KR20240094330A - Method for removing nitrogen oxides in exhaust gas in the presence of SCR catalyst with increased conversion rate to nitrogen - Google Patents

Method for removing nitrogen oxides in exhaust gas in the presence of SCR catalyst with increased conversion rate to nitrogen Download PDF

Info

Publication number
KR20240094330A
KR20240094330A KR1020220176511A KR20220176511A KR20240094330A KR 20240094330 A KR20240094330 A KR 20240094330A KR 1020220176511 A KR1020220176511 A KR 1020220176511A KR 20220176511 A KR20220176511 A KR 20220176511A KR 20240094330 A KR20240094330 A KR 20240094330A
Authority
KR
South Korea
Prior art keywords
exhaust gas
nitrogen oxides
catalyst
ball milling
scr
Prior art date
Application number
KR1020220176511A
Other languages
Korean (ko)
Inventor
김영진
유영우
이진희
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020220176511A priority Critical patent/KR20240094330A/en
Publication of KR20240094330A publication Critical patent/KR20240094330A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8634Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법에 관한 것으로, 보다 상세하게는 볼 밀링에 의해 제조된 Ag-Zn계 질소산화물 환원촉매를 이용한 1차 SCR 반응에 이어서 질소산화물 환원반응의 부산물인 암모니아를 반응물로 사용하는 Cu-제올라이트를 이용한 2차 SCR 반응 단계를 포함하여 잔여 암모니아 없이 고효율로 질소산화물을 제거하는 방법에 관한 것이다.The present invention relates to a method for removing nitrogen oxides from exhaust gas in the presence of an SCR catalyst manufactured by ball milling. More specifically, the present invention relates to a method for removing nitrogen oxides from exhaust gas following a primary SCR reaction using an Ag-Zn-based nitrogen oxide reduction catalyst manufactured by ball milling. It relates to a method for removing nitrogen oxides with high efficiency without residual ammonia, including a secondary SCR reaction step using Cu-zeolite using ammonia, a by-product of the nitrogen oxide reduction reaction, as a reactant.

Description

질소로의 전환율이 증대된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법{Method for removing nitrogen oxides in exhaust gas in the presence of SCR catalyst with increased conversion rate to nitrogen}Method for removing nitrogen oxides in exhaust gas in the presence of SCR catalyst with increased conversion rate to nitrogen}

본 발명은 SCR 촉매 존재하 배기가스내 질소산화물 제거방법에 관한 것으로, 보다 상세하게는 Ag-Zn계 질소산화물 환원촉매를 이용한 1차 SCR 반응에 이어서 질소산화물 환원반응의 부산물인 암모니아를 반응물로 사용하는 Cu-제올라이트를 이용한 2차 암모니아 분해 반응 단계를 포함하여 배출가스 중 잔여 암모니아를 없애 전체적으로 질소산화물이 질소로 전환되어 제거되는 효율이 높도록 하는 고효율로 질소산화물을 제거하는 방법에 관한 것이다.The present invention relates to a method for removing nitrogen oxides from exhaust gas in the presence of an SCR catalyst. More specifically, the first SCR reaction using an Ag-Zn-based nitrogen oxide reduction catalyst is followed by using ammonia, a by-product of the nitrogen oxide reduction reaction, as a reactant. It relates to a method for removing nitrogen oxides with high efficiency, including a secondary ammonia decomposition reaction step using Cu-zeolite, to remove residual ammonia in the exhaust gas, thereby increasing the overall efficiency of converting nitrogen oxides to nitrogen and removing them.

화학공장, 발전소, 보일러, 쓰레기소각장 등과 같은 고정원과 자동차, 선박 등의 이동원으로부터 배출되는 배기가스 중 질소산화물(NOx)은 황산화물(SOx), 분진, 다이옥신, 중금속, 휘발성 유기화합물(Volatile Organic Compounds)과 함께 환경오염을 일으키는 물질로서 잘 알려져 있다.Among the exhaust gases emitted from fixed sources such as chemical plants, power plants, boilers, and waste incinerators, and mobile sources such as automobiles and ships, nitrogen oxides (NOx) are sulfur oxides (SOx), dust, dioxins, heavy metals, and volatile organic compounds (Volatile Organic Compounds). It is well known as a substance that causes environmental pollution along with compounds.

이러한 질소산화물(NOx)은 주로 고온의 연소설비에서 과잉공기의 존재하에 질소 및 산소의 반응으로 생성되는데, 일산화질소(NO), 이산화질소(NO2), 일산화이질소(N2O), 삼산화이질소(N2O3), 사산화이질소(N2O4), 오산화이질소(N2O5) 등으로 구분되고, 이들 중 일산화질소는 인체에 매우 유해한 발암성 물질로 심각한 대기오염을 일으킬 뿐만 아니라, 황산화물과 함께 산성비와 스모그(smog) 생성의 원인이 되어 지구환경을 파괴하는 오염원들이므로, 이의 발생을 억제하기 위하여 저산소 연소, 배기가스 순환 등 연소 조건개선에 대한 발생억제기술과 함께 이들을 효율적으로 제거하는 기술의 개발이 진행되고 있다.These nitrogen oxides (NOx) are mainly produced by the reaction of nitrogen and oxygen in the presence of excess air in high-temperature combustion facilities, and include nitrogen monoxide (NO), nitrogen dioxide (NO 2 ), dinitrogen monoxide (N 2 O), and dinitrogen trioxide ( It is classified into N 2 O 3 ), dinitrogen tetroxide (N 2 O 4 ), and dinitrogen pentoxide (N 2 O 5 ). Among these, nitrogen monoxide is a carcinogenic substance that is very harmful to the human body and not only causes serious air pollution, Together with sulfur oxides, they are pollutants that destroy the global environment by causing acid rain and smog, so in order to suppress their occurrence, they are efficiently used along with generation suppression technology to improve combustion conditions such as low-oxygen combustion and exhaust gas circulation. Development of removal technology is underway.

그러나 질소산화물은 다른 대기오염물질과는 달리 고온의 연소과정에서 불가피하게 발생하고, 또한 매우 안정한 화합물이기 때문에 연소기술의 개선만으로는 충분히 질소산화물을 제거할 수 없으므로 배기가스를 여러 가지방법으로 처리하는 후처리 기술이 주목받고 있다.However, unlike other air pollutants, nitrogen oxides are inevitably generated during high-temperature combustion processes and are very stable compounds. Therefore, improvements in combustion technology alone cannot sufficiently remove nitrogen oxides, so exhaust gases must be treated using various methods. Processing technology is attracting attention.

이러한 후처리 기술에는 크게 촉매를 사용하는 선택적 촉매환원반응(Selective Catalytic Reduction, SCR) 기술과 촉매를 사용하지 않고 처리하는 선택적 비촉매환원반응(Selective Non-Catalytic Reduction, SNCR) 기술이 있으며, 상기 선택적 촉매환원반응은 촉매의 존재하에서 우레아 또는 암모니아 등의 환원제를 공급하여 배기가스 내의 질소산화물을 질소로 환원시키는 반응을 이용한 공정이고, 선택적 비촉매환원반응은 촉매가 존재하지 않는 상태에서 상기 반응을 이용한 공정이다.These post-treatment technologies largely include Selective Catalytic Reduction (SCR) technology, which uses a catalyst, and Selective Non-Catalytic Reduction (SNCR) technology, which processes without using a catalyst. The catalytic reduction reaction is a process that uses a reaction to reduce nitrogen oxides in exhaust gas to nitrogen by supplying a reducing agent such as urea or ammonia in the presence of a catalyst, and the selective non-catalytic reduction reaction uses the reaction in the absence of a catalyst. It's fair.

선택적 촉매환원반응에는 환원제를 사용하는 방법과 환원제의 사용 없이 촉매상에서 직접 분해시키는 방법이 있는데, 촉매에 의한 직접 분해방법은 배기가스 중의 질소산화물을 촉매 상에서 직접 질소와 산소로 분해시키는 최선의 방법이나, 고온의 반응온도를 필요로 하고, 촉매활성이 쉽게 저하되므로 환원제를 사용한 질소산화물 제거방법이 주로 연구되고 있다.The selective catalytic reduction reaction includes a method using a reducing agent and a method of directly decomposing it on a catalyst without using a reducing agent. The direct decomposition method using a catalyst is the best method of decomposing nitrogen oxides in exhaust gas directly into nitrogen and oxygen on a catalyst. Since it requires a high reaction temperature and the catalytic activity is easily reduced, nitrogen oxide removal methods using reducing agents are mainly being studied.

이러한 환원반응을 이용한 기술 중 촉매를 사용하는 기술은 대기오염물질을 저비용, 고효율로 저감할 수 있어서 경제적 및 기술적 측면에서 배기가스에 환원제로 암모니아를 공급하고, 이를 적합한 촉매 상에서 질소산화물과 선택적으로 반응시켜 질소와 물을 생성시키는 선택적 촉매환원반응(NH3-SCR)을 이용한 공정이 후처리 기술의 주류를 이루고 있다(한국등록특허 제1509684호 및 한국등록특허 제0767563호).Among the technologies using this reduction reaction, the technology using a catalyst can reduce air pollutants at low cost and with high efficiency, so from an economic and technical perspective, ammonia is supplied to the exhaust gas as a reducing agent, and it selectively reacts with nitrogen oxides on a suitable catalyst. The process using selective catalytic reduction reaction (NH 3 -SCR) to generate nitrogen and water is the mainstream post-treatment technology (Korean Patent No. 1509684 and Korean Patent No. 0767563).

그러나 환원제로 우레아, 암모니아 등을 사용하는 NH3-SCR의 경우 NOx 정화 성능을 일정수준으로 이상으로 유지하기 위해 전단부에 배치되는 도징모듈(Dosing Module)로 우레아 용액을 분사하면 배기가스의 열에 의해 열분해되고, SCR 촉매물질을 만나 가수분해되어 생성된 암모니아(NH3)를 흡장하며, 흡장된 암모니아와 NOx를 반응시켜 정화시켜야 하므로, 액체상의 우레아를 촉매에 공급하기 위해서는 시스템을 갖추어야 하고, 액체 상태인 우레아를 저장하기 위한 용기 및 분사 장치 등의 부수적인 시스템이 있어야 하므로 큰 공간이 필요하며, 추가적인 비용이 들어가기 때문에 경제적으로 불리한 측면이 있었다.However, in the case of NH 3 -SCR that uses urea, ammonia, etc. as a reducing agent, in order to maintain NOx purification performance above a certain level, if the urea solution is sprayed into the dosing module placed at the front end, the heat of the exhaust gas will cause the urea solution to be sprayed. Since ammonia (NH 3 ) generated by thermal decomposition and hydrolysis in contact with the SCR catalyst material must be stored and purified by reacting the stored ammonia with NOx, a system must be installed to supply liquid urea to the catalyst, and liquid state Because additional systems such as containers and spraying devices for storing urea must be installed, a large space is required, and additional costs are incurred, which is economically disadvantageous.

또한, 기존의 액체 우레아 시스템은 액체를 분사하고 배기가스에서 나오는 열에 의하여 우레아를 기화시켜야 하기 때문에 배출가스 온도가 200 ℃ 이하의 조건에서 분사되는 경우 우레아가 기화되지 않고 고체 암모늄으로 생성되는 문제점들이 있어왔다. 또한, 우레아는 외부에서 주기적으로 공급해주어야 하기 때문에 그에 따른 불편과 추가적인 관리비용이 소요되었다.In addition, because the existing liquid urea system sprays liquid and vaporizes urea by heat from the exhaust gas, there are problems in that urea is not vaporized and is produced as solid ammonium when sprayed under conditions where the exhaust gas temperature is below 200 ℃. come. In addition, urea had to be supplied periodically from outside, resulting in inconvenience and additional management costs.

따라서, 우레아 등과 같은 별도의 환원제 도입 없이 저온의 배기가스 환경에서도 질소산화물(NOx)을 저감할 수 있는 SCR 촉매의 기술 개발이 필요한 실정이다. 특히, 배기가스내 CO 및 탄화수소를 환원제로 사용하는 탄화수소 SCR(Hydrocarbon SCR)은 질소산화물 환원 과정에서 암모니아가 부산되는 문제가 수반되며, 이는 장치내 부식, 유로 폐색 및 대기 중으로 배출시 호흡기 질환 등의 위해성 문제를 유발할 수 있어 질소산화물 환원과정에서 부산되는 암모니아까지 제거 가능한 기술 개발도 필요한 실정이다.Therefore, there is a need to develop technology for an SCR catalyst that can reduce nitrogen oxides (NOx) even in a low-temperature exhaust gas environment without introducing a separate reducing agent such as urea. In particular, hydrocarbon SCR (Hydrocarbon SCR), which uses CO and hydrocarbons in the exhaust gas as a reducing agent, is accompanied by the problem of ammonia by-product during the nitrogen oxide reduction process, which causes corrosion within the device, blockage of the flow path, and respiratory diseases when discharged into the atmosphere. There is also a need to develop technology that can remove ammonia, which is produced by-product during the nitrogen oxide reduction process, as it can cause hazardous problems.

한국등록특허 제1509684호 (공개일 : 2011.06.10.)Korean Patent No. 1509684 (Publication Date: 2011.06.10.) 한국등록특허 제0767563호 (공개일 : 2007.10.09.)Korean Patent No. 0767563 (Publication date: 2007.10.09.)

본 발명의 주된 목적은 상술한 문제점을 해결하기 위한 것으로, 배기가스에 존재하는 CO 및/또는 탄화수소를 환원제로 사용하는 고활성의 SCR 촉매 존재 하에 배기가스내 질소산화물을 고효율로 제거함에 있어서, 상기 질소산화물이 질소로 환원되어 제거될 수 있도록 하는 방법을 제공하는데 있다.The main purpose of the present invention is to solve the above-mentioned problems, in removing nitrogen oxides in the exhaust gas with high efficiency in the presence of a highly active SCR catalyst that uses CO and/or hydrocarbons present in the exhaust gas as a reducing agent. The aim is to provide a method by which nitrogen oxides can be reduced to nitrogen and removed.

상기와 같은 목적을 달성하기 위하여, 본 발명은 (a) 투입된 배기가스에 대하여 알루미나에 Ag 및 Zn이 담지된 촉매 존재하에 탄화수소 선택적 촉매환원반응(Hydrocarbon SCR)을 수행하고, 부산물인 NH3를 포함하는 SCR 반응생성물을 배출하는 단계; 및 (b) SCR 반응생성물에 대하여 Cu가 담지된 제올라이트 촉매 존재하에 암모니아 분해반응을 수행하고, 암모니아 분해반응 생성물을 배출하는 단계;를 포함하는 것을 특징으로 하는 SCR 촉매 존재하 배기가스내 질소산화물 제거방법을 제공한다.In order to achieve the above object, the present invention (a) performs a hydrocarbon selective catalytic reduction reaction (Hydrocarbon SCR) on the input exhaust gas in the presence of a catalyst carrying Ag and Zn on alumina, and NH 3 as a by-product is included. Discharging the SCR reaction product; and (b) performing an ammonia decomposition reaction on the SCR reaction product in the presence of a Cu-supported zeolite catalyst and discharging the ammonia decomposition reaction product. Removal of nitrogen oxides in exhaust gas in the presence of an SCR catalyst, comprising: Provides a method.

상기 배기가스는 일산화탄소, 미연소 탄화수소 및 연소후 탄화수소 중 하나 이상을 포함할 수 있다.The exhaust gas may include one or more of carbon monoxide, unburned hydrocarbons, and post-combusted hydrocarbons.

상기 (a) 단계의 볼 밀링에 의하여 지지체에 분산 담지된 SCR 촉매는 (a1) 은 전구체, 아연 전구체 및 지지체 화합물을 용매에 분산시키는 단계; (a2) 상기 분산물을 볼 밀링하는 단계; 및 (a3) 상기 볼 밀링된 분산물을 건조시킨 다음, 소성하는 단계;를 포함하는 방법에 의하여 제조된 것임을 특징으로 할 수 있다.The SCR catalyst dispersed and supported on a support by ball milling in step (a) includes the steps of (a1) dispersing a silver precursor, a zinc precursor, and a support compound in a solvent; (a2) ball milling the dispersion; and (a3) drying the ball milled dispersion and then calcining it.

상기 (a)단계에서 탄화수소 선택적 촉매환원반응의 촉매는 알루미나 100 중량부에 대하여 Ag 1 ~ 15 중량부 및 Zn 3 ~ 100 중량부로 담지될 수 있으며, 상기 (a1) 단계는 은 전구체 및 아연 전구체의 중량비가 1 : 1 ~ 50 범위일 수 있다.In step (a), the catalyst for the hydrocarbon selective catalytic reduction reaction may be supported at 1 to 15 parts by weight of Ag and 3 to 100 parts by weight of Zn based on 100 parts by weight of alumina, and in step (a1), The weight ratio may range from 1:1 to 50.

상기 (a)단계의 탄화수소 선택적 촉매환원반응은 온도 100 ~ 600 ℃에서 수행하는 것을 특징으로 할 수 있으며, 상기 SCR 반응생성물은 암모니아를 투입된 질소산화물의 몰농도 대비 1 ~ 90% 범위로 포함할 수 있다.The hydrocarbon selective catalytic reduction reaction in step (a) may be performed at a temperature of 100 to 600 ° C, and the SCR reaction product may contain ammonia in the range of 1 to 90% compared to the molar concentration of the introduced nitrogen oxide. there is.

상기 (b)단계의 암모니아 분해반응의 촉매는 제올라이트 100 중량부에 대하여 Cu 0.2 ~ 10 중량부로 담지될 수 있으며, 상기 제올라이트는 SSZ-13, SSZ-39, SAPO-34, ZSM-5, Beta, LTA, Y, Mordenite 및 Ferrierite 중 하나 이상인 것일 수 있다.The catalyst for the ammonia decomposition reaction in step (b) may be supported at 0.2 to 10 parts by weight of Cu based on 100 parts by weight of zeolite, and the zeolites include SSZ-13, SSZ-39, SAPO-34, ZSM-5, Beta, It may be one or more of LTA, Y, Mordenite, and Ferrierite.

상기 (b)단계의 암모니아 분해반응은 온도 100 ~ 500 ℃에서 수행할 수 있으며, 바람직하게는 온도 250 ~ 400 ℃에서 수행하는 것을 특징으로 할 수 있다.The ammonia decomposition reaction in step (b) may be performed at a temperature of 100 to 500 °C, and is preferably performed at a temperature of 250 to 400 °C.

본 발명에 따르면, 종래 HC-SCR 촉매 성능에 비례하여 질소산화물 환원과정에서 부산되는 암모니아를 후단에서 암모니아 분해촉매 존재하에 분해함으로써 배기가스내 질소산화물을 무해한 질소 형태로 온전히 전환할 수 있는 효과가 있으며, SCR 장치의 부식 및 유로 폐색 문제를 방지할 수 있고, 암모니아가 대기 중으로 배출되는 경우에 유발할 수 있는 호흡기 질환 및 미세먼지 입자 형성 등의 위해성 문제를 차단할 수 있다.According to the present invention, in proportion to the performance of the conventional HC-SCR catalyst, the ammonia by-product during the nitrogen oxide reduction process is decomposed in the presence of an ammonia decomposition catalyst at the rear stage, thereby completely converting the nitrogen oxides in the exhaust gas into a harmless form of nitrogen. , it can prevent corrosion and channel blockage problems in the SCR device, and can prevent hazardous problems such as respiratory disease and the formation of fine dust particles that can be caused when ammonia is discharged into the atmosphere.

또한, 본 발명에 따르면 환원제로 배기가스 중에 존재하는 일산화탄소 및/또는 탄화수소를 환원제로 사용할 수 있어 NH3-SCR 등과 달리 배기가스 내에 존재하는 질소산화물을 제거하기 위해 별도의 외부 환원제 도입이 필요하지 않아 장치가 단순해지고, 설치비, 관리비, 원료비 등에서 경제적인 장점이 있으며, 배기가스 내의 존재하는 일산화탄소와 탄화수소 역시 저감시킬 수 있는 효과가 있다.In addition, according to the present invention, carbon monoxide and/or hydrocarbons present in the exhaust gas can be used as a reducing agent, so unlike NH 3 -SCR, there is no need to introduce a separate external reducing agent to remove nitrogen oxides present in the exhaust gas. The device is simplified, and there are economical advantages in terms of installation costs, management costs, and raw material costs, and it also has the effect of reducing carbon monoxide and hydrocarbons present in the exhaust gas.

도 1은 본 발명에 따른 SCR 촉매를 제조하는 방법의 일 예시를 나타낸 흐름도이다.
도 2는 본 발명에 따른 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법의 흐름도이다.
도 3은 본 발명의 실시예 1 및 비교예 1 내지 5의 방법에서 배기가스내 질소산화물의 부산물 암모니아로의 전환율을 측정한 결과 그래프이다.
도 4는 본 발명의 실시예 1 및 비교예 1 내지 5의 방법을 통한 배기가스내 질소산화물의 질소로의 전환율을 측정한 결과 그래프이다.
1 is a flowchart showing an example of a method for producing an SCR catalyst according to the present invention.
Figure 2 is a flow chart of a method for removing nitrogen oxides in exhaust gas in the presence of an SCR catalyst manufactured by ball milling according to the present invention.
Figure 3 is a graph showing the results of measuring the conversion rate of nitrogen oxides in exhaust gas to by-product ammonia in the methods of Example 1 and Comparative Examples 1 to 5 of the present invention.
Figure 4 is a graph showing the results of measuring the conversion rate of nitrogen oxides in exhaust gas to nitrogen through the methods of Example 1 and Comparative Examples 1 to 5 of the present invention.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The advantages and features of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and will be implemented in various different forms. These embodiments only serve to ensure that the disclosure of the present invention is complete and that common knowledge in the technical field to which the present invention pertains is not limited. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.

본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.In describing the present invention, if it is determined that a detailed description of related known technologies may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.

본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다. When 'includes', 'has', 'consists of', etc. mentioned in this specification are used, other parts may be added unless 'only' is used. In cases where a component is expressed in the singular, the plural is included unless specifically stated otherwise.

또한 위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다. 시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.Also, in the case of a description of a positional relationship, for example, if the positional relationship between two parts is described as 'on top', 'on the top', 'on the bottom', 'next to', etc., 'right away' Unless ' or 'directly' is used, one or more other parts may be placed between the two parts. In the case of a description of a temporal relationship, for example, if a temporal relationship is described as ‘~after’, ‘after~’, ‘~next’, ‘before’, etc., ‘immediately’ or ‘directly’ Unless used, non-consecutive cases may also be included.

본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관관계로 함께 실시할 수도 있다.Each feature of the various embodiments of the present invention can be combined or combined with each other, partially or entirely, and various technical interconnections and operations are possible, and each embodiment can be implemented independently of each other or together in a related relationship. It may be possible.

본 발명은 볼 밀링을 이용하여 탄화수소 SCR(Hydrocarbon SCR) 촉매를 제조하는 방법에 관한 것이다.The present invention relates to a method of producing a hydrocarbon SCR (Hydrocarbon SCR) catalyst using ball milling.

일반적으로 촉매의 반응성은 촉매 표면특성에 따라 결정되는데, 이러한 촉매 특성은 촉매의 구조, 입자 크기, 비표면적, 결정상 및 활성점 수로 결정된다. 이러한 변수들을 제어하기 위하여 불활성 가스 응축(inert gas condensation), 스프레이 공정(spray processing), 플라즈마 침적(plasma deposition) 등의 방법이 이용되고 있다. 이중 기계적 볼밀링 제법이 준안정성(metastable) 물질뿐만 아니라, 나노결정성(nanocrystalline) 물질의 합성에 적용되고 있다.In general, the reactivity of a catalyst is determined by the catalyst surface characteristics, and these catalyst characteristics are determined by the catalyst structure, particle size, specific surface area, crystal phase, and number of active sites. To control these variables, methods such as inert gas condensation, spray processing, and plasma deposition are used. Among these, the mechanical ball milling method is being applied to the synthesis of not only metastable materials but also nanocrystalline materials.

이에 따라, 본 발명은 은-아연(Ag-Zn)계 촉매가 우수한 탈질특성을 나타낸다는 점에 근거하여 기계적인 볼 밀링 제법을 적용함으로써, 배기가스 내 일산화탄소 및/또는 탄화수소를 환원제로 이용하는 선택적 촉매환원반응에 있어서 높은 활성으로 질소산화물을 환원시킬 수 있는 선택적 촉매환원반응용 탈질촉매를 제조할 수 있다.Accordingly, the present invention is a selective catalyst that uses carbon monoxide and/or hydrocarbons in exhaust gas as a reducing agent by applying a mechanical ball milling method based on the fact that silver-zinc (Ag-Zn)-based catalysts exhibit excellent denitrification characteristics. It is possible to manufacture a denitrification catalyst for a selective catalytic reduction reaction that can reduce nitrogen oxides with high activity in the reduction reaction.

이하 본 발명에 따른 선택적 촉매환원반응용 탈질촉매의 제조방법을 첨부된 도면을 참조하여 보다 상세하게 설명하면 다음과 같다. Hereinafter, the method for producing a denitrification catalyst for selective catalytic reduction reaction according to the present invention will be described in more detail with reference to the attached drawings.

도 1은 본 발명에 따른 SCR 촉매를 제조하는 방법의 일 예시를 나타낸 흐름도로, 도 1을 참조하면, 용매에 은 전구체, 아연 전구체 및 지지체 화합물을 분산시킨다[(a1) 단계].Figure 1 is a flowchart showing an example of a method for producing an SCR catalyst according to the present invention. Referring to Figure 1, a silver precursor, a zinc precursor, and a support compound are dispersed in a solvent [step (a1)].

상기 은 전구체는 질산은(silver nitrate: AgNO3) 등의 은 질화물; 황산은(silver sulfate: Ag2SO4) 등의 은 황화물; 초산은(silver acetate: AgCOOCH3) 등의 은 초산화물; 염화은(silver chloride: AgCl) 등의 은 염화물; 및 탄산은(silver carbonate: Ag2CO3) 등의 은 탄화물로 구성된 군에서 선택된 어느 하나일 수 있으며, 바람직하게는 질산은(silver nitrate: AgNO3)일 수 있으나 이에 제한되는 것은 아니다. The silver precursor may be silver nitride such as silver nitrate (AgNO 3 ); silver sulfate such as silver sulfate (Ag 2 SO 4 ); Silver acetate (AgCOOCH 3 ) and other silver superoxides; Silver chloride such as silver chloride (AgCl); and silver carbide such as silver carbonate (Ag 2 CO 3 ), and preferably silver nitrate (AgNO 3 ), but is not limited thereto.

또한, 아연 전구체는 질산아연(zinc nitrate: Zn(NO3)2) 등의 아연 질화물; 황산아연(zinc sulfate: ZnSO4) 등의 아연 황화물; 염화아연(zinc chloride: ZnCl2) 등의 아연 염화물; 브롬화아연(zinc bromide: ZnBr2) 등의 아연 브롬화물; 요오드화아연(zinc iodide: ZnI2) 등의 아연 요오드화물로 구성된 군에서 선택된 어느 하나일 수 있으며, 바람직하게는 질산아연(zinc nitrate: Zn(NO3)2)일 수 있으나 이에 제한되는 것은 아니다. In addition, zinc precursors include zinc nitride such as zinc nitrate (Zn(NO 3 ) 2 ); Zinc sulfide such as zinc sulfate (ZnSO 4 ); Zinc chloride such as zinc chloride (ZnCl 2 ); Zinc bromide such as zinc bromide (ZnBr 2 ); It may be any one selected from the group consisting of zinc iodide such as zinc iodide (ZnI 2 ), and preferably zinc nitrate (Zn(NO 3 ) 2 ), but is not limited thereto.

이때, 상기 은 전구체 및 아연 전구체의 중량비는 1 : 1 ~ 50, 바람직하게는 1 : 5 ~ 30인 경우 촉매 탈질 반응의 활성이 효과적으로 제고될 수 있다.At this time, when the weight ratio of the silver precursor and zinc precursor is 1:1 to 50, preferably 1:5 to 30, the activity of the catalytic denitrification reaction can be effectively improved.

또한, 상기 은 전구체 및 아연 전구체는 지지체 화합물 100 중량부에 대하여, 은 전구체 1 중량부 ~ 30 중량부 및 아연 전구체 10 중량부 ~ 350 중량부를 포함할 수 있고, 바람직하게는 지지체 화합물 100 중량부에 대하여, 은 전구체 1 중량부 ~ 20 중량부 및 아연 전구체 10 중량부 ~ 150 중량부를 포함할 수 있다.In addition, the silver precursor and zinc precursor may include 1 to 30 parts by weight of the silver precursor and 10 to 350 parts by weight of the zinc precursor, based on 100 parts by weight of the support compound, and preferably include 100 parts by weight of the support compound. In comparison, it may include 1 to 20 parts by weight of the silver precursor and 10 to 150 parts by weight of the zinc precursor.

만일 상기 은 전구체의 함량이 지지체 화합물 100 중량부에 대하여, 은 전구체 1 중량부 이상으로 둠으로써, 은에 의한 탈질성능의 향상을 제고할 수 있으며, 30 중량부를 이하로 하여 비활성종 은 화합물의 생성을 억제할 수 있다.If the content of the silver precursor is set to 1 part by weight or more of the silver precursor per 100 parts by weight of the support compound, the denitrification performance by silver can be improved, and if the content is set to 30 parts by weight or less, an inactive silver compound can be produced. can be suppressed.

또한, 상기 아연 전구체의 함량이 지지체 화합물 100 중량부에 대하여, 아연 전구체 10 중량부 이상을 사용함으로써, 아연으로 인한 탈질 성능의 향상을 제고할 수 있으며, 350 중량부를 이하로 하여 비활성종 아연 화합물이 생성을 억제할 수 있다. In addition, by using 10 parts by weight or more of the zinc precursor based on 100 parts by weight of the support compound, the denitrification performance due to zinc can be improved, and the inactive zinc compound is set to 350 parts by weight or less. Production can be suppressed.

상기 지지체 화합물은 알루미나, 세리아, 지르코니아, 실리카, 티타니아, 마그네시아 등의 금속산화물 또는 준금속 산화물; 활성탄, 흑연, 탄소나노튜브, 그래핀, 풀러렌, 그래핀옥사이드 등의 탄소체; 제올라이트, 금속유기골격체(MOF), 스피넬, 페롭스카이트, 하이드로탈사이트 등에서 선택된 하나 이상일 수 있으며, 바람직하게는 알루미나일 수 있으나, 이에 제한되는 것은 아니다.The support compound includes metal oxides or metalloid oxides such as alumina, ceria, zirconia, silica, titania, and magnesia; Carbon bodies such as activated carbon, graphite, carbon nanotubes, graphene, fullerene, and graphene oxide; It may be one or more selected from zeolite, metal organic framework (MOF), spinel, perovskite, hydrotalcite, etc., and is preferably alumina, but is not limited thereto.

이와 같이 은 전구체, 아연 전구체 및 지지체 화합물은 용매에 분산시켜 분산물을 형성한다. In this way, the silver precursor, zinc precursor, and support compound are dispersed in a solvent to form a dispersion.

상기 용매로는 물(특히, 증류수)을 사용할 수 있으나, 메탄올, 에탄올 등과 같은 알코올류; 아세톤, 메틸에틸케톤 등의 케톤류; 톨루엔, 크실렌 등의 방향족 탄화수소류; 셀로솔브 등의 글리콜 에테르류 등 또한 사용할 수 있다. Water (especially distilled water) can be used as the solvent, but alcohols such as methanol, ethanol, etc.; Ketones such as acetone and methyl ethyl ketone; Aromatic hydrocarbons such as toluene and xylene; Glycol ethers such as Cellosolve can also be used.

상기 용매는 은 전구체, 아연 전구체 및 지지체 화합물 100 중량부에 대하여, 10 중량부 ~ 200 중량부로 혼합시켜 분산시킬 수 있다. 상기 은 전구체, 아연 전구체 및 지지체 화합물 100 중량부에 대하여, 용매가 상기 중량부 범위로 둠으로써, 은 및 아연의 담지를 균일하게 할 수 있다. The solvent can be mixed and dispersed in an amount of 10 to 200 parts by weight based on 100 parts by weight of the silver precursor, zinc precursor, and support compound. By setting the solvent within the above weight parts range based on 100 parts by weight of the silver precursor, zinc precursor, and support compound, silver and zinc can be supported uniformly.

이후 전술된 바와 같이 용매상에 은 전구체, 아연 전구체 및 지지체 화합물이 분산된 분산물은 볼 밀링을 수행한다[(a2) 단계]. Thereafter, as described above, the dispersion in which the silver precursor, zinc precursor, and support compound are dispersed in the solvent phase is subjected to ball milling [step (a2)].

상기 볼 밀링은 분산물을 기계적으로 혼합하여 미립화하는데 사용하는 볼 밀링장치라면 특별한 제한은 없고 일반적일 볼 밀링 장치를 사용할 수 있다.The ball milling is not particularly limited as long as it is a ball milling device used to mechanically mix and atomize the dispersion, and a general ball milling device can be used.

상기 볼 밀링 과정 동안 볼과 볼 사이의 분산물은 발생된 원심력을 통하여 반복적으로 분쇄, 응집 및 재결합되어 그 특성이 변형되므로, 볼 밀링을 통하여 분산물을 원하는 성상으로 변형시키기 위해서는 종류 및 크기에 따른 볼 밀링의 조건이 중요하며, 회전력, 회전속도, 시간 등의 여러 변수들이 고려될 필요가 있다. During the ball milling process, the dispersion between balls is repeatedly pulverized, agglomerated, and recombined through the generated centrifugal force, thereby modifying its properties. Therefore, in order to transform the dispersion into the desired properties through ball milling, it must be determined by type and size. Ball milling conditions are important, and various variables such as rotational force, rotational speed, and time need to be considered.

본 발명에 따라 볼 밀링에 의한 고활성 탈질촉매를 제조함에 있어서, 볼의 재질은 지르코니아, 스테인레스 스틸, 알루미나, 카본 스틸 등이 바람직하며, 볼의 직경은 1 mm ~ 100 mm, 바람직하게는 1 mm ~ 50 ㎜일 수 있으며, 상기 직경 범위내에서 다양하게 사용될 수 있다. 일 실시예로 직경이 5 mm ~ 15 mm인 볼과 직경이 1 mm ~ 4 mm인 볼을 1 ~ 5 : 6 ~ 10의 중량비로 적용할 수 있다. In manufacturing a highly active NOx removal catalyst by ball milling according to the present invention, the material of the ball is preferably zirconia, stainless steel, alumina, carbon steel, etc., and the diameter of the ball is 1 mm to 100 mm, preferably 1 mm. It may be ~50 mm, and may be used in various ways within the above diameter range. In one embodiment, balls with a diameter of 5 mm to 15 mm and balls with a diameter of 1 mm to 4 mm can be applied at a weight ratio of 1 to 5:6 to 10.

한편, 볼 밀링은 담지효과를 고려하여 50 rpm ~ 1,500 rpm, 바람직하게는 200 rpm ~ 800 rpm으로 0.5 시간 ~ 72 시간 동안 수행할 수 있다. Meanwhile, ball milling can be performed for 0.5 to 72 hours at 50 rpm to 1,500 rpm, preferably 200 rpm to 800 rpm, considering the support effect.

이후, 볼 밀링된 분산물은 건조시킨 다음, 소성하여 선택적 촉매환원반응용 탈질촉매를 제조한다[(a3) 단계].Thereafter, the ball milled dispersion is dried and then calcined to prepare a denitrification catalyst for the selective catalytic reduction reaction [step (a3)].

상기 건조는 사용된 용매에 따라 다르나, 25 ℃ ~ 120 ℃에서 2 시간 ~ 30 시간 동안 수행할 수 있고, 소성은 300 ℃ ~ 1,000 ℃에서 0.5 시간 ~ 24 시간 동안 수행할 수 있다. 이때, 분위기 가스로는 일반적으로 공기 또는 불활성 가스 등이 사용될 수 있다.The drying varies depending on the solvent used, but can be performed at 25°C to 120°C for 2 to 30 hours, and calcination can be performed at 300°C to 1,000°C for 0.5 to 24 hours. At this time, air or an inert gas can generally be used as the atmospheric gas.

전술된 바와 같이 제조된 선택적 촉매환원반응용 탈질촉매는 지지체 화합물이 포함된 촉매 지지체 상에 은 성분 및 아연 성분이 촉매 활성성분으로 분산되어 담지되어 있는 형태로, 상기 은 및 아연은 촉매 지지체 100 중량부에 대하여, 은 1 중량부 ~ 15 중량부 및 아연 3 중량부 ~ 100 중량부, 바람직하게는 촉매 지지체 100 중량부에 대하여, 은 1 중량부 ~ 10 중량부 및 아연 3 중량부 ~ 50 중량부로 담지될 수 있다.The denitrification catalyst for selective catalytic reduction reaction prepared as described above is in a form in which silver and zinc components are dispersed and supported as catalytically active components on a catalyst support containing a support compound, and the silver and zinc are dispersed in 100 weight of the catalyst support. parts by weight, 1 to 15 parts by weight of silver and 3 to 100 parts by weight of zinc, preferably 1 to 10 parts by weight of silver and 3 to 50 parts by weight of zinc, based on 100 parts by weight of catalyst support. It can be supported.

또한 상기 선택적 촉매환원반응용 탈질촉매는 금속판, 금속 섬유(fiber), 세라믹 필터, 허니컴 등의 구조물에 코팅하여 사용하거나, 공기 예열기, 보일러 튜브군, 덕트, 벽체 등에 코팅시켜 사용할 수 있다. 또한, 소량의 바인더를 첨가한 후 입자형 또는 모노리스(monolith)형으로 압출 가공하여 사용할 수 있다. In addition, the denitrification catalyst for the selective catalytic reduction reaction can be used by coating on structures such as metal plates, metal fibers, ceramic filters, honeycombs, etc., or by coating on air preheaters, boiler tube groups, ducts, walls, etc. Additionally, it can be used by adding a small amount of binder and then extruding it into particle or monolith form.

상기와 같이 탈질촉매를 코팅 또는 압출 형태로 제조하기 위하여, 탈질촉매를 바람직하게는 1 ㎛ ~ 10 ㎛의 입자 크기로 균일하게 분쇄하여 코팅 또는 압출하며, 이러한 코팅 및 압출 과정은 당업계에서 널리 알려져 있다. 다만, 탈질촉매 입자 크기가 지나치게 작은 경우에는 미분쇄 단계로 인하여 경제성 면에서 바람직하지 않은 반면, 지나치게 큰 경우에는 코팅물 또는 압출물의 균일성 및 접착력이 저하되는 문제가 있으므로 이를 고려하여 적절한 크기로 입자로 제조하는 것이 바람직할 것이다.In order to manufacture the denitrification catalyst in the form of coating or extrusion as described above, the denitrification catalyst is preferably uniformly ground to a particle size of 1 ㎛ ~ 10 ㎛ and coated or extruded, and such coating and extrusion processes are widely known in the art. there is. However, if the particle size of the denitrification catalyst is too small, it is undesirable from an economic perspective due to the fine pulverization step. On the other hand, if it is too large, there is a problem of lowering the uniformity and adhesion of the coating or extrudate, so taking this into account, the particles are adjusted to an appropriate size. It would be preferable to manufacture it with .

한편, 본 발명은 다른 관점에서 전술된 제조방법에 따라 제조된 탈질촉매를 사용하여 배기가스 중의 질소산화물을 선택적으로 촉매 환원하는 것을 특징으로 하는 질소산화물의 선택적 환원방법을 제공한다.Meanwhile, from another point of view, the present invention provides a method for selective reduction of nitrogen oxides, which is characterized by selective catalytic reduction of nitrogen oxides in exhaust gas using a denitrification catalyst manufactured according to the above-described production method.

상기 탈질촉매를 이용한 배기가스 중의 질소 산화물을 저감하는 방법은 본 발명이 속하는 기술분야에서 공지된 방법을 사용하여 실행할 수 있다.The method of reducing nitrogen oxides in exhaust gas using the above-described nitrogen removal catalyst can be carried out using a method known in the technical field to which the present invention pertains.

본 발명에 따른 질소산화물의 선택적 환원방법에서 환원제로는 우레아의 분해로부터 발생한 암모니아를 사용할 수도 있으나, 배기가스 중의 일산화탄소, 미연소 탄화수소 및/또는 연소 후 탄화수소를 사용하는 것이 효율적이고, 경제적이므로 바람직하다.In the selective reduction method of nitrogen oxides according to the present invention, ammonia generated from the decomposition of urea may be used as a reducing agent, but it is preferable to use carbon monoxide in exhaust gas, unburned hydrocarbons, and/or post-combusted hydrocarbons because it is efficient and economical. .

또한, 본 발명은 다른 관점에서 상기 볼 밀링을 이용한 탄화수소 SCR 제법으로부터 제조된 SCR촉매 존재하 배기가스내 질소산화물을 제거하는 방법을 제공하는 것을 특징으로 한다.In addition, the present invention is characterized in that it provides a method for removing nitrogen oxides in exhaust gas in the presence of an SCR catalyst prepared from the hydrocarbon SCR production method using ball milling from another perspective.

상기 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물을 제거하는 방법에 있어서, (a) 투입된 배기가스에 대하여 볼 밀링에 의하여 제조되어 지지체내 금속이 담지되어 있는 SCR 촉매 존재하에 탄화수소 선택적 촉매환원반응(Hydrocarbon SCR)을 수행하고, 부산물인 NH3를 포함하는 SCR 반응생성물을 배출하는 단계; 및 (b) SCR 반응생성물에 대하여 Cu가 담지된 제올라이트 촉매 존재하에 암모니아 분해반응을 수행하고, 암모니아 분해반응 생성물을 배출하는 단계;를 포함하는 것을 특징으로 한다.In the method for removing nitrogen oxides in exhaust gas in the presence of an SCR catalyst manufactured by ball milling, (a) selective hydrocarbon removal in the presence of an SCR catalyst manufactured by ball milling and supporting metal in a support with respect to input exhaust gas. Performing a catalytic reduction reaction (Hydrocarbon SCR) and discharging the SCR reaction product including NH 3 as a by-product; and (b) performing an ammonia decomposition reaction on the SCR reaction product in the presence of a Cu-supported zeolite catalyst and discharging the ammonia decomposition reaction product.

일반적으로 HC-SCR 반응은 배기가스내 일산화질소의 산화반응(반응식 1) 및 환원제인 탄화수소의 부분산화반응(반응식 2)의 생성물인 이산화질소 및 CxHyOz의 산화환원에 의해 질소 및 이산화탄소 등으로 전환(반응식 3)하는 메커니즘이 알려져 있다.In general , the HC-SCR reaction converts nitrogen and carbon dioxide into nitrogen and carbon dioxide through the oxidation-reduction of nitrogen dioxide and C The mechanism for conversion (Scheme 3) is known.

2NO + O2 → 2NO2 [반응식 1]2NO + O 2 → 2NO 2 [Scheme 1]

Hydrocarbon (HC) + O2 → CxHyOz [반응식 2]Hydrocarbon (HC) + O 2 → C x H y O z [Scheme 2]

NO2 + CxHyOz → N2 + CO2 + H2O [반응식 3]NO 2 + C x H y O z → N 2 + CO 2 + H 2 O [Scheme 3]

그러나, 본 출원인은 상기 배기가스에 포함된 질소산화물의 HC-SCR 반응생성물에서 상기 반응식에는 개시되지 않은 부산물 암모니아가 생성되며, SCR 촉매의 활성이 우수할수록 이에 비례하여 암모니아 생성량이 증가하는 현상을 발견하였다. However, the present applicant discovered that a by-product ammonia, which is not disclosed in the above reaction equation, is produced in the HC-SCR reaction product of nitrogen oxides contained in the exhaust gas, and that the amount of ammonia produced increases proportionally as the activity of the SCR catalyst improves. did.

상기 암모니아는 질소산화물의 불완전 전환에 의해 부산되는 유독성분으로서 장치 부식, 유로 폐색과 함께 대기 배출시 위해성 문제를 야기하므로, 고활성 SCR 촉매에 의해 부산되는 NH3를 제거하기 위한 구성으로서 SCR 반응의 후속 단계로서 암모니아 분해단계를 구비한 것을 기술적 특징으로 한다.The ammonia is a toxic component produced by incomplete conversion of nitrogen oxides and causes hazardous problems when discharged to the atmosphere along with device corrosion and channel blockage. Therefore, it is used as a component to remove NH 3 byproduct by a highly active SCR catalyst during the SCR reaction. Its technical feature is that it has an ammonia decomposition step as a subsequent step.

이하 본 발명에 따른 SCR 촉매 존재하 배기가스내 질소산화물을 제거하는 방법을 첨부된 도면을 참조하여 보다 상세하게 설명하면 다음과 같다. Hereinafter, the method for removing nitrogen oxides from exhaust gas in the presence of an SCR catalyst according to the present invention will be described in more detail with reference to the attached drawings.

도 2는 본 발명에 따른 SCR 촉매 존재하 배기가스내 질소산화물 제거방법의 흐름도로, 도 2를 참조하면, 본 발명은 투입된 배기가스에 대하여 볼 밀링에 의하여 제조되어 지지체내 금속이 담지되어 있는 SCR 촉매 존재하에 탄화수소 선택적 촉매환원반응(Hydrocarbon SCR)을 수행하고, 부산물인 NH3를 포함하는 SCR 반응생성물을 배출시킨다[(a) 단계].Figure 2 is a flow chart of a method for removing nitrogen oxides from exhaust gas in the presence of an SCR catalyst according to the present invention. Referring to Figure 2, the present invention is an SCR manufactured by ball milling on input exhaust gas and supporting metal in the support. A hydrocarbon selective catalytic reduction reaction (Hydrocarbon SCR) is performed in the presence of a catalyst, and the SCR reaction product including NH 3 as a by-product is discharged [step (a)].

상기 (a)단계의 볼 밀링에 의하여 제조되어 지지체내 금속이 담지되어 있는 SCR 촉매는 전술된 바와 같이 제조된 선택적 촉매환원반응용 탈질촉매의 제조방법에 의해 제조된 것과 동일하고, 기술적 특징을 공유하므로 중복 기재는 생략하도록 한다.The SCR catalyst manufactured by ball milling in step (a) and supporting the metal in the support is the same as that manufactured by the method of manufacturing a denitrification catalyst for selective catalytic reduction reaction prepared as described above, and shares technical features. Therefore, duplicate entries should be omitted.

상기 (a)단계의 탄화수소 선택적 촉매환원반응은 온도 100 ~ 600 ℃에서 수행할 수 있으며, 이 경우에 상기 SCR 반응생성물은 SCR 촉매의 활성능에 비례하여 부산물 암모니아를 포함하며, 투입된 질소산화물의 몰농도 대비 1 ~ 90% 범위로 포함할 수 있다.The hydrocarbon selective catalytic reduction reaction in step (a) can be performed at a temperature of 100 to 600 ° C. In this case, the SCR reaction product contains by-product ammonia in proportion to the activity of the SCR catalyst, and the mole of nitrogen oxides introduced It can be contained in the range of 1 to 90% of concentration.

이후 SCR 반응생성물에 대하여 Cu가 담지된 제올라이트 촉매 존재하에 암모니아 분해반응을 수행하고, 암모니아 분해반응 생성물을 배출한다[(b) 단계]. Afterwards, an ammonia decomposition reaction is performed on the SCR reaction product in the presence of a Cu-supported zeolite catalyst, and the ammonia decomposition reaction product is discharged [step (b)].

상기 (b)단계의 암모니아 분해반응의 촉매는 제올라이트 100 중량부에 대하여 Cu 0.2 ~ 10 중량부로 담지된 것일 수 있으며, 상기 (b)단계의 암모니아 분해반응 촉매의 제올라이트는 SSZ-13, SSZ-39, SAPO-34, ZSM-5, Beta, LTA, Y, Mordenite 및 Ferrierite중 하나 이상이 사용될 수 있다.The catalyst for the ammonia decomposition reaction in step (b) may be supported at 0.2 to 10 parts by weight of Cu based on 100 parts by weight of zeolite, and the zeolite for the ammonia decomposition reaction catalyst in step (b) is SSZ-13, SSZ-39. , SAPO-34, ZSM-5, Beta, LTA, Y, Mordenite, and Ferrierite can be used.

상기 암모니아 분해반응 촉매의 제조방법으로는 공지의 제조방법인 건식 함침법, 이온교환법, 습식 함침법, 볼 밀링법, 공침법 등이 제한없이 적용될 수 있다.As a method for producing the ammonia decomposition reaction catalyst, known production methods such as dry impregnation method, ion exchange method, wet impregnation method, ball milling method, and co-precipitation method can be applied without limitation.

상기 (b)단계의 암모니아 분해반응은 온도 100 ~ 600 ℃에서 수행할 수 있으며, 바람직하게는 온도 250 ~ 400 ℃에서 수행할 수 있다.The ammonia decomposition reaction in step (b) can be performed at a temperature of 100 to 600 °C, and preferably at a temperature of 250 to 400 °C.

한편, 본 발명은 상기 볼 밀링이 수반되는 제법에 의해 제조된 선택적 촉매환원반응용 탈질촉매 및 암모니아 분해촉매를 포함하는 배기가스내 질소산화물 정화 시스템을 제공할 수 있다.Meanwhile, the present invention can provide a nitrogen oxide purification system in exhaust gas including a denitrification catalyst for selective catalytic reduction reaction and an ammonia decomposition catalyst manufactured by the manufacturing method involving ball milling.

상기 암모니아 분해촉매는 암모니아를 분해할 수 있는 것이면 제한없으나, 바람직하게는 Cu가 담지된 제올라이트 촉매일 수 있다.The ammonia decomposition catalyst is not limited as long as it can decompose ammonia, but is preferably a Cu-supported zeolite catalyst.

또한, 상기 배기가스내 질소산화물 정화 시스템에 있어서 상기 선택적 촉매환원반응용 탈질촉매 및 암모니아 분해촉매는 동일하거나 상이한 공간에 배치될 수 있으며, 이 경우에 각각 질소산화물에 대한 HC-SCR 반응과 암모니아 분해반응을 순차적으로 수행하거나 혹은 동시에 수행할 수 있다.In addition, in the nitrogen oxide purification system in the exhaust gas, the denitrification catalyst for the selective catalytic reduction reaction and the ammonia decomposition catalyst may be disposed in the same or different spaces, and in this case, HC-SCR reaction for nitrogen oxide and ammonia decomposition, respectively. Reactions can be performed sequentially or simultaneously.

이하, 바람직한 실시 예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시 예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. However, these examples are for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited thereto.

<촉매 제조예 1> 볼 밀링에 의한 Ag-Zn/Al2O3 제조<Catalyst Preparation Example 1> Preparation of Ag-Zn/Al 2 O 3 by ball milling

AgNO3 4.15 g, Zn(NO3)2·6H2O 59.87 g, 및 Al2O3 50 g을 증류수 80 g에 분산시켜 분산물을 수득한 다음, 상기 수득된 분산물을 400 rpm으로 하루 동안 볼 밀링시켰다. 이때, 상기 볼 밀링은 직경이 10 mm 및 2 mm인 Y-doped ZrO2을 3:7 중량비로 혼합된 볼을 사용하여 볼 밀링을 수행하였고, 사용된 직경이 10 mm인 볼은 20개를 사용 기준으로 하였다. 상기 볼 밀링된 분산물은 회전증발농축기를 사용하여 분산물 내부의 수분을 분리한 다음, 110 ℃ 오븐에서 하루 동안 건조한 후에 600 ℃에서 5시간 동안 소성시켜 촉매 총 중량에 대하여, 은(Ag) 4 wt% 및 아연(Zn) 20 wt%가 담지된 Ag-Zn/Al2O3를 제조하였다. 4.15 g of AgNO 3 , 59.87 g of Zn(NO 3 ) 2 ·6H 2 O, and 50 g of Al 2 O 3 were dispersed in 80 g of distilled water to obtain a dispersion, and then the obtained dispersion was stirred at 400 rpm for one day. Ball milled. At this time, the ball milling was performed using balls mixed with Y-doped ZrO 2 with diameters of 10 mm and 2 mm at a weight ratio of 3:7, and 20 balls with a diameter of 10 mm were used. It was used as a standard. The ball milled dispersion was separated from the moisture inside the dispersion using a rotary evaporator, dried in an oven at 110°C for one day, and then calcined at 600°C for 5 hours to obtain silver (Ag) 4 based on the total weight of the catalyst. Ag-Zn/Al 2 O 3 loaded with wt% and 20 wt% of zinc (Zn) was prepared.

<비교 제조예 1> 볼 밀링(ball milling, BM)에 의한 Ag/Al2O3 제조<Comparative Production Example 1> Production of Ag/Al 2 O 3 by ball milling (BM)

AgNO3 3.285 g 및 Al2O3 50 g을 증류수 20 g에 분산시켜 분산물을 수득한 다음, 상기 수득된 분산물을 400 rpm으로 하루동안 볼 밀링시켰다. 이때, 상기 볼 밀링은 직경이 10 mm 및 2 mm인 Y-doped ZrO2을 3:7 중량비로 혼합된 볼을 사용하여 볼 밀링을 수행하였고, 사용된 직경이 10 mm인 볼은 20개를 사용 기준으로 하였다. 상기 볼 밀링된 분산물은 회전증발농축기를 사용하여 분산물 내부의 수분을 분리한 다음, 110 ℃ 오븐에서 하루 동안 건조한 후에 600 ℃에서 5시간 동안 소성시켜 촉매 총 중량에 대하여, 은(Ag) 4 wt%가 담지된 Ag/Al2O3를 제조하였다.3.285 g of AgNO 3 and 50 g of Al 2 O 3 were dispersed in 20 g of distilled water to obtain a dispersion, and then the obtained dispersion was ball milled at 400 rpm for one day. At this time, the ball milling was performed using balls mixed with Y-doped ZrO 2 with diameters of 10 mm and 2 mm at a weight ratio of 3:7, and 20 balls with a diameter of 10 mm were used. It was used as a standard. The ball milled dispersion was separated from the moisture inside the dispersion using a rotary evaporator, dried in an oven at 110°C for one day, and then calcined at 600°C for 5 hours to obtain silver (Ag) 4 based on the total weight of the catalyst. Ag/Al 2 O 3 loaded with wt% was prepared.

<비교 제조예 2> 함침(impregnation, IMP)에 의한 Ag-Zn/Al2O3 제조<Comparative Preparation Example 2> Production of Ag-Zn/Al 2 O 3 by impregnation (IMP)

AgNO3 4.15 g 및 Zn(NO3)2·6H2O 59.87 g을 증류수 20 g에 혼합한 다음, 상기 혼합물을 Al2O3 50 g에 도포시켜 건식 함침을 수행하였다. 상기 건식 함친된 혼합물을 110 ℃에서 하루 동안 건조시킨 후에 600 ℃에서 5 시간동안 소성시켜 촉매 총 중량에 대하여, 은(Ag) 4 wt% 및 아연(Zn) 20 wt%가 담지된 Ag-Zn/Al2O3를 제조하였다. 4.15 g of AgNO 3 and 59.87 g of Zn(NO 3 ) 2 ·6H 2 O were mixed with 20 g of distilled water, and then the mixture was applied to 50 g of Al 2 O 3 to perform dry impregnation. The dry impregnated mixture was dried at 110°C for one day and then calcined at 600°C for 5 hours to form Ag-Zn/Ag-Zn/with 4 wt% of silver (Ag) and 20 wt% of zinc (Zn) supported based on the total weight of the catalyst. Al 2 O 3 was prepared.

<실시예 1: (SCR 촉매)Ag-Zn/Al<Example 1: (SCR catalyst) Ag-Zn/Al 22 OO 33 및 (암모니아 분해촉매)Cu/SSZ-13를 이용한 배기가스내 질소산화물 제거> and removal of nitrogen oxides in exhaust gas using (ammonia decomposition catalyst) Cu/SSZ-13>

상기 제조예1에서 제조한 촉매를 고정층 반응기에 1 cc 충진하고, NO 500 ppm, O2 10%, H2O 5 %, H2 2 %, 에탄올(C1/NOx = 8) 2000 ppm 및 N2 balance가 혼합된 혼합기체를 공간 속도(GHSV) 100,000 h-1(10 ℃ㆍmin-1)로 주입하여 온도별로 질소산화물의 NH3 또는 N2로의 전환율을 측정하는 방법으로 반응온도별로 HC-SCR 반응을 수행하였다.1 cc of the catalyst prepared in Preparation Example 1 was charged into a fixed bed reactor, NO 500 ppm, O 2 10%, H 2 O 5 %, H 2 2%, ethanol (C 1 /NOx = 8) 2000 ppm and N 2 Balance gas mixture is injected at a space velocity (GHSV) of 100,000 h -1 (10 ℃ㆍmin -1 ) to measure the conversion rate of nitrogen oxides to NH 3 or N 2 according to temperature. HC- according to reaction temperature SCR reaction was performed.

이후 상기 제조예1에서 제조한 촉매 1cc 후단에 Cu/SSZ-13 촉매를 1cc 추가로 충진하여 상기 HC-SCR 반응과 동일한 조건으로 200~450℃의 반응온도 하에 반응을 실시하였으며, 이 때 배기가스내 질소산화물의 암모니아로의 전환율 및 N2로의 전환율을 구하고 이를 도 3 및 도 4에 나타내었다.Afterwards, 1 cc of Cu/SSZ-13 catalyst was additionally charged at the rear of 1 cc of the catalyst prepared in Preparation Example 1, and the reaction was performed under the same conditions as the HC-SCR reaction at a reaction temperature of 200 to 450 ° C. At this time, exhaust gas The conversion rate of nitrogen oxides to ammonia and N 2 was calculated and shown in Figures 3 and 4.

<비교예 1: (SCR 촉매)Ag/Al<Comparative Example 1: (SCR catalyst) Ag/Al 22 OO 33 만을 이용한 배기가스내 질소산화물 제거> Removal of nitrogen oxides in exhaust gas using only >

Ag-Zn/Al2O3 대신 Ag/Al2O3 촉매를 사용하여 HC-SCR 반응을 수행하되, 암모니아 분해반응을 수행하지 않은 것을 제외하고는 실시예1과 동일한 방법을 수행하였으며, 그 결과를 도 3 및 도 4에 나타내었다.The HC-SCR reaction was performed using an Ag/Al 2 O 3 catalyst instead of Ag-Zn/Al 2 O 3 , but the same method as Example 1 was performed except that the ammonia decomposition reaction was not performed. As a result, is shown in Figures 3 and 4.

<비교예 2: (SCR 촉매)Ag-Zn/Al<Comparative Example 2: (SCR catalyst) Ag-Zn/Al 22 OO 33 만을 이용한 배기가스내 질소산화물 제거> Removal of nitrogen oxides in exhaust gas using only >

Cu/SSZ-13 촉매를 충진하지 않아 암모니아 분해반응을 수행하지 않은 것을 제외하고는 실시예1과 동일한 방법을 수행하였으며, 그 결과를 도 3 및 도 4에 나타내었다.The same method as Example 1 was performed except that the ammonia decomposition reaction was not performed because the Cu/SSZ-13 catalyst was not charged, and the results are shown in Figures 3 and 4.

<비교예 3: (SCR 촉매)Ag/Al<Comparative Example 3: (SCR catalyst) Ag/Al 22 OO 33 및 (암모니아 분해촉매)CuSSZ-13를 이용한 배기가스내 질소산화물 제거> and removal of nitrogen oxides in exhaust gas using (ammonia decomposition catalyst) CuSSZ-13>

Ag-Zn/Al2O3 대신 Ag/Al2O3 촉매를 사용하여 HC-SCR 반응을 수행한 것을 제외하고는 실시예1과 동일한 방법을 수행하였으며, 그 결과를 도 3 및 도 4에 나타내었다.The same method as Example 1 was performed except that the HC-SCR reaction was performed using an Ag/Al 2 O 3 catalyst instead of Ag-Zn/Al 2 O 3 , and the results are shown in Figures 3 and 4. It was.

<비교예 4: (SCR 촉매)Ag-Zn/Al<Comparative Example 4: (SCR catalyst) Ag-Zn/Al 22 OO 33 만을 이용한 배기가스내 질소산화물 제거> Removal of nitrogen oxides in exhaust gas using only >

상기 비교 제조예2의 함침법을 이용하여 제조한 Ag-Zn/Al2O3 촉매를 사용하여 HC-SCR 반응을 수행하되, Cu/SSZ-13 촉매를 충진하지 않아 암모니아 분해반응을 수행하지 않은 것을 제외하고는 실시예1과 동일한 방법을 수행하였으며, 그 결과를 도 3 및 도 4에 나타내었다.The HC-SCR reaction was performed using the Ag-Zn/Al 2 O 3 catalyst prepared using the impregnation method of Comparative Preparation Example 2, but the ammonia decomposition reaction was not performed because the Cu/SSZ-13 catalyst was not charged. Except for this, the same method as Example 1 was performed, and the results are shown in Figures 3 and 4.

<비교예 5: (SCR 촉매)Ag-Zn/Al<Comparative Example 5: (SCR catalyst) Ag-Zn/Al 22 OO 33 및 (암모니아 분해촉매)CuSSZ-13를 이용한 배기가스내 질소산화물 제거> and removal of nitrogen oxides in exhaust gas using (ammonia decomposition catalyst) CuSSZ-13>

상기 비교 제조예2의 함침법을 이용하여 제조한 Ag-Zn/Al2O3 촉매를 사용하여 HC-SCR 반응을 수행한 것을 제외하고는 실시예1과 동일한 방법을 수행하였으며, 그 결과를 도 3 및 도 4에 나타내었다.The same method as Example 1 was performed except that the HC-SCR reaction was performed using the Ag-Zn/Al 2 O 3 catalyst prepared using the impregnation method of Comparative Preparation Example 2, and the results are shown in Figure 2. 3 and 4.

도 3은 본 발명의 실시예 1 및 비교예 1 내지 5의 방법에서 배기가스내 질소산화물의 부산물 암모니아로의 전환율을 측정한 결과이다.Figure 3 shows the results of measuring the conversion rate of nitrogen oxides in exhaust gas to by-product ammonia in the methods of Example 1 and Comparative Examples 1 to 5 of the present invention.

도 3에 나타난 바와 같이, Ag 및/또는 Zn을 포함하는 SCR 촉매를 사용하여 HC-SCR을 수행한 후에 암모니아 분해반응을 수행하는 실시예1 및 비교예3은 질소산화물이 암모니아로 전환되지 않은 것으로 나타난 반면, HC-SCR 촉매를 사용할 뿐, 암모니아 분해반응이 수반되지 않는 비교예1 및 비교예2는 암모니아가 부산된 것으로 확인되었다. 특히, Ag 및 Zn이 동시에 담지된 비교예2는 상대적으로 활성이 낮은 촉매가 사용된 비교예1 대비 암모니아 전환율이 약 2배 높은 것으로 나타났다.As shown in Figure 3, in Example 1 and Comparative Example 3, in which an ammonia decomposition reaction was performed after performing HC-SCR using an SCR catalyst containing Ag and/or Zn, nitrogen oxides were not converted to ammonia. On the other hand, it was confirmed that ammonia was produced in Comparative Examples 1 and 2, which only used the HC-SCR catalyst and did not involve an ammonia decomposition reaction. In particular, Comparative Example 2, in which Ag and Zn were simultaneously supported, showed an ammonia conversion rate about twice as high as Comparative Example 1, in which a relatively less active catalyst was used.

또한, 볼 밀링에 의해 제조된 촉매를 사용하는 실시예1은 함침법에 의해 제조된 촉매를 사용하는 비교예5와 함께 질소산화물이 암모니아로 전환되지 않은 반면, 제올라이트 촉매없이 HC-SCR 촉매만을 사용한 비교예4는 암모니아 전환율이 높은 것으로 나타났다.In addition, Example 1, which uses a catalyst prepared by ball milling, together with Comparative Example 5, which uses a catalyst prepared by impregnation, did not convert nitrogen oxides into ammonia, whereas Example 1 used only the HC-SCR catalyst without a zeolite catalyst. Comparative Example 4 showed a high ammonia conversion rate.

도 4는 본 발명의 실시예 1 및 비교예 1 내지 5의 방법을 통한 배기가스내 질소산화물의 질소로의 전환율을 측정한 결과 그래프이다.Figure 4 is a graph showing the results of measuring the conversion rate of nitrogen oxides in exhaust gas to nitrogen through the methods of Example 1 and Comparative Examples 1 to 5 of the present invention.

도 4에 나타난 바와 같이, HC-SCR 반응 후에 암모니아 분해반응을 수행하는 실시예1은 암모니아 분해반응이 수반되지 않았던 비교예2 대비 전환율이 최대 20% 이상 향상된 것으로 나타나며, 이는 도 3에서 Ag-Zn을 포함하는 SCR 촉매의 고활성능으로 인해 암모니아가 많이 생성될수록 이를 N2로의 분해 혹은 전환되는 양이 증가하는 것으로 나타난다.As shown in Figure 4, Example 1, in which an ammonia decomposition reaction is performed after the HC-SCR reaction, shows an improvement in conversion rate of up to 20% or more compared to Comparative Example 2, which did not involve an ammonia decomposition reaction, which is shown in Figure 3 as Ag-Zn Due to the high activity of the SCR catalyst containing, the more ammonia is produced, the more it is decomposed or converted into N 2 .

또한, 함침법에 의해 제조된 촉매를 사용하는 비교예5는 암모니아 분해반응이 수반되지 않았던 비교예4 대비 전환율이 최대 17% 정도 향상되었지만 상기 볼 밀링에 의해 제조된 촉매를 사용하는 실시예1의 전환율 증가수치에는 다소 미치지 못하며, 볼 밀링에 의해 제조된 촉매를 사용하는 실시예1 대비 동일 반응온도인 300℃에서 질소산화물의 N2로의 전환율이 최대 20% 가량 낮은 것으로 확인되었다.In addition, Comparative Example 5 using a catalyst prepared by the impregnation method improved the conversion rate by up to 17% compared to Comparative Example 4, which did not involve an ammonia decomposition reaction, but compared to Example 1 using the catalyst prepared by ball milling. It was found that the conversion rate increase was somewhat lower than that of Example 1 using a catalyst prepared by ball milling, and the conversion rate of nitrogen oxides to N 2 was up to 20% lower at the same reaction temperature of 300°C.

이상으로 본 발명은 첨부된 도면 및 실시예를 참조하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술에 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 것을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 청구범위에 의해서 정하여져야 할 것이다.The present invention has been described above with reference to the accompanying drawings and examples, but these are merely illustrative, and those skilled in the art will recognize that various modifications and other equivalent embodiments are possible therefrom. You will understand. Therefore, the scope of technical protection of the present invention should be determined by the claims.

Claims (10)

SCR 촉매 존재하 배기가스내 질소산화물을 제거하는 방법에 있어서,
(a) 투입된 배기가스에 대하여 활성금속으로서 은(Ag)와 아연(Zn)이 지지체에 볼 밀링에 의하여 분산 담지된 SCR 촉매 존재하에 탄화수소 선택적 촉매환원반응(Hydrocarbon SCR)을 수행하고, 부산물인 NH3를 포함하는 SCR 반응생성물을 배출하는 단계; 및
(b) 상기 SCR 반응생성물에 대하여 Cu가 담지된 제올라이트 촉매 존재하에 암모니아 분해반응을 수행하고, 암모니아 분해반응 생성물을 배출하는 단계;를 포함하는 것을 특징으로 하는, 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법.
In the method of removing nitrogen oxides in exhaust gas in the presence of an SCR catalyst,
(a) A hydrocarbon selective catalytic reduction reaction (Hydrocarbon SCR) is performed on the input exhaust gas in the presence of an SCR catalyst in which silver (Ag) and zinc (Zn) as active metals are dispersed and supported on a support by ball milling, and NH as a by-product Discharging the SCR reaction product containing 3 ; and
(b) performing an ammonia decomposition reaction on the SCR reaction product in the presence of a Cu-supported zeolite catalyst, and discharging the ammonia decomposition reaction product; in the presence of an SCR catalyst manufactured by ball milling. How to remove nitrogen oxides from exhaust gas.
제1항에 있어서,
상기 배기가스는 일산화탄소, 미연소 탄화수소 및 연소후 탄화수소 중 하나 이상을 포함하는 것을 특징으로 하는, 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법.
According to paragraph 1,
A method for removing nitrogen oxides in exhaust gas in the presence of an SCR catalyst manufactured by ball milling, characterized in that the exhaust gas contains at least one of carbon monoxide, unburned hydrocarbons, and post-combustion hydrocarbons.
제1항에 있어서,
상기 (a) 단계의 볼 밀링에 의하여 지지체에 분산 담지된 SCR 촉매는
(a1) 은 전구체, 아연 전구체 및 지지체 화합물을 용매에 분산시키는 단계;
(a2) 상기 분산물을 볼 밀링하는 단계; 및
(a3) 상기 볼 밀링된 분산물을 건조시킨 다음, 소성하는 단계;를 포함하는 방법에 의하여 제조된 것임을 특징으로 하는, 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법.
According to paragraph 1,
The SCR catalyst dispersed and supported on the support by ball milling in step (a) is
(a1) dispersing the silver precursor, zinc precursor, and support compound in a solvent;
(a2) ball milling the dispersion; and
(a3) A method for removing nitrogen oxides from exhaust gas in the presence of an SCR catalyst manufactured by ball milling, characterized in that it is manufactured by a method comprising the step of drying the ball milled dispersion and then calcining it.
제3항에 있어서,
상기 (a)단계에서 탄화수소 선택적 촉매환원반응의 촉매는 지지체인 알루미나 100 중량부에 대하여 금속 Ag 1 ~ 15 중량부 및 Zn 3 ~ 100 중량부로 담지된 것을 특징으로 하는, 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법.
According to paragraph 3,
In step (a), the catalyst for the hydrocarbon selective catalytic reduction reaction is an SCR manufactured by ball milling, characterized in that 1 to 15 parts by weight of metal Ag and 3 to 100 parts by weight of Zn are supported on 100 parts by weight of alumina as a support. Method for removing nitrogen oxides from exhaust gas in the presence of a catalyst.
제3항에 있어서,
상기 (a1) 단계는 은 전구체 및 아연 전구체의 중량비가 1 : 1 ~ 50인 것을 특징으로 하는, 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법.
According to paragraph 3,
The step (a1) is a method of removing nitrogen oxides in exhaust gas in the presence of an SCR catalyst manufactured by ball milling, characterized in that the weight ratio of the silver precursor and the zinc precursor is 1: 1 to 50.
제1항에 있어서,
상기 (a)단계의 탄화수소 선택적 촉매환원반응은 온도 100 ~ 600 ℃에서 수행하는 것을 특징으로 하는, 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법.
According to paragraph 1,
A method for removing nitrogen oxides in exhaust gas in the presence of an SCR catalyst manufactured by ball milling, characterized in that the hydrocarbon selective catalytic reduction reaction in step (a) is performed at a temperature of 100 to 600 ° C.
제1항에 있어서,
상기 SCR 반응생성물은 암모니아를 투입된 질소산화물의 몰농도 대비 1 ~ 90% 범위로 포함하는 것을 특징으로 하는, 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법.
According to paragraph 1,
A method for removing nitrogen oxides from exhaust gas in the presence of an SCR catalyst manufactured by ball milling, characterized in that the SCR reaction product contains ammonia in the range of 1 to 90% of the molar concentration of nitrogen oxides introduced.
제1항에 있어서,
상기 (b)단계의 암모니아 분해반응의 촉매는 제올라이트 100 중량부에 대하여 Cu 0.2 ~ 10 중량부로 담지된 것을 특징으로 하는, 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법.
According to paragraph 1,
A method for removing nitrogen oxides in exhaust gas in the presence of an SCR catalyst manufactured by ball milling, characterized in that the catalyst for the ammonia decomposition reaction in step (b) is supported at 0.2 to 10 parts by weight of Cu based on 100 parts by weight of zeolite.
제1항에 있어서,
상기 (b)단계의 암모니아 분해반응 촉매의 제올라이트는 SSZ-13, SSZ-39, SAPO-34, ZSM-5, Beta, LTA, Y, Mordenite 및 Ferrierite 중 하나 이상인 것을 특징으로 하는, 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법.
According to paragraph 1,
The zeolite of the ammonia decomposition reaction catalyst in step (b) is characterized in that it is one or more of SSZ-13, SSZ-39, SAPO-34, ZSM-5, Beta, LTA, Y, Mordenite, and Ferrierite by ball milling. Method for removing nitrogen oxides from exhaust gas in the presence of the manufactured SCR catalyst.
제1항에 있어서,
상기 (b)단계의 암모니아 분해반응은 온도 250 ~ 400 ℃에서 수행하는 것을 특징으로 하는, 볼 밀링에 의해 제조된 SCR 촉매 존재하 배기가스내 질소산화물 제거방법.

According to paragraph 1,
A method for removing nitrogen oxides in exhaust gas in the presence of an SCR catalyst manufactured by ball milling, characterized in that the ammonia decomposition reaction in step (b) is performed at a temperature of 250 to 400 ° C.

KR1020220176511A 2022-12-16 2022-12-16 Method for removing nitrogen oxides in exhaust gas in the presence of SCR catalyst with increased conversion rate to nitrogen KR20240094330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220176511A KR20240094330A (en) 2022-12-16 2022-12-16 Method for removing nitrogen oxides in exhaust gas in the presence of SCR catalyst with increased conversion rate to nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220176511A KR20240094330A (en) 2022-12-16 2022-12-16 Method for removing nitrogen oxides in exhaust gas in the presence of SCR catalyst with increased conversion rate to nitrogen

Publications (1)

Publication Number Publication Date
KR20240094330A true KR20240094330A (en) 2024-06-25

Family

ID=91711313

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220176511A KR20240094330A (en) 2022-12-16 2022-12-16 Method for removing nitrogen oxides in exhaust gas in the presence of SCR catalyst with increased conversion rate to nitrogen

Country Status (1)

Country Link
KR (1) KR20240094330A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767563B1 (en) 2006-04-03 2007-10-17 한국전력기술 주식회사 Preparation Method of Vanadium/titania-based Catalyst Showing Excellent Nitrogen Oxide-Removal Performance at Wide Temperature Window through Introduction of Ball Milling, and Use Thereof
KR101509684B1 (en) 2009-12-03 2015-04-06 현대자동차 주식회사 nitrogen oxide purification catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767563B1 (en) 2006-04-03 2007-10-17 한국전력기술 주식회사 Preparation Method of Vanadium/titania-based Catalyst Showing Excellent Nitrogen Oxide-Removal Performance at Wide Temperature Window through Introduction of Ball Milling, and Use Thereof
KR101509684B1 (en) 2009-12-03 2015-04-06 현대자동차 주식회사 nitrogen oxide purification catalyst

Similar Documents

Publication Publication Date Title
RU2698817C2 (en) Zoned catalyst for treating exhaust gas
US10767535B2 (en) Method for recycling denitration catalyst
US9597636B2 (en) Zoned catalyst for treating exhaust gas
JP4686553B2 (en) Catalyst and method for reducing nitrogen oxides in an exhaust stream with hydrocarbons or alcohols
CA2151229C (en) Ammonia decomposition catalysts
CA2784700C (en) Deactivation-resistant catalyst for selective catalytic reduction of nox
JP2008508090A (en) Catalyst and nitrogen oxide reduction method
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
JPH06319950A (en) Method and apparatus for exhaust gas denitration using solid reducing agent
CN103861622B (en) Method for removing the supported catalyst of denitrification, preparing its method and remove denitrification using it
KR20240094330A (en) Method for removing nitrogen oxides in exhaust gas in the presence of SCR catalyst with increased conversion rate to nitrogen
KR102637357B1 (en) SCR Catalyst and Preparation Method Thereof
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JP2005023895A (en) Method and device for exhaust-emission control for lean-burn-system internal combustion engine
JPH11165043A (en) Treatment of waste gas of waste incinerator
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
WO2010016250A1 (en) Catalyst for removing nitrogen oxide, system for removing nitrogen oxide using same and method for removing nitrogen oxide using same
KR20240111844A (en) Semi-dry reaction tower equipped with NHx-based reducing agent supply device and an atomizer and an air pollution prevention system using the same
KR20230146242A (en) Low Temperature SCR Catalysts Using Hydrogen and Method of Preparing Same
JP2005137984A (en) Catalyst for reducing nitrogen oxide and method for removing nitrogen oxide
JPH0655032A (en) Method for purifying exhaust gas
JP2001079394A (en) Catalyst, method and device for treating exhaust gas
JP2003284956A (en) Catalyst for purifying combustion exhaust gas and method for purifying exhaust gas