KR20230157569A - Manufacture of hogi-heat-resistant eco-friendly plastic injection molding using high-temperature molds - Google Patents

Manufacture of hogi-heat-resistant eco-friendly plastic injection molding using high-temperature molds Download PDF

Info

Publication number
KR20230157569A
KR20230157569A KR1020220056733A KR20220056733A KR20230157569A KR 20230157569 A KR20230157569 A KR 20230157569A KR 1020220056733 A KR1020220056733 A KR 1020220056733A KR 20220056733 A KR20220056733 A KR 20220056733A KR 20230157569 A KR20230157569 A KR 20230157569A
Authority
KR
South Korea
Prior art keywords
acid amide
eco
sorbitol
bis
salt
Prior art date
Application number
KR1020220056733A
Other languages
Korean (ko)
Inventor
이상일
조상일
Original Assignee
(주)퓨레코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)퓨레코 filed Critical (주)퓨레코
Priority to KR1020220056733A priority Critical patent/KR20230157569A/en
Publication of KR20230157569A publication Critical patent/KR20230157569A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2503/00Use of resin-bonded materials as filler
    • B29K2503/04Inorganic materials
    • B29K2503/08Mineral aggregates, e.g. sand, clay or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/10Mica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0016Non-flammable or resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 고내열성을 확보한 친환경 플라스틱 사출제품의 제조에 관한 것이다. 보다 자세하게는 생분해가 가능한 지방족 폴리에스테르 수지 및 이를 개질한 수지를 이용하여 고온의 금형을 통해 사출하는 방법으로, 내열성을 보유한 친환경플리스틱 제품을 생산하는 것이다. 따라서 폴리유산수지의 장점인 생분해성, 친환경성, 강도 등은 그대로 유지되고, 고온금형을 활용한 사출과정을 통해서 내열성, 내구성 등이 향상될 수 있는 제품의 제조방법에 관한 것이다.The present invention relates to the manufacture of eco-friendly plastic injection products with high heat resistance. More specifically, it is a method of producing heat-resistant eco-friendly plastic products by injection molding through a high-temperature mold using biodegradable aliphatic polyester resin and its modified resin. Therefore, it is about a method of manufacturing a product that maintains the advantages of polylactic acid resin, such as biodegradability, eco-friendliness, and strength, while improving heat resistance and durability through an injection process using a high-temperature mold.

Description

고온 금형을 활용한 고내열 친환경플라스틱 사출품 제작{MANUFACTURE OF HOGI-HEAT-RESISTANT ECO-FRIENDLY PLASTIC INJECTION MOLDING USING HIGH-TEMPERATURE MOLDS}Production of high heat-resistant eco-friendly plastic injection products using high temperature molds {MANUFACTURE OF HOGI-HEAT-RESISTANT ECO-FRIENDLY PLASTIC INJECTION MOLDING USING HIGH-TEMPERATURE MOLDS}

본 발명은 고내열성을 확보한 친환경플라스틱 사출제품의 제조에 관한 것이다. 보다 자세하게는 생분해가 가능한 지방족 폴리에스테르 수지 및 이를 개질한 수지를 이용하여 고온의 금형을 통해 사출하는 방법으로, 내열성을 보유한 친환경플리스틱 제품을 생산하는 것이다. 따라서 폴리유산수지의 장점인 생분해성, 친환경성, 강도 등은 그대로 유지되고, 고온금형을 활용한 사출과정을 통해서 내열성, 내구성 등이 향상될 수 있는 제품의 제조방법에 관한 것이다.The present invention relates to the manufacture of eco-friendly plastic injection products with high heat resistance. More specifically, it is a method of producing heat-resistant eco-friendly plastic products by injection molding through a high-temperature mold using biodegradable aliphatic polyester resin and its modified resin. Therefore, it is about a method of manufacturing a product that maintains the advantages of polylactic acid resin, such as biodegradability, eco-friendliness, and strength, while improving heat resistance and durability through an injection process using a high-temperature mold.

폐기된 고분자에 의한 환경오염 문제와 석유값 급등으로 인하여, 환경부하가 적고 매년 재생산이 가능한 식물유래 고분자 재료가 주목받고 있다. 또한 최근에는 환경오염이 심각해지면서 토양 또는 바다에서 미생물에 의해 자연분해 될 수 있는 생분해성 고분자가 각광을 받고 있다.Due to the problem of environmental pollution caused by discarded polymers and the rapid rise in oil prices, plant-derived polymer materials that have low environmental load and can be reproduced every year are attracting attention. Additionally, recently, as environmental pollution has become more serious, biodegradable polymers that can be naturally decomposed by microorganisms in soil or the sea have been in the spotlight.

이러한 고분자 중 지방족 폴리에스테르 수지는 가공성이 우수하고 분해 특성의 조절이 용이하여 식물유래 생분해성 고분자로서 가장 많이 연구되고 있다. 그중에서 폴리유산(polylactic acid: PLA)의 경우, 현재 약 15 만톤 규모의 시장을 형성하고 있고, 일회용제품뿐만 아니라 식품 포장재, 전자제품 케이스 등 내구성이 필요한 분야까지 그 적용범위가 확대되고 있다.Among these polymers, aliphatic polyester resin is the most studied plant-derived biodegradable polymer due to its excellent processability and easy control of decomposition characteristics. Among them, polylactic acid (PLA) currently has a market size of approximately 150,000 tons, and its scope of application is expanding not only to disposable products but also to fields that require durability such as food packaging materials and electronic product cases.

하지만, 지방족 폴리에스테르 중 폴리유산은 일반적으로 내열성이 낮기 때문에, 외부온도가 60℃ 이상 상승하게 되면 성형제품이 변형되는 문제가 발생한다. 이러한 문제로 인해 결정화되지 않은 풀리유산 수지는 내열성이 확보되지 않아 그 적용범위가 매우 축소됨은 물론이고, 수출입시 운송과정 중 형태불량으로 문제점이 발생한다.However, since polylactic acid among aliphatic polyesters generally has low heat resistance, the problem of deformation of molded products occurs when the external temperature rises above 60°C. Due to this problem, the heat resistance of uncrystallized polylactic acid resin is not secured, which not only greatly reduces its scope of application, but also causes problems due to poor shape during the transportation process during import and export.

따라서, 지방족 폴리에스테르 수지의 적용범위 및 시장영역 확대를 위해서는 제품의 내열성 향상이 반드시 필요하다. 현재 지방족 폴리에스테르 수지의 내열성 향상을 위해 다음과 같은 방법이 이용된다.Therefore, in order to expand the application range and market area of aliphatic polyester resin, it is essential to improve the heat resistance of the product. Currently, the following methods are used to improve the heat resistance of aliphatic polyester resins.

일본특허 공개번호 제2005-220177호, 제2005-200517호 및 제2005-336220호에서는 내열성과 기계적 강도를 동시에 향상시키기 위해 유리섬유를 혼합시키는 기술을 개시하고 있으나, 유리섬유는 폐기 후 생분해가 되지 않는 단점이 있고 작업상 문제가 발생하는 유해한 유리섬유를 친환경수지에 첨가하는 것은 바람직하지 않다. Japanese Patent Publication Nos. 2005-220177, 2005-200517, and 2005-336220 disclose a technology for mixing glass fibers to simultaneously improve heat resistance and mechanical strength, but glass fibers are not biodegradable after disposal. It is not advisable to add harmful glass fibers to eco-friendly resins as they have disadvantages and cause operational problems.

대한민국 공개특허 제10-2005-0056021호에는 폴리유산과 폴리카보네이트 수지를 블렌딩함으로써 내충격성 및 내열성을 향상시키는 기술을 개시하고 있다. 하지만 폴리카보네이트 수지의 함량을 증가시킬수록 석유계 플라스틱 수지의 제품 비중이 증가하게 되고, 폴리카보네이트 수지의 함량 증가에 따른 유해성 물질인 비스페놀-A(Bisphenol-A)의 함량을 동반하게 된다. 결국 폴리유산 수지의 사용 목적과 위배되는 결과를 초래하는 문제점이 있다.Republic of Korea Patent Publication No. 10-2005-0056021 discloses a technology for improving impact resistance and heat resistance by blending polylactic acid and polycarbonate resin. However, as the content of polycarbonate resin increases, the proportion of products made of petroleum-based plastic resin increases, and as the content of polycarbonate resin increases, the content of Bisphenol-A, a hazardous substance, also increases. Ultimately, there is a problem that causes results that conflict with the purpose of using the polylactic acid resin.

일본특허 공개번호 제2009-7003963에는 핵제를 첨가한 지방족 폴리에스테르 수지를 고온금형 내에서 결정화 하여 내열성을 향상시키는 기술을 개시하고 있다. 이 기술은 뛰어난 물성을 가진 100% 생분해성 수지제품을 제조할 수 있다는 장점이 있는 반면 제품생산 사이클 타임이 길어 생산성이 떨어지고 복잡한 모양의 제품생산 시 결정화에 의한 제품수축으로 정확한 수치의 제품생산이 어렵고 취출성 좋지 않다는 문제점이 있다.Japanese Patent Publication No. 2009-7003963 discloses a technology for improving heat resistance by crystallizing an aliphatic polyester resin to which a nucleating agent has been added in a high-temperature mold. This technology has the advantage of being able to manufacture 100% biodegradable resin products with excellent physical properties, but the product production cycle time is long, which reduces productivity, and when producing products with complex shapes, it is difficult to produce products with accurate dimensions due to product shrinkage due to crystallization. There is a problem that the extraction properties are not good.

Macromolecules, 20, 904 (1987)와 26, 6918 (1993)에서는 L-이성질체 폴리유산과 D-이성질체 폴리유산을 용융 혼합하여 결정화를 향상시킨 결과를 발표하였고 일본특허공개 제2007-023083호 및 제2006-241607호 등에서는 스테레오 콤플렉스 폴리유산을 사용하여 높은 결정성을 유도하고, 열안정성 및 기계적 강도를 향상시킨 기술을 개시하였다. 하지만 상기 발명은 결정화도를 높였을 뿐 생산 상의 이점이나 생산성의 향상을 가져온 것은 아니다. 뿐만 아니라 D-이성질체 폴리유산 가격이 L-이성질체 폴리유산 가격에 비해 월등히 높아 제품제조 시 가격문제로 인해 실용화하기가 어렵다.Macromolecules, 20, 904 (1987) and 26, 6918 (1993) reported results of improved crystallization by melt mixing L-isomeric polylactic acid and D-isomeric polylactic acid, and Japanese Patent Publication Nos. 2007-023083 and 2006 In No. -241607 and others, a technology was disclosed using stereocomplex polylactic acid to induce high crystallinity and improve thermal stability and mechanical strength. However, the above invention only increased the crystallinity and did not bring about any production advantages or improvements in productivity. In addition, the price of D-isomeric polylactic acid is much higher than that of L-isomeric polylactic acid, making it difficult to put it into practical use due to price issues during product manufacturing.

일본특허 공개번호 제2005-220177호(2005.08.18)Japanese Patent Publication No. 2005-220177 (2005.08.18) 일본특허 공개번호 제2005-200517호(2005.07.28)Japanese Patent Publication No. 2005-200517 (2005.07.28) 일본특허 공개번호 제2005-336220호(2005.12.08)Japanese Patent Publication No. 2005-336220 (2005.12.08) 대한민국 공개특허 제2005-0056021호(2005.06.14)Republic of Korea Patent Publication No. 2005-0056021 (2005.06.14)

Macromolecules, 20, 904 (1987)Macromolecules, 20, 904 (1987) Macromolecules, 26, 6918 (1993)Macromolecules, 26, 6918 (1993)

이에 따라 본 발명의 목적은 식물유래 생분해성 지방족 폴리에스테르 수지의 내열성을 개선하기 위해, 고온금형을 이용하여 내열성을 부여하면서도 그 특성인 생분해성, 친환경성, 강성을 유지하는 고내열 친환경플라스틱 사출제품 및 그 제조방법을 제공하는 것이다.Accordingly, the purpose of the present invention is to improve the heat resistance of plant-derived biodegradable aliphatic polyester resin, and provide a high heat-resistant eco-friendly plastic injection product that provides heat resistance using a high temperature mold while maintaining its characteristics of biodegradability, eco-friendliness, and rigidity. and providing a manufacturing method thereof.

본 발명의 다른 목적은 제품의 제조 사이클 타임을 감소시켜 생산성을 확보하고 치수안정성 향상으로 복잡한 구조도 제조 가능한 고성능 식물유래 지방족 폴리에스테르 결정화제품 및 그 제조방법을 제공하는 것이다.Another object of the present invention is to provide a high-performance plant-derived aliphatic polyester crystallization product and a manufacturing method thereof that can secure productivity by reducing the manufacturing cycle time of the product and manufacturing complex structures by improving dimensional stability.

본 발명의 고내열 친환경플라스틱 사출제품은 순수 식물유래 지방족 폴리에스테르 수지 또는 이에 친환경 첨가제 또는 기타 생분해성 수지와의 용융혼합으로 이루어진 수지로 이루어짐을 특징으로 하고 있다. The highly heat-resistant eco-friendly plastic injection product of the present invention is characterized by being made of a pure plant-derived aliphatic polyester resin or a resin melt-mixed with an eco-friendly additive or other biodegradable resin.

그리고 본 고내열 친환경플라스틱 사출제품은 범용 사출장비에 히터봉 또는 온유기를 이용해 금형의 온도를 80~120℃로 유지한 상황에서 사출품을 제조하는 것를 포함하여 제조공정이 이루어지는 것을 특징으로 한다. In addition, this highly heat-resistant eco-friendly plastic injection product is characterized by a manufacturing process that includes manufacturing the injection product in a situation where the temperature of the mold is maintained at 80 to 120 ℃ using general-purpose injection equipment and a heater rod or heater.

위와 같은 본 발명은 식물유래 지방족 폴리에스테르 수지를 이용한 제품생산에 의해 온실가스 저감, 화석자원 절약 및 연소 시 유해가스의 미방출 효과가 있다. 그리고 내열성 향상의 의해 친환경 제품인 식물유래 지방족 폴리에스테르 제품의 적용영역 및 시장영역을 확대할 수 있다.The present invention as described above has the effect of reducing greenhouse gases, saving fossil resources, and not emitting harmful gases during combustion by producing products using plant-derived aliphatic polyester resin. And by improving heat resistance, the application and market areas of plant-derived aliphatic polyester products, which are eco-friendly products, can be expanded.

그리고 본 발명을 위해 개발된 고온금형을 통한 내열제품은 총 생산사이클 타임 단축으로 생산성을 향상시킬 수 있어 가격경쟁력을 가진 제품을 생산이 가능하고 치수안정성 향상으로 복잡한 구조의 내열제품 생산이 가능하여 기존 비분해성 제품을 대체하는 효과가 있다.In addition, heat-resistant products using high-temperature molds developed for the present invention can improve productivity by shortening the total production cycle time, making it possible to produce products with price competitiveness, and improving dimensional stability makes it possible to produce heat-resistant products with complex structures, making it possible to produce heat-resistant products with complex structures. It has the effect of replacing non-degradable products.

도 1은 본 발명에 의한 고내열 친환경 지방족 폴리에스테르 사출품을 위한 사출금형 제작 사진이다.
도 2는 본 발명에 의한 고내열 친환경 지방족 폴리에스테르 사출품을 위한 사출금형 설치 사진이다.
도 3은 본 발명을 위한 고온금형을 통해 제조된 사출품이다.
Figure 1 is a photograph of the production of an injection mold for a highly heat-resistant, eco-friendly aliphatic polyester injection product according to the present invention.
Figure 2 is a photograph of an injection mold installation for a highly heat-resistant, eco-friendly aliphatic polyester injection product according to the present invention.
Figure 3 is an injection product manufactured through a high-temperature mold for the present invention.

본 발명에 의한 고성능 지방족 폴리에스테르 결정화제품의 수지 조성물을 설명하면 다음과 같다.The resin composition of the high-performance aliphatic polyester crystallization product according to the present invention is described as follows.

본 발명의 고성능 지방족 폴리에스테르 결정화제품의 수지 조성물은 식물유래 지방족 폴리에스테르의 장점인 생분해성, 친환경성, 강성 등을 유지하면서 내열성을 부여한 고성능 지방족 폴리에스테르 제품 제조를 위한 수지 조성물에 관한 것으로, 더욱 상세하게는 폴리유산 단독 또는 폴리유산에 조핵제, 친환경 첨가제 또는 기타 생분해성 수지를 1종 이상 첨가하여 개질한 수지인 것을 특징으로 한다.The resin composition of the high-performance aliphatic polyester crystallized product of the present invention relates to a resin composition for manufacturing high-performance aliphatic polyester products that provide heat resistance while maintaining the advantages of plant-derived aliphatic polyester such as biodegradability, eco-friendliness, and rigidity. In detail, it is characterized as a resin modified by adding one or more types of nucleating agents, eco-friendly additives, or other biodegradable resins to polylactic acid alone or polylactic acid.

폴리유산 수지는 결정질 PLA(c-PLA) 수지와 비정질 PLA(a-PLA) 수지로 구분될 수 있다. 이때, 비정질 PLA 수지의 경우 본 발명의 목적에 맞지 않으므로 결정질 PLA 수지를 이용하는 것이 바람직하다. 결정질 PLA 수지를 이용하는 경우, 경우에 따라 조핵제의 첨가 없이도 가공효율의 상승을 가져올 수 있는 장점이 있다. 결정질 PLA 수지를 이용하는 경우, PLA 수지는 100% 결정질 PLA 수지를 이용하는 것이 가장 바람직하며, 필요에 따라서는 결정질과 비정질이 공존하는 PLA 수지를 이용할 수 있다. 따라서 폴리유산 수지는 폴리유산이 L-락트산, D-락트산 또는 L,D-락트산으로 구성되며, 분자량은 10,000 이상인 것을 이용한다.Polylactic acid resin can be divided into crystalline PLA (c-PLA) resin and amorphous PLA (a-PLA) resin. At this time, since amorphous PLA resin does not suit the purpose of the present invention, it is preferable to use crystalline PLA resin. When using crystalline PLA resin, there is an advantage in some cases that processing efficiency can be increased without the addition of a nucleating agent. When using a crystalline PLA resin, it is most preferable to use a 100% crystalline PLA resin, and if necessary, a PLA resin in which both crystalline and amorphous elements coexist can be used. Therefore, the polylactic acid resin is composed of L-lactic acid, D-lactic acid, or L,D-lactic acid, and has a molecular weight of 10,000 or more.

상기 조핵제는 폴리유산 수지의 성형 시 결정화 속도의 향상를 위해 사용한다.이러한 조핵제는 특정 입경 이하의 탈크 및/또는 질화붕소로 이루어진 무기입자, 특정 식으로 표시되는 솔비톨 유도체, 특정 식으로 표시되는 아미드 화합물, 특정 식으로 나타나는 인 화합물의 금속염 등이 있다.The nucleating agent is used to improve the crystallization rate when molding polylactic acid resin. These nucleating agents include inorganic particles made of talc and/or boron nitride of a specific particle size or less, sorbitol derivatives expressed by a specific formula, and There are amide compounds, metal salts of phosphorus compounds represented by specific formulas, etc.

본 발명에서 이용하는 결정화 핵제로서, 무기계인 것으로는, 규산칼슘계 충진재(규회석 등), 마이카, 탈크(분말상 탈크나 로진을 바인더로 한 과립상 탈크 등), 카올린, 티탄산칼륨 위스커, 질화붕소, 층상 규산염 등의 클레이, 나노필러, 탄소섬유 등, 통상 열가소성 수지에 사용되는 것이면 되고, 이들 중 2종 이상을 병용할 수도 있다. 무기계 결정화 핵제의 최대 직경은 0.01~5㎛인 것이 바람직하다. 특히, 입자경이 3.0㎛ 이하인 분말상의 탈크가 바람직하고, 입자경 1.5~3.0㎛ 정도의 분말상 탈크가 보다 바람직하고, 입자경이 2.0㎛ 이하인 분말상 탈크가 특히 바람직하다. 또한, 이 분말상 탈크에 로진을 바인더로 한 과립상 탈크는, 폴리아미드 조성물 내에서의 분산 상태가 양호하므로, 특히 바람직하다.Crystallization nucleating agents used in the present invention are inorganic, such as calcium silicate-based fillers (wollastonite, etc.), mica, talc (powdered talc or granular talc with rosin as a binder, etc.), kaolin, potassium titanate whisker, boron nitride, layered. Clays such as silicates, nanofillers, carbon fibers, etc. may be those normally used in thermoplastic resins, and two or more of these may be used in combination. The maximum diameter of the inorganic crystallization nucleating agent is preferably 0.01 to 5 μm. In particular, powdered talc with a particle size of 3.0 μm or less is preferable, powdered talc with a particle size of about 1.5 to 3.0 μm is more preferable, and powdered talc with a particle size of 2.0 μm or less is particularly preferable. In addition, the granular talc in which rosin is used as a binder in the powdered talc is particularly preferable because it has a good dispersion state in the polyamide composition.

상기 솔비톨 유도체 결정화 핵제는 비스(벤질리덴)솔비톨계 결정화 핵제로서, 비스(p-메틸벤질리덴)솔비톨, 비스(p-에틸벤질리덴)솔비톨, 비스(n-프로필벤질리덴)솔비톨, 비스(p-이소프로필벤질리덴)솔비톨, 비스(p-이소부틸벤질리덴)솔비톨, 비스(2,4-디메틸벤질리덴)솔비톨, 비스(3,4-디메틸벤질리덴)솔비톨, 비스(2,4,5-트리메틸벤질리덴)솔비톨, 비스(2,4,6-트리메틸벤질리덴)솔비톨, 비스(4-비페닐벤질리덴)솔비톨 등을 들 수 있다.The sorbitol derivative crystallization nucleating agent is a bis(benzylidene)sorbitol-based crystallization nucleating agent, and includes bis(p-methylbenzylidene)sorbitol, bis(p-ethylbenzylidene)sorbitol, bis(n-propylbenzylidene)sorbitol, and bis(p). -Isopropylbenzylidene)sorbitol, bis(p-isobutylbenzylidene)sorbitol, bis(2,4-dimethylbenzylidene)sorbitol, bis(3,4-dimethylbenzylidene)sorbitol, bis(2,4,5) -Trimethylbenzylidene)sorbitol, bis(2,4,6-trimethylbenzylidene)sorbitol, and bis(4-biphenylbenzylidene)sorbitol.

상기 아미드 화합물 핵제는 아마이드결합을 갖는 지방족 카르복실산아마이드를 포함하여 이루어지는 유기화합물로 카프르산아마이드, 스테아르산아마이드, 올레산아마이드, 에루크산아마이드, 베헨산아마이드와 같은 탄소수 8 내지 30의 지방족 카르복실산모노아마이드나, 메틸렌비스스테아르산아마이드, 에틸렌비스라우르산아마이드, 에틸렌비스카프르산아마이드, 에틸렌비스올레산아마이드, 에틸렌비스 스테아르산아마이드, 에틸렌비스에루크산아마이드, 에틸렌비스베헨산아마이드, 에틸렌비스아이소 스테아르산아마이드, 에틸렌비스하이드록시스테아르산아마이드, 부틸렌비스스테아르산아마이드, 헥사 메틸렌비스올렌산아마이드, 헥사메틸렌비스스테아르산아마이드, 헥사메틸렌비스베헨산아마이드, 헥사 메틸렌비스하이드록시스테아르산아마이드와 같은 지방족 카르복실산비스아마이드 등이 적용가능하다.The amide compound nucleating agent is an organic compound containing an aliphatic carboxylic acid amide having an amide bond, and is an aliphatic carboxylic acid having 8 to 30 carbon atoms such as capric acid amide, stearic acid amide, oleic acid amide, erucic acid amide, and behenic acid amide. Boxylic acid monoamide, methylenebisstearic acid amide, ethylenebislauric acid amide, ethylenebiscapric acid amide, ethylenebisoleic acid amide, ethylenebisstearic acid amide, ethylenebiserucic acid amide, ethylenebisbehenic acid amide, ethylene Bisisostearic acid amide, ethylenebishydroxystearic acid amide, butylenebisstearic acid amide, hexamethylenebisolenic acid amide, hexamethylenebisstearic acid amide, hexamethylenebisbehenic acid amide, hexamethylenebishydroxystearic acid amide Aliphatic carboxylic acid bisamides such as are applicable.

인 화합물 금속염 핵제는 리튬염, 나트륨염, 칼륨염, 마그네슘염, 칼슘염, 바륨염, 철염, 코발트염, 구리염, 망간염 및 아연염으로 이루어진 페닐포스포산 금속염을 들 수 있다.The phosphorus compound metal salt nucleating agent may include a phenylphosphonic acid metal salt consisting of lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt, barium salt, iron salt, cobalt salt, copper salt, manganese salt, and zinc salt.

본 발명은 상기 조핵제로 이루어진 군으로부터 선택된 1종 이상의 것을 이용한다.The present invention uses at least one selected from the group consisting of the above nucleating agents.

본 발명의 지방족 폴리에스테르 조성물에서 조핵제의 함량은 폴리유산 수지 100중량부에 대하여 0.1~20중량부이고, 바람직하게는 0.5~10중량부 이다. 상기 지방족 폴리에스테르 조성물에서 폴리유산 수지 100중량부 대비 0.1중량부 미만으로 조핵제를 사용할 경우, 조핵제의 성능을 발휘하지 못해 생산성이 향상되지 않을 수 있고, 폴리유산 수지 100중량부 대비 20중량부를 초과하여 핵제를 사용할 경우 용융혼합 및 분산에 문제를 발생할 수 있으며 제품의 물리적 성질을 약하게 할 수 있다.The content of the nucleating agent in the aliphatic polyester composition of the present invention is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the polylactic acid resin. If the nucleating agent is used in an amount of less than 0.1 parts by weight compared to 100 parts by weight of the polylactic acid resin in the aliphatic polyester composition, the performance of the nucleating agent may not be demonstrated and productivity may not be improved, and 20 parts by weight compared to 100 parts by weight of the polylactic acid resin may be used. If the nucleating agent is used in excess, problems with melt mixing and dispersion may occur and the physical properties of the product may be weakened.

폴리유산 수지의 단점을 보완하기 위해 타 생분해성 수지와의 용윤혼합으로 물리적 성질을 개선할 수 있으며, 상기 생분해성 수지는 폴리부틸렌석시네이트(Polybutylene Succinate PBS), 폴리카프로락톤(Polycaprolactone PCL), 폴리부틸렌아디페이트/테레프탈레이트 공중합체(Polybutylene Adipate Terephthalate PBAT), 폴리하이드록시알카노에이트(polyhydroxyalkanoate PHA), 폴리하이드록시부틸레이트(Polyhydroxybutyrate PHB) 중의 어느 1종 이상의 것을 이용한다. In order to compensate for the shortcomings of polylactic acid resin, the physical properties can be improved by melt mixing with other biodegradable resins, and the biodegradable resins include polybutylene succinate PBS, polycaprolactone PCL, Use one or more of polybutylene adipate/terephthalate copolymer (Polybutylene Adipate Terephthalate PBAT), polyhydroxyalkanoate PHA, and polyhydroxybutyrate PHB.

이러한 기타 생분해성 수지는 PLA 수지 100중량부에 대하여 1~100중량부의 비율로 사용할 수 있다. 생분해성 수지의 함량이 1중량부 미만일 경우 PLA 수지의 취성 개선 효율 향상이 불충분하고, 함량이 100중량부를 초과할 경우 수지 조성물의 제조 비용이 상승하고, 물리적 성질의 약화를 가져올 수 있다.These other biodegradable resins can be used in a ratio of 1 to 100 parts by weight based on 100 parts by weight of PLA resin. If the content of the biodegradable resin is less than 1 part by weight, the efficiency of improving the brittleness of the PLA resin is insufficient, and if the content exceeds 100 parts by weight, the manufacturing cost of the resin composition increases and physical properties may be weakened.

본 발명에 의한 고내열 친환경플라스틱 사출품은 아래의 제조방법을 포함하여 이루어진다.The highly heat-resistant, eco-friendly plastic injection molded product according to the present invention includes the following manufacturing method.

제조 공정은 범용 사출장비를 활용하고 히터봉 또는 온유기를 이용해 금형의 온도를 80~120℃로 유지한 상황에서 사출품을 제조하는 것이다. 가공성, 생산성 등을 고려하여 제품용도에 적합한 가공방법, 가공조건을 선택하고 목표 물성 및 구조를 가진 제품을 최적조건에서 생산한다.The manufacturing process uses general-purpose injection equipment and manufactures injection products while maintaining the mold temperature at 80 to 120°C using a heater rod or heater. Considering processability, productivity, etc., select processing methods and processing conditions suitable for product use and produce products with target properties and structure under optimal conditions.

사출품의 총 가공시간은 제품의 크기와 모형에 따라 달라질 수 있다. 금형에서 제품을 퇴출 시 계획한 제품의 형상을 보유하고 추가적인 형변형이 발생하지 않는 한도내에서 제품 생산효율성이 최고인 가공사이클을 선택한다.The total processing time for injection molded products may vary depending on the size and model of the product. When ejecting a product from a mold, select a processing cycle that maintains the planned product shape and has the highest product production efficiency within the limit of not causing additional deformation.

이상에서 살펴본 바와 같이 본 발명은 수많은 실험을 거쳐 완성되었으나, 이하에서는 당업자가 용이하게 이해하고 실시할 수 있을 정도의 바람직한 실시예를 통하여 본 발명을 설명한다. 본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.As discussed above, the present invention was completed through numerous experiments. However, the present invention will be described below through preferred embodiments that can be easily understood and implemented by those skilled in the art. These examples are intended to illustrate the present invention in more detail, and the scope of the present invention is not limited to these examples.

<실시예 1><Example 1>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 80℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃ and the mold was set to 80℃ using an onyugi.

<실시예 2><Example 2>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 100℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃ and the mold was set to 100℃ using a hot oil machine.

<실시예 3><Example 3>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 120℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃, and the mold was set to 120℃ using a hot oil machine.

<실시예 4><Example 4>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 80℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃ and the mold was set to 80℃ using a heater rod.

<실시예 5><Example 5>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 100℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃ and the mold was set to 100℃ using a heater rod.

<실시예 6><Example 6>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 120℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃ and the mold was set to 120℃ using a heater rod.

<실시예 7><Example 7>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 80℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 80℃ using an onyugi.

<실시예 8><Example 8>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 100℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 100℃ using a hot oil machine.

<실시예 9><Example 9>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 120℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃, and the mold was set to 120℃ using a hot oil machine.

<실시예 10><Example 10>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 80℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 80℃ using a heater rod.

<실시예 11><Example 11>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 100℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 100℃ using a heater rod.

<실시예 12><Example 12>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 120℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 120℃ using a heater rod.

<실시예 13><Example 13>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 80℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 80℃ using an onyugi.

<실시예 14><Example 14>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 100℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 100℃ using a hot oil machine.

<실시예 15><Example 15>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 120℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃, and the mold was set to 120℃ using a hot oil machine.

<실시예 16><Example 16>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 80℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 80℃ using a heater rod.

<실시예 17><Example 17>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 100℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 100℃ using a heater rod.

<실시예 18><Example 18>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 80℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 80℃ using a heater rod.

<비교예 1><Comparative Example 1>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 70℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃ and the mold was set to 70℃ using an onyugi.

<비교예 2><Comparative Example 2>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 130℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃ and the mold was set to 130℃ using an onyugi.

<비교예 3><Comparative Example 3>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 70℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃ and the mold was set to 70℃ using a heater rod.

<비교예 4><Comparative Example 4>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 130℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃ and the mold was set to 130℃ using a heater rod.

<비교예 5><Comparative Example 5>

순수 폴리유산 수지를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 냉각수를 이용하여 45℃로 세팅하였다.A sample as shown in Figure 3 was prepared using pure polylactic acid resin. The injection machine barrel temperature was 150~170℃ and the mold was set to 45℃ using cooling water.

<비교예 6><Comparative Example 6>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 70℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 70℃ using an onyugi.

<비교예 7><Comparative Example 7>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 130℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 130℃ using an onyugi.

<비교예 8><Comparative Example 8>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 70℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 70℃ using a heater rod.

<비교예 9><Comparative Example 9>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 130℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 130℃ using a heater rod.

<비교예 10><Comparative Example 10>

순수 폴리유산 수지에 핵제 1phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 냉각수를 이용하여 45℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 45℃ using cooling water.

<비교예 11><Comparative Example 11>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 70℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 70℃ using an onyugi.

<비교예 12><Comparative Example 12>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 온유기를 이용하여 130℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 130℃ using an onyugi.

<비교예 13><Comparative Example 13>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 70℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 70℃ using a heater rod.

<비교예 14><Comparative Example 14>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 히터봉을 이용하여 130℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 130℃ using a heater rod.

<비교예 14><Comparative Example 14>

순수 폴리유산 수지에 핵제 1phr와 PCL 10phr을 첨가하여 시료를 제조하였고 이를 이용하여 도 3과 같은 샘플을 제조하였다. 사출기 베럴 온도는 150~170℃ 금형은 냉각수를 이용하여 45℃로 세팅하였다.A sample was prepared by adding 1 phr of nucleating agent and 10 phr of PCL to pure polylactic acid resin, and a sample as shown in Figure 3 was prepared using this. The injection machine barrel temperature was 150~170℃ and the mold was set to 45℃ using cooling water.

물성 평가 방법Physical property evaluation method

(1) 내열성 평가(1) Heat resistance evaluation

100℃로 세팅된 항온항습기 환경에서 70도 이상의 경사로 설치하여 5분 경과 후 형변형의 유무를 육안으로 관찰하여 내열성 향상 여부를 판단하였다. It was installed at an incline of 70 degrees or more in a constant temperature and humidity environment set at 100°C, and the presence or absence of deformation was visually observed after 5 minutes to determine whether heat resistance was improved.

○: 형변형 없음○: No deformation

×: 형변형 발생×: Occurrence of deformation

(2) 수평 형변형 관찰(2) Observation of horizontal deformation

제품의 수평 형변형 관찰을 위해 사출 직후 제품을 굴곡이 없는 평면에 두고 하부의 들뜸 발생 유무를 육안으로 관찰하였다.To observe the horizontal deformation of the product, immediately after injection, the product was placed on a flat surface without any bends and the presence or absence of lifting at the bottom was visually observed.

○: 들뜸 관찰 안됨○: No lifting observed

×: 들뜸 관찰×: Excitation observation

이렇게 관찰된 결과를 아래 [표 1]과 [표2]에 나타내었다.The observed results are shown in [Table 1] and [Table 2] below.

구분division 조성Furtherance 사출 금형injection mold 내열heat resistance 형변형metamorphosis PLA
(%)
PLA
(%)
핵제
(phr)
nuclear agent
(phr)
PCL
(phr)
PCL
(phr)
온유기
내열금형
(℃)
On Yugi
heat resistant mold
(℃)
히터봉
내열금형
(℃)
heater rod
heat resistant mold
(℃)
냉각수
금형
(℃)
cooling water
mold
(℃)
실시예1Example 1 100100 -- -- 8080 -- -- 00 00 실시예2Example 2 100100 -- -- 100100 -- -- 00 00 실시예3Example 3 100100 -- -- 120120 -- -- 00 00 실시예4Example 4 100100 -- -- -- 8080 -- 00 00 실시예5Example 5 100100 -- -- -- 100100 -- 00 00 실시예6Example 6 100100 -- -- -- 120120 -- 00 00 실시예7Example 7 100100 1One -- 8080 -- -- 00 00 실시예8Example 8 100100 1One -- 100100 -- -- 00 00 실시예9Example 9 100100 1One -- 120120 -- -- 00 00 실시예10Example 10 100100 1One -- -- 8080 -- 00 00 실시예11Example 11 100100 1One -- -- 100100 -- 00 00 실시예12Example 12 100100 1One -- -- 120120 -- 00 00 실시예13Example 13 100100 1One 1010 8080 -- -- 00 00 실시예14Example 14 100100 1One 1010 100100 -- -- 00 00 실시예15Example 15 100100 1One 1010 120120 -- -- 00 00 실시예16Example 16 100100 1One 1010 -- 8080 -- 00 00 실시예17Example 17 100100 1One 1010 -- 100100 -- 00 00 실시예18Example 18 100100 1One 1010 -- 120120 -- 00 00

구분division 조성Furtherance 사출 금형injection mold 내열heat resistance 형변형metamorphosis PLA
(%)
PLA
(%)
핵제
(phr)
nuclear agent
(phr)
PCL
(phr)
PCL
(phr)
온유기
내열금형
(℃)
On Yugi
heat resistant mold
(℃)
히터봉
내열금형
(℃)
heater rod
heat resistant mold
(℃)
냉각수
금형
(℃)
cooling water
mold
(℃)
비교예1Comparative Example 1 100100 -- -- 7070 -- -- XX 00 비교예2Comparative example 2 100100 -- -- 130130 -- -- 00 XX 비교예3Comparative Example 3 100100 -- -- -- 7070 -- XX 00 비교예4Comparative Example 4 100100 -- -- -- 130130 -- XX 00 비교예5Comparative Example 5 100100 -- -- -- -- 4545 XX 00 비교예6Comparative Example 6 100100 1One -- 7070 -- -- XX 00 비교예7Comparative Example 7 100100 1One -- 130130 -- -- 00 XX 비교예8Comparative example 8 100100 1One -- -- 7070 -- XX 00 비교예9Comparative Example 9 100100 1One -- -- 130130 -- 00 XX 비교예10Comparative Example 10 100100 1One -- -- -- 4545 XX 00 비교예11Comparative Example 11 100100 1One 1010 7070 -- -- XX 00 비교예12Comparative Example 12 100100 1One 1010 130130 -- -- 00 XX 비교예13Comparative Example 13 100100 1One 1010 -- 7070 -- XX 00 비교예14Comparative Example 14 100100 1One 1010 -- 130130 -- 00 XX 비교예15Comparative Example 15 100100 1One 1010 -- -- 4545 XX 00

상기 [표 1]과 같이, 실시예의 조건에서 친환경 플라스틱을 이용해 제조된 제품의 내열성과 치수안정성이 확보됨을 알 수 있었다. 뿐만 아니라 상기 [표 2]의 비교예에서 70℃ 이하의 금형온도에서는 치수 안정성은 확보될 수 있으나 내열성이 확보된 사출제품 제조가 불가능함을 알 수 있었고 130℃ 이상의 경우 내열성은 확보 될 수 있으나 형변형 발생으로 치수안정성 확보에 어려움이 있음을 알 수 있었다. 따라서 본 발명의 결과를 바탕으로 핵제의 종류 및 첨가량, 금형의 온도, 시간 등을 제품 특성에 맞게 조절하면 친환경플라스틱 제품의 생산성 및 기능성을 향상시켜 그 적용범위를 확장시킬 수 있다.As shown in [Table 1] above, it was found that the heat resistance and dimensional stability of products manufactured using eco-friendly plastic were secured under the conditions of the examples. In addition, in the comparative example in [Table 2] above, it was found that although dimensional stability can be secured at a mold temperature of 70℃ or lower, it is impossible to manufacture an injection product with heat resistance. In the case of 130℃ or higher, heat resistance can be secured, but the mold It was found that there was difficulty in securing dimensional stability due to the occurrence of deformation. Therefore, based on the results of the present invention, if the type and amount of nucleating agent, temperature of the mold, time, etc. are adjusted to suit the characteristics of the product, the productivity and functionality of eco-friendly plastic products can be improved and the scope of application can be expanded.

본 발명의 친환경 플라스틱 사출제품 및 그 제조방법은 본 발명의 기술적 사상을 벋어나지 않는 범위 내에서 내열성 및 치수안정성을 요하는 복잡한 구조의 환경 친화적인 생분해성 수지 제품의 제조에 사용되어 질 수 있다.The eco-friendly plastic injection product and its manufacturing method of the present invention can be used to manufacture environmentally friendly biodegradable resin products with complex structures that require heat resistance and dimensional stability without departing from the technical spirit of the present invention.

Claims (6)

친환경 플라스틱 사출제품을 제조함에 있어서,
범용사출기를 활용하고 히터봉이나 온유기를 활용하여 금형의 온도를 80~120℃로 세팅한 사출을 특징으로 하는 고내열 친환경 플라스틱 제품의 제조방법.
In manufacturing eco-friendly plastic injection products,
A method of manufacturing highly heat-resistant, eco-friendly plastic products, characterized by injection using a general-purpose injection machine and setting the mold temperature to 80~120℃ using a heater rod or hot oil machine.
제 1항에 있어서,
상기 친환경 플라스틱의 조성은 지방족 폴리에스테르, 조핵제 및 기타 생분해성 수지로 구성된 것인 고내열 친환경 플라스틱 제품의 제조방법.
According to clause 1,
A method of manufacturing a highly heat-resistant eco-friendly plastic product, wherein the composition of the eco-friendly plastic consists of aliphatic polyester, nucleating agent, and other biodegradable resin.
제 2항에 있어서,
상기 지방족 폴리에스테르는 폴리유산이 L-락트산, D-락트산 또는 L,D-락트산으로 구성되며, 분자량은 10,000 이상인 것을 특징으로 하는 식물유래 지방족 폴리에스테르인 것인 고내열 친환경 플라스틱 제품의 제조방법.
According to clause 2,
The aliphatic polyester is a plant-derived aliphatic polyester characterized in that the polylactic acid is composed of L-lactic acid, D-lactic acid, or L,D-lactic acid and has a molecular weight of 10,000 or more. A method of manufacturing a highly heat-resistant, eco-friendly plastic product.
제 2항에 있어서,
상기 조핵제는 규산칼슘계 충진재(규회석 등), 마이카, 탈크(분말상 탈크나 로진을 바인더로 한 과립상 탈크 등), 카올린, 티탄산칼륨 위스커, 질화붕소, 층상 규산염 등의 클레이, 나노필러, 탄소섬유 등의 무기계 핵제; 비스(벤질리덴)솔비톨계 결정화 핵제로서, 비스(p-메틸벤질리덴)솔비톨, 비스(p-에틸벤질리덴)솔비톨, 비스(n-프로필벤질리덴)솔비톨, 비스(p-이소프로필벤질리덴)솔비톨, 비스(p-이소부틸벤질리덴)솔비톨, 비스(2,4-디메틸벤질리덴)솔비톨, 비스(3,4-디메틸벤질리덴)솔비톨, 비스(2,4,5-트리메틸벤질리덴)솔비톨, 비스(2,4,6-트리메틸벤질리덴)솔비톨, 비스(4-비페닐벤질리덴)솔비톨 등의 솔비톨 유도체 결정화 핵제; 카프르산아마이드, 스테아르산아마이드, 올레산아마이드, 에루크산아마이드, 베헨산아마이드, 메틸렌비스스테아르산아마이드, 에틸렌비스라우르산아마이드, 에틸렌비스카프르산아마이드, 에틸렌비스올레산아마이드, 에틸렌비스 스테아르산아마이드, 에틸렌비스에루크산아마이드, 에틸렌비스베헨산아마이드, 에틸렌비스아이소 스테아르산아마이드, 에틸렌비스하이드록시스테아르산아마이드, 부틸렌비스스테아르산아마이드, 헥사 메틸렌비스올렌산아마이드, 헥사메틸렌비스스테아르산아마이드, 헥사메틸렌비스베헨산아마이드, 헥사 메틸렌비스하이드록시스테아르산아마이드 등의 지방족 카르복실산비스아마이드와 같은 아미드 화합물 핵제; 리튬염, 나트륨염, 칼륨염, 마그네슘염, 칼슘염, 바륨염, 철염, 코발트염, 구리염, 망간염 및 아연염으로 이루어진 페닐포스포산 금속염의 인 화합물 금속염 핵제; 및 방향족 술폰염 유도체 등으로 이루어진 군에서 선택되는 1종 이상의 첨가제를 포함하는 것인 고내열 친환경 플라스틱 제품의 제조방법.
According to clause 2,
The nucleating agent is calcium silicate-based filler (wollastonite, etc.), mica, talc (powdered talc or granular talc with rosin as a binder, etc.), kaolin, potassium titanate whisker, boron nitride, clay such as layered silicate, nanofiller, and carbon. Inorganic nucleating agents such as fibers; Bis(benzylidene)sorbitol-based crystallization nucleating agents include bis(p-methylbenzylidene)sorbitol, bis(p-ethylbenzylidene)sorbitol, bis(n-propylbenzylidene)sorbitol, and bis(p-isopropylbenzylidene). Sorbitol, bis(p-isobutylbenzylidene)sorbitol, bis(2,4-dimethylbenzylidene)sorbitol, bis(3,4-dimethylbenzylidene)sorbitol, bis(2,4,5-trimethylbenzylidene)sorbitol , sorbitol derivative crystallization nucleating agents such as bis(2,4,6-trimethylbenzylidene)sorbitol and bis(4-biphenylbenzylidene)sorbitol; Capric acid amide, stearic acid amide, oleic acid amide, erucic acid amide, behenic acid amide, methylenebisstearic acid amide, ethylenebislauric acid amide, ethylenebiscapric acid amide, ethylenebisoleic acid amide, ethylenebisstearic acid amide. , ethylenebiseurucic acid amide, ethylenebisbehenic acid amide, ethylenebisisostearic acid amide, ethylenebishydroxystearic acid amide, butylenebisstearic acid amide, hexamethylenebisolenic acid amide, hexamethylenebisstearic acid amide, Amide compound nucleating agents such as aliphatic carboxylic acid bisamides such as hexamethylenebisbehenic acid amide and hexamethylenebishydroxystearic acid amide; Phosphorus compound metal salt nucleating agent of phenylphosphoric acid metal salt consisting of lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt, barium salt, iron salt, cobalt salt, copper salt, manganese salt and zinc salt; A method for producing a highly heat-resistant, eco-friendly plastic product comprising one or more additives selected from the group consisting of aromatic sulfonate derivatives, etc.
제 2항에 있어서,
상기 기타 생분해성 수지는 폴리부틸렌석시네이트(Polybutylene Succinate PBS), 폴리카프로락톤(Polycaprolactone PCL), 폴리부틸렌아디페이트/테레프탈레이트 공중합체(Polybutylene Adipate Terephthalate PBAT), 폴리하이드록시알카노에이트(polyhydroxyalkanoate PHA), 폴리하이드록시부틸레이트(Polyhydroxybutyrate PHB) 등을 1종 이상 포함하는 것인 고내열 친환경 플라스틱 제품의 제조방법.
According to clause 2,
The other biodegradable resins include Polybutylene Succinate PBS, Polycaprolactone PCL, Polybutylene Adipate Terephthalate PBAT, and polyhydroxyalkanoate. A method of manufacturing a highly heat-resistant, eco-friendly plastic product containing one or more types of polyhydroxybutyrate (PHA), polyhydroxybutyrate (PHB), etc.
제1항 내지 제5항 중 어느 한 항에 따른 고내열 친환경 플라스틱 제품의 제조방법으로 제조된 고내열 친환경 플라스틱 제품.A highly heat-resistant, eco-friendly plastic product manufactured by the method for manufacturing a highly heat-resistant, eco-friendly plastic product according to any one of claims 1 to 5.
KR1020220056733A 2022-05-09 2022-05-09 Manufacture of hogi-heat-resistant eco-friendly plastic injection molding using high-temperature molds KR20230157569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220056733A KR20230157569A (en) 2022-05-09 2022-05-09 Manufacture of hogi-heat-resistant eco-friendly plastic injection molding using high-temperature molds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220056733A KR20230157569A (en) 2022-05-09 2022-05-09 Manufacture of hogi-heat-resistant eco-friendly plastic injection molding using high-temperature molds

Publications (1)

Publication Number Publication Date
KR20230157569A true KR20230157569A (en) 2023-11-17

Family

ID=88968868

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220056733A KR20230157569A (en) 2022-05-09 2022-05-09 Manufacture of hogi-heat-resistant eco-friendly plastic injection molding using high-temperature molds

Country Status (1)

Country Link
KR (1) KR20230157569A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050056021A (en) 2003-12-09 2005-06-14 도레이새한 주식회사 Preparing method of biodegradable resin composition and biodegradable resin composition produced by this method
JP2005200517A (en) 2004-01-14 2005-07-28 Asahi Fiber Glass Co Ltd Fiber-reinforced polylactic acid-based resin composition
JP2005220177A (en) 2004-02-03 2005-08-18 Asahi Fiber Glass Co Ltd Long fiber-reinforced polylactic acid-based resin composition and method for producing the same
JP2005336220A (en) 2004-05-24 2005-12-08 Sumitomo Chemical Co Ltd Long glass fiber-reinforced polylactic acid resin composition, its pellet and its molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050056021A (en) 2003-12-09 2005-06-14 도레이새한 주식회사 Preparing method of biodegradable resin composition and biodegradable resin composition produced by this method
JP2005200517A (en) 2004-01-14 2005-07-28 Asahi Fiber Glass Co Ltd Fiber-reinforced polylactic acid-based resin composition
JP2005220177A (en) 2004-02-03 2005-08-18 Asahi Fiber Glass Co Ltd Long fiber-reinforced polylactic acid-based resin composition and method for producing the same
JP2005336220A (en) 2004-05-24 2005-12-08 Sumitomo Chemical Co Ltd Long glass fiber-reinforced polylactic acid resin composition, its pellet and its molded article

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Macromolecules, 20, 904 (1987)
Macromolecules, 26, 6918 (1993)

Similar Documents

Publication Publication Date Title
KR100899476B1 (en) Lactic acid polymer composition and molded object thereof
US8232354B2 (en) Method for producing a polylactic acid resin composition
WO2008044796A1 (en) Biodegradable resin composition
JP2004224990A (en) Polylactic acid-based polymer resin composition and molding of the same
US8829098B2 (en) Polylactic acid resin composition
JP2008174735A (en) Polylactic acid resin composition
JP2004307528A (en) Injection molded product
JP2007308660A (en) Resin composition and injection molding
JP5503852B2 (en) Method for producing polylactic acid resin composition
JP2008031296A (en) Polylactic acid resin composition and molded article composed of the same
JPWO2014077324A1 (en) Polyglycolic acid resin composition
KR101439627B1 (en) Polylactic acid-polyalkylene glycol copolymer with fast crystallization rate and composition comprising the same
JP3945264B2 (en) Polylactic acid composite material and molded body
KR101485386B1 (en) Manufacturing method of aliphatic polyester crystallization products and products manufactured by the method
KR20230157569A (en) Manufacture of hogi-heat-resistant eco-friendly plastic injection molding using high-temperature molds
US20080248285A1 (en) Polyester Compositions Having High Dimensional Stability
US20040116572A1 (en) Polyethylene terephthalate compositions
JP2010037378A (en) Polylactic acid-containing composition and method for producing the same
JP2005298617A (en) Injection molded product
JP5479748B2 (en) Polylactic acid resin composition
JP2008088226A (en) Flame-retardant resin composition and injection molded article
JP2004263180A (en) Injection molded body
JP5107792B2 (en) Method for producing polylactic acid resin injection molded body
JP5256068B2 (en) Polylactic acid resin composition
JP4576166B2 (en) Injection molded body