KR900004849B1 - 연속소둔에 의한 연성이 우수한 고가공용 연질냉연강판의 제조방법 - Google Patents

연속소둔에 의한 연성이 우수한 고가공용 연질냉연강판의 제조방법 Download PDF

Info

Publication number
KR900004849B1
KR900004849B1 KR1019860011718A KR860011718A KR900004849B1 KR 900004849 B1 KR900004849 B1 KR 900004849B1 KR 1019860011718 A KR1019860011718 A KR 1019860011718A KR 860011718 A KR860011718 A KR 860011718A KR 900004849 B1 KR900004849 B1 KR 900004849B1
Authority
KR
South Korea
Prior art keywords
steel
added
precipitates
less
atomic ratio
Prior art date
Application number
KR1019860011718A
Other languages
English (en)
Other versions
KR880007772A (ko
Inventor
윤정봉
Original Assignee
포항종합제철 주식회사
안병화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 안병화 filed Critical 포항종합제철 주식회사
Priority to KR1019860011718A priority Critical patent/KR900004849B1/ko
Publication of KR880007772A publication Critical patent/KR880007772A/ko
Application granted granted Critical
Publication of KR900004849B1 publication Critical patent/KR900004849B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

내용 없음.

Description

연속소둔에 의한 연성이 우수한 고가공용 연질냉연강판의 제조방법
제1도는 (Nb+Ti)/(C+N+S) 원자비에 따른 기계적 성질변화를 나타낸 그래프.
제2도는
Figure kpo00001
원자비에 따른 기계적 성질변화를 나타내는 그래프.
제3도는 본 발명의 실시예에 있어서의 연속소둔 열처리사이클을 나타내는 그래프.
제4도는 Ti, Nb의 첨가비가 다른 Ti-Nb 복합 첨가강의 조직사진.
제5도는 제4도의 시료에 대한 전자 현미경사진 EDS 분석도.
본 발명은 연성이 매우 우수하며 고 가공성을 갖는 연질냉연강판을 연속소둔방식에 의거 제조하는 방법에 관한 것이다. 특히, 본 발명은 극저탄소 Al-Killed 강에 Ti과 Nb의 첨가량을 적절히 조절함으로서, Ti-Nb복합 석출물을 석출시켜 강중 탄소 및 질소원자를 고착시키는 효과를 상승시킴으로서 고강공성을 가진 연질냉연강판을 연속소둔방식에 의거 제조하는 방법에 관한 것이다.
종래의 고가공용, 냉연강판으로는 극저탄소 Al-Killed 강 또는 극저탄소 Al-killed 강에 V, Ti, B, Nb, Zr 등의 강력한 탄, 질화물 형성원소를 첨가하여 강중 고용원소를 고착시켜 성형성을 증가시켜 왔다. 이들 원소를 첨가한 강들도 성형성, 소성이방성, 표면처리성, 제조원가 등의 필수조건들을 완전히 만족시킬 수 없었다. V 첨가강의 경우 V이 강력한 C.N 형성원소이기는 하나
Figure kpo00002
값이 낮다는 단점이 있으며 Ti 첨가강은 표면 처리성이 양호하지 못하며 소성 이방성이 높다는 단점이 있으며 B첨가강 역시
Figure kpo00003
값이 낮다. Nb 첨가강은 재결정온도가 높기 때문에 통상의 소둔온도 보다 더 높은 온도에서 열처리해야 하는 단점이 있다. 또한, 이들 원소의 첨가강은 첨가원소의 첨가량을 (C+N+S) 원자수의 1배이상 첨가해야 하는 가공성을 얻을 수 있었다. 또한 Ti-Nb 복합첨가강의 경우도 Ti 및 Nb의 단독 석출물을 석출시키기 때문에 Ti 및 Nb첨가강의 중간정도의 기계적 성질을 나타낼 뿐이었다.
따라서, 본 발명의 목적을 표면처리성은 물론 소성이방성, 성형성 및 기계적 성질을 개선한 연질냉연강판의 제조방법을 제공하는데 있다. 이하, 본 발명을 상세히 설명한다.
본 발명은 wt%로, C : 0.01 이하, Mn : 0.2% 이하, N : 0.01% 이하, Ti : 0.005-0.1%, Nb : 0.005-0.1% 및 미량의 P.S 등의 불순물을 포함하고, (Ti+Nb)/(C+N+S) 원자비 : 0.6-2.0 및 (Ti-S)/Nb 원자비 : 2.0% 이하가 되도록 조성되는 Al-Killed 강 슬라브를 통상의 방법으로 열간압연 및 냉간압연한 후 연속소둔하여 연성이 우수한 고가공용 연질냉연강판을 제조하는 방법에 관한 것이다.
상기에서, (Ti+Nb)/(C+N+S) 원자비는 (Ti/48+Nb/93)/(C/12+N/14+S/
32) 비로 표시될 수 있으며, (Ti-S)/Nb 원자비도 (Ti/48-S/32)/Nb/93 비로 표시될 수 있다.
본 발명에 의한 방법에 의하면, 고가공용 연질냉연강판의 제조에 있어서 극저탄소 Al-Killed 강에 Ti 및 Nb를 적당한 비율로 첨가하여 Ti-Nb-C-N계의 복합석출물을 석출시킴으로써 강중 탄소 또는 질소 등의 침입형 고용원소의 고착효과를 Ti 첨가강 또는 Nb 첨가강 보다 증가시키며, 석출물의 크기를 증가시킴으로서 재결정결정립을 크게 성장시켜 표면처리성은 물론 소성이방성, 성형성 및 기계적 성질을 개선시키는 것이다.
Ti 첨가강의 경우 표면처리성이 좋지 않은 이유는 Ti는 반응성이 강한 원소이므로 강중 산소 또는 공기중의 산소와 반응하여 강관의 표면 결합을 유발할 뿐만 아니라 도장성 또는 도금성을 저해하는 요인이 되기 때문이며, 이는 Ti 첨가량이 많아질수록 강판의 표면 결합발생이 심해지며, 표면처리성도 더욱 악화된다. 통상, Ti 첨가강은 (Ti-Nb-N-S)/C 비를 2-3정도로 해야 완전 비시효성도 보장될 수 있고, 적당한 가공성을 가질 수 있는데, 이 경우 Ti첨가량이 과다하므로 표면처리성도 좋지않고 표면결함 발생율도 높다. 본 발명에서는 Ti와 Nb를 복합첨가하여 Ti 첨가량을 절반이상으로 줄임으로써 표면처리성을 대폭 증가시킬 수 있다. Nb 첨가강의 경우 매우 미세한 Nb 석출물을 석출함으로써 재결정립 성장을 크게 방해하므로 재결정온도가 매우 높다. 또한, Ti-Nb 복합 첨가강의 경우라 할지라도 Ti 및 Nb 단독석출물을 석출할 경우, 미세한 석출물이 여전히 존재하기 때문에 재결정온도는 크게 낮아지지는 않는다. 반면, 본 발명강에서는 조대한 (Ti,Nb)(C,N) 석출물을 석출시킴으로써 강중에 미세한 Nb 석출물을 거의 존재하지 않게 하여 재결정온도를 대폭 낮출 수 있는 것이다.
이하, 상기 강성분의 수치한정 이유에 대하여 상세히 설명한다. 일반적으로 , 강중 탄소함량이 높아짐에 따라 고용탄소량도 높아지는데, 고용탄소는 가공성에 유리한 {111} 집합조직 발달을 억제하여 연신율도 낮게 하므로 고용탄소량을 낮추기 위하여 Ti와 Nb를 첨가하여 Ti-Nb 탄,질화물로 석출시킨다. 그러므로, 강중 탄소함량이 높으면 Ti와 Nb 첨가량 또한 높혀야 한다.
그렇게 되면 강중에 조대한 석출물이 다량존재하게되어 연신율을 저하시키게 된다. 따라서, 연신율을 증가시키고, 성형성도 양호하게 하기 위하여 강중 탄소량을 0.01wt% 이하로 제한하는 것이 바람직하며, 보다 바람직한 탄소량은 0.007% 이하이다.
상기 Mn은 강중 불순물인 S에 의한 열간취성을 방지하기 위하여 첨가하고, 또 인장강도를 높일 목적으로 첨가하는데, 본 발명에서는 Ti와 Nb를 복합첨가하므로 S는 친화력이 강한 Ti와 반응하여 TiS로 석출되므로 열간취성의 우려는 없다.
또한 Mn은 첨가량이 높을수록 성형성에 유리한 집합조직의 발달을 억제하므로 성형성을 해치지 않는 범위인 0.2wt% 이하로 제한하는 것이 바람직하다. 상기 질소는 강중에서 탄소와 비슷한 역활을 하므로 함량은 낮을수록 좋으며, 0.01wt% 이상 함유되면 고용질소를 고착시키기 위해 Nb와 Ti의 첨가량이 증가되어 연신율이 저하되므로, 0.01wt% 이하로 제한하는 것이 바람직하다. 상기 Ti은 첨가량이 많을수록 탄,질화물이 많이 석출되어 강중의 고용탄소 및 고용질소의 농도가 낮아져서 성형성은 높아지나, 과량을 첨가하게 되면 조대한 석출물이 다량 석출되므로 연신율을 저하시키는 원인이 된다.
그러므로 Ti은 강중의 고용질탄소와 고용질소를 고착시켜
Figure kpo00004
값을 최대로 증가시키면서 연신율을 저하시키지 않는 범위인 0.005-0.0.1wt%로 제한하는 것이 바람직하며, 보다 바람직한 Ti의 처가량은 0.009-0.07%이다.
상기 Nb도 강중의 고용원소를 고착시켜 성형성을 증가시키는 면에서 Ti와 비슷한 역할을 하지만, 과량 첨가할 경우 재결정온도를 크게 높이면서 성형성을 크게 감소시킨다. 그러므로 강중의 고용원소를 적당히 고착시켜
Figure kpo00005
값을 최대로 증가시키면서 재결정온도를 크게 높이지 않는 범위인 0.005-.01wt%로 제한하는 것이 바람직하며, 보다 바람직한 Nb의 첨가량은 0.01-0.06%이다.
Ti와 Nb는 강중의 고용탄소와 질소를 고착시켜 성형성을 증가시킬 뿐만 아니라 항복강도를 낮게하는 역할도 하므로 강중 고용원소에 대한 Ti 및 Nb원자비는 중요한 의미를 갖는다. 즉, 고용원소의 원자와 Ti 및 Nb가 1대 1로 반응을 하며, 고용원자가 Ti 또는 Nb 석출물로 석출되어 고착된다는 가정하에서 Ti 및 Nb를 반응할 수 있는 고용원소와의 원자비로 1대 1 이상으로 첨가시켜 가공성을 증가시켜왔다. 이들 탄,질화물 형성 원소들은 고가이며 첨가량이 많아지면 가공성이 낮아지며, 연신율도 크게 R마소한다. Ti와 Nb를 복합첨가강에서 Ti 석출물과 Nb 석출물이 각각 분리되어 강중에 존재할 경우 기계적 성질은 Ti 첨가강과 Nb 첨가강의 중간성질을 갖게 되므로 Ti 첨가강이나 Nb 첨가강의 단점을 약간 개선할 수 있으나, 100-200Å의 매우 미세한 Nb 원자의 집단 또는 Nb.C 석출물이 여전히 존재하며, Nb보다 C, N 등의 고용원소의 고정효과가 적은 Ti(C,N) 석출물이 따로 존재하므로 항복강도를 효과적으로 낮추지 못하며, Ti 첨가강이나 Nb 첨가강 보다 성형성 면에서도 크게 개선하지 못하였을 뿐만 아니라 연신율도 높은편이 아니다. 즉, Ti 첨가강과 Nb 첨가강 중간정도의 기계적성질을 가지므로, Ti 및 Nb 첨가강의 단점은 약간씩 개선할 수 있는 정도이었다. 그러나, 본 발명강에서는 Ti와 Nb의 첨가함량비를 효과적으로 조절하면, Ti-Nb-N-C계의 복합석출물을 강중에서 석출하게 함으로써, 강중 고용원소의 원자수를 대폭감소시키고, 재결정립성장의 방해요인이 되는 100-200Å의 NbC 석출물을 500Å 이상의 Ti-Nb-N-C계의 적당한 크기의 석출물을 석출하게 하여 항복강도를 크게 저하시킬뿐만 아니라 성형성과 연신율을 대폭 증가시킬 수 있다.
Ti-Nb-N-C계 석출물을 석출시킬 수 있는 범위는 (Ti/48-S/32)/(Nb/93)비=0-2의 범위이며, 여기서 Ti는 C 또는 N과의 반응보다 S와 반응을 먼저하기 때문에 강중에 있는 S가 Ti와 어느정도 반응한 다음, 남은 Ti가 C 또는 N과 반응하여 석출물을 석출하기 때문이며 (Ti/48-S/32)(Nb/93)비=0-2범위에서 석출된 석출물은 Ti-Nb-N-C계 복합석출물이었다. 또한 (Ti/48+Nb/93)/(C/12+N/14+S/32)비를 0.6 이상으로 제한한 것은 (Ti/48-S/32)/(Nb/93)비가 0-2.0범위에 있다하더라도 (Ti/48+Nb/93)/(C/12+N/14+S/32)비가 0.6 이상되지 않으면 Ti-Nb-N-C계 복합석출물이 석출되지 않고, Ti(C,N) 석출물 및 Nb.C 석출물이 각각 석출하며 Nb 첨가강과 Ti 첨가강 중간 정도의 기계적 성질 밖에 얻을 수 없게 된다.
그러므로, (Ti/48+Nb/93)/(C/12+N/14+S/32) 비를 0.6 이상으로 제한하게 되었으며, 또 (Ti/48+Nb/3)/(C/12+N/14+S/32) 비를 2.0 이하로 제한한 것은 강중에 과량의 Ti 또는 Nb를 첨가하면 석출물의 크기가 너무 조대하게 되어 가공성 및 연신율을 크게 저하시킬뿐만 아니라 석출하고 남는 Ti나 Nb가 치환형 고용원소로 존재하게 되어 치환형 고용원소에 의한 고용강화가 일어나 항복강도를 크게 증가시키는 원인이 된다. 그러므로, (Ti/48+Nb/93)/(C/12+N/14+S/32)의 범위를 Ti-Nb-N-C계 석출물이 적당한 크기로 석출하고 Ti나 Nb가 치환형 고용원소로 존재하지 않게 되어 가장 양호한 기계적 성질을 얻을 수 있는 범위인 0.6-2.0으로 제한하였다. 열간압연공정에서 스라브재 가열온도는 될 수 있는한 낮게 관리하여 스라브의 상태에서의 석출물들을 미용해 상태로 존재하게 하여 고용원자가 다시 기지속으로 재고용하는 것을 억제하기 위하여 스라브재 가열온도는 1100℃ 이상으로 하는 것이 좋으며, 마무리 압연을 Ar3변태점 이하에서 실시할 경우 열연판에 페라이트 압연조직이 그대로 존재하게되어{100} 집합조직이 발달하여 소둔후 강판의 성형성을 저해시키는 원인이 된다. 마무리 압연 온도는 높을수록 열연판의 결정립은 커져서 소둔후 연신율 및
Figure kpo00006
값이 증가하므로 850℃(C+N+S) 이상의 온도에서 마무리압연을 해야한다. 권취온도는 열연판의 결정립과 석출물이 충분히 성장 할 수 있도록 높을수록 유리하지만, 산세성 등을 고려하여 600℃-700℃정도가 적당하다. 또한, 냉간압연은 60-80%의 압하율로 압연하는 것이 바람직하다. 상기 소둔온도는 높을수록 기계적 성질은 양호하게 되지만, 상변태가 일어나면 집합조직이 급격히 감소되므로 770℃-880℃ 정도가 적당하다. 소둔시간은 길수록 기계적성질은 양호하지만, 생산성 등을 고려하여 20-60초정도가 적당하다. 이하 실시예에 의거 본 발명을 실시한다.
[실시예]
통상의 20-50ppm 범위의 극저탄소 Al-Killed 강에 첨가원소의 함량 특히 Ti 및 Nb 첨가량을 변화시켜 강을 제조하였다. 이때, 조건은 슬라브재 가열온도 1200℃, 마무리 압연온도 850℃ 권취 온도 650℃ 냉간압하율 75% 열처리 사이클은 제3도에 표시한 바와같으며 연속소둔온도는 830℃, 열처리시간은 30초로 하였다. 제조된 강판에 대하여 각 시료별로 기계적성질을 조사하였다. 하기 표 1은 각 시료별 화학성분을 나타내는 표이며, 하기 표 2는 각 시료별 강판의 기계적성질 즉, 항복강도(YS), 인장강도(YS), 연신율(E1), 랭크포드 값(Lankford Index,
Figure kpo00007
) 및 소성 이방성(△r)를 측정한 결과를 나타낸 표이며, 하기 표 1에서의 원자비 계산(*표시)에 쓰인 원소의 함량은 원자량을 나타내고, Sol.Al은 Soluble Al 즉, 강에 첨가된 총 Al중 Al2O3로 존재하는 Al량을 제외한 Al량을 의미하는 것이다.
[표 1]
Figure kpo00008
[표 2]
Figure kpo00009
상기 표 2에 나타난 바와같이, 본 발명에 부합되는 발명재(4-8) 및 (17-20)의 경우는 15kg/mm2이하의 항복강도, 2.1 이상의
Figure kpo00010
값, 52% 이상의 연신율로 기계적 성질이 양호하지만, (Ti+Nb)/(C+N+S) 원자비가 0.6 이하인 비교재(1-3) 경우 항복강도가 매우 높으며,
Figure kpo00011
값도 낮은 수준임을 알 수 있다. 또한, (Ti+Nb)/(C+N+S) 원자비가 2.0 이상인 비교재(9 및 10)의 경우 연신율이 매우 낮은 수준이며
Figure kpo00012
값 역시 낮은 수준이다. (Ti+Nb)/(C+N+S) 원자비가 0.6-2.0 범위에 있다하더라도 (Ti-S)/Nb 원자비가 0-2.0 범위를 벗어난 비교재(11-16)의 경우 연신율이 낮거나, 또는 항복강도가 높거나, △r 값이 높은 수준으로 재질은 대체로 양호하지 못하다. 여기서 (Ti+Nb)/(C+N+S) 원자비가 0.6-2.0이고 (Ti-S)/Nb 원자비가 0-2.0 범위인 본 발명에 의한 강은 전반적으로 기계적 성절이 양호하므로 Ti와 Nb의 첨가비의 효과가 뚜렷함을 알 수 있다 제1도는 (Nb+Ti)/(C+N+S) 원자비에 따른 기계적 성질의 변화를 나타낸 것이고, (Nb+Ti)/(C+N+S) 원자비가 0.6 이하인 경우 항복 강도가 매우 높으며
Figure kpo00013
값도 낮은 수준임을 알 수 있다.
또한 (Nb+Ti)/(C+N+S) 원자비가 2.0 이상인 경우 연신율이 매우 낮으며
Figure kpo00014
값도 낮은 수준이다.
반면, (Nb+Ti)(C+N+S) 원자비가 0.6-2.0인 경우 연신율이 높은 수준이며
Figure kpo00015
값도 높으며 항복강도도 낮은 수준으로 전반적인 기계적 성질이 양호하다. 제2도는 (Nb+Ti)/(C+N+S) 원자비가 0.6-2.0인 강에 대해서 (Ti-S)/Nb 원자비에 따른 기계적 성질의 변화를 나타낸 것으로, (Ti-S)/Nb 원자비가 0 이하인 경우 △r 값은 낮지만,
Figure kpo00016
값 및 연신율이 매우 낮은 수준에 있다. 또한, (Ti-S)/Nb 원자비가 2.0 이상인 경우 △r 값이 매우 높아서 이어링이 크며 연신율은 약간 낮은 수준에 있다. 그러나, (Ti-S)/Nb 원자비가 0-2.0인 경우 △r 값이 낮을뿐만 아니라,
Figure kpo00017
Figure kpo00018
값이 높은 수준에 있으므로 첨가비의 효과가 뚜렷함을 알 수 있다.
제4도는 Ti와 Nb의 첨가비가 다른 Ti-Nb 복합첨가강의 재결정립을 관찰한 조직사진으로, 본 발명강의 Ti 및 Nb 첨가량이 많음에도 불구하고 재결정립의 크기가 비교강 보다 큰 것은 Ti-Nb-C-N계 복합석출물의 석출효과이다.
제5도는 제4도의 시료강의 석출물의 크기와 분포를 관찰한 전자현미경 사진과 그때의 석출물을 에너지 분산 스펙트럼(EDS)으로 분석한 결과로써, 본 발명강은 Ti와 Nb가 동시에 검출된 것으로 보아 Ti-Nb-C-N계 석출물이며 석출물의 크기도 비교강보다 크다. 한편, 비교강의 경우 석출물의 크기가 매우 미세하며, 비교적 큰 석출물은 Ti만 검출된 것으로 보아 Ti와 Nb석출물이 각각 석출한 것이다.
상술한 바와 같이, 본 발명에 의하면 첨가원소의 첨가량을 절감할 수 있을 뿐만 아니라 항복강도 15kg/mm2이하 연신율 50% 이상
Figure kpo00019
값 2.1 이하의 기계적 성질을 가진, 가공시에 이어링이 낮고 가공성이 매우 우수한 연질냉연강판을 제조할 수 있는 것이다.

Claims (1)

  1. wt%로, C : 0.007% 이하, Mn : 0.2 이하, N : 0.01% 이하, Nb : 0.01-0.06%, Ti : 0.009-0.07% 및 미량의 P.S 등의 불순물을 포함하고, (Ti+Nb)/(C+N+S) 원자비 : 0.6-2.0 및 (Ti-Nb)/Nb 원자비 : 2.0% 이하가 되도록 조성되는 Al-Killed 강 슬라브를 1100℃ 이상으로 가열하여 850℃ 이상의 마무리압연 온도로 열간압연한 후, 600-700℃의 온도에서 권취한 다음, 60-80%의 압하율로 냉간압연하고 770-880℃의 온도에서 20-60초 동안 연속소둔하는 것을 특징으로 하는 연속소둔에 의한 연성이 우수한 고가공용 연질냉연강판의 제조방법.
KR1019860011718A 1986-12-31 1986-12-31 연속소둔에 의한 연성이 우수한 고가공용 연질냉연강판의 제조방법 KR900004849B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019860011718A KR900004849B1 (ko) 1986-12-31 1986-12-31 연속소둔에 의한 연성이 우수한 고가공용 연질냉연강판의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019860011718A KR900004849B1 (ko) 1986-12-31 1986-12-31 연속소둔에 의한 연성이 우수한 고가공용 연질냉연강판의 제조방법

Publications (2)

Publication Number Publication Date
KR880007772A KR880007772A (ko) 1988-08-29
KR900004849B1 true KR900004849B1 (ko) 1990-07-08

Family

ID=19254713

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860011718A KR900004849B1 (ko) 1986-12-31 1986-12-31 연속소둔에 의한 연성이 우수한 고가공용 연질냉연강판의 제조방법

Country Status (1)

Country Link
KR (1) KR900004849B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100256333B1 (ko) * 1995-12-05 2000-05-15 이구택 법랑특성 및 면내이방성이 우수한 냉간압연강판의 제조방법

Also Published As

Publication number Publication date
KR880007772A (ko) 1988-08-29

Similar Documents

Publication Publication Date Title
KR20140044938A (ko) 딥드로잉성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
JP2987815B2 (ja) プレス成形性および耐二次加工割れ性に優れた高張力冷延鋼板の製造方法
WO2006118423A1 (en) Cold rolled steel sheet having superior formability , process for producing the same
KR900004849B1 (ko) 연속소둔에 의한 연성이 우수한 고가공용 연질냉연강판의 제조방법
KR101035767B1 (ko) 연질 열연강판 및 그 제조방법
JPS582248B2 (ja) 加工性のすぐれた溶融メツキ鋼板の製造法
JP3911075B2 (ja) 焼付硬化性に優れる超深絞り用鋼板の製造方法
KR960005236B1 (ko) 저온취성에 대한 저항성이 우수한 고가공용 고강도 냉연강판 제조방법
KR960005225B1 (ko) 저온연속소둔에 의한 심가공성이 우수한 냉연강판의 제조방법
KR100530073B1 (ko) 가공성이 우수한 고장력강판과 그 제조방법
JPH05239554A (ja) 焼付硬化性を有する超深絞り用冷延鋼板の製造方法
KR900004847B1 (ko) 가공성이 우수한 고장력냉연강판의 제조방법
KR100530057B1 (ko) 가공성 및 내2차가공취성이 우수한 고강도 냉연강판의제조방법
KR910010055B1 (ko) 형상동결성이 우수한 비시효성 냉연강판의 제조방법
JP3023014B2 (ja) 超深絞り用冷延極軟鋼板
EP1888800A1 (en) Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same
JP2705437B2 (ja) 焼付硬化性を有する深絞り用高強度冷延鋼板とその製造方法
JP3309396B2 (ja) 耐2次加工脆性に優れた時効硬化性を有する深絞り用高強度冷延鋼板およびその製造方法
KR100282192B1 (ko) 피로특성 및 내2차가공취성이 우수한 심가공용 냉연강판의 제조방법
JP3363930B2 (ja) 強度−延性バランスに優れる薄鋼板
KR100433255B1 (ko) 연신특성이 우수한 가공용 냉연강판
JPH08104926A (ja) 耐デント性に優れたストレッチャストレインの発生しない深絞り用高強度冷延鋼板の製造方法
KR960006037B1 (ko) 성형성이 우수한 저항복강도형 냉간압연강판의 제조방법
KR101143240B1 (ko) 가공성이 우수한 비시효 냉연강판과 그 제조방법
JPH0835013A (ja) 2次加工性に優れる冷延鋼板の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050704

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee