1019840005470A
Other languages
Korean (ko)
Other versions
KR850002111A (en
Inventor
토미스 노만
Original Assignee
에이이 피엘씨
원본미기재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이이 피엘씨, 원본미기재 filed Critical 에이이 피엘씨
Publication of KR850002111A publication Critical patent/KR850002111A/en
Application granted granted Critical
Publication of KR910000560B1 publication Critical patent/KR910000560B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners

Abstract

내용 없음.No content.

Description

실린더 라이너의 제조방법Manufacturing method of cylinder liner

본 발명은 관련피스톤과 피스톤링에 대하여 내마모성을 갖도록 연강으로 만든 실린더 라이너의 내측 피스톤 계합면을 처리하는 것으로 구성된 내연기관용 실린더 라이너의 제조방법에 관한 것이다.The present invention relates to a method for producing a cylinder liner for an internal combustion engine, which comprises processing an inner piston engagement surface of a cylinder liner made of mild steel to have abrasion resistance to an associated piston and piston ring.

다수의 내연기관에 있어서의 피스톤은 엔진블록에 통상적으로 압입, 수축 또는 삽입되는 원통형 건식 라이너로 형성된 실린더내에서 왕복운동한다. 실린더 라이너의 내측표면(또는 "내경")은 관련 피스톤과 접촉하므로 마모 및 스커핑(scuffing)되기 쉽다. 이외에 건식 라이너는 관련 엔진블록에 대하여 프레트(fret)될 수 있으므로 만족스러운 건식 실린더 라이너는 그러한 마모에 대하여 내마모성을 가지며 동시에 관련 엔진블록에 용이하게 압입 또는 미끄러져 들어갈 수 있고 또 관련 엔진 블록에서 용이하게 분해될 수 있어야만 한다.Pistons in many internal combustion engines reciprocate in a cylinder formed of a cylindrical dry liner that is typically pressurized, retracted or inserted into the engine block. The inner surface (or " inner diameter ") of the cylinder liner is in contact with the associated piston and therefore prone to wear and scuffing. In addition, dry liners can be freted relative to the associated engine block, so that a satisfactory dry cylinder liner is abrasion resistant to such wear and at the same time can be easily pushed in or slipped into the associated engine block and in the associated engine block. It must be able to be disassembled.

그와같은 라이너에 통상 사용되는 한가지 재료는 저탄소 연강이지만, 그러나 이 재료는 만족스러운 내마모특성을 갖고 있지 않다. 이 때문에 내마모특성을 개선하기 위하여 여러 가지 기술이 사용되어 왔다. 그와같은 한가지 기술은 연강보다 경질이며 내마모성이 큰재료를 사용하는 것이다. 예컨대 니켈, 크롬 및 몰리브덴 함량이 높은 주철 또는 강철은 특히 경화 또는 탬퍼링할 때 사용될 수 있다. 그러나 이들은 큰 내마모성을 가지고 있음에도 불구하고, 그들의 연성이 연강보다 휠씬 낮아 이들은 필요한 완성된 형상으로 기계 가공하기가 곤란하다는 단점이 있다. 이외에 그와같은 재료를 사용하여 완성된 실린더 라이너는 취성이 있을 수 있으며 이는 라이너가 실린더 블록에 압입될 때 파괴될 수 있다.One material commonly used in such liners is low carbon mild steel, but this material does not have satisfactory wear resistance. For this reason, various techniques have been used to improve wear resistance. One such technique is to use materials that are harder than mild steel and more wear resistant. Cast iron or steel, for example high in nickel, chromium and molybdenum content, can be used especially when hardening or tampering. However, although they have great abrasion resistance, their ductility is much lower than that of mild steel, and they have a disadvantage in that it is difficult to machine the required finished shape. In addition, cylinder liners completed using such materials may be brittle and may break when the liner is pressed into the cylinder block.

제2의 기술은 연강 또는 주철로 형성된 실린더 라이너에 경질표면층을 제공하는 것이다. 이러한 층중의 하나가 라이너의 내경에 있는 경질 크롬 도금층이다. 그러나 크롬도금은 비경제적인 방법이기 때문에 라이너의 비용이 많이들고 또 그와같은 도금은 오일을 용이하게 유지하지 못하므로 운전중 스커핑 되기 쉽다는 단점이 있다. 이외에 크롬도금은 300℃이상의 온도에서 연화될 수 있기 때문에 크롬도금의 내마모성이 감소되어 비용이 추가되는 마무리가공을 필요로 한다. 따라서 별도의 경질 표면처리는 적용하는 만큼에 상응하여 추가 비용이 든다.A second technique is to provide a hard surface layer on a cylinder liner formed of mild steel or cast iron. One such layer is a hard chrome plated layer at the inner diameter of the liner. However, since chromium plating is an uneconomical method, the cost of the liner is high, and such plating does not easily hold oil, so it is susceptible to scuffing during operation. In addition, since chromium plating can be softened at a temperature above 300 ° C., the wear resistance of chromium plating is reduced, which requires an additional finishing process. Therefore, separate hard surface treatments are additionally costly corresponding to the application.

본 발명에 의하면, 관련 피스톤과 피스톤링에 대하여 내마모성을 갖도록 최소한 연강으로 만든 실린더 라이너의 내측 피스톤 계합면을 처리하는 것으로 구성되는 내연기관용 연강실린더 라이너를 제조하는 방법이 제공되는바, 이 방법은 실린더 라이너를 연강으로부터 최종형상으로 성형한 다음, 성형된 실린더 라이너를 공기가 배제된 체임버에 놓고, 실린더 라이너를 침탄질화하기 위하여 500∼650℃의 온도에서 25:75∼75:25(용량%)의 비율로 침탄가스와 함질소가스의 기체혼합물을 체임버에 공급하는 것을 특징으로 한다.According to the present invention, there is provided a method for producing a mild steel cylinder liner for an internal combustion engine, comprising processing the inner piston engagement surface of a cylinder liner made of at least mild steel to have wear resistance with respect to the associated piston and piston ring, the method comprising: a cylinder The liner is molded from mild steel to the final shape, and then the molded cylinder liner is placed in an air free chamber and 25:75 to 75:25 (volume%) at a temperature of 500 to 650 ° C. to carburize the cylinder liner. It is characterized by supplying a gas mixture of carburized gas and nitrogen-containing gas in the ratio.

본 발명을 실시예에 의하여 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

[실시예 1]Example 1

건식 실린더 라이너를 저탄소강으로 제조한다. 예컨대 재료는 다음같은 조성을 가질 수 있다.Dry cylinder liners are made of low carbon steel. For example, the material may have the following composition.

Figure kpo00001
Figure kpo00001

니켈, 크롬, 몰리브덴 : 흔적원소(양적으로 표현하기 곤란)로서 또는 상당히 낮은 합금원소 첨가물로서 존재할 수 있음.Nickel, chromium, molybdenum: May exist as trace elements (difficult to express quantitatively) or as fairly low alloying element additives.

나머지 : 철Rest: iron

이러한 재료의 강편(billet)을 적당히 성형된 다이를 통하여 먼저 펀칭, 인발 또는 압출하여 원통형 블랭크(blank)를 제조한다. 그 다음 이 블랭크를 필요에 따라 단부플랜지를 기계가공하고 원통형 내측 및 외측표면을 필요한 칫수로 형성함으로써 실린더 라이너를 최종형상으로 가공한다.A billet of this material is first punched, drawn or extruded through a suitably shaped die to produce a cylindrical blank. This blank is then machined into the final shape by machining the end flanges as necessary and forming the cylindrical inner and outer surfaces with the required dimensions.

그 다음 성형된 실린더 라이너를 공기가 배제된 체임버에 놓는다. 그 다음 500∼650℃의 온도에서 암모니아와 같은 첨탄가스를 체임버에 공급한다. 이들 두 가스의 비율, 즉 침탄가스에 대한 함질소가스의 비율은 비록 암모니아와 발열형 탄화수소 가스로 시험한 결과 50:50(용량%) 또는 60:40(용량%)의 비율이 향상된 결과를 보여주었음에도 불구하고 25:75(용량%)-75:25(용량%)로 할 수 있다. 이들 가스는 실린더 라이너의 내·외측 표면과 접촉하고, 이들 가스로부터 탄소와 질소는 이들 표면으로부터 25-20㎛ 두께의 박층(소위 "입실론")을 형성하는 라이너의 연강으로 확산하는데, 확산은 입실론층으로부터 라이너의 동체로 일어난다. 특별한 재료에 대하여, 총 침투깊이는 가스가 공급되는 시간에 따라 다르며, 이는 예컨대 10㎛ 두께의 "입실론(epsilon)"층 및 0.1-0.3mm의 총 침투길이를 제공하도록 조절될 수도 있다. 예컨대 시간은 2-4시간일 수 있다. 800HV이상의 표면경도는 모재의 경도에 대하여 점진적이면서도 비균일하게 감소시키므로서 달성될 수 있다. 이 경도는 550℃까지의 조작온도에 라이너를 연속노출시킴에 따라 유지된다.The molded cylinder liner is then placed in an air free chamber. Then, at a temperature of 500 to 650 ° C, a noble gas such as ammonia is fed to the chamber. The ratio of these two gases, that is, the ratio of nitrogen-containing gas to carburizing gas, shows that the ratio of 50:50 (% by volume) or 60:40 (% by volume) is improved even when tested with ammonia and pyrogenic hydrocarbon gas Although given, it can be 25:75 (% by volume) -75: 25 (% by volume). These gases come into contact with the inner and outer surfaces of the cylinder liner, from which carbon and nitrogen diffuse from these surfaces into the mild steel of the liner, which forms a thin layer (so-called "epsilon") of 25-20 μm thickness, the diffusion being From the layer to the fuselage of the liner. For a particular material, the total depth of penetration depends on the time the gas is supplied, which may be adjusted to provide, for example, a 10 μm thick “epsilon” layer and a total penetration length of 0.1-0.3 mm. For example, the time may be 2-4 hours. Surface hardness above 800 HV can be achieved by gradual and non-uniform reduction in the hardness of the base material. This hardness is maintained as the liner is continuously exposed to operating temperatures up to 550 ° C.

그다음 실린더 라이너를 체임버에서 옮겨서 어떠한 더 이상의 가공단계를 거치지 않고 즉시 사용할 수 있도록 준비한다. 실린더 라이너는 경질의 내마모성 외부표면 및 연성코어를 갖고 있다. 뿐만 아니라, 이 처리 때문에 라이너의 피로강도가 현저히 증가한다.The cylinder liner is then removed from the chamber and ready for immediate use without any further processing steps. The cylinder liner has a hard wear resistant outer surface and a flexible core. In addition, this treatment significantly increases the fatigue strength of the liner.

이는 플랜지가 라이너에 제공되고 라이너의 외부로 현저히 돌출하는 경우 특히 중요할 수 있는데, 그 이유는 큰 피로강도는 플랜지의 피로강도를 증가시킴으로서 플랜지가 파괴되고 또 플랜지 대역에서 균열이 일어나는 사고를 감소시키기 때문이다.This can be particularly important if the flange is provided on the liner and protrudes significantly out of the liner, because the large fatigue strength increases the fatigue strength of the flange, thereby reducing the risk of the flange breaking and cracking in the flange zone. Because.

[실시예 2]Example 2

건식 실린더 라이너를 실시예 1과 관련하여 기술한 어느 방법으로 0.18%의 탄소함량을 갖는 연장으로 제조하였다. 그 다음 성형된 라이너를 실시예 1과 관련하여 기술한 바와 같이 공기가 배제된 체임버에 놓고 침탄질화 하였다. 온도는 57℃였고 처리시간은 3시간이었다.Dry cylinder liners were prepared in extensions having a carbon content of 0.18% by any of the methods described in connection with Example 1. The molded liner was then carburized and placed in an air free chamber as described in connection with Example 1. The temperature was 57 ° C. and the treatment time was 3 hours.

처리후, 라이너를 신속히 가스냉각시킨 다음 체임버에서 옮겨서 조사한 결과 라이너의 내경 및 외측표면은 동일한 침탄질화 층을 가졌다. 0.04mm 두께의 백색표면인 "입실론"층이 총 실측 침투깊이 0.3mm중 0.2mm이상의 깊이까지 페라이트 결정내의 침상구조인 질화철의 복합구조와 겹쳐졌다. 체적구조에 있어서, 경도는 표면층 바로아래의 540HV로부터 0.15mm 깊이에서 380HV로 감소되었다. 재료의 코어경도는 표면아래의 0.35mm에서 160/178HV였다.After treatment, the liner was rapidly gas cooled and then moved out of the chamber and examined and the inner and outer surfaces of the liner had the same carburizing layer. A 0.04 mm thick white surface of the "ipsilon" layer overlaps the composite structure of iron nitride, which is a needle-like structure in ferrite crystals, up to 0.2 mm in depth of 0.3 mm in total measurement depth. In the volume structure, the hardness decreased from 540 HV just below the surface layer to 380 HV at a depth of 0.15 mm. The core hardness of the material was 160/178 HV at 0.35 mm below the surface.

그 다음 상기와 같이 처리한 실린더 라이너를 터어보차지된(turbo-charged)디이젤 기관에 사용하였다. 300시간 운전후 라이너 표면의 마모는 무시할 수 있는 정도였다. 오일 소모는 연료소모의 0.5%로서 만족할 수 있었으며 동력은 운전후 유리같은 외관을 가진 낮은 마찰의 라이너 표면으로 인하여 미처리 실린더 라이너보다 약 1%컸다. 550시간후 오일소모는 피스톤링의 설치로 인하여 연료소모의 0.7%까지 서서히 증가하였으나 여전히 만족할만하였다. 동력은 연료보급의 증가없이 1.3%까지 증가하였다.The cylinder liner treated as above was then used in a turbo-charged diesel engine. After 300 hours of operation, wear on the liner surface was negligible. Oil consumption could be satisfied as 0.5% of fuel consumption and power was about 1% greater than the untreated cylinder liner due to the low friction liner surface with a glassy appearance after operation. After 550 hours, the oil consumption slowly increased to 0.7% of fuel consumption due to the piston ring installation, but still satisfactory. Power increased by 1.3% without increasing fuel supply.

상술한 제조방법 및 이와같은 제조된 실린더 라이너는 많은 중요한 장점을 갖고 있다. 라이너가 연성 연강으로 제조되고 또 모든 기계가공은 침탄질화를 행하기전에 수행되기 때문에, 실린더 라이너의 성형은 용이하고 신속하게 달성될 수 있다. 적당한 연강 및 주철은 값이 싸기 때문에 실린더 라이너의 비용이 감소된다. 침탄질화 단계는 실린더 라이너에 내마모성이 큰 표면을 제공하며, 이는 상승한 온도(550℃까지)에서 여전히 효과적이며, 또 상당한 깊이(00.1∼0.3mm)까지 표면을 침투한다.The above-described manufacturing method and the cylinder liner manufactured as described above have many important advantages. Since the liner is made of soft mild steel and all the machining is carried out before carburizing, nitriding of the cylinder liner can be achieved easily and quickly. Since moderate mild steel and cast iron are inexpensive, the cost of the cylinder liner is reduced. The carburizing step gives the cylinder liner a high wear resistant surface, which is still effective at elevated temperatures (up to 550 ° C.) and penetrates the surface to significant depths (00.1 to 0.3 mm).

라이너는 중심이 연성인 코어로 유지되기 때문에 취성파괴의 위험없이 엔진블록에 압입될 수 있다. 외측표면은 엔진블록과의 프레팅에 대하여 내마모성을 갖는다. 내측피스톤 삽입면은 이 삽입면이 유막에 의하여 적절히 젖기 때문에 관련 피스톤과 피스톤링의 마모 및 스커핑에 대하여 내마모성을 갖는다. 또한 피스톤링이 예컨대 영국 특허 공고 제2112025호에 기술된 바와 같이 침탄질화되는 경우 특히 유익하다. 피스톤링의 경질 표면은 이에 상응하는 라이너의 경질표면이 없을때에 실린더 라이너를 마모시키는 경향이 있었다. 라이너가 습식라이너의 경우, 외부표면은 공동침식(cavitation erosion)에 대하여 좋은 내마모성을 갖는다는 것을 알았다.The liner can be pressed into the engine block without the risk of brittle fracture because the liner is held in a soft core. The outer surface is wear resistant against fretting with the engine block. The inner piston insertion surface is abrasion resistant against wear and scuffing of the associated piston and piston ring since this insertion surface is adequately wetted by the oil film. It is also particularly advantageous if the piston ring is carburized, for example as described in British Patent Publication No. 2112025. The hard surface of the piston ring tended to wear the cylinder liner in the absence of the corresponding hard surface of the liner. It has been found that when the liner is a wet liner, the outer surface has good wear resistance against cavitation erosion.

또한 상술한 바와 같이 제조한 실린더 라이너는 대기의 산화에 대한 내산화성이 증가하였으며, 따라서 포장 및 운반비용이 감소되었다.In addition, the cylinder liner prepared as described above has increased oxidation resistance to oxidation of the atmosphere, thus reducing packaging and transportation costs.

Claims (8)

관련 피스톤과 피스톤링에 대하여 내마모성을 갖도록 최소한 연강으로 만든 실린더 라이너의 내측피스톤 계합면을 처리하는 것으로 구성된 내연기관용 연강 실린더 라이너를 제조하는 방법에 있어서, 실린더 라이너를 연강으로부터 최종형상으로 성형한다음, 성형된 실린더 라이너를 공기가 배제된 체임버에 놓고, 실린더 라이너를 침탄질화하기 위하여 500-600℃의 온도에서 25:75∼75:25(용량%)의 비율로 침탄가스와 함질소가스의 기체 혼합물을 체임버에 공급함을 특징으로 하는 실린더 라이너의 제조방법.A method of manufacturing a mild steel cylinder liner for an internal combustion engine, comprising: processing an inner piston engagement surface of a cylinder liner made of at least mild steel to have abrasion resistance to an associated piston and piston ring, wherein the cylinder liner is molded from mild steel into a final shape, The molded cylinder liner is placed in an air-free chamber and a gas mixture of carburized gas and nitrogen gas at a ratio of 25:75 to 75:25 (volume%) at a temperature of 500-600 ° C. to carburize the cylinder liner. Method for producing a cylinder liner, characterized in that the supply to the chamber. 제1항에 있어서, 함질소가스가 암모니아이고 침탄가스가 발열형 탄화수소가스임을 특징으로 하는 실린더 라이너의 제조방법.The method of claim 1, wherein the nitrogen-containing gas is ammonia and the carburized gas is a pyrogenic hydrocarbon gas. 제1항에 있어서, 가스의 비율이 50:50-60:40(용량%)임을 특징으로 하는 실린더 라이너의 제조방법.The method of claim 1, wherein the ratio of gas is 50: 50-60: 40 (volume%). 제1항에 있어서, 온도가 550℃임을 특징으로 하는 실린더 라이너의 제조방법.The method of manufacturing a cylinder liner according to claim 1, wherein the temperature is 550 ° C. 제1항에 있어서, 실린더 라이너의 표면속으로 침탄질화층의 총 침투깊이가 0.1-0.3mm가 되고, 입실론 표면층의 두께가 0.005-0.020mm가 되는 시간동안 실린더 라이너를 처리함을 특징으로 하는 실린더 라이너의 제조방법.2. The cylinder according to claim 1, wherein the cylinder liner is treated for a period of time during which the total penetration depth of the carburizing layer is 0.1-0.3 mm and the thickness of the epsilon surface layer is 0.005-0.020 mm into the surface of the cylinder liner. Method for producing liner. 제5항에 있어서, 처리시간은 2-4시간임을 특징으로 하는 라이너의 제조방법.The method of claim 5 wherein the treatment time is 2-4 hours. 제1항 내지 제6항중의 어느 하나에 있어서, 침탄질화 하기전에 연강의 원통형 실린더 블랭크를 형성하고, 최종형상의 실린더 라이너로 기계가공한 다음, 최종형상의 실린더 라이너를 침탄질화함을 특징으로 하는 실린더 라이너의 제조방법.The method according to any one of claims 1 to 6, characterized in that a cylindrical cylindrical blank of mild steel is formed before carburizing, and machined into a final cylinder liner, followed by a carbonization of the final cylinder liner. Method for producing a cylinder liner. 제7항에 있어서, 원통형 실린더 블랭크를 압출 또는 프레스 또는 디이프 드로우잉 방법으로 성형함을 특징으로 하는 실린더 라이너의 제조방법.8. The method of claim 7, wherein the cylindrical cylinder blank is molded by extrusion, press or dip drawing.
KR1019840005470A 1983-09-06 1984-09-06 Method of manufacturing a cylinder liner KR910000560B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB83.23844 1983-09-06
GB838323844A GB8323844D0 (en) 1983-09-06 1983-09-06 Cylinder liners
GB23844 1983-09-06

Publications (2)

Publication Number Publication Date
KR850002111A KR850002111A (en) 1985-05-06
KR910000560B1 true KR910000560B1 (en) 1991-01-26

Family

ID=10548374

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019840005470A KR910000560B1 (en) 1983-09-06 1984-09-06 Method of manufacturing a cylinder liner

Country Status (15)

Country Link
JP (1) JPS60155666A (en)
KR (1) KR910000560B1 (en)
AU (1) AU563425B2 (en)
BR (1) BR8404455A (en)
CA (1) CA1225311A (en)
DD (1) DD236773A5 (en)
DE (1) DE3431971A1 (en)
ES (1) ES8506815A1 (en)
FR (1) FR2551499B1 (en)
GB (2) GB8323844D0 (en)
IN (1) IN162274B (en)
IT (1) IT1176665B (en)
MX (1) MX161251A (en)
TR (1) TR23244A (en)
ZA (1) ZA846990B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK16494A (en) * 1994-02-08 1995-08-09 Man B & W Diesel Gmbh Method of producing a cylinder liner as well as such liner
US7146939B2 (en) * 2004-09-14 2006-12-12 Federal-Mogul Worldwide, Inc. Anti-cavitation diesel cylinder liner
DE102007041519A1 (en) 2007-08-31 2009-03-05 Mahle International Gmbh Cylinder liner and method for its production
GB2494217B (en) 2012-01-19 2014-10-08 Libertine Fpe Ltd A linear electrical machine with a piston and axially segmented cylinder

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR925433A (en) * 1946-03-29 1947-09-03 Improvements in the manufacture of piston pins
GB662213A (en) * 1949-09-01 1951-12-05 British Piston Ring Company Lt Improvements relating to piston rings
GB1034157A (en) * 1964-02-26 1966-06-29 Gen Motors Corp Case hardening ferrous articles
GB1318887A (en) * 1969-10-31 1973-05-31 Lucas Industries Ltd Method of manufacturing high strength extruded steel components
GB1351234A (en) * 1970-07-21 1974-04-24 Nissan Motor Process for forming a soft nitride layer in a metal surface
JPS5120016B2 (en) * 1971-10-21 1976-06-22
DE2527026C3 (en) * 1975-06-18 1980-11-27 Volkswagenwerk Ag, 3180 Wolfsburg Process for producing a component with a long service life
JPS5544545A (en) * 1978-09-26 1980-03-28 Usui Internatl Ind Co Ltd Material for high pressure fuel injection pipe and manufacture thereof
DE2844170A1 (en) * 1978-10-06 1980-04-17 Wolfgang Scheibe Rebuilding of worn, wear resistant machine parts - is carried out by diffusion treatment such as nitriding, boronising, carburising or carbonitriding
JPS5623537A (en) * 1979-08-02 1981-03-05 Toshiba Corp Cylinder for internal combustion engine
JPS56133457A (en) * 1980-03-22 1981-10-19 Toyota Motor Corp Gas soft nitriding method for gear shift fork
JPH0230315B2 (en) * 1981-08-18 1990-07-05 Asahi Chemical Ind AMINRUIOFUKUMUHAISUINOSHORIHOHO
KR890001030B1 (en) * 1981-12-16 1989-04-20 Ae Plc Nitro-carburizing treatment method and metal ring

Also Published As

Publication number Publication date
IN162274B (en) 1988-04-23
IT8422552A0 (en) 1984-09-06
ES535631A0 (en) 1985-07-16
AU3277084A (en) 1985-03-14
TR23244A (en) 1989-07-21
GB2146409A (en) 1985-04-17
KR850002111A (en) 1985-05-06
ZA846990B (en) 1986-04-30
JPS60155666A (en) 1985-08-15
ES8506815A1 (en) 1985-07-16
FR2551499A1 (en) 1985-03-08
FR2551499B1 (en) 1989-06-02
IT1176665B (en) 1987-08-18
GB8323844D0 (en) 1983-10-05
DD236773A5 (en) 1986-06-18
GB8421732D0 (en) 1984-10-03
BR8404455A (en) 1985-07-30
MX161251A (en) 1990-08-24
DE3431971A1 (en) 1985-03-21
AU563425B2 (en) 1987-07-09
CA1225311A (en) 1987-08-11

Similar Documents

Publication Publication Date Title
EP1304393B1 (en) Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
US4531985A (en) Surface treatment of metal rings
DE102004043550B4 (en) Wear resistant coating, its use and method of making the same
DE10083665B3 (en) Combination of a cylinder liner and a piston ring in an internal combustion engine
US4495003A (en) Manufacturing a steel tube including tufftriding
KR20050074456A (en) Surface-carbonitrided stainless steel parts excellent in wear resistance and method for their manufacture
KR910000560B1 (en) Method of manufacturing a cylinder liner
JPH11264468A (en) Piston ring and its combination
TWI474911B (en) Thread rolling die
US5433001A (en) Method of producing piston ring
JP2000145542A (en) Piston ring for direct injection diesel engine and combination
JPS6113064A (en) Piston ring for internal-combustion engine
DE3812656A1 (en) Piston ring with a wear-resistant hard layer and a layer of nickel applied to it by plating
US4342293A (en) Valve guide and method for making same
US4484547A (en) Valve guide and method for making same
JPS641955Y2 (en)
SU1087566A1 (en) Method for improving products of structural steels
JPH0586966A (en) Wet type cylinder liner and manufacture thereof
US20230134881A1 (en) Sliding element, in particular piston ring, and method for producing same
EP0126323A2 (en) Mechanical element for the combustion chamber of a diesel engine of the type comprising sliding surfaces having wear protective layers for the running-in phase, and method for obtaining these layers
JPH1151186A (en) Piston ring and its manufacture
RU90795U1 (en) MULTICOMPONENT DISPERSION-STRENGTHENED HEAT-RESISTANT COATING
CN114737149A (en) Carbon nitrogen co-cementation surface modification method for GCr15 bearing
JPH07301149A (en) Piston and piston ring assembly
JPH11287326A (en) Piston ring for aluminum cylinder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee