KR20230147917A - 재생 폴리염화비닐 재료 - Google Patents

재생 폴리염화비닐 재료 Download PDF

Info

Publication number
KR20230147917A
KR20230147917A KR1020220046858A KR20220046858A KR20230147917A KR 20230147917 A KR20230147917 A KR 20230147917A KR 1020220046858 A KR1020220046858 A KR 1020220046858A KR 20220046858 A KR20220046858 A KR 20220046858A KR 20230147917 A KR20230147917 A KR 20230147917A
Authority
KR
South Korea
Prior art keywords
less
pvc
weight
recycled
solvent
Prior art date
Application number
KR1020220046858A
Other languages
English (en)
Inventor
이봄
장명근
이진규
정승문
Original Assignee
(주)엘엑스하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘엑스하우시스 filed Critical (주)엘엑스하우시스
Priority to KR1020220046858A priority Critical patent/KR20230147917A/ko
Publication of KR20230147917A publication Critical patent/KR20230147917A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/02Recovery or working-up of waste materials of solvents, plasticisers or unreacted monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

본 출원은 재생 PVC 재료 및 그의 제조 방법에 대한 것이다. 본 출원에서 재생 PVC의 제조 방법은 폐자재로부터 PVC를 재생하는 방법일 수도 있다. 본 출원은, 폐자재로부터 재생된 것으로서, 사용 전 PVC 재료와 동등한 물성을 가지면서, 중금속 등의 불필요한 불순물은 효과적으로 제거되고, 동시에 유익한 첨가제는, 잔존하고 있는 재생 PVC 재료 및 그 제조 방법을 제공할 수 있다. 또한, 본 출원은, 상기 재생 PVC 재료를 경제적이고, 적은 에너지를 소비하는 친환경적인 공정으로 얻을 수 있다.

Description

재생 폴리염화비닐 재료{Recycled Poly(vinyl chloride) Material}
본 출원은, 재생 폴리염화비닐 재료 또는 그의 제조 방법에 대한 것이다.
폐자재로부터 플라스틱을 회수하는 기술의 필요성이 증가하고 있다. 현재까지 플라스틱 회수 기술의 핵심은, 폐자재로부터 원하는 플라스틱을 얼마나 순수하게 회수할 수 있는지, 즉 원하는 성분 외의 다른 불필요한 성분을 얼마나 효과적으로 제거할 수 있는지와 회수된 재생 플라스틱이 사용전 플라스틱과 얼마나 유사한 물성을 가지도록 할 수 있는지 등이였다.
폐자재로부터 사용전 플라스틱과 동등한 물성의 플라스틱을 불순물이 없이 회수하는 것이 요구되었다. 재생 플라스틱 회수 기술은 또한 가능한 친환경적이고, 경제적이며, 에너지의 소비가 적은 공정으로 진행될 것이 필요하다.
폴리염화비닐(poly(vinyl chloride), 이하, "PVC")계 재료는, 다양한 제품에 넓게 사용되고 있다. 예를 들면 창호, 벽지나 바닥재 등의 건축 자재, 파이프, 자동차 부품, 호스, 채소나 과일의 하우스 재배에 이용되는 농업용 필름 또는 공사용 시트 등의 제조에 PVC계 재료가 이용된다.
PVC계 재료가 다양한 분야에서 넓게 사용되는 이유는, PVC가 가소제, 열안정제 또는 충전재 등과 같은 다양한 재료와 잘 섞이는 특성이 있어서 원하는 특성의 부여가 쉽고, 원하는 색으로 착색하는 것이 용이하기 때문이다.
그렇지만, 위와 같이 다양한 재료와 섞이기 쉽고, 착색되기 쉬운 특성은, 반대로 재생 과정에서 순수한 PVC를 불순물 없이 얻는 것을 어렵게 한다. 예를 들어, PVC를 포함하는 폐자재는, 중금속을 포함하고 있는 경우가 있다. 이는 과거 PVC를 포함하는 자재의 적용 시에는 중금속 포함 여부에 대한 제한이 없거나 혹은 현재와 같은 엄격한 기준이 적용되지는 않았기 때문이다. 따라서, PVC를 재생할 때에는, 폐자재에 포함되어 있는 중금속을 효과적으로 제거하는 것이 필요한데, PVC가 이종 재료와 잘 섞이는 특성을 가지기 때문에, 중금속 등의 불순물을 효과적으로 제거하는 것은 쉽지 않은 문제이다.
한편, PVC는 상기와 같은 다양한 장점을 가지지만, 다소 단단하고, 부서지기 쉽다는 단점을 가지기도 한다.
따라서, PVC의 적용 시에는 상기 단점을 보완하기 위해서 PVC 재료를 유연하게 하고, 쉽게 부서지지 않도록 하는 첨가제가 추가될 수 있는데, 이러한 첨가제는, 재생된 PVC 재료 내에 포함되어 있는 것이 유리하다.
그렇지만, 중금속 등의 불필요한 불순물은 제거하면서도 유익한 첨가제는 잔존시키는 선택적 재생 방법은 현재까지 알려져 있지 않다.
본 출원은 재생 PVC 재료 및 그의 제조 방법에 대한 것이다. 본 출원에서 재생 PVC의 제조 방법은 폐자재로부터 PVC를 재생하는 방법일 수도 있다.
본 출원은, 폐자재로부터 재생된 것으로서, 사용 전 PVC 재료와 동등한 물성을 가지면서, 중금속 등의 불필요한 불순물은 효과적으로 제거되고, 동시에 유익한 첨가제는, 잔존하고 있는 재생 PVC 재료 및 그 제조 방법을 제공하는 것을 목적으로 한다.
또한, 본 출원은, 상기 재생 PVC 재료를 경제적이고, 적은 에너지를 소비하는 친환경적인 공정으로 얻을 수 있도록 하는 것을 목적으로 한다.
본 명세서에서 언급하는 물성 중에서 측정 온도 및/또는 압력이 그 물성치에 영향을 미치는 경우에는 특별히 달리 언급하지 않는 한, 해당 물성은 상온 및/또는 상압에서 측정한 물성을 의미한다.
본 출원에서 용어 상온은 가온 및 감온되지 않은 자연 그대로의 온도이며, 예를 들면, 약 10℃ 내지 30℃의 범위 내의 어느 한 온도, 25℃ 또는 23℃ 정도의 온도를 의미할 수 있다.
본 출원에서 용어 상압은, 특별히 줄이거나 높이지 않은 때의 압력으로서, 보통 대기압과 같은 약 740 mmHg 내지 780 mmHg 정도의 압력의 환경을 의미할 수 있다.
본 명세서에서 언급하는 물성 중에서 측정 습도가 그 물성치에 영향을 미치는 경우에는, 특별히 달리 규정하지 않는 한, 상기 물성은, 측정 온도 및 압력 상태에서 특별히 조절하지 않은 자연 그대로의 습도에서 측정한 물성을 의미한다.
본 출원은 재생 PVC 또는 그를 포함하는 재료의 제조 방법에 대한 것이다. 상기 제조 방법은, 일 예시에서 폐기물로부터 PVC를 재생하는 방법일 수 있다.
본 명세서에서 용어 재생 PVC는, 폐기물에 포함되어 있던 PVC로서, 재생 공정을 통해 재생된 PVC를 의미할 수 있다. 이 때 상기 재생 공정은 후술하는 본 출원의 재생 공정일 수 있다.
상기에서 PVC를 포함하는 폐기물의 종류는 특별히 제한되지 않는다. PVC는, 창호 등의 건축 자재나 자동차 부품, 전선, 호스, 채소나 과일의 하우스 재배에 이용되는 농업용 필름 또는 공사용 시트 등을 포함한 다양한 제품의 제조에 적용되고 있다. 따라서, 폐기된 창호 등의 폐기된 건축 자재나 폐기된 자동차 부품, 폐기된 전선, 폐기된 호스, 폐기된 농업용 또는 공사용 시트 등의 폐기물에는 PVC가 포함되어 있고, 이러한 폐기물은 모두 상기 방법의 원료로 사용될 수 있다. 일 예시에서 상기 폐기물은 폐창호일 수 있다.
PVC를 포함하는 폐기물은, 해당 폐기물이 어떤 제품에서 유래하였는지에 따라서 PVC 외에 포함되어 있는 다른 성분의 종류가 다르지만, 본 출원의 방법을 적용하면, 폐기물이 어떤 제품에서 유래하였는지와 무관하게 효율적으로 PVC를 회수할 수 있다.
본 명세서에서 용어 재생 PVC 재료는, 상기 재생 PVC 및 다른 물질을 포함하는 재료를 의미할 수 있고, 이는 재생 PVC 조성물 또는 폴리머 재료로도 불리울 수 있다. 상기 재생 PVC 재료에 포함되어 있는 다른 물질은 상기 폐기물에서 유래한 물질일 수 있다.
상기 재생 PVC 재료에서 상기 재생 PVC의 함량은, 약 50 중량% 이상, 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상 또는 85 중량% 이상 정도일 수 있으며, 또한 약 100 중량% 미만, 약 95 중량% 이하 또는 약 90 중량% 이하 정도일 수 있다. 일 예시에서 후술하는 상기 재료에 포함될 수 있는 다양한 성분들을 제외한 잔량이 상기 재생 PVC의 함량일 수 있다.
상기 재생 PVC의 함량은 1H NMR 분석을 통해 구할 수 있다. 상기 분석은, 예를 들면, 400MHz FT-NMR Spectrometer(모델명: AVANCE III HD 400, 제조사: Bruker Biospin)를 사용하여 수행할 수 있다(측정 조건: 400 MHz, solvent: THF(tetrahydrofuran)-D8).
특별히 제한되는 것은 아니지만, 상기 재료에서 상기 재생 PVC는 입자 상태로 포함되어 있을 수 있다. 이에 제한되는 것은 아니지만, 상기 폴리머 재료는 분말(powder)상일 수 있다.
상기 재생 PVC 재료에서 재생 PVC 입자들, 즉 후술하는 방식으로 재생된 PVC 입자들은, 비클러스터 입자 상태 또는 1차 입자 상태일 수 있다. 상기 비클러스터 입자 상태 또는 1차 입자 상태는, 소위 클러스트 입자 상태 또는 2차 입자 상태와는 다른 개념이고, 복수의 입자들이 응집되어 형성된 입자 상태가 아님을 의미한다.
이는 본 출원의 방식으로 회수된 PVC 입자들에서 나타나는 특성이며, 사용 전의 PVC에서는 나타나지 않는 특성이다. 즉, 사용 전의 합성된 PVC는, 도 2에 예시적으로 나타난 바와 같이 열역학 법칙에 의해 대략 구형의 복수의 입자가 응집되어 클러스터 또는 2차 입자 상태로 존재하게 되지만, 본 출원의 방식으로 회수된 PVC의 경우, 도 1에 예시적으로 나타난 바와 같이 단일 입자 상태로 존재한다.
상기 재료에서의 비클러스터 입자 상태 또는 1차 입자 상태의 재생 PVC 입자들은 평균 입경이 50μm 내지 300μm의 범위 내에 있을 수 있다. 상기 평균 입경은 소위 D50 입경으로 불리는 메디안 입경이다. 상기 평균 입경은 다른 예시에서 60 μm 이상, 70 μm 이상, 80 μm 이상, 90 μm 이상 또는 100 μm 이상이거나, 290 μm 이하, 280 μm 이하, 270 μm 이하, 260 μm 이하, 250 μm 이하, 240 μm 이하, 230 μm 이하, 220 μm 이하, 210 μm 이하 또는 200 μm 이하 정도일 수도 있다.
상기 재생 PVC 재료는, 상기 재생 PVC 및 다른 물질을 포함할 수 있다. 상기 다른 물질은, 상기 재생 PVC와 같이 폐기물로부터 유래한 물질일 수 있으며, 특히 PVC가 가지는 단점, 예를 들면, 다소 단단하고, 부스러지기 쉬우며, 유연성이 부족한 성질을 보완할 수 있는 재료일 수 있다. 즉, 본 출원의 재생 방법에 따라 재생된 재생 PVC 재료는, 중금속 등과 같은 불순물은 선택적으로 제거되고, 유익한 물질들은 잔존하는 재료일 수 있으며, 이러한 재료는 본 출원의 제조 방법(재생 방법)에 의해 얻을 수 있다.
따라서, 일 예시에서 상기 재생 PVC 재료는, 1H NMR 스펙트럼의 4 ppm 내지 5 ppm의 범위에서 제 1 피크와 1 ppm 내지 1.6 ppm의 범위에서 제 2 피크를 나타낼 수 있다. 상기 제 2 피크는 다른 예시에서 약 1 ppm 내지 1.5 ppm 또는 약 1 ppm 내지 1.4 ppm의 범위 내에서 확인할 수 있다. 상기 1H NMR 스펙트럼은, 전술한 재생 PVC의 함량을 확인하기 위한 것과 동일한 1H NMR 분석을 통해 구할 수 있다. 따라서, 상기 분석은, 예를 들면, 400MHz FT-NMR Spectrometer(모델명: AVANCE III HD 400, 제조사: Bruker Biospin)를 사용하여 수행할 수 있다(측정 조건: 400 MHz, solvent: THF(tetrahydrofuran)-D8).
상기 1H NMR 스펙트럼에서 4 ppm 내지 5 ppm의 범위에서 나타나는 제 1 피크는, 재생 PVC에서 유래하는 피크이고, 예를 들면, PVC의 염소와 결합된 탄소 원자의 수소 원자에 의해 유래하는 피크일 수 있다. 또한, 상기 스펙트럼에서 1 ppm 내지 1.5 ppm의 범위에서 나타나는 제 2 피크는, 재생 PVC 재료에 포함되어 있는 물질로서, 상기 재생 PVC 외의 물질이고, PVC의 단점을 보완하여 줄 수 있는 물질로부터 유래한 피크일 수 있다.
도 3은 상기 PVC 재료의 하나의 예시에 대한 1H NMR 분석 결과이다. 도면을 보면, 재생 PVC에 의해 유래되는 피크(①)(제 1 피크)와 함께 상기 다른 물질에서 유래되는 피크(③)(제 2 피크)도 관찰되고 있다. 상기 다른 물질의 구체적인 예는 특별히 제한되지 않으며, 예를 들면, MMA(methyl methacrylate), PMMA(poly(methyl methacrylate)) 및/또는 ABS 수지 등일 수 있다. 도 3에서 2 내지 3 ppm에서 확인되는 피크(②) 역시 재생 PVC에서 유래하는 피크이다.
상기 재생 PVC 재료의 1H NMR 스펙트럼에서 제 2 피크의 면적(적분값)의 제 1 피크의 면적(적분값)에 대한 비율(제 2 피크/제 1 피크)은, 약 0.01 내지 0.5의 범위 내에 있을 수 있다. 이러한 비율 하에서 상기 제 2 피크를 도출시키는 물질이 PVC의 단점을 적정하게 보완하여 우수한 물성을 가지는 재생 PVC 재료를 얻을 수 있다.
상기 비율은 다른 예시에서 0.02 이상, 0.03 이상, 0.04 이상, 0.05 이상, 0.06 이상, 0.07 이상 또는 0.08 이상 정도이거나, 0.4 이하, 0.3 이하, 0.2 이하, 0.1 이하 또는 0.09 이하 정도일 수도 있다.
본 출원에 따른 재생 방식에 의해 상기와 같은 1H-NMR 스펙트럼을 보이는 재료를 제공할 수 있다.
상기 PVC 재료는, 중금속을 500 ppm 이하의 비율로 추가로 포함할 수 있다. 본 출원의 방식에 의해서 중금속이 비율이 최소화된 재료를 제공할 수 있다. 상기 중금속의 예에는 납이나 카드뮴 등이 있으나, 이에 제한되지 않는다. 상기 중금속의 비율은 다른 예시에서 450 ppm 이하, 400 ppm 이하, 350 ppm 이하, 300 ppm 이하, 250 ppm 이하, 200 ppm 이하, 150 ppm 이하, 100 ppm 이하, 50 ppm 이하, 40ppm 이하, 30 ppm 이하, 20 ppm 이하 또는 10 ppm 이하일 수 있으며, 또한 0ppm 이상, 0 ppm 초과, 1 ppm 이상, 2 ppm 이상, 3 ppm 이상, 4 ppm 이상, 5 ppm 이상, 6 ppm 이상, 7 ppm 이상, 8 ppm 이상, 9 ppm 이상 또는 10 ppm 이상일 수 있다. 즉, 상기 재료는 상기 중금속을 포함하지 않거나, 상기 함량 범위에서 최소량으로 포함할 수 있다.
상기 중금속 함량은, 유도결합 플라즈마 발광 분석법(ICP-OES)을 통해 확인할 수 있다. 상기 분석은, 예를 들면, Agilent사의 측정 기기(Agilent社, 5110 Series)를 사용하여, 소위 폐기물 공정 시험법(산분해법)(KS C IEC62321-4 규격)을 통해 수행할 수 있다.
상기 폴리머 재료는 또한 양용매(고리형 케톤 등의 케톤 및/또는 THF(Tetrahydrofuran) 등)를 포함할 수 있다. 상기 양용매는, 상기 PVC에 대한 양용매일 수 있다. 이러한 양용매는, 후술하는 재생 공정에서 상기 양용매가 적용되는 것에 의해 재료 내에 존재할 수 있다. 상기 양용매의 포함 비율은 예를 들면, 약 1,000 ppm 이하일 수 있으며, 상기 비율은 다른 예시에서 10 ppm 이상일 수 있다. 상기 양용매에 대한 구체적인 종류는 후술한다. 상기 폴리머 재료 내의 양용매의 함량은, 공지의 GC(Gas chromatography) 분석 방법으로 구할 수 있다.
상기 폴리머 재료는 또한 비용매(알코올 및/또는 케톤 등)를 포함할 수 있다. 상기 비용매는, 상기 PVC에 대한 비용매일 수 있다. 이러한 비용매는, 후술하는 재생 공정에서 상기 비용매가 적용되는 것에 의해 재료 내에 존재할 수 있다. 비용매의 포함 비율은 예를 들면, 약 500 ppm 이하일 수 있으며, 상기 비율은 다른 예시에서 10 ppm 이상일 수 있다. 상기 비용매에 대한 구체적인 종류는 전술한 바와 같다. 상기 폴리머 재료 내의 비용매의 함량은, 공지의 GC(Gas chromatography) 분석 방법으로 구할 수 있다.
상기 폴리머 재료는 또한 지방산 또는 상기 지방산의 염을 추가로 포함할 수 있다. 상기 지방산 또는 그의 염은 전술한 중금속의 제거 과정의 부산물일 수 있다. 상기 지방산의 구체적인 예는 특별한 제한은 없고, 예를 들면, 올레산(oleic acid) 또는 스테아르산(stearic acid) 등일 수 있다.
상기 폴리머 재료는 또한 염소화 폴리에틸렌(CPE, chlorinated poly(ethylene))을 포함할 수 있다. 이 성분은, 상기 재생 PVC가 폐창호에서 유래한 경우에 존재할 수 있다.
상기 폴리머 재료는 또한 프탈레이트 화합물을 포함할 수 있다. 이러한 화합물은 통상 PVC에 가소제로서 첨가되는 물질로부터 유래한 것이다. 상기 프탈레이트 화합물의 구체적인 예로는, DIBP(Di-iso-butyl phthalate), DBP(Di-n-butyl phthalate), BBP(Butyl benzyl phthalate), DEHP(Di-(ethylhexyl) phthalate), DOP(Di-n-Octyl phthalate), DINP(Di-isononyl phthalate) 및/또는 DIDP(Di-isodecyl phthalate) 등일 수 있지만, 이에 제한되는 것은 아니다. 상기 프탈레이트 화합물의 재료 내에서의 비율은, 약 500 ppm 이하, 450 ppm 이하, 400 ppm 이하, 350 ppm 이하, 300 ppm 이하, 250 ppm 이하, 200 ppm 이하, 150 ppm 이하 또는 100 ppm 이하 정도일 수 있다. 상기 프탈레이트 화합물은, 재료 내에 존재하지 않을 수도 있기 때문에 상기 함량은 0 ppm 이상 또는 0 ppm 초과, 1ppm 이상, 2 ppm 이상, 3 ppm 이상, 4 ppm 이상, 5 ppm 이상, 6 ppm 이상, 7 ppm 이상, 8 ppm 이상, 9 ppm 이상 또는 10 ppm 이상일 수 있다. 상기 프탈레이트 화합물의 함량은, GC-MS(Gas Chromatography Mass Spectrometry) 방식으로 측정할 수 있으며, 예를 들면, Agilent사의 7890B (GC) 및 5977B (MS) 기기를 사용하여 수행할 수 있다.
일 예시에서 상기 재생 PVC 재료는, 알루미늄을 포함할 수 있다. 이러한 알루미늄은, 본 출원의 재생 PVC 재료의 제조 공정(재생 공정) 중 적용되는 중금속 제거제로부터 유래한 것일 수 있다. 본 출원에서 적용될 수 있는 다양한 중금속 제거제 중에서 특히 후술하는 PAC(poly aluminum chloride)은, 중금속 등은 효과적으로 제거하면서, 상기 제 2 피크를 유발하는 유익한 물질들은 재료 내에 효과적으로 잔존시킬 수 있는데, 이러한 PAC가 적용되면, 상기 PAC에서 유래하는 알루미늄이 재료 내에 잔존하게 된다.
따라서, 상기 재생 PVC 재료에 포함되는 알루미늄은 후술하는 중금속 제거제인 PAC에서 유래하는 것일 수 있으며, 구체적으로는 하기 화학식 1의 PAC에서 유래한 것일 수 있다.
본 출원의 재생 PVC 재료 내에서 상기 알루미늄의 함량은, 재생 과정에서 적용되는 중금속 제거제의 양에 따라 변화될 수 있지만, 통상 약 1000 ppm 이하, 950 ppm 이하, 900 ppm 이하, 850 ppm 이하, 800 ppm 이하, 750 ppm 이하, 700 ppm 이하, 650 ppm 이하, 600 ppm 이하, 550 ppm 이하, 500 ppm 이하, 450 ppm 이하, 400 ppm 이하, 350 ppm 이하, 300 ppm 이하, 250 ppm 이하 또는 200 ppm 이하 정도이거나, 0 ppm 초과, 50 ppm 이상, 100 ppm 이상, 150 ppm 이상, 200 ppm 이상, 250 ppm 이상 또는 300 ppm 이상 정도일 수 있다.
상기와 같은 수준의 알루미늄이 잔존하도록 중금속 제거제를 사용하는 것에 의해 목적하는 특성의 재생 PVC 재료를 제공할 수 있다.
상기 알루미늄 함량은, 시료를 Microwave 장비(Preekem社 TOPEX)로 산 분해하고, ICP-OES 장비(Agilent社 Technologies 5110)를 사용하여 측정할 수 있다. 관련 측정 방법의 세부적인 사항은 실시예 항목에 정리되어 있다.
상기 폴리머 재료는 또한 탄석(CaCO3)과 TiO2 등의 성분을 포함할 수 있다. 이러한 성분들은 주로 상기 재생에 적용된 재료가 폐창호인 경우, 그리고 상기 필터링 공정을 거치지 않은 경우에 주로 상기 재료에 포함될 수 있다. 이러한 재료는 창호 등의 제조에 필요한 성분이어서, 이를 포함하는 폴리머 재료는 창호 등의 제조에 적용될 수 있다. 상기 탄석(CaCO3)과 TiO2 등의 성분 등의 함량은 특별한 제한은 없으며, 예를 들면, 10 중량% 이하, 9 중량% 이하, 8 중량% 이하, 7 중량% 이하, 6 중량% 이하 또는 5 중량% 이하로 포함할 수 있다. 상기 비율은 다른 예시에서 약 0.1 중량% 이상 또는 약 1 중량% 이상 정도일 수 있다.
상기 탄석 등의 함량은, 열중량분석 방법(TGA)으로 확인할 수 있다. 상기 분석은, 예를 들면, Mettler Toledo사의 TGA/DSC 3+ 기기를 사용하여 수행할 수 있으며, 질소(N2) 분위기 하에서 30℃에서 1,000℃까지의 온도 구간을 10℃/분의 승온 속도로 승온시켜서 수행할 수 있다.
상기 탄석 등의 함량은 또한 상기 언급한 유도결합 플라즈마 발광 분석법(ICP-OES)을 통해 확인할 수 있다. 이러한 분석은, 예를 들면, Agilent사의 Agilent社, 5110 Series를 사용하여 수행할 수 있으며, 소위 폐기물 공정 시험법(산분해법)(KS C IEC62321-4 규격)을 통해 수행할 수 있다.
상기 재생 PVC 재료는, 사용 전 PVC와 동등한 색 특성을 나타낼 수 있다.
예를 들면, 상기 재생 PVC 재료는, CIE Lab 색좌표에서 b값이 6.5 이하일 수 있다. 상기 b값은 다른 예시에서 6.4 이하, 6.3 이하, 6.2 이하, 6.1 이하, 6.0 이하, 5.9 이하, 5.8 이하, 5.7 이하, 5.6 이하, 5.5 이하, 5.4 이하, 5.3 이하, 5.2 이하, 5.1 이하, 5 이하, 4.9 이하, 4.8 이하, 4.7 이하, 4.6 이하, 4.5 이하, 4.4 이하, 4.3 이하, 4.2 이하, 4.1 이하, 4 이하, 3.9 이하, 3.8 이하, 3.7 이하 또는 3.6 이하이거나, 1 이상, 1.1 이상, 1.2 이상, 1.3 이상, 1.4 이상, 1.5 이상, 1.6 이상, 1.7 이상, 1.8 이상, 1.9 이상, 2 이상, 2.1 이상, 2.2 이상, 2.3 이상, 2.4 이상, 2.5 이상, 2.6 이상, 2.7 이상, 2.8 이상, 2.9 이상, 3 이상, 3.1 이상, 3.2 이상, 3.3 이상, 3.4 이상, 3.5 이상, 3.6 이상, 3.7 이상, 3.8 이상, 3.9 이상, 4.0 이상, 4.1 이상, 4.2 이상, 4.3 이상, 4.4 이상, 4.5 이상, 4.6 이상, 4.7 이상, 4.8 이상, 4.9 이상, 5.0 이상, 5.1 이상, 5.2 이상, 5.3 이상 또는 5.4 이상 정도일 수도 있다.
상기 폴리머 재료는, CIE Lab 색좌표에서 L값이 70 내지 100의 범위 내에 있을 수 있다. 상기 L값은 다른 예시에서 72 이상, 74 이상, 76 이상, 78 이상, 80 이상, 82 이상, 84 이상, 86 이상, 88 이상, 90 이상 또는 92 이상이거나, 98 이하, 96 이하, 94 이하 또는 93 이하 정도일 수도 있다.
상기 폴리머 재료는, CIE Lab 색좌표에서 a값이 5 이하일 수 있다. 상기 a값은 다른 예시에서 4.9 이하, 4.8 이하, 4.7 이하, 4.6 이하, 4.5 이하, 4.4 이하, 4.3 이하, 4.2 이하, 4.1 이하, 4.0 이하, 3.9 이하, 3.8 이하, 3.7 이하, 3.6 이하, 3.5 이하, 3.4 이하, 3.3 이하, 3.2 이하, 3.1 이하, 3.0 이하, 2.9 이하, 2.8 이하, 2.7 이하, 2.6 이하, 2.5 이하, 2.4 이하, 2.3 이하, 2.2 이하, 2.1 이하, 2.0 이하, 1.9 이하, 1.8 이하, 1.7 이하, 1.6 이하, 1.5 이하, 1.4 이하, 1.3 이하, 1.2 이하, 1.1 이하, 1.0 이하, 0.9 이하, 0.8 이하, 0.7 이하, 0.6 이하, 0.5 이하, 0.4 이하, 0.3 이하, 0.2 이하, 0.1 이하 또는 0.0 이하이거나, -2 이상, -1.8 이상, -1.6 이상, -1.4 이상, -1.2 이상, -1.0 이상, -0.8 이상, -0.6 이상, -0.4 이상, -0.2 이상, 0.0 이상, 0.5 이상, 1 이상 또는 1.5 이상 정도일 수도 있다.
상기 재생 PVC 재료는 또한 하기 관계식 1을 만족할 수 있다.
[관계식 1]
(a2+b2)1/2 ≤ 6
관계식 1에서 a 및 b는 각각 상기 재생 PVC 재료의 CIE Lab 색좌표의 a값 및 b값이다.
상기 관계식 1에서 (a2+b2)1/2는 다른 예시에서 5.9 이하, 5.8 이하, 5.7 이하, 5.6 이하, 5.5 이하, 5.4 이하, 5.3 이하, 5.2 이하, 5.1 이하, 5.0 이하, 4.9 이하, 4.8 이하, 4.7 이하, 4.6 이하, 4.5 이하, 4.4 이하, 4.3 이하, 4.2 이하, 4.1 이하, 4.0 이하, 3.9 이하, 3.8 이하, 3.7 이하, 3.6 이하, 3.5 이하, 3.4 이하, 3.3 이하, 3.2 이하, 3.1 이하 또는 3.0 이하일 수 있고, 또한 1 이상, 1.1 이상, 1.2 이상, 1.3 이상, 1.4 이상, 1.5 이상, 1.6 이상, 1.7 이상, 1.8 이상, 1.9 이상, 2 이상, 2.1 이상, 2.2 이상, 2.3 이상, 2.4 이상, 2.5 이상, 2.6 이상, 2.7 이상, 2.8 이상, 2.9 이상, 3 이상, 3.1 이상, 3.2 이상, 3.3 이상, 3.4 이상, 3.5 이상, 3.6 이상, 3.7 이상, 3.8 이상, 3.9 이상, 4 이상, 4.1 이상, 4.2 이상, 4.3 이상, 4.4 이상, 4.5 이상, 4.6 이상, 4.7 이상, 4.8 이상, 4.9 이상, 5 이상, 5.1 이상, 5.2 이상, 5.3 이상, 5.4 이상, 5.5 이상, 5.6 이상, 5.7 이상, 5.8 이상 또는 5.9 이상 정도일 수도 있다.
상기 b값, L값, a값 및/또는 관계식 1의 충족은 재생 PVC의 색특성이 사용 전 PVC에 가까우며, 다양한 색으로의 착색이 용이한 PVC의 특성을 유지하고 있다는 점을 의미한다.
이러한 우수한 색 특성은, 본 출원에 따른 방법에 의해 얻어지는 재생 PVC의 고유의 특성이다.
즉, 본 발명의 재생 방법에 의하면, 재생 과정에서 PVC에 가해지는 손상(damage)을 최소화하면서 중금속 등의 불순물의 제거와 유용 성분을 잔존시키는 것이 가능하다. PVC의 재생 과정에서 PVC에 손상이 많이 가해지는 경우에, 재료 내에 이중 결합이 상대적으로 많이 생성되게 되는데, 이러한 이중 결합은 재료의 색 특성에 영향을 주게 된다. 본 출원의 방식에 의하면, 재생 과정에서 생성되는 상기 이중 결합 등의 결함(defect)을 최소화할 수 있고, 따라서 재료의 색 특성을 상기와 같이 우수하게 유지할 수 있다.
본 출원은 또한 재생 PVC 재료의 제조 방법에 대한 것이고, 이 제조 방법은 폐기물로부터 재생 PVC 재료를 재생하는 방법일 수 있다.
후술하는 본 출원의 방식에 의해서 우수한 특성의 재생 PVC 재료를 얻을 수 있다.
본 출원의 재생 PVC의 제조 방법은, PVC를 포함하는 폐기물과 처리제를 혼합하는 단계를 포함할 수 있다.
상기 처리제는 상기 PVC에 대한 양용매(good solvent)를 포함할 수 있다. 또한, 상기에서 처리제와 혼합되는 폐기물은 폐기물 칩의 형태일 수 있다.
상기에서 PVC를 포함하는 폐기물의 종류는 전술한 바와 같다.
이에 제한되는 것은 아니지만, 상기 폐기물로는 재생된 PVC를 사용하여 제조하고자 하는 제품과 동종의 제품의 폐기물을 사용하는 것이 유리할 수 있다. 예를 들면, 재생 PVC를 창호의 제조에 적용하고자 한다면, 상기 폐기물로도 폐기된 창호 등을 사용할 수 있다.
상기에서 PVC를 포함하는 폐기물과 혼합되는 처리제는, 상기 PVC에 대한 양용매(good solvent)이거나, 상기 양용매를 포함하는 것일 수 있다. 따라서, 상기 혼합물을 제조하는 단계는, 상기 양용매에 용해된 PVC를 포함하는 혼합물을 얻는 단계일 수 있다.
처리제가 양용매를 포함하는 경우에, 처리제 내의 양용매의 비율은 적정 범위로 조절될 수 있다. 예를 들면, 상기 처리제는, 상기 양용매를 50 부피% 이상, 55 부피% 이상, 60 부피% 이상, 65 부피% 이상, 70 부피% 이상, 75 부피% 이상, 80 부피% 이상, 85 부피% 이상, 90 부피% 이상 또는 95 부피% 이상 포함할 수 있다. 일 예시에서 처리제는 상기 양용매만을 포함할 수 있다. 따라서, 상기 처리제 내의 상기 양용매의 비율의 상한은 100 부피%이다.
본 출원에서는 상기 양용매로서, 케톤 또는 THF(Tetrahydrofuran)을 적용할 수 있다. 따라서, 상기 처리제 내에서의 상기 케톤 또는 THF(tetrahydrofuran)의 비율은 50 부피% 이상, 55 부피% 이상, 60 부피% 이상, 65 부피% 이상, 70 부피% 이상, 75 부피% 이상, 80 부피% 이상, 85 부피% 이상, 90 부피% 이상 또는 95 부피% 이상일 수 있으며, 그 상한은 100 부피%일 수 있다.
양용매로서 적용될 수 있는 케톤의 종류에는 특별한 제한은 없으며, 예를 들면, 메틸에틸 케톤과 같은 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 비고리형 케톤이나, 고리형 케톤을 사용할 수 있다.
특히 양용매로서 고리형 케톤을 적용함으로써, 재생 공정을 상대적으로 저온에서 진행할 수 있다. 또한, 후술하는 바와 같이 상기 고리형 케톤의 적용을 통해서 PVC의 회수 과정에서 비용매가 적용되는 경우에도 상기 고리형 케톤을 쉽게 회수하여 재사용할 수 있다. 따라서, 상기 양용매의 적용을 통해 재생 공정을 경제적이며, 저에너지 소비 공정으로 할 수 있다. 또한, 상기 양용매의 선택은, 본 출원의 다른 공정(예를 들면, 후술하는 상분리 공정 등)의 진행을 가능하게 하거나 혹은 상기 다른 공정과 연계되어 보다 불순물이 잘 제거된 상태의 재생 PVC를 얻을 수 있게 한다.
상기 고리형 케톤은 일 예시에서 몰질량(molar mass)이 70 내지 150 g/mol의 범위 내일 수 있다. 상기 몰질량은 다른 예시에서 80g/mol 이상, 90 g/mol 이상 또는 95 g/mol 이상이거나, 140 g/mol 이하, 130 g/mol 이하, 120 g/mol 이하, 110 g/mol 이하 또는 100 g/mol 이하 정도일 수도 있다.
상기 고리형 케톤은 비점이 130℃ 내지 200℃의 범위 내에 있을 수 있다. 상기 비점은 다른 예시에서 135℃ 이상, 140℃ 이상, 145℃ 이상 또는 150℃ 이상이거나, 195℃ 이하, 190℃ 이하, 185℃ 이하, 180℃ 이하, 175℃ 이하, 170℃ 이하, 165℃ 이하 또는 160℃ 이하 정도일 수도 있다.
상기 고리형 케톤은, 20℃에서의 수용해도가 15 g/100mL 이하일 수 있다. 상기 수용해도는 다른 예시에서 13g/100mL 이하, 11g/100mL 이하 또는 9g/100mL 이하이거나, 1g/100mL 이상, 2 g/100mL 이상, 3 g/100mL 이상, 4 g/100mL 이상, 5 g/100mL 이상, 6 g/100mL 이상, 7 g/100mL 이상 또는 8 g/100mL 이상 정도일 수도 있다.
상기 고리형 케톤은 20℃에서의 증기압이 1 내지 10 mmHg의 범위 내에 있을 수 있다. 상기 증기압은 다른 예시에서 2 mmHg 이상, 3 mmHg 이상 또는 4 mmHg 이상이거나, 9 mmHg 이하, 8 mmHg 이하, 7 mmHg 이하 또는 6 mmHg 이하일 수 있다.
고리형 케톤으로는 상기 특성을 만족하는 것을 적절히 선택 사용할 수 있으며, 그 구체적인 예는 특별히 제한되지 않는다. 예를 들면, 고리형 케톤으로는 고리 구조를 형성하는 탄소 원자의 수가 3 내지 10, 5 내지 9 또는 5 내지 8인 화합물을 사용할 수 있고, 예를 들면, 사이클로헥사논(cyclohexanone)을 사용할 수 있지만, 이에 제한되는 것은 아니다.
상기 양용매의 선택을 통해서 상기 처리제와 폐기물의 혼합 공정은 저온에서 진행될 수 있다. 즉, 상기 기술한 양용매의 선택을 통해서 상대적으로 저온 하에서도 효율적인 PVC의 용해 공정을 진행할 수 있으며, 후속 공정도 효과적으로 진행될 수 있다. 일 예시에서 상기 양용매와의 혼합 공정은 약 100℃ 이하의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 약 10℃ 이상, 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 95℃ 이하, 90℃ 이하, 85℃ 이하, 80℃ 이하, 75℃ 이하, 70℃ 이하, 65℃ 이하, 60℃ 이하, 55℃ 이하, 50℃ 이하, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.
상기 기술한 양용매의 종류는 상기 기술한 PVC 재료에 포함되는 양용매와 동일하다.
상기 혼합 공정에서 사용되는 양용매의 양은 특별한 제한은 없으나, 효율적인 공정 진행을 위해서, 예를 들면, 상기 PVC를 포함하는 폐기물 100 중량부 대비 100 내지 5,000 중량부의 양용매가 혼합될 수 있다. 따라서, 처리제는 폐기물에 대한 양용매의 비율이 상기 범위 내가 되는 양으로 사용된다. 이러한 범위 내에서 양용매에 PVC를 효과적으로 용해시킬 수 있으며, 후속 공정(예를 들면, 중금속 제거 공정이나, 상분리 공정 등)도 효과적으로 진행할 수 있다. 상기 양용매의 혼합 비율은 다른 예시에서 200 중량부 이상, 300 중량부 이상, 400 중량부 이상, 500 중량부 이상, 600 중량부 이상, 700 중량부 이상, 800 중량부 이상, 900 중량부 이상, 1,000 중량부 이상 또는 1,500 중량부 이상이거나, 4,500 중량부 이하, 4,000 중량부 이하, 3,500 중량부 이하, 3000 중량부 이하, 2500 중량부 이하, 2000 중량부 이하, 1500 중량부 이하 정도일 수도 있다.
하나의 예시에서 본 출원의 제조 공정은 상기 폐기물 칩을 형성하기 위해서 상기 폐기물을 분쇄하는 공정을 추가로 수행할 수 있다. 본 출원에서는 이러한 분쇄 공정을 상대적으로 적게 수행하면서도 목적하는 재생 PVC 재료를 효과적으로 얻을 수 있다. 즉, 통상 분쇄 공정은, 폐기물을 아주 미세한 분말상이 될 때까지 수행되고, 이러한 공정을 통해서 이어지는 공정 효율을 높일 수 있다. 다만, 이와 같이 분쇄 공정을 폐기물이 미세한 분말상이 될 때까지 수행하게 되면, 후속 공정은 효율적으로 진행될 수 있지만, 분쇄 공정 자체에서 많은 에너지가 소비된다.
상기와 같이 분쇄 공정을 폐기물이 미세한 분말이 될 때까지 수행하는 이유는 이어지는 용해 공정 등의 효율을 고려한 것이다. 본 출원에서는 이러한 분쇄 공정을 최소한으로 수행하여 상대적으로 큰 입자 형태의 폐기물 칩을 공정에 적용하는 경우에도 효율적인 재생 PVC 재료의 제조가 가능하다.
따라서, 일 예시에서 상기 양용매와 혼합되는 폐기물 칩은, 가로 및 세로의 길이가 각각 0.5cm 내지 5 cm의 범위 내이고, 두께가 0.1 내지 10 mm의 범위 내일 수 있다. 상기 가로 및 세로의 길이는 다른 예시에서 각각 약 1cm 이상, 1.5 cm 이상 또는 2 cm 이상이거나, 4 cm 이하, 3 cm 이하 또는 2.5 cm 이하 정도일 수도 있다. 또한, 상기 두께는 다른 예시에서 약 0.3mm 이상 또는 0.5 mm 이상 정도이거나, 9 mm 이하, 8 mm 이하, 7 mm 이하, 6 mm 이하, 5 mm 이하, 4 mm 이하, 3 mm 이하, 2 mm 이하 또는 1 mm 이하 정도일 수도 있다.
상기와 같은 분쇄 공정은 적절한 분쇄 수단을 사용하여 수행할 수 있는 임의의 공정이며, 분쇄 공정이 수행되는 경우에 폐기물의 처리제 내로의 용해 효율을 보다 높일 수 있다. 분쇄 공정이 진행되는 시점에는 특별한 제한이 없고, 수행된다면 통상 폐기물과 처리제의 혼합 공정 전에 수행될 수 있다. 이 때 분쇄 방법은 특별히 제한되지 않고, 공지된 분쇄 방법이 적용될 수 있다. 또한, 본 출원의 제조 방법의 적용 시에도 분쇄는 통상의 경우와 같이 폐기물이 미세한 분말상이 될 때까지 수행될 수도 있다.
상기 혼합 공정에 이어서 PVC의 회수 단계가 진행될 수 있다. 이러한 회수 단계는, 일 예시에서 상기 혼합물의 상분리를 유도하는 단계; 및 상기 상분리된 혼합물에서 PVC를 포함하는 상을 분리하는 단계를 포함할 수 있다.
따라서, 상기 재생 PVC의 제조 방법은, 상기 폐기물과 양용매의 혼합물에서 상분리를 유도하는 단계를 추가로 포함할 수 있다.
상기 상분리를 유도하는 단계는 보다 불순물이 효율적으로 제거된 재생 PVC 재료를 얻기 위해 수행될 수 있다. 재생 PVC를 얻기 위한 원료인 폐기물은 다양한 불순물을 포함하고 있는데, 이러한 불순물 중 어떤 불순물(예를 들면, 중금속 등)은 상분리된 혼합물 내에서 PVC와는 다른 상에 존재하게 된다. 따라서, 혼합물에 상분리를 유도한 후에 분리된 상들 중 PVC를 포함하는 상만을 따로 분리하고, PVC를 회수함으로써, 보다 불순물이 효과적으로 제거되면서, 유용한 물질이 잔존하는 재생 PVC 재료를 얻을 수 있다.
혼합물에 상분리를 유도하는 방식은 특별히 제한되지 않는다. 하나의 예시에서 상기 상분리를 유도하는 방식은, 상기 혼합물과 수성 용매를 혼합하는 단계일 수 있다. 수성 용매의 종류에는 특별한 제한은 없으며, 예를 들면, 물을 사용할 수 있다. 혼합물의 제조에 사용된 처리제는, 양용매로서 고리형 케톤 등을 포함하고, 이러한 고리형 케톤은 수성 용매와 상분리가 가능한 물질이다. 따라서, 상기 혼합물과 수성 용매를 혼합하는 방식으로 상기 상분리를 유도할 수 있다.
이러한 수성 용매는, 공정 진행 과정에서 적절한 시점에 단독으로 혼합물과 혼합되거나, 혹은 다른 성분과 함께 혼합될 수 있다. 예를 들어, 본 출원의 공정에서 후술하는 중금속 제거제의 적용 또는 비용매의 적용 공정 등이 수행된다면, 수성 용매는 상기 중금속 제거제 및/또는 비용매와 함께 혼합물에 투입될 수 있다. 수성 용매는 공정 진행 과정에서 1회만 투입되거나, 혹은 여러 번으로 나뉘어 투입될 수도 있다.
상기 수성 용매(예를 들어, 물)의 양은 적절한 상분리가 유도될 수 있도록 선택된다면 특별히 제한되지 않는다. 통상 상기 수성 용매는 해당 수성 용매와 상기 처리제 내의 양용매(고리형 케톤 등)의 부피 비율(수성 용매 부피/양용매 부피)이 0.1 내지 10의 범위 내가 되도록 적용될 수 있다. 상기 부피 비율(수성 용매 부피/양용매 부피)은 다른 예시에서 0.2 이상, 0.3 이상, 0.4 이상, 0.5 이상, 0.6 이상, 0.7 이상, 0.8 이상, 0.9 이상 또는 1 이상이거나, 9 이하, 8 이하, 7 이하, 6 이하, 5 이하, 4 이하 또는 3 이하 정도일 수도 있다.
다른 예시에서 상기 수성 용매는, 상기 수성 용매 100 중량부 대비 약 100 내지 3,000 정도의 양용매가 존재하도록 혼합될 수도 있다. 상기 비율은 상기 수성 용매 100 중량부 대비 150 중량부 이상, 200 중량부 이상, 250 중량부 이상, 300 중량부 이상, 350 중량부 이상, 400 중량부 이상, 450 중량부 이상, 500 중량부 이상, 550 중량부 이상, 600 중량부 이상, 650 중량부 이상, 700 중량부 이상, 750 중량부 이상, 800 중량부 이상, 850 중량부 이상, 900 중량부 이상, 950 중량부 이상 또는 1000 중량부 이상 정도이거나, 2800 중량부 이하, 2600 중량부 이하, 2400 중량부 이하, 2200 중량부 이하, 2000 중량부 이하, 1800 중량부 이하, 1600 중량부 이하, 1400 중량부 이하, 1200 중량부 이하, 1100 중량부 이하 또는 1000 중량부 이하 정도일 수도 있다.
상기 수성 용매가 단독으로 투입되거나, 혹은 중금속 제거제 및/또는 비용매와 혼합된 상태로 사용되는 경우에 수성 용매의 양이 상기 범위 내가 되도록 조절되면 된다. 중금속 제거제 및/또는 비용매와 함께 적용되는 수성 용매의 양이 상분리를 유도하기에는 불충분한 경우에는 수성 용매가 별도로 추가로 투입될 수도 있다.
상기 상분리 유도 공정도 저온에서 수행 가능하다. 예를 들면, 상기 상분리 유도 공정은, 약 100℃ 이하의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 약 10℃ 이상, 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 95℃ 이하, 90℃ 이하, 85℃ 이하, 80℃ 이하, 75℃ 이하, 70℃ 이하, 65℃ 이하, 60℃ 이하, 55℃ 이하, 50℃ 이하, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.
상기 상분리 단계에 이어서 상분리된 혼합물에서 PVC를 포함하는 상을 분리하는 단계를 수행할 수 있다. 수성 성분의 투입으로 상분리를 유도하면, 혼합물은 유기상과 수성상으로 분리되는데, 통상 PVC는 고리형 케톤 등을 포함하는 유기상 내에 존재하게 된다. 따라서, 상기 단계에 이어서 상분리된 혼합물 중에서 유기상을 분리할 수 있다. 물론 PVC가 수성상에 존재한다면, 수성상을 분리하게 된다.
PVC를 포함하는 상을 분리한 후에 필요한 경우에 PVC를 회수하기 위한 추가적인 공정이 수행될 수 있다.
예를 들면, 상기 추가적인 공정은 상기 PVC를 포함하는 상을 건조하는 공정일 수 있다. 상기 건조를 통해서 유기 성분 내의 PVC를 회수할 수 있다. 이러한 건조 공정은, 예를 들면, 약 20℃ 내지 90℃ 또는 40℃ 내지 70℃ 정도의 온도 범위에서 진행할 수 있다. 본 출원에서는 전술한 특정한 양용매의 사용을 통해서 상기 범위 내에서 효율적인 건조 공정을 진행할 수 있으며, 이에 의해서 고온에 의해서 PVC에 가해지는 악영향(Damage)을 최소화하거나 없애면서 효과적으로 PVC를 재생시킬 수 있다.
상기 건조 공정의 진행 시간에는 특별한 제한은 없고, 목적에 따라서 적정 시간으로 상기 온도 하에서 유지시킴으로써 목적하는 PVC를 회수할 수 있다.
다른 예시에서 상기 추가적인 공정은 상기 PVC를 포함하는 상을 상기 PVC에 대한 비용매(poor solvent)와 혼합하는 공정일 수 있다. 또한, 이러한 비용매와의 혼합 공정은, 상기 PVC를 포함하는 상과 비용매의 혼합 공정일 수도 있지만, 상기 상분리 공정이 수행되지 않는 경우에 상기 혼합 공정은 상기 폐기물과 처리제(양용매 또는 양용매를 포함하는 처리제)의 혼합물과 상기 비용매를 혼합하는 공정일 수도 있다.
즉, 본 출원의 제조 방법은, 상기 폐기물 칩과 양용매를 포함하는 처리제를 혼합하여 혼합물을 제조하는 단계에 이어서 상기 혼합물과 상기 비용매를 혼합하는 단계를 수행할 수 있다. 또한, 상기 혼합물에 대해서 후술하는 중금속 제거 단계가 수행된다면, 상기 비용매와 혼합되는 혼합물은 상기 중금속이 제거된 혼합물일 수 있다.
상기 재생 PVC의 제조 방법은, 상기 PVC를 포함하는 상과 상기 비용매를 혼합하는 단계 또는 상기 폐기물과 처리제의 혼합물을 상기 비용매와 혼합하는 단계를 추가로 포함할 수 있다.
비용매와의 혼합을 통해서 유기 성분 또는 혼합물 내에서 상기 PVC를 석출시키고, PVC를 회수할 수 있으며, 이 과정을 통해 보다 우수한 순도의 재생 PVC를 얻을 수 있다.
비용매의 종류는 특별한 제한은 없으나, 예를 들면, 상기 비용매로는 알코올, 물 또는 헥산 등이 적용될 수 있다. 특별히 제한되는 것은 아니지만, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 1가 알코올(예를 들면, 메탄올, 에탄올, 프로판올 등)이 상기 비용매로서 사용될 수 있다.
하나의 예시에서 비용매로는, 상기 고리형 케톤과의 비점의 차이의 절대값이 40℃ 이상, 45℃ 이상, 50℃ 이상, 55℃ 이상, 60℃ 이상, 65℃ 이상, 70℃ 이상, 75℃ 이상, 80℃ 이상 또는 85℃ 이상인 비용매가 적용될 수 있다. 비용매로는, 상기 고리형 케톤과의 비점의 차이의 절대값이 상기 범위 내이면서 상기 고리형 케톤 대비 낮은 비점을 가지는 것을 사용할 수 있다. 이러한 비용매는 보다 PVC의 효율적인 석출을 가능하게 한다. 또한, 위와 같은 비점 차이를 가지는 경우, 고리형 케톤과 비용매의 혼합물로부터 고리형 케톤 또는 비용매만을 효과적으로 회수할 수 있고, 이렇게 회수된 고리형 케톤 또는 비용매를 공정에 재사용함으로써, 보다 경제적이며, 저에너지 소비의 공정을 진행할 수 있다. 상기에서 상기 고리형 케톤과 비용매의 비점의 차이의 절대값의 상한에는 특별한 제한은 없으며, 예를 들면, 상기 비점의 차이의 절대값은, 200℃ 이하, 180℃ 이하, 160℃ 이하, 140℃ 이하, 120℃ 이하, 100℃ 이하 또는 95℃ 이하 정도일 수 있다.
상기 기술한 비용매의 종류는 상기 기술한 PVC 재료에 포함되는 양용매와 동일하다.
혼합되는 비용매의 양은, 적절한 PVC의 석출이 가능하다면 특별히 제한되는 것은 아니다. 예를 들면, 상기 비용매는, 상기 PVC를 포함하는 상 100 중량부 대비 약 50 내지 1000 중량부의 비율로 혼합될 수 있다. 상기 비율은 다른 예시에서 100 중량부 이상, 150 중량부 이상 또는 200 중량부 이상이거나, 900 중량부 이하, 800 중량부 이하, 700 중량부 이하, 600 중량부 이하, 500 중량부 이하, 400 중량부 이하 또는 300 중량부 이하 정도일 수도 있다.
상기 비용매는 해당 비용매 단독으로 상기 PVC를 포함하는 상과 혼합되거나, 혹은 다른 성분과 혼합된 상태로 상기 유기 성분과 혼합될 수 있다. 예를 들면, 전술한 바와 같이 상기 비용매(예를 들면, 알코올)는, 수성 용매(예를 들면, 물)와 혼합된 상태로 상기 PVC를 포함하는 상과 혼합될 수 있고, 이에 의해서도 효율적인 PVC의 석출이 가능할 수 있다. 이러한 경우에 PVC를 포함하는 상이 유기상인 경우에 상기 혼합에 의해 추가적인 상분리 효과를 얻을 수 있고, 이러한 효과에 의해 보다 효과적으로 목적하는 재생 PVC를 얻을 수 있다.
비용매와 수성 용매의 혼합물이 혼합되는 경우에 상기 혼합물 내에서 비용매의 비율은 효율적인 PVC의 석출이 가능하도록 조절될 수 있다. 예를 들면, 상기 혼합물 내에서 상기 비용매는, 약 20중량% 이상, 25중량% 이상, 30중량% 이상, 35중량% 이상, 40중량% 이상, 45중량% 이상, 50중량% 이상, 55중량% 이상, 60중량% 이상, 65중량% 이상, 70중량% 이상, 75중량% 이상, 80중량% 이상, 85중량% 이상, 90중량% 이상 또는 95중량% 이상 정도의 비율로 존재할 수 있다. 혼합물 내에서 비용매의 함량의 상한에는 제한이 없다. 즉, 전술한 바와 같이 비용매는 수성 용매와 혼합되지 않은 상태로도 적용 가능하기 때문에, 혼합물 내에서의 상기 비용매의 함량은 예를 들면, 100 중량% 미만일 수 있다.
상기 비용매와 PVC를 포함하는 상과의 혼합 공정 역시 상대적으로 저온에서 수행될 수 있다. 예를 들면, 상기 비용매와 PVC를 포함하는 상과의 혼합 공정은, 약 100℃ 이하의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 약 10℃ 이상, 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 95℃ 이하, 90℃ 이하, 85℃ 이하, 80℃ 이하, 75℃ 이하, 70℃ 이하, 65℃ 이하, 60℃ 이하, 55℃ 이하, 50℃ 이하, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.
상기 비용매와의 혼합에 의해 석출된 PVC를 적정한 수단으로 회수함으로써 재생 PVC를 얻을 수 있다. 이러한 재생 PVC에 대해서는 추가적인 건조 공정 등이 진행될 수도 있다.
본 출원의 제조 방법에서는 상기 기술한 것에 추가로 다른 공정이 더 진행될 수 있다.
예를 들면, 상기 제조 방법은, 상기 폐기물과 처리제의 혼합물로부터 중금속을 제거하는 단계를 추가로 포함할 수 있으며, 상기 단계는, 상기 혼합물을 중금속 제거제와 혼합하는 공정일 수 있다. 이러한 중금속 제거제와의 혼합 공정이 진행된다면, 폐기물로부터 중금속을 효과적으로 제거할 수 있다. 이 중금속 제거제와의 혼합 공정은 본 출원의 공정 진행 과정에서 적정한 시기에 수행될 수 있으며, 예를 들면, 상기 상분리 유도 공정 또는 비용매와의 혼합 공정 전에 수행될 수 있다. 다른 예시에서 전술한 바와 같이 중금속 제거제를 수성 용매와 함께 투입하는 경우에는 상기 상분리 유도 공정과 중금속 제거제의 투입 공정은 동시에 수행되게 된다.
본 출원의 재생 PVC의 제조에 원료로 사용되는 폐기물은 중금속(heavy metal)을 포함할 수 있다. 중금속은, 공지된 바와 같이 상대적으로 높은 밀도나 원자량 또는 큰 원자 번호를 가지는 금속을 지칭하는데, 이 중에는 카드뮴이나 납 등은 인체에 유해하다. 따라서, 상기 유해 중금속은 재생 PVC로부터 최대한 제거되는 것이 요구된다. 상기 중금속 제거제의 투입 공정을 통해서 상기 중금속을 보다 효율적으로 제거할 수 있다.
중금속 제거제로는, 예를 들면, 산(acid), 염(salt) 및/또는 염기 등을 사용하거나, 상기 성분을 포함하는 용액(예를 들면 수용액)을 사용할 수 있다. 상기에서 염(salt)으로는, 예를 들면, NaCl, PAC(poly aluminum chloride), 액반, 염화철, 황산 알루미늄, 황산 마그네슘 및/또는 산성 백토 등과 같은 다양한 무기염(다가 무기염 포함) 등을 사용할 수 있으며, 염기로는, NaOH 또는 KOH 등을 사용할 수 있지만, 이에 제한되는 것은 아니다. 또한, 중금속 제거제로서 사용될 수 있는 산(acid)의 범주에도 다양한 유기산 또는 무기산이 포함되고, 예를 들면, 염산, 질산, 황산, 아세트산 및/또는 시트르산 등이 사용될 수 있지만, 이에 제한되는 것은 아니다. PVC의 특성을 손상시키지 않고, 효과적으로 중금속을 제거할 수 있다는 측면에서는 상기 중금속 제거제로서 산, NaCl 및/또는 PAC(poly aluminum chloride) 또는 상기를 포함하는 용액(예를 들면, 수용액)을 사용할 수 있고, 특히 PAC 또는 상기를 포함하는 용액(예를 들면, 수용액)을 사용할 수 있다.
PAC로는 특별한 제한 없이 공지의 PAC를 사용할 수 있다. 통상 PAC는 하기 화학식 1의 구조를 가진다.
[화학식 1]
[Al2(OH)nCl6-n]m
화학식 1에서 n은 1 내지 5의 범위 내의 수이고, m은 10 이하의 수이다.
화학식 1에서 n은 다른 예시에서 2 이상, 3 이상, 4 이상 또는 4.5 이상이거나, 4 이하, 3 이하, 2 이하 또는 1.5 이하 정도일 수도 있다.
또한, 화학식 1에서 m은 다른 예시에서 0 이상, 0 초과, 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상 또는 9 이상이거나, 9 이하, 8 이하, 7 이하, 6 이하, 5 이하, 4 이하, 3 이하, 2 이하 또는 1 이하 정도일 수도 있다.
산 중에서는, 예를 들어, pKa가 약 -10 내지 5의 범위 내인 산을 사용할 수 있다. 상기 적용 가능한 산의 pKa는 다른 예시에서 -9 이상, -8 이상 또는 -7 이상이거나, 4 이하, 3 이하, 2 이하, 1 이하, 0 이하, -1 이하, -2 이하, -3 이하, -4 이하 또는 -5 이하일 수 있다. 이러한 pKa를 가지는 산으로는 염산을 예시할 수 있으나, 적용 가능한 산의 종류가 이에 제한되는 것은 아니다.
상기 중금속 제거제는, 전술한 바와 같이 단독으로 상기 혼합물과 혼합되거나, 수용액 상태로 상기 혼합물과 혼합될 수 있다. 수용액 상태로 혼합되는 경우에 전술한 바와 같이 상분리 공정에 상기 혼합이 기여할 수 있다.
수용액 상태로 중금속 제거제가 사용되는 경우에 상기 수용액 내에서의 중금속 제거제의 비율은 특별히 제한되지 않는다. 예를 들면, 이러한 경우에 상기 중금속 제거제는 후술하는 중금속 1몰 당 비율과 상분리 효율을 고려하여 그 비율이 조절될 수 있다. 예를 들어, 중금속 제거제가 상기 PAC인 경우에, 이는 수용액 내의 비율이 약 5 내지 50 중량% 정도일 수 있다. 상기 비율은 다른 예시에서 7 중량% 이상, 9 중량% 이상, 11 중량% 이상, 13 중량% 이상 또는 15 중량% 이상이거나, 45 중량% 이하, 40 중량% 이하, 35 중량% 이하, 30 중량% 이하 또는 25 중량% 이하 정도일 수도 있다.
또한, 상기 중금속 제거제가 산인 경우에 상기 산 수용액은, 약 0.1 내지 10 정도의 몰농도(M)를 가지도록 제조될 수 있다. 상기 몰 농도(M)는 다른 예시에서 0.3 이상, 0.5 이상, 0.7 이상, 0.8 이상 또는 1 이상이거나, 9 이하, 8 이하, 7 이하, 6 이하, 5 이하, 4 이하, 3 이하, 2 이하, 1.8 이하, 1.6 이하, 1.4 이하 또는 1.2 이하 정도일 수도 있다.
상기 혼합 시에 적용되는 중금속 제거제의 양은 특별히 제한되지 않는다. 예를 들면, 상기 폐기물에 존재하는 중금속의 함량을 고려하여, 해당 중금속 1몰 당 0.1 내지 50몰의 범위 내의 중금속 제거제가 혼합될 수 있다. 이론적으로 폐기물에 포함되어 있는 중금속 1몰은, 1몰 내지 2몰의 중금속 제거제와 반응하여 제거될 수 있지만, 실제적으로는 중금속의 용해능 등에 따라서 적용된 중금속 제거제의 양이 폐기물에 존재하는 중금속을 제거할 수 있는 양이라고 해도 실제 제거되는 중금속의 양은 미미할 수 있다. 그렇지만, 본 출원의 방법에 의하면, 적절한 양용매의 선택을 통해서 저온 공정에서도 폐기물 내에 포함되어 있는 중금속을 상대적으로 적은 양의 중금속 제거제를 통해서도 효과적으로 제거할 수 있고, 이에 따라서 중금속은 효과적으로 제거되면서도 중금속 제거제의 사용으로 인한 물성 저하가 없는 재생 PVC를 얻을 수 있다.
상기 비율은 다른 예시에서 중금속 1몰 당 0.3몰 이상, 0.5몰 이상, 0.7몰 이상 또는 0.9몰 이상이거나, 45몰 이하, 40몰 이하, 35몰 이하, 30몰 이하, 25몰 이하, 20몰 이하, 15몰 이하, 10몰 이하, 8몰 이하, 6몰 이하 또는 4몰 이하 정도일 수도 있다.
예를 들어, 본 출원에서 상기 중금속 제거제로서, 산을 사용하고, 이를 수용액 상태로 적용하는 경우에 저산성 수용액의 상태에서도 효율적인 중금속 제거가 가능하고, 저산성 수용액의 사용을 통해서 상기 중금속 제거제가 줄 수 있는 재생 PVC에게로의 악영향도 최소화할 수 있다. 예를 들어, 본 출원의 방법에서는 상기 산성 수용액으로서, 산의 몰농도(M)가 약 0.1 내지 5 정도의 몰농도(M)를 가지는 수용액을 사용할 수도 있다. 상기 몰 농도(M)는 다른 예시에서 0.3 이상, 0.5 이상, 0.7 이상, 0.8 이상 또는 1.0 이상이거나, 4 이하, 3 이하, 2 이하, 1.8 이하, 1.6 이하, 1.4 이하 또는 1.2 이하 정도일 수도 있다. 이와 같은 저산성 수용액이 중금속 제거제로 사용되는 경우에도 그 혼합량은, 폐기물에 포함되어 있는 중금속 1몰 당 0.1 내지 50몰의 범위 내의 중금속 제거제(산(acid))가 혼합되도록 상기 수용액이 혼합될 수 있다. 상기 범위의 보다 구체적인 내용은 전술한 바와 같다.
다른 예시에서 본 출원에서 상기 중금속 제거제는, 상기 중금속 제거제 100 중량부 대비 혼합되는 PVC와 양용매를 포함하는 혼합물에서 상기 양용매가 약 1 내지 2,000 중량부의 중량 비율로 존재하도록 혼합될 수 있다. 상기 비율은 다른 예시에서 상기 양용매의 비율이 3 중량부 이상, 5 중량부 이상, 7 중량부 이상, 9 중량부 이상, 10 중량부 이상, 15 중량부 이상, 20 중량부 이상, 25 중량부 이상, 50 중량부 이상, 100 중량부 이상, 150 중량부 이상, 200 중량부 이상, 250 중량부 이상, 300 중량부 이상, 350 중량부 이상, 400 중량부 이상, 450 중량부 이상, 500 중량부 이상, 550 중량부 이상, 600 중량부 이상, 650 중량부 이상, 700 중량부 이상, 750 중량부 이상, 800 중량부 이상, 850 중량부 이상, 900 중량부 이상, 950 중량부 이상, 1000 중량부 이상 또는 1500 중량부 이상 정도이거나, 1500 중량부 이하, 1000 중량부 이하, 950 중량부 이하, 900 중량부 이하, 850 중량부 이하, 800 중량부 이하, 750 중량부 이하, 700 중량부 이하, 650 중량부 이하, 600 중량부 이하, 550 중량부 이하, 500 중량부 이하, 450 중량부 이하, 400 중량부 이하, 350 중량부 이하, 300 중량부 이하, 250 중량부 이하, 200 중량부 이하, 150 중량부 이하, 100 중량부 이하, 90 중량부 이하, 80 중량부 이하, 70 중량부 이하, 60 중량부 이하, 50 중량부 이하, 40 중량부 이하, 30 중량부 이하, 20 중량부 이하 또는 10 중량부 이하 정도일 수도 있다.
이러한 비율 하에서 목적하는 특성의 재생 PVC 재료를 효율적으로 회수할 수 있다. 특히 상기 비율은 중금속 제거제가 상기 산, NaCl 및/또는 PAC이거나 그를 포함하는 수용액인 경우에 적절할 수 있다.
본 출원에서 상기 중금속 제거 공정도 저온 공정으로 진행될 수 있으며, 이러한 저온 공정 하에서도 효율적인 중금속의 제거가 가능하기 때문에, 에너지 소비를 줄이면서, 고온 공정 하에서 가해질 수 있는 재생 PVC에 대한 악영향(damage)도 방지할 수 있다.
예를 들면, 상기 중금속 제거 공정, 즉 폐기물과 양용매의 혼합물과 중금속 제거제의 혼합 공정은 약 100℃ 이하의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 약 10℃ 이상, 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 95℃ 이하, 90℃ 이하, 85℃ 이하, 80℃ 이하, 75℃ 이하, 70℃ 이하, 65℃ 이하, 60℃ 이하, 55℃ 이하, 50℃ 이하, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.
즉, 본 출원에 있어서는, 상기 폐기물 칩과 양용매를 혼합하여 혼합물을 제조하는 단계; 상기 혼합물로부터 중금속을 제거하는 단계; 및 상기 혼합물을 폴리염화비닐에 대한 비용매와 혼합하는 단계가 모두 100℃ 이하에서 진행될 수 있다. 상기 온도 범위는 다른 예시에서 약 10℃ 이상, 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 95℃ 이하, 90℃ 이하, 85℃ 이하, 80℃ 이하, 75℃ 이하, 70℃ 이하, 65℃ 이하, 60℃ 이하, 55℃ 이하, 50℃ 이하, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.
본 출원의 제조 공정은 필요한 경우에 필터링 공정을 수행할 수 있다. 예를 들면, 상기 폐기물, 처리제, 수성 용매, 중금속 제거제 및 비용매로 이루어진 군에서 선택된 적어도 2종의 성분을 포함하는 혼합물에 대해서 필터링 공정이 진행될 수 있다. 이러한 필터링 공정은 임의 공정이며, 수행된다면, 예를 들면, 상기 상분리 유도 공정의 전 또는 후, 상기 중금속 제거제의 투입 공정 전 또는 후, 및/또는 상기 비용매 투입 공정의 전 또는 후에 수행될 수 있다. 일 예시에서 상기 필터링 공정은 예를 들면, 적어도 상기 폐기물과 양용매이거나 상기 양용매를 포함하는 처리제와의 혼합물과 비용매의 혼합물 또는 상분리 후 회수된 PVC를 포함하는 상과 비용매의 혼합물에 대해서 수행될 수 있다.
하나의 예시에서 상기 중금속 제거제의 투입 공정이 진행된다면, 상기 처리제와 폐기물의 혼합 단계와 상기 중금속 제거제와의 혼합 단계의 사이에 상기 필터링 공정이 진행될 수도 있다. 이러한 경우에, 상기 처리제와 폐기물의 혼합물은 일단 필터링 공정에 적용된 후에 다시 상기 중금속 제거제와 혼합될 수도 있다.
상기 필터링 공정에 의해서 처리제와 폐기물의 혼합물 내에 존재하는 성분 중 제거가 필요한 성분들을 먼저 걸러낼 수 있다.
상기 필터링 공정을 진행하는 방식은 특별히 제한되지 않으며, 예를 들면, 상기 혼합물을 적절한 여과재로 걸러내는 방식으로 상기 필터링 공정이 진행될 수 있다.
이 과정에서 적용될 수 있는 여과재로는, 특별한 제한은 없으며, 예를 들면, 적절한 체(mesh)를 사용하여 상기 필터링을 수행하거나, 황산 마그네슘, 황산 알루미늄, 실리카, 셀라이트 또는 활성탄 등의 여과재를 사용한 필터링이 예시될 수 있다. 또한, 필터링은 상기 언급한 수단 중에서 2종 이상을 조합하여 수행할 수도 있다.
상기 필터링 과정에서는 추가 성분이 적용될 수 있다. 예를 들면, 상기 필터링 과정에서는 추가 성분이 사용될 수 있다. 예를 들면, 상기 필터링 과정에서는 상기 필터링되는 혼합물과 함께 DCM(Dichloromethane), THF(Tetrahydrofuran), DCE(Dichloroethane), MEK(Methyl Ethyl Ketone) 또는 DMSO(Dimethyl sulfoxide) 등의 성분이 상기 여과재를 통과할 수 있다. 이러한 성분들은 필터링 과정에서 여과재가 열화하거나, 여과재의 필터링 성능이 저하되는 현상을 방지할 수 있다. 예를 들면, 이러한 성분들을 적정량 상기 혼합물과 혼합한 상태에서 상기 여과재를 통과시킴으로써 효과적인 필터링 공정을 진행할 수 있다. 이 과정에서 혼합되는 상기 성분들의 비율은 목적에 따라서 조절되는 것으로서 특별히 제한되지는 않는다. 예를 들면, 상기 DCM(Dichloromethane)이나 THF(Tetrahydrofuran) 등의 성분은 필터링되는 혼합물 100 중량부 대비 약 0.5 내지 20 중량부 또는 약 5 내지 10 중량부 정도의 비율로 사용될 수 있다.
본 출원의 제조 방법에서는 필요한 경우에 상기 회수된 PVC에 대해서 공지의 추가적인 처리(예를 들면, 세척, 건조, 탈수 등)가 진행될 수 있다.
일 예시에서 상기 재생 PVC의 제조 방법의 모든 공정(단, 전술한 PVC의 회수를 위한 건조 공정이 진행된다면, 해당 건조 공정은 제외)은, 상대적으로 저온에서 수행될 수 있다.
예를 들면, 상기 재생 PVC 제조 방법의 모든 공정(단, 상기 건조 공정이 진행되는 경우에 해당 공정은 제외)은, 약 10℃ 내지 50℃의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.
본 출원의 제조 방법에서는 상기와 같이 수행되는 일련의 공정 중 임의의 적절한 시점에서 상기 폐기물에 포함된 PVC를 색 조정제와 접촉시키는 단계를 추가로 포함할 수 있다. 이러한 단계를 통해 보다 우수한 색특성을 가지는 재생 PVC 재료를 얻을 수 있다.
상기에서 색 조정제는, 재생 PVC 재료의 색 특성을 개선할 수 있는 작용을 하는 처리제이고, 그 구체적인 종류는 특별히 제한되지 않는다. 예를 들면, 상기 색조정제로는, 염 또는 활성탄 등이 예시될 수 있고, 상기에서 염으로는, 황산 마그네슘, 황산 알루미늄 및 황산 칼슘으로 이루어진 군에서 선택된 하나 이상이 예시될 수 있다.
본 출원의 제조 공정에서 상기 색 조정제와의 접촉 공정이 수행되는 시점에는 특별한 제한은 없으며, 공정 진행 중 적절한 시점에서 해당 공정을 수행할 수 있다.
예를 들면, 상기 PVC를 포함하는 폐기물과 양용매를 포함하는 처리제를 혼합하는 단계 전 또는 후 또는 상기 단계와 동시에 상기 색 조정제와의 접촉이 진행되거나, 상기 중금속 제거 단계 전 또는 후 또는 상기 단계와 동시에 상기 색 조정제와의 접촉이 진행되거나, 상기 상분리 유도 단계 전 또는 후 또는 상기 단계와 동시에 상기 색 조정제와의 접촉이 진행되거나, 상기 비용매와의 혼합 단계 전 또는 후 또는 상기 단계와 동시에 상기 색 조정제와의 접촉이 진행될 수 있다.
또한, 상기 색 조정제와의 접촉 단계는 공정 과정에서 1회 수행되거나, 2회 이상 복수회 수행될 수도 있다.
일 예시에서 상기 색 조정제와의 접촉 단계는, 상기 PVC를 상기 색 조정제와 혼합하는 방식 및/또는 상기 PVC를 상기 색 조정제가 존재하는 여과재에 통과시키는 방식으로 수행될 수 있다.
상기에서 색 조정제와 혼합되는 PVC 또는 색조정제가 존재하는 여과재를 통과하는 PVC는 상기 양용매를 포함하는 처리제, 중금속 제거제 및/또는 비용매와 혼합된 상태의 PVC일 수 있다.
상기 색 조정제가 PVC와 혼합되는 경우에 상기 색 조정제는 공정 중 적절한 시점에 필터링 등에 의해 제거될 수 있다.
본 출원에서 상기 색조정제와의 접촉 공정도 상대적으로 저온에서 수행 가능하다. 예를 들면, 상기 공정 또는 처리는, 약 100℃ 이하의 온도에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 약 10℃ 이상, 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 95℃ 이하, 90℃ 이하, 85℃ 이하, 80℃ 이하, 75℃ 이하, 70℃ 이하, 65℃ 이하, 60℃ 이하, 55℃ 이하, 50℃ 이하, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.
본 출원의 방법에서는 상기 상대적 저온 하에서도 우수한 물성의 PVC를 효과적으로 회수할 수 있고, 그러한 공정이 저온 공정으로 진행되는 것에 의해 공정 진행 과정에서 PVC에 가해질 수 있는 손상을 최소화하고, 필요한 에너지의 소비도 최소화할 수 있다.
본 출원은 또한 상기 기술한 재생 PVC 재료 또는 상기 제조 방법으로 재생된 재료를 포함하는 수지 성형체에 대한 것이다. 수지 성형체의 종류는 특별히 제한되지 않고, 예를 들면, 창호일 수 있다. 상기 폴리머 재료를 사용하여 수지 성형체를 제조하는 방법은 특별히 제한되지 않고, 공지의 방식을 적용할 수 있으며, 이 수지 성형체에서 상기 PVC 입자들은 입자 상태일 수 있거나, 또는 그렇지 않은 상태일 수도 있다.
상기 수지 성형체는, CIE Lab 색좌표에서 b값이 3 내지 6의 범위 내에 있을 수 있다. 상기 b값은 다른 예시에서 3.1 이상, 3.2 이상, 3.3 이상, 3.4 이상, 3.5 이상, 3.6 이상 또는 3.7 이상이거나, 5.5 이하, 5 이하, 4.5 이하 또는 4 이하 정도일 수도 있다.
상기 수지 성형체는, CIE Lab 색좌표에서 L값이 80 내지 100의 범위 내에 있을 수 있다. 상기 L값은 다른 예시에서 82 이상, 84 이상, 86 이상, 88 이상, 90 이상 또는 92 이상이거나, 98 이하, 96 이하, 94 이하 또는 93 이하 정도일 수도 있다.
상기 수지 성형체는, CIE Lab 색좌표에서 a값이 0 내지 5의 범위 내에 있을 수 있다. 상기 a값은 다른 예시에서 0.2 이상, 0.4 이상, 0.6 이상 또는 0.8 이상이거나, 4 이하, 3 이하, 2 이하 또는 1 이하 정도일 수도 있다.
상기 수지 성형체(예를 들면, 창호)는, 인장 항복 강도가 36 MN/m2 이상일 수 있다. 상기 강도는 예를 들면, 38MN/m2 이상 또는 40MN/m2 이상이거나, 60MN/m2 이하일 수 있다.
상기 수지 성형체(예를 들면, 창호)는, 인장 파단 신장율이 100% 이상일 수 있다. 상기 신장율은 예를 들면, 120% 이상, 140% 이상 또는 160% 이상이거나, 250% 이하일 수 있다.
상기 수지 성형체(예를 들면, 창호)는, 샤르피충격값(-10℃)이 4.9 KJ/m2 이상일 수 있다. 상기 샤르피충격값은 예를 들면, 6 KJ/m2 이상 또는 8 KJ/m2 이상이거나, 20 KJ/m2 이하일 수 있다.
상기 수지 성형체(예를 들면, 창호)는, 또한 굴곡 탄성율이 1960 MN/m2 이상일 수 있다.
상기 수지 성형체(예를 들면, 창호)는, 또한 가열 신축성이 2.5% 이하일 수 있다.
상기 수지 성형체(예를 들면, 창호)는, 또한 비캇 연화 온도가 83℃ 이상일 수 있다. 상기 온도는 다른 예시에서 85℃ 이상이거나, 95℃ 이하 정도일 수도 있다.
상기 수지 성형체(예를 들면, 창호)는, 또한 경도(HRR)가 85 이상일 수 있다. 상기 경도는 다른 예시에서 90 이상 또는 95 이상이거나, 100 이하 정도일 수도 있다.
상기 수지 성형체(예를 들면, 창호)는, 또한 냉열 반복 신축성이 0.2% 이하 정도일 수 있다. 상기 신축성은 다른 예시에서 0.15% 이하, 0.1% 이하이거나, 0% 이상일 수 있다.
상기 인장 항복 강도, 인장 파단 신장률, 랴르피 충격값, 굴곡 탄성율, 가열 신축성, 비캇 연화 온도, 경도, 냉열 반복 신축성 등은 규격에 따라 구해질 수 있다.
본 출원은 재생 PVC 재료 및 그의 제조 방법에 대한 것이다. 본 출원에서 재생 PVC의 제조 방법은 폐자재로부터 PVC를 재생하는 방법일 수도 있다. 본 출원은, 폐자재로부터 재생된 것으로서, 사용 전 PVC 재료와 동등한 물성을 가지면서, 중금속 등의 불필요한 불순물은 효과적으로 제거되고, 동시에 유익한 첨가제는, 잔존하고 있는 재생 PVC 재료 및 그 제조 방법을 제공할 수 있다. 또한, 본 출원은, 상기 재생 PVC 재료를 경제적이고, 적은 에너지를 소비하는 친환경적인 공정으로 얻을 수 있다.
도 1은 폐기물에서 회수된 PVC 입자에 대한 SEM(Scanning Electron Microscope) 이미지이다.
도 2는 합성된 PVC 입자에 대한 SEM(Scanning Electron Microscope) 이미지이다.
도 3은 폐기물에서 회수된 재료에 대한 1H NMR 분석 결과이다.
도 4는 일반 PVC에 대한 1H NMR 분석 결과이다.
도 5는 실시예 1에서 재생된 재생 PVC 재료에 대한 사진이다.
도 6 내지 8은 각각 비교예 1 내지 3에서 재생된 재생 PVC 재료에 대한 사진이다.
이하, 본 출원에 따른 실시예를 통해서 본 발명을 보다 구체적으로 설명하지만, 본 발명의 범위가 하기에 제한되는 것은 아니다.
1. PVC 재료에 대한 1 H NMR 분석
PVC 재료에 대한 1H NMR 분석은 400MHz FT-NMR Spectrometer(모델명: AVANCE III HD 400, 제조사: Bruker Biospin)를 사용하여 수행하였다(측정 조건: 400 MHz, solvent: THF(tetrahydrofuran)-D8)).
상기 분석에 기반하여 재생 PVC 재료 내의 재생 PVC의 함량도 확인하였다.
2. 중금속 함량 측정 방법
재생 PVC 재료 내의 중금속 함량은, 유도결합 플라즈마 발광 분석법(ICP-OES)을 통해 확인하였다. 상기 분석은, Agilent사의 측정 기기(Agilent社, 5110 Series)를 사용하여 수행하였고, 폐기물 공정 시험법(산분해법)(KS C IEC62321-4 규격)에 기하여 수행하였다.
상기 중금속의 함량은, 상기 PVC 재료에서 측정 시료를 채취하여 측정된 결과이고, 상기 재료에서 10곳의 영역을 임의로 선택하고, 선택된 영역에서 동일량의 시료를 채취하여 중금속 함량을 측정한 후에 측정된 결과의 산술 평균값을 대표값으로 하였다. 채취하는 시료의 양은 측정 기기에서 허용하는 양으로 하였다.
3. 알루미늄 함량 측정 방법
PVC 재료 내의 알루미늄 함량은 측정 시료를 Microwave 장비(Preekem사의 TOPEX Microwave)를 사용하여 산 분해하여 전처리된 시료를 제조한 후에 ICP-OES 장비(Agilent사의 Technologies 5110)를 사용하여 측정하였다.
PTFE 베셀에 약 0.3 g의 PVC 재료(측정 시료)를 정량하여 넣고, 질산 8 mL, 염산 1 mL 및 불산 0.4 mL를 추가한 후, 상기 Microwave 장비에서 단계적으로 240℃까지 온도를 상승시켜 완전히 산분해시키고, 초순수를 첨가하여 최종 부피를 50 mL로 맞추어서 전처리된 시료를 제조하고, 해당 시료에 대해서 Al 함량을 측정하였다.
Al 함량은 하기 순서에 따라서 측정하였다.
① 0.02 mg/L 내지 0.2 mg/L의 Al 표준 용액 조제
② ICP-OES를 사용하여 상기 표준 용액에 대해서 3개의 파장 (167.019 nm, 237.312 nm 및 396.152 nm)에서 검정 곡선을 작성
③ 상기와 동일한 파장에서 상기 검정 곡선을 사용하여 상기 전처리된 시료에서의 Al 함량을 정량
상기 Al 함량은, 상기 PVC 재료에서 측정 시료를 채취하여 측정된 결과이고, 상기 재료에서 10곳의 영역을 임의로 선택하고, 선택된 영역에서 동일량의 시료를 채취하여 Al 함량을 측정한 후에 측정된 결과의 산술 평균값을 대표값으로 하였다.
4. 프탈레이트 화합물 함량 측정 방법
프탈레이트 화합물의 함량은, GC-MS(Gas Chromatography Mass Spectrometry) 방식으로 측정하였다. 측정은 Agilent사의 7890B (GC) 및 5977B (MS) 기기를 사용하여 수행하였다. 공지의 측정 방법에 따라서 시료를 THF(Tetrahydrofuran)에 용해시키고, 알코올을 사용하여 재침(reprecipitation)을 잡은 후에 프탈레이트 화합물의 농도를 측정하였다.
상기 프탈레이트의 함량은, 상기 PVC 재료에서 측정 시료를 채취하여 측정된 결과이고, 상기 재료에서 10곳의 영역을 임의로 선택하고, 선택된 영역에서 동일량의 시료를 채취하여 함량을 측정한 후에 측정된 결과의 산술 평균값을 대표값으로 하였다. 채취하는 시료의 양은 측정 기기에서 허용하는 양으로 하였다.
5. 색좌표 측정 방법
PVC 재료의 색좌표는 BYK Gardner사의 Spectro-guide gloss S 장비를 사용하여 측정하였다.
6. 재생 PVC에 대한 SEM 촬영
재생 PVC 재료에 대한 SEM 촬영은, Hitachi사의 SU8010 장비를 사용하여 수행하였고, 100배의 배율로 촬영하였다.
7. 열중량 분석(TGA) 분석
PVC 재료에 대한 열중량 분석은, Mettler Toledo사의 TGA/DSC 3+ 기기를 사용하여 수행하였다. 질소(N2) 분위기 하에서 30℃에서 1,000℃까지의 온도 구간을 약 10℃/분의 승온 속도로 승온하면서 측정을 수행하였다.
8. 양용매 및 비용매 함량 측정
재생 PVC 재료에 포함된 양용매 및 비용매의 함량은 GC(Gas chromatography) 분석으로 확인하였다. 측정 기기로는 Agilent사의 TDS3, 7890A/5975C 장비를 사용하였다.
상기 양용매 및 비용매의 함량은, 상기 PVC 재료에서 측정 시료를 채취하여 측정된 결과이고, 상기 재료에서 10곳의 영역을 임의로 선택하고, 선택된 영역에서 동일량의 시료를 채취하여 함량을 측정한 후에 측정된 결과의 산술 평균값을 대표값으로 하였다. 채취하는 시료의 양은 측정 기기에서 허용하는 양으로 하였다.
9. 탄성 특성의 평가
재생 PVC 재료 등으로 제조된 시편의 인장 특성(인장 강도, 인장 탄성률 및 인장 신율)은 인장 시험기(Ametek Lloyd, Irx plus)를 사용하여 평가하였고, 통상적으로 창호용 PVC 재료에 대해서 인장 특성을 평가하는 방식에 따라서 평가하였다(측정 조건: Gauge Length 30mm, Width 25mm, Thickness 0.3mm).
10. 중량평균분자량/수평균분자량의 평가
수평균분자량(Mn) 및 중량평균분자량은 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 바이얼(vial)에 재생 PVC 재료를 넣고, 약 0.1 중량% 정도의 농도가 되도록 THF(tetrahydrofuran)에 희석한다. 그 후, Calibration용 표준 시료와 분석하고자 하는 시료를 syringe filter (pore size: 0.45 ㎛)를 통해 여과시킨 후 측정하였다. 분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw) 및 수평균분자량(Mn)을 각각 구하였다.
<GPC 측정 조건>
기기: Agilent technologies사의 1260 Infinity
컬럼: Polymer laboratories 사의 PLgel mixed A 2개 사용
용매: THF
컬럼온도: 35℃
샘플 농도: 1mg/mL, 20μL 주입
표준 시료: 폴리스티렌(PS-H EasiVial)
실시예 1.
PVC의 재생에 사용되는 원래인 폐기물로는 PVC로 제조된 폐창호를 사용하였다. 상기 폐창호에 존재하는 금속, 유리 및 접착제 등의 이물질을 먼저 물리적으로 제거하고, 분쇄기로 상기 폐창호를 분쇄하여 폐기물 칩을 제조하였다. 상기 폐기물 칩은 가로 및 세로 길이가 각각 대략 2cm 및 2cm 수준이고, 두께가 약 0.5 mm 전후였다. 상기 폐기물 칩을 추가로 분쇄하여 미세한 분말상으로 제조하였다. 상기 원료를 처리제로서, 사이클로헥사논(몰질량: 약 98.15 g/mol, 비점: 약 155.6℃, 수용해도(20℃): 약 8.6 g/100mL, 증기압(20℃): 약 5 mmHg)과 혼합하였다. 상기 혼합 시에 폐기물과 사이클로헥사논의 중량 비율은 약 1:10 정도(폐기물:사이클로헥사논)로 하였다. 상기와 같이 폐기물과 사이클로헥사논을 혼합하고, 교반하여 혼합물을 제조하였다. 상기 공정은 모두 상온(약 25℃)에서 진행하였다.
상기와 같이 분쇄된 폐기물과 처리제의 혼합 과정에서 MgSO4(색조정제)도 함께 투입하여 기계적 교반 방식으로 재료와 상기 MgSO4를 접촉시켰다.
상기 접촉 후 혼합물에서 색조정제를 필터링하여 제거하고, 후속 공정을 진행하였다.
이어서 상기 혼합물을 중금속 제거제와 혼합하였다. 중금속 제거제로는 염산(pKa = 약 -6.3) 수용액을 사용하였다. 이 때 염산 수용액에서의 염산의 농도는 약 1.1 M(몰 농도)였다. 상기 혼합물과 상기 염산 수용액을 혼합하였으며, 상기 혼합 과정에서 상기 혼합물 내의 사이클로헥사논과 상기 염산 수용액의 중량 비율은 약 7:1 정도(사이클로헥사논:염산 수용액)가 되도록 수행하였다.
상기 혼합 후에 혼합물을 1 시간 전후로 교반하고, 체(mesh)로 필터링하였다.
그 후 필터링된 여과물을 방치하여 상분리를 유도하였다. 상기 공정은 모두 상온(약 25℃)에서 진행하였다.
상분리가 이루어진 것을 확인하고, 상분리된 수상을 제거하고, PVC가 존재하는 유기상을 회수하였다. 이어서 상기 유기상을 PVC에 대한 비용매인 에탄올(비점: 약 78.37℃)과 혼합하였다. 상기에서 혼합되는 메탄올의 비율은 상기 유기상 100 중량부 대비 약 200 내지 250 중량부로 제어하였다.
상기 혼합에 의해서 유기상에 용해되어 존재하던 PVC가 석출되었다. 석출된 PVC를 회수하고, 약 40℃의 온도에서 15 시간 정도 진공 건조하여 재생 PVC를 수득하였다.
도 3은, 위와 같은 방식으로 얻어진 재생 PVC 재료의 1H NMR 스펙트럼이다. 도면에서 4 ppm 내지 5 ppm의 범위 내에서 PVC에서 유래하는 피크(제 1 피크, ①)가 확인되고, 약 1.1 ppm 내지 1.4 ppm의 범위 내에서 제 2 피크(③)가 확인되는 것을 알 수 있다.
상기 스펙트럼에서 제 1 피크의 적분값(4 ppm 내지 5 ppm의 범위에서 확인되는 피크의 면적)은 약 1.00 정도였고, 제 2 피크의 적분값(약 1.1 ppm 내지 1.4 ppm의 범위에서 확인되는 피크의 면적)은 약 0.08 정도였다. 따라서, 상기 적분값의 비율(제 2 피크/제 1 피크)은 약 0.08 정도이다.
비교예 1.
MgSO4와의 접촉 과정을 진행하지 않은 것을 제외하고는 실시예 1과 동일하게 공정을 진행하여 재생 PVC를 수득하였다.
비교예 2.
MgSO4 대신 셀라이트(celite)를 적용한 것을 제외하고는, 실시예 1과 동일하게 공정을 진행하여 재생 PVC를 수득하였다.
비교예 3.
MgSO4 대신 실리카(silica)를 적용한 것을 제외하고는, 실시예 1과 동일하게 공정을 진행하여 재생 PVC를 수득하였다.
실시예 및 비교예에서 얻어진 재생 PVC에 대해서 측정한 물성을 하기 표 1에서 정리하여 기재하였다. 하기 표 1에서 Mw는 중량평균분자량을 의미하고, Mn은 수평균분자량을 의미한다. 또한, 하기 표 1에서 CyH는 사이클로헥사논을 의미한다.
실시예 비교예
1 1 2 3
불순물 함량
(ppm)
Pb 10 10 10 10
Cd 1 이하 1 이하 1 이하 1 이하
가소제 500 이하 500 이하 500 이하 500 이하
CyH 함량(ppm) 약 100 약 100 약 100 약 100
색좌표 L 92 50 78 60
a -0.3 -0.4 -0.7 -1.0
b 5.04 4.76 11.83 9.3
(a2+b2)1/2 5.05 4.78 11.85 9.35
분자량(×10000) Mw 18 18 18 18
Mn 9 9 9 9
표 1의 결과로부터 실시예의 경우 폐기물 내의 불순물이 효과적으로 제거되고, 색 특성도 안정적으로 확보되었으나, 비교예의 경우, 재생 PVC의 색 특성이 매우 열악한 것을 확인할 수 있다.
도 5는 상기 실시예 1에 따라 얻어진 재생 PVC 재료의 사진이고, 도 6 내지 8은 각각 비교예 1 내지 3에 따라 얻어진 재생 PVC 재료의 사진이다.
시험예 1.
실시예 1에서 얻은 재생 PVC 재료를 원료 수지 재료로 사용하여 시편 A를 제조하고, 해당 시편에 대해서 인장 강도, 인장 탄성률 및 신율을 평가하였다.
실시예 1의 재생 PVC 재료(원료 수지 재료)에 안정제, CaCO3 및 첨가제를 25:1.2:73:0.8의 중량 비율(PVC 재료:안정제:CaCO3:첨가제)로 혼합하고, 혼합기(Brabender mixer)로 200℃에서 혼련한 후에 혼련된 재료를 200℃에서 프레스 가공하여 판재를 제조하였다.
그 후, 상기 판재의 일면에 창호 제작에 통상 적용되는 백색 시트, 전사지 및 투명 필름을 순차 적층하여 시편 A를 제조하였다.
한편, 실시예 1에서 얻은 재생 PVC 재료와 일반 PVC(재생된 PVC가 아닌 합성된 PVC)를 혼합한 혼합물을 원료 수지 재료로 사용하여 시편 B를 제조하였다.
상기 일반 PVC로는 LG화학의 범용 PVC로서, LS 100 제품을 사용하였다. 도 4는 상기 일반 PVC에 대한 1H NMR 스펙트럼이다.
도면에서 상기 일반 PVC의 스펙트럼은 PVC에서 유래하는 피크만이 확인되고, 재생 PVC 재료의 제 2 피크에 해당하는 피크는 확인되지 않는 것을 알 수 있다.
상기 재생 PVC 재료와 일반 PVC를 6:4의 중량 비율(재생 PVC 재료:일반 PVC)로 혼합하여 원료 수지 재료를 제조하였다. 상기 원료 수지 재료에 시편 A의 제조 시와 동일하게 안정제, CaCO3 및 첨가제를 25:1.2:73:0.8의 중량 비율(원료 수지 재료:안정제:CaCO3:첨가제)로 혼합하고, 혼합기(Brabender mixer)로 200℃에서 혼련한 후에 혼련된 재료를 200℃에서 프레스 가공하여 시편 A에서와 동일한 크기의 판재를 제조하였다. 그 후, 상기 판재의 일면에 창호 제작에 통상 적용되는 백색 시트, 전사지 및 투명 필름을 순차 적층하여 시편 B를 제조하였다.
시편 C는, 실시예 1의 재생 PVC 재료와 일반 PVC(재생된 PVC가 아닌 합성된 PVC)를 1:9의 중량 비율(재생 PVC 재료:일반 PVC)로 혼합한 재료를 원료 수지 재료로 사용한 것을 제외하고는 시편 B의 경우와 동일하게 제조하였으며, 시편 D는, 실시예 1의 재생 PVC 재료 대신 시편 B 및 C에서 적용한 일반 PVC(재생된 PVC가 아닌 합성된 PVC)를 원료 수지 재료로 적용한 것을 제외하고는 시편 A의 경우와 동일하게 시편을 제조하였다.
상기 시편들에 대한 인장 특성의 평가 결과는 하기 표 2와 같다.
시편A 시편B 시편C 시편D
인장강도(MPa) 19.93 20.97 23.34 24.93
인장탄성률(MPa) 6198 6478 6610 6983
신율(mm) 3.27 3.36 3.39 3.94
표 2의 결과로부터, 재생 PVC 재료의 함량이 많은 시편일수록 인장 강도 및 인장 탄성률이 감소하면서 신율이 증가하는 것을 알 수 있다. 이러한 결과는, 재생 PVC 재료에 포함되어 제 2 피크를 형성하는 재료가 PVC가 가지는 고유의 특성이 쉽게 깨지는 특성(brittleness)을 개선하고, 재료의 가공성과 유연성을 향상시키는 것을 알 수 있다.

Claims (15)

  1. 폴리염화비닐을 포함하는 폐기물과 양용매를 혼합하여 혼합물을 제조하는 제 1 단계;
    상기 혼합물로부터 중금속을 제거하는 제 2 단계; 및
    상기 혼합물을 폴리염화비닐에 대한 비용매와 혼합하는 제 3 단계를 포함하고,
    상기 폐기물에 포함된 폴리염화비닐을 색 조정제와 접촉시키는 단계를 추가로 포함하고,
    상기 색 조정제는, 염 또는 활성탄인 재생 폴리염화비닐 재료의 제조 방법.
  2. 제 1 항에 있어서, 염은 황산 마그네슘, 황산 알루미늄 또는 황산 칼슘을 포함하는 재생 폴리염화비닐 재료의 제조 방법.
  3. 제 1 항에 있어서, 폐기물은 폐창호인 재생 폴리염화비닐 재료의 제조 방법.
  4. 제 1 항에 있어서, 폴리염화비닐을 색 조정제와 접촉시키는 단계는,
    상기 폴리염화비닐을 상기 색 조정제와 혼합하는 단계; 및
    상기 폴리염화비닐을 상기 색 조정제가 존재하는 여과재에 통과시키는 단계로 이루어진 군에서 선택된 하나 이상의 단계를 포함하는 재생 폴리염화비닐 재료의 제조 방법.
  5. 제 1 항에 있어서, 양용매는 케톤 또는 테트라하이드로퓨란인 재생 폴리염화비닐 재료의 제조 방법.
  6. 제 5 항에 있어서, 케톤은 몰질량이 70 내지 150 g/mol의 범위 내인 재생 폴리염화비닐 재료의 제조 방법.
  7. 제 5 항에 있어서, 케톤은 비점이 130℃ 내지 200℃의 범위 내인 재생 폴리염화비닐 재료의 제조 방법.
  8. 제 5 항에 있어서, 케톤은, 20℃에서의 수용해도가 15 g/100mL 이하인 재생 폴리염화비닐 재료의 제조 방법.
  9. 제 5 항에 있어서, 케톤은 20℃에서의 증기압이 1 내지 10 mmHg의 범위 내에 있는 재생 폴리염화비닐 재료의 제조 방법.
  10. 제 1 항에 있어서, 중금속을 제거하는 단계는 혼합물을 중금속 제거제와 혼합하는 단계인 재생 폴리염화비닐 재료의 제조 방법.
  11. 제 10 항에 있어서, 중금속 제거제는, 산(acid) 수용액 또는 PAC(poly aluminum chloride)인 재생 폴리염화비닐 재료의 제조 방법.
  12. 제 11 항에 있어서, 산 수용액은 산의 몰 농도가 0.1 내지 10 M의 범위 내인 재생 폴리염화비닐 재료의 제조 방법.
  13. 제 11 항에 있어서, 폐기물과 양용매의 혼합물에서 상분리를 유도하는 단계를 추가로 포함하는 재생 폴리염화비닐 재료의 제조 방법.
  14. 제 1 항에 있어서, 비용매는 알코올을 포함하는 재생 폴리염화비닐 재료의 제조 방법.
  15. 제 1 항에 있어서, 폐기물과 양용매를 혼합하여 혼합물을 제조하는 단계; 상기 혼합물로부터 중금속을 제거하는 단계; 및 상기 혼합물을 폴리염화비닐에 대한 비용매와 혼합하는 단계가 100℃ 이하에서 진행되는 재생 폴리염화비닐의 제조 방법.
KR1020220046858A 2022-04-15 2022-04-15 재생 폴리염화비닐 재료 KR20230147917A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220046858A KR20230147917A (ko) 2022-04-15 2022-04-15 재생 폴리염화비닐 재료

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220046858A KR20230147917A (ko) 2022-04-15 2022-04-15 재생 폴리염화비닐 재료

Publications (1)

Publication Number Publication Date
KR20230147917A true KR20230147917A (ko) 2023-10-24

Family

ID=88515405

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220046858A KR20230147917A (ko) 2022-04-15 2022-04-15 재생 폴리염화비닐 재료

Country Status (1)

Country Link
KR (1) KR20230147917A (ko)

Similar Documents

Publication Publication Date Title
US8409540B2 (en) Process for preparing hydrotalcite
EP2791233B1 (en) Crosslinkable compositions based on vinylidene fluoride-trifluoroethylene polymers
KR101570386B1 (ko) 에폭시계 에스테르 화합물을 포함한 복합 가소제 조성물 및 이를 이용한 고분자 수지 조성물
JP6672528B2 (ja) ソルビトールトリアセタールおよびモノアセタールを含む透明核剤組成物
KR102701066B1 (ko) 재생 폴리염화비닐 재료
CN115044024B (zh) 一种用于增塑增韧聚氯乙烯的生物降解共聚物及其制备方法
US9434664B2 (en) Preparation method for edge-fluorinated graphite via mechanic-chemical process
CN113003563A (zh) 一种改性木质素碳点及其制备方法和应用
CN109053389B (zh) 一种2,4,6-三溴苯基烯丙基醚的合成方法
KR20230147917A (ko) 재생 폴리염화비닐 재료
KR20230147916A (ko) 재생 폴리염화비닐 재료
CN101456998A (zh) 电线电缆用无味聚氯乙烯组合物及制备方法
US20190248940A1 (en) Method for producing copolymer
CN109311675B (zh) 功能化石墨烯的制备方法
KR20220155191A (ko) 재생 폴리염화비닐 재료
KR20220155194A (ko) 재생 폴리염화비닐 재료
KR20220155192A (ko) 재생 폴리염화비닐 재료
KR102467514B1 (ko) 재생 폴리염화비닐 재료
US20110263773A1 (en) Smoke Suppressants
CN114276272B (zh) 一种生产富勒烯水溶性衍生物并回收三乙醇氧化胺的方法
KR20230098083A (ko) 재생 폴리염화비닐 재료
JPWO2014119618A1 (ja) 近赤外線吸収剤の製造方法、近赤外線吸収剤およびその用途
JP6228081B2 (ja) ジシクロペンタジエン類変性フェノール樹脂の製造方法、エポキシ樹脂の製造方法および硬化物の製造方法
KR102030501B1 (ko) 폴리비닐알코올의 용해도를 증가시키는 방법
KR20230097851A (ko) 용매의 재활용 방법 및 재생 폴리염화비닐 재료의 제조 방법