JPS60155666A - Manufacture of soft steel cylinder liner for internal combustion engine - Google Patents

Manufacture of soft steel cylinder liner for internal combustion engine

Info

Publication number
JPS60155666A
JPS60155666A JP59185492A JP18549284A JPS60155666A JP S60155666 A JPS60155666 A JP S60155666A JP 59185492 A JP59185492 A JP 59185492A JP 18549284 A JP18549284 A JP 18549284A JP S60155666 A JPS60155666 A JP S60155666A
Authority
JP
Japan
Prior art keywords
cylinder liner
liner
nitrogen
gas
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59185492A
Other languages
Japanese (ja)
Inventor
ノーマン・トミズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AE PLC
Original Assignee
AE PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AE PLC filed Critical AE PLC
Publication of JPS60155666A publication Critical patent/JPS60155666A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、結合ピストン及びピストンリングの摩耗を防
止するために軟鋼シリンダーライナーの内部のピストン
使用面を処理することより成る種類の内燃機関用シリン
ダーライナーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing cylinder liners for internal combustion engines of the type comprising treating the internal piston use surface of a mild steel cylinder liner to prevent wear of the coupled piston and piston rings.

従来の技術 多くの内燃機関においては、ピストンはそれぞれ、通常
エンジンブロック中にプレス嵌めされた、収縮された又
は挿入された、一般に円筒状の乾燥ライナーによって形
成されたシリンダー内を往復する。シリンダーライナー
の内面(又は”内腔″)は、結合ピストンに接触して摩
耗及びかじり(scuffing )を受ける。また乾
燥ライナーは結合エンジンブロックも擦過しうるので、
十分に乾燥したシリンダライナーはこのような摩耗を防
止することができ、同時に結合エンジンブロック中に容
易にプレス嵌め又は滑り嵌め可能であり、かつ同ブロッ
クから取はずし可能でなければならない。
BACKGROUND OF THE INVENTION In many internal combustion engines, each piston reciprocates within a cylinder, typically formed by a generally cylindrical dry liner press-fitted, retracted, or inserted into the engine block. The inner surface (or "bore") of the cylinder liner is subject to wear and scuffing in contact with the coupling piston. Dry liners can also scratch the mating engine block, so
A well-dried cylinder liner must be able to prevent such wear and at the same time be easily press-fit or slip-fit into, and removable from, the mating engine block.

このようなライナー用に普通使用される一つの材料は低
炭素軟鋼であるが、このものは十分な耐摩耗性を有しな
い。この理由から耐摩耗性を改良するために種々の技術
が用いられてきた。
One material commonly used for such liners is low carbon mild steel, but this does not have sufficient wear resistance. For this reason, various techniques have been used to improve wear resistance.

このような技術の一つは、軟鋼よりも硬くかつ耐摩耗性
の大きい材料を使用することである。
One such technique is to use materials that are harder and more wear resistant than mild steel.

例えばニッケル、クロム及びモ刀ブデン分の高い鋳鉄又
は鋳鋼は、特に硬化されるか又は焼戻しされる場合には
使用することができる。しかしこれらの材料は高い耐摩
耗性を有するけれども、その延性が軟鋼よりも著しく小
さいという欠点を有する。さらにこのような材料から得
られた完成シリンダーライナーは脆(なる可能性があり
、該ライナーがシリンダーブロック中にプレス嵌めされ
る場合には、破壊することもある。
For example, cast iron or cast steel with a high content of nickel, chromium, and iron can be used, especially if hardened or tempered. However, although these materials have high wear resistance, they have the disadvantage that their ductility is significantly lower than that of mild steel. Additionally, finished cylinder liners obtained from such materials can be brittle and may fracture if the liner is press fit into a cylinder block.

第二の技術は、軟鋼又は鋳鉄から形成されたシリンダー
ライナー上に硬質表面層を設けることである。このよう
な層は、ライナーの内腔上の硬質クロムメッキ層である
。しかしクロムメッキは、費用の掛かる方法であって、
ライナーのコストを高めかつこのようなメッキ層は油の
保持が容易でなく、従って使用中にかじりを生じやすい
という欠点を有する。またクロムメッキ層は300℃を
越える温度で軟化してその耐摩耗性を低減しうるので費
用の増大する仕上作業を要する。また硬質表面処理は適
用するのに相当に費用が掛かる。
A second technique is to provide a hard surface layer on a cylinder liner made of mild steel or cast iron. Such a layer is a hard chrome plated layer on the lumen of the liner. However, chrome plating is an expensive method and
This increases the cost of the liner and has the disadvantage that such a plating layer does not easily retain oil and is therefore susceptible to galling during use. Also, the chrome plating layer can soften at temperatures above 300° C. and reduce its wear resistance, requiring costly finishing operations. Hard surface treatments are also fairly expensive to apply.

本発明により、結合ピストン及びピストンリングの摩耗
を防止するために、軟鋼シリンダーライナーの少なくと
も内部のピストン使用面を処理することより成る種類の
内燃機関用シリンダーライナーの製造方法において、シ
リンダーライナーを軟鋼から最終形状に成形し、次に盛
形されたシリンダーライナーを、空気の排除されたチャ
ンノζ−内に置きかつ25ニア5〜75=25(容量係
)の割合の浸炭ガスと含窒素ガスとの混合ガスを500
〜650℃の温度で前記チャンノ々−に供給して該シリ
ンダーライナーを窒素浸炭する( n1trocarb
urise )ことを特徴とする軟鋼シリンダーライナ
ーの製造方法が提供される。
According to the invention, a method for producing a cylinder liner for an internal combustion engine of the type comprising treating at least the internal piston use surface of the mild steel cylinder liner in order to prevent wear of the coupled piston and the piston ring. The cylinder liner formed into the final shape and then molded is placed in an air-excluded chamber and heated with carburizing gas and nitrogen-containing gas in a ratio of 25 nia 5 to 75 = 25 (by volume). 500 mixed gas
The cylinder liner is nitrogen carburized by feeding the cylinder liner at a temperature of ~650°C.
A method of manufacturing a mild steel cylinder liner is provided.

次間、実施例により本発明の若干の実施態様を詳述する
The following examples illustrate some embodiments of the invention.

実施例 例1 低炭素鋼から乾燥シリンダーライナーを形成する。例え
ば該材料は次の組成を有する:炭素 ’ 0.05〜0
.30 − 珪素 ’ 0.10−0.35 マンガン : 0.40〜1.4 硫黄 “ 最大0.050 燐 ° 最犬0.050 鉄 : 残り このような材料のビレット(billet )を、先づ
打抜き又は適当な形状のダイを通して引抜くか又は押出
し、又はプレス法又は深絞り成形によって一般に円筒状
のブランクを形成する。
EXAMPLE 1 A dry cylinder liner is formed from low carbon steel. For example, the material has the following composition: carbon '0.05-0
.. 30 - Silicon 0.10-0.35 Manganese: 0.40-1.4 Sulfur max 0.050 Phosphorus 0.050 Iron: The remaining billet of such material is first punched. or by drawing or extruding through a suitably shaped die, or by pressing or deep drawing to form a generally cylindrical blank.

次にこのブランクを機械加工して、端部フランジの機械
加工及び必要ならば円筒の内外面の要求寸法への何形に
よって、シリンダーライナーの最終形状にする。
This blank is then machined into the final shape of the cylinder liner by machining the end flanges and, if necessary, shaping the inner and outer surfaces of the cylinder to the required dimensions.

次に造形されたシリンダーライナーを空気が排除された
チャンバー内に置く。次にアンモニアのよう5な含窒素
ガス及び発熱性炭化水素ガスのような浸炭ガスを500
℃〜650Cの温度で前記チャンノー内に供給する。含
窒素ガス対浸炭ガスの割合は25 : 75 (容量係
)〜75:25(容量係)であってもよいが、アンモニ
ア及び発熱性炭化水素ガスに関するテストによれば、5
0 : 50 (容量係)又は60 : 40 (容量
チ)の割合が改善された結果を与えることが立証された
The shaped cylinder liner is then placed in a chamber from which air is excluded. Next, 500% of carburizing gas such as nitrogen-containing gas such as ammonia and exothermic hydrocarbon gas
It is fed into the channel at a temperature of .degree. C. to 650.degree. The ratio of nitrogen-containing gas to carburizing gas may be between 25:75 (by volume) and 75:25 (by volume), but tests for ammonia and exothermic hydrocarbon gases have shown that
It has been demonstrated that a ratio of 0:50 (volume ratio) or 60:40 (capacity ratio) gives improved results.

両ガスはシリンダーライナーの表面に接触し、両ガスか
らの炭素及び窒素は該表面からライナーの軟鋼中へと拡
散し、ライナ一本体へと拡散の起る厚さ25〜20μm
の薄層(所謂゛°エゾシロン″層)を形成する。特定の
材料の場合には、全浸透深さはガスの供給される時間に
依存し、この時間を例えば厚さ1.0μmの”ニブシロ
ン′″層及びO,l mm〜0.3 mmの全浸透を与
えるように調節することもできる。例えばガス供給時間
は2〜4時間であってもよい。800 HV以上の表面
硬度が得られ、漸次に、しかし不均等に基礎材料の硬度
まで減少する。前記表面硬度は、ライナーを引続き最高
550℃までの作業温度に曝露する際にも維持される。
Both gases contact the surface of the cylinder liner and the carbon and nitrogen from both gases diffuse from the surface into the mild steel of the liner and into the body of the liner to a thickness of 25-20 μm.
For a particular material, the total penetration depth depends on the time during which the gas is supplied, for example a 1.0 μm thick layer of "nibusilon". '' layer and a total penetration of O,l mm to 0.3 mm.For example, the gas supply time may be 2 to 4 hours.A surface hardness of more than 800 HV can be obtained. , gradually but unevenly decreases to the hardness of the base material, which surface hardness is maintained during subsequent exposure of the liner to working temperatures of up to 550°C.

次に該シリンダーライナーをチャンバーから取り出すと
、該ライナーは任意の他の仕上段階なしに即用可能であ
る。該ライナーは耐摩耗性の硬い外面と延性6部を有す
る。さらに前記処理によってライナーの疲れ強さも著し
く増大される。
The cylinder liner is then removed from the chamber and the liner is ready for use without any other finishing steps. The liner has a hard, wear-resistant outer surface and a ductility of 6 parts. Furthermore, the fatigue strength of the liner is also significantly increased by the treatment.

このことは、ライナーにフランジが設けられていてそれ
がライナーの外方に有意に突出している場合には特に重
要となりうる、それというのも高い疲れ強さはフランジ
の疲れ強さを増大し、それによってフラン・り部分にお
けるフランジの破壊範囲及び亀裂範囲を減少させるから
である。
This can be particularly important if the liner is provided with a flange that protrudes significantly outwardly of the liner, since high fatigue strength increases the fatigue strength of the flange. This is because the range of fracture and cracking of the flange at the flange portion is thereby reduced.

例2 例1に関して前記したようにして、炭素分0゜18チを
有する軟鋼から乾燥シリンダーライナーを形成した。形
成したライナーを次に空気の排除されたチャンバー内に
置き、このものに例1の記載のようにして窒素浸炭を施
した。温度は570℃であり、処理時間は3時間であっ
た。
Example 2 A dry cylinder liner was formed from mild steel having a carbon content of 0.18% as described above with respect to Example 1. The formed liner was then placed in an air-excluding chamber and subjected to nitrogen carburization as described in Example 1. The temperature was 570°C and the treatment time was 3 hours.

ライナーを処理後に速やかにガス冷却し、次にチャンバ
ーから取り出して検査した。ライナーの内腔及び外面が
均等の窒素浸炭層を有することが判った。厚さ0.04
 mmで、白色の゛°エゾシロン″表面層は、フェライ
ト結晶粒中の針状窒化鉄の複雑構造の表面をおおって0
.2 mmを越える深さになり、全浸透部0.3 mm
が観察された。
The liner was immediately gas cooled after processing and then removed from the chamber and inspected. The inner bore and outer surface of the liner were found to have a uniform nitrogen carburization layer. Thickness 0.04
mm, the white "Ezosilon" surface layer covers the surface of the complex structure of acicular iron nitride in the ferrite grains.
.. The depth exceeds 2 mm, and the total penetration area is 0.3 mm.
was observed.

内部構造においては、硬度は表面層直下の540 HV
から深さO,l 5 mrnにおける3 80 HVに
減少する。該材料の心部硬度は表吟下0.35 mmで
160〜178Hvであツタ。
In the internal structure, the hardness is 540 HV just below the surface layer.
to 3 80 HV at a depth O, l 5 mrn. The core hardness of the material is 160 to 178 Hv at a diameter of 0.35 mm.

前記のようにして処理したシリンダーライナーを、次に
排気タービン過給ディーゼル機関で使用した。300時
間の走行後にライナー面上の摩耗は無視しうるほどであ
った。油消費量は燃料消費量の0.5チで許容可能であ
り、動力は未処理シリンダーライナーの場合よりも約1
%太きかった。これは走行後ガラス様外観を呈していた
低摩擦ライナー面によるとすべきである。
The cylinder liner treated as described above was then used in an exhaust turbine supercharged diesel engine. There was negligible wear on the liner surface after 300 hours of running. Oil consumption is acceptable at 0.5 inch of fuel consumption and power is approximately 1 inch lower than with untreated cylinder liners.
% thick. This should be due to the low friction liner surface which had a glass-like appearance after running.

550時間後には、油消費量は、ピストンリングのはめ
込みのために燃料消費量の0.7%に徐々に上昇したが
、まだ許容可能であった。動力は燃料補給の増大なしに
1.3%だけ増大していた。
After 550 hours, oil consumption gradually increased to 0.7% of fuel consumption due to piston ring fit, but was still acceptable. Power increased by 1.3% without increased fueling.

前記の製造方法及びこれによって製造されたシリンダー
ライナーは多数の利点を有する。ライナーは延性軟鋼か
ら製造されておりかつすべての機械加工は窒素浸炭の行
われる前に実施されるので、シリンダーライナーの造形
は容易にかつ迅速に達成することができる。適当な軟鋼
及び鋳鉄は安価なので、シリンダーライナーのコストを
下げる。窒素浸炭工程はシリンダーライナーに高い耐摩
耗性であり、高温(550℃まで)で有効でありかつ表
面の実質深さく0.Ol mm ”= 0.3 mm 
)まで浸透する表面仕上を施す。
The manufacturing method described above and the cylinder liner produced thereby have a number of advantages. Because the liner is manufactured from ductile mild steel and all machining is performed before nitrogen carburization takes place, the shaping of the cylinder liner can be accomplished easily and quickly. Suitable mild steel and cast iron are inexpensive, reducing the cost of cylinder liners. The nitrogen carburizing process provides cylinder liners with high wear resistance, is effective at high temperatures (up to 550°C), and is effective at virtually no depth to the surface. Ol mm”=0.3 mm
) to provide a surface finish that penetrates up to

このようなライナーは、中央6部が延性のままなので脆
い破壊の恐れな(エンジンブロック中に押込むことがで
きる。外面はエンジンブロックとの擦過による摩耗に対
して抵抗力がある。
Such a liner can be pushed into the engine block without risk of brittle fracture because the central 6 portion remains ductile; the outer surface is resistant to wear due to friction with the engine block.

ピストンを受ける内面は結合ピストン及びピストンリン
グの摩耗及びかじりに耐して抵抗力がある、それという
のも内面が油の膜によって十分に湿潤されるからである
。また、ピストンリングも例えば英国特許出願公告第2
112025号に記載されているように窒素浸炭される
場合には特に有利である。ピストンリングの硬質表面は
、シリンダーライナー上に相応の硬質面のない場合には
、該ライナーを摩耗する傾向がある。ライナーが湿潤ラ
イナーである場合には、内面は潰食(cavitati
on erosion )を十分に防止することが判っ
た。
The inner surface receiving the piston is resistant to wear and galling of the coupled piston and piston ring, since the inner surface is well moistened by a film of oil. In addition, piston rings are also
It is particularly advantageous if nitrogen carburization is carried out as described in No. 112,025. Hard surfaces on piston rings tend to wear the cylinder liner in the absence of a corresponding hard surface on the liner. If the liner is a wet liner, the inner surface will be cavitated.
It has been found that this method sufficiently prevents on-erosion.

また上記のようにして製造したシリンダーライナーが大
気酸化に対する増大された抵抗性を肴し、これによって
包装及び輸送コストを下げることも注目しなければなら
ない。
It should also be noted that cylinder liners produced as described above offer increased resistance to atmospheric oxidation, thereby reducing packaging and shipping costs.

Claims (1)

【特許請求の範囲】 1、 結合ピストン及びピストンリングの摩耗を防止す
るために軟鋼シリンダーライナーの内部のピストン使用
面を処理することより成るし、成形されたシリンダーラ
イナーを次に空気の排除されたチャンバー内に置き、2
5ニア5〜75:25(重量係)の割合の浸炭ガスと含
窒素ガスとの混合ガスを500〜650℃の温度で前記
チャンバーに供給してシリンダーライナーを窒素浸炭す
ることを特徴とする前記の製造方法。 2、 含窒素ガスがアンモニアであり、浸炭ガスが発熱
性炭化水素ガスである特許請求の範囲第1項記載の方法
。 3、 ガスの割合が50 : 50〜60:40(容量
チ)である特許請求の範囲第1項又は第2項記載の方法
。 4、温度が550℃である特許請求の範囲第1項から第
3項までのいずれか1項に記載の方法。 5、 シリンダーライナーの表面内への窒素浸炭層の全
浸透深さがO,1〜0.3 mmであり、この際ニブシ
ロン表面層が厚さO,OO5〜0,020龍であるよう
な時間の間、該シリンダーライナーを処理する特許請求
の範囲第1項から第牛項までのいずれか1項に記載の方
法。 6、前記処理時間が2〜4時間である特許請求の範囲第
5項記載の方法。 7、窒素浸炭前に、一般に管状の軟鋼シリンダーブラン
クを形成し、機械加工して最終形状のシリンダーライナ
ーを形成し、この最終形状のシリンダーライナーを特徴
とする特許請求の範囲第1項から第6項までのいずれか
1項に記載の方法。 8、管状シリンダーブランクな押出又はプレス法あるい
は深絞り成形によって形成する特許請求の範囲第7項記
載の方法。
[Claims] 1. The method consists of treating the internal piston use surface of a mild steel cylinder liner to prevent wear of the combined piston and piston ring, and then molding the cylinder liner to remove air. Place it in the chamber, 2
The cylinder liner is nitrogen carburized by supplying a mixed gas of carburizing gas and nitrogen-containing gas in a ratio of 5 to 75:25 (by weight) to the chamber at a temperature of 500 to 650°C. manufacturing method. 2. The method according to claim 1, wherein the nitrogen-containing gas is ammonia and the carburizing gas is an exothermic hydrocarbon gas. 3. The method according to claim 1 or 2, wherein the gas ratio is 50:50 to 60:40 (capacity). 4. The method according to any one of claims 1 to 3, wherein the temperature is 550°C. 5. The total penetration depth of the nitrogen carburized layer into the surface of the cylinder liner is 0.1~0.3 mm, and the thickness of the Nibsilon surface layer is 0.05~0.020 mm. A method according to any one of claims 1 to 3, wherein the cylinder liner is treated during the treatment of the cylinder liner. 6. The method according to claim 5, wherein the treatment time is 2 to 4 hours. 7. Prior to nitrogen carburizing, a generally tubular mild steel cylinder blank is formed and machined to form a cylinder liner in its final shape, and the cylinder liner in its final shape is characterized by claims 1-6. The method described in any one of the preceding paragraphs. 8. The method according to claim 7, wherein the tubular cylinder blank is formed by extrusion or pressing or deep drawing.
JP59185492A 1983-09-06 1984-09-06 Manufacture of soft steel cylinder liner for internal combustion engine Pending JPS60155666A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB838323844A GB8323844D0 (en) 1983-09-06 1983-09-06 Cylinder liners
GB8323844 1983-09-06

Publications (1)

Publication Number Publication Date
JPS60155666A true JPS60155666A (en) 1985-08-15

Family

ID=10548374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59185492A Pending JPS60155666A (en) 1983-09-06 1984-09-06 Manufacture of soft steel cylinder liner for internal combustion engine

Country Status (15)

Country Link
JP (1) JPS60155666A (en)
KR (1) KR910000560B1 (en)
AU (1) AU563425B2 (en)
BR (1) BR8404455A (en)
CA (1) CA1225311A (en)
DD (1) DD236773A5 (en)
DE (1) DE3431971A1 (en)
ES (1) ES8506815A1 (en)
FR (1) FR2551499B1 (en)
GB (2) GB8323844D0 (en)
IN (1) IN162274B (en)
IT (1) IT1176665B (en)
MX (1) MX161251A (en)
TR (1) TR23244A (en)
ZA (1) ZA846990B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140114877A (en) * 2012-01-19 2014-09-29 리버튼 에프피이 엘티디 A Linear Electrical Machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK16494A (en) * 1994-02-08 1995-08-09 Man B & W Diesel Gmbh Method of producing a cylinder liner as well as such liner
US7146939B2 (en) * 2004-09-14 2006-12-12 Federal-Mogul Worldwide, Inc. Anti-cavitation diesel cylinder liner
DE102007041519A1 (en) * 2007-08-31 2009-03-05 Mahle International Gmbh Cylinder liner and method for its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847440A (en) * 1971-10-21 1973-07-05
JPS56133457A (en) * 1980-03-22 1981-10-19 Toyota Motor Corp Gas soft nitriding method for gear shift fork
JPS5830387A (en) * 1981-08-18 1983-02-22 Asahi Chem Ind Co Ltd Treatment of waste water containing amines

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR925433A (en) * 1946-03-29 1947-09-03 Improvements in the manufacture of piston pins
GB662213A (en) * 1949-09-01 1951-12-05 British Piston Ring Company Lt Improvements relating to piston rings
GB1034157A (en) * 1964-02-26 1966-06-29 Gen Motors Corp Case hardening ferrous articles
GB1318887A (en) * 1969-10-31 1973-05-31 Lucas Industries Ltd Method of manufacturing high strength extruded steel components
GB1351234A (en) * 1970-07-21 1974-04-24 Nissan Motor Process for forming a soft nitride layer in a metal surface
DE2527026C3 (en) * 1975-06-18 1980-11-27 Volkswagenwerk Ag, 3180 Wolfsburg Process for producing a component with a long service life
JPS5544545A (en) * 1978-09-26 1980-03-28 Usui Internatl Ind Co Ltd Material for high pressure fuel injection pipe and manufacture thereof
DE2844170A1 (en) * 1978-10-06 1980-04-17 Wolfgang Scheibe Rebuilding of worn, wear resistant machine parts - is carried out by diffusion treatment such as nitriding, boronising, carburising or carbonitriding
JPS5623537A (en) * 1979-08-02 1981-03-05 Toshiba Corp Cylinder for internal combustion engine
KR890001030B1 (en) * 1981-12-16 1989-04-20 Ae Plc Nitro-carburizing treatment method and metal ring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847440A (en) * 1971-10-21 1973-07-05
JPS56133457A (en) * 1980-03-22 1981-10-19 Toyota Motor Corp Gas soft nitriding method for gear shift fork
JPS5830387A (en) * 1981-08-18 1983-02-22 Asahi Chem Ind Co Ltd Treatment of waste water containing amines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140114877A (en) * 2012-01-19 2014-09-29 리버튼 에프피이 엘티디 A Linear Electrical Machine
JP2015509356A (en) * 2012-01-19 2015-03-26 リバティーン エフピーイー リミテッド Linear electric machine
US10072567B2 (en) 2012-01-19 2018-09-11 Libertine Fpe Ltd. Linear electrical machine/generator with segmented stator for free piston engine generator

Also Published As

Publication number Publication date
MX161251A (en) 1990-08-24
TR23244A (en) 1989-07-21
KR910000560B1 (en) 1991-01-26
CA1225311A (en) 1987-08-11
BR8404455A (en) 1985-07-30
DD236773A5 (en) 1986-06-18
AU563425B2 (en) 1987-07-09
FR2551499B1 (en) 1989-06-02
GB2146409A (en) 1985-04-17
KR850002111A (en) 1985-05-06
GB8421732D0 (en) 1984-10-03
GB8323844D0 (en) 1983-10-05
ES535631A0 (en) 1985-07-16
ES8506815A1 (en) 1985-07-16
AU3277084A (en) 1985-03-14
IT1176665B (en) 1987-08-18
IT8422552A0 (en) 1984-09-06
IN162274B (en) 1988-04-23
DE3431971A1 (en) 1985-03-21
FR2551499A1 (en) 1985-03-08
ZA846990B (en) 1986-04-30

Similar Documents

Publication Publication Date Title
US4531985A (en) Surface treatment of metal rings
US5019182A (en) Method of forming hard steels by case hardening, shot-peening and aging without tempering
KR100540962B1 (en) Sliding member and method of manufacturing thereof
US3117041A (en) Heat treated steel article
US3319321A (en) Method of making engine valve
JPS60155666A (en) Manufacture of soft steel cylinder liner for internal combustion engine
US6519847B1 (en) Surface treatment of prefinished valve seat inserts
JP4301507B2 (en) Sintered sprocket for silent chain and manufacturing method thereof
JP2000145542A (en) Piston ring for direct injection diesel engine and combination
JPH0512586B2 (en)
JPH11153059A (en) Cylinder liner and manufacture thereof
CN115011779A (en) High-speed heavy-load automobile nitrided inner gear ring and production process thereof
CN210118202U (en) Low roughness nitrogenize cylinder liner
US4484547A (en) Valve guide and method for making same
US4342293A (en) Valve guide and method for making same
JPS60172773A (en) Highly durable piston ring and method of manufacturing thereof
JP2724456B2 (en) Carbonitriding method for steel members
Garwood et al. Considerations affecting the life of automotive camshafts and tappets
GB2155046A (en) Surface treatment of metal rings
CN201265648Y (en) Gas nitriding piston ring
JP2700421B2 (en) Cylinder liner for internal combustion engine and method of manufacturing the same
JP2775159B2 (en) Combination of cylinder liner and piston ring for internal combustion engine
JPS641955Y2 (en)
JPS6018663A (en) Combined oil ring
Laird et al. Camshaft-tappet problems in Ford overhead-valve engines