KR20230138683A - 역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭 방법 - Google Patents

역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭 방법 Download PDF

Info

Publication number
KR20230138683A
KR20230138683A KR1020220036576A KR20220036576A KR20230138683A KR 20230138683 A KR20230138683 A KR 20230138683A KR 1020220036576 A KR1020220036576 A KR 1020220036576A KR 20220036576 A KR20220036576 A KR 20220036576A KR 20230138683 A KR20230138683 A KR 20230138683A
Authority
KR
South Korea
Prior art keywords
target gene
ligation
rpa
seq
sars
Prior art date
Application number
KR1020220036576A
Other languages
English (en)
Inventor
서영준
최문혁
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Priority to KR1020220036576A priority Critical patent/KR20230138683A/ko
Priority to PCT/KR2023/003648 priority patent/WO2023182742A1/ko
Publication of KR20230138683A publication Critical patent/KR20230138683A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6862Ligase chain reaction [LCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/30Oligonucleotides characterised by their secondary structure
    • C12Q2525/301Hairpin oligonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/101Temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/30Detection characterised by liberation or release of label
    • C12Q2565/301Pyrophosphate (PPi)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭 방법에 관한 것으로, 역전사 효소를 이용한 cDNA의 합성 없이 실온에서 30분 내외의 짧은 반응 시간만으로도 시각적 변화를 통하여 표적 유전자를 검출할 수 있으므로, RNA 바이러스 등의 현장 유전자 분자 진단에 유용하게 활용될 수 있다.

Description

역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭 방법{Composition for Detecting Target Gene based on cDNA Synthesis using a Ligation Method that does not use Reverse Transcription, and Method for multiple Ligation-Assisted Recombinase Polymerase Amplification}
본 발명은 역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭(mLig-RPA) 방법에 관한 것이다.
바이러스는 빠르게 확산되어 목표물을 감염시킬 수 있기 때문에 치명적이다. 많은 위험한 바이러스는 쉽게 돌연변이를 일으키는 자체 RNA 게놈을 가지고 있다. 신종 중증급성호흡기증후군 코로나바이러스 2(SARS-CoV-2)는 2019년 말에 처음 발견된 새로운 유형의 코로나바이러스로, 현재까지도 계속 확산되고 있다. 전염성이 높은 이러한 바이러스는 전염병을 유발할 수 있다. 따라서 바이러스를 신속하게 진단하는 것이 중요합니다.
역전사 기반 중합효소 연쇄 반응(RT-PCR)은 바이러스 게놈의 민감하고 선택적인 검출을 제공하는 능력이 입증되었기 때문에 바이러스 RNA 검출에 일반적으로 사용된다. 그럼에도 불구하고 몇 가지 단점이 있다. 시간이 많이 걸리고 값비싼 장비가 필요하므로, 현장진단이 어렵다. 따라서 간편하고 신속한 현장 진단을 위한 많은 대체 방법이 개발되었다. 예를 들어, 재조합 효소 중합 효소 증폭(RPA), 롤링 서클 증폭(RCA), 및 고리매개 등온증폭(LAMP) 방법에 의하여 바이러스 RNA 검출이 실현되었다. 그럼에도 불구하고, 일부 등온증폭 기반 현장 진단 시스템은 바이러스 RNA 진단을 위한 RT-PCR 방법에 비해 낮은 선택도로 작동한다는 문제점이 여전히 존재하였다.
한편, 일반적으로 LAMP 시스템은 바이러스 RNA에 결합하는 프라이머 서열을 사용하여 표적 cDNA를 생성하기 위해 역전사효소(RT)가 필요하다. 다만, 프라이머를 사용하는 역전사 과정에서 많은 잘못된 형태의 cDNA가 생성되므로, 다음과 같은 문제점이 발생할 수 있다. 첫 번째 문제는 위양성 진단의 가능성이다. 실제 표적 바이러스 RNA를 추출할 때, 다른 유사한 바이러스 RNA가 존재할 가능성과 인간 게놈의 일부 서열이 유사할 경우, 프라이머가 이들을 구별하기 어려울 수 있다. 또한 실제 표적 RNA가 없더라도 위양성 검출 가능성이 있다. 따라서 다른 영역과 겹치지 않는 타겟으로 프라이머를 설계하는 것이 중요하다. 이에, 기존 대부분의 프라이머는 RT-LAMP 동안 핵단백질과 같은 보존적 부위를 표적으로 삼았다. 그러나, 프라이머 서열이 너무 특이적이면 표적 RNA에 결합하기 어려워지는 경향이 있어 위음성(false-negative) 가능성이 있다. 즉, 실제 표적 RNA가 존재하더라도 프라이머가 이에 결합하지 않아 표적 cDNA가 형성되지 않는 경우가 있을 수 있다.
이에, 본 발명자들은 LAMP의 선택성 문제를 극복하기 위하여, LAMP 공정에 적용하기 위한 역전사효소를 사용하지 않고 바이러스 RNA를 증폭하기 위한 방법을 개발하기 위한 연구를 수행하여 본 발명을 완성하였다.
대한민국 특허등록 제10-2294552호
본 발명의 하나의 목적은 표적 유전자의 일부 염기서열과 상보적인 복수개의 주형 서열; 리가아제(ligase); 고리매개 등온증폭(loop-mediated isothermal amplification) 시약; 및 고리매개 등온증폭용 프라이머 세트를 포함하고, 상기 복수개의 주형 서열이 모두 결찰(ligation)될 경우 상기 표적 유전자 전체 염기서열과 상보적인 것인 표적 유전자 검출용 조성물을 제공하는 것이다
본 발명의 다른 목적은 피검체로부터 생물학적 시료를 수득하는 단계; 상기 시료에 표적 유전자의 일부 염기서열과 상보적인 복수개의 주형 서열 및 리가아제(ligase)를 첨가하여 주형 서열의 다중 결찰(multiple ligation)을 수행하는 단계; 상기 다중 결찰된 주형 서열의 증폭 반응을 수행하는 단계; 및 상기 주형 서열의 증폭 반응이 확인될 경우, 상기 피검체에 상기 표적 유전자가 존재하는 것으로 결정하는 단계를 포함하는 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법을 제공하는 것이다.
본 발명의 일 양상은 표적 유전자의 일부 염기서열과 상보적인 복수개의 주형 서열; 리가아제(ligase); 고리매개 등온증폭(loop-mediated isothermal amplification) 시약; 및 고리매개 등온증폭용 프라이머 세트를 포함하고, 상기 복수개의 주형 서열이 모두 결찰(ligation)될 경우 상기 표적 유전자 전체 염기서열과 상보적인 것인 표적 유전자 검출용 조성물을 제공한다.
고리매개 등온증폭(loop-mediated isothermal amplification, LAMP)의 선택성 문제를 극복하기 위하여, 본 발명에서는 LAMP 공정에 적용하기 위해 역전사효소를 사용하지 않는 이중-부위 결찰 보조 cDNA 합성(dual-site ligation-assisted cDNA synthesis) 방법을 제공한다. 즉, 표적 RNA 서열의 특정 영역에 상보적인 복수개의 DNA 올리고뉴클레오티드 주형 서열과 함께 리가아제를 사용하여 주형 서열을 연결함으로써, 몇 분 내에 cDNA를 생성할 수 있으며, cDNA의 생성은 표적 RNA가 있는 존재하는 경우에만 이루어진다. 이후 생성된 cDNA가 LAMP 반응 시스템에 의해 증폭된다. 따라서, 본 발명에 따르면, 표적 유전자와 이는 일치하지 않는 서열이 있거나 결찰 템플릿 중 하나가 결합되지 않는 경우 cDNA의 합성 및 증폭 반응이 이루어지지 않으므로, 본 발명의 표적 유전자 검출용 조성물을 사용하여 표적 유전자의 존재 여부를 신속하게 검출할 수 있다. 따라서, 본 발명의 표적 유전자 검출용 조성물은 등온 증폭 방법을 사용할 때 발생하는 선택성 문제를 해결하는데 유용하게 활용될 수 있다.
본 발명의 일 구체예에 따르면, 상기 복수개의 주형 서열은 2 내지 10개일 수 있다.
상기 주형 서열은 2 내지 10개일 수 있고, 더욱 바람직하게는 2개 내지 7개일 수 있으며, 가장 바람직하게는 3개일 수 있다.
본 발명의 일 구체예에 따르면, 상기 표적 유전자는 20 내지 200개의 염기서열로 이루어지는 것일 수 있다.
상기 표적 유전자는 20 내지 200개의 염기서열로 이루어지는 것일 수 있으며, 바람직하게는 40 내지 160개의 염기서열일 수 있고, 더욱 바람직하게는 60 내지 100개의 염기서열일 수 있으며, 가장 바람직하게는 76개 내지 77개일 수 있다.
본 발명의 일 구체예에 따르면, 상기 리가아제는 Splint R 리가아제일 수 있다.
Splint R 리가아제는 RNA-templated DNA 리가아제로써, T4 DNA Ligase보다 반응 속도가 훨씬 빠르므로, 효과적으로 유전자의 일부 염기서열과 상보적인 복수개의 주형 서열의 결찰(ligation)을 수행할 수 있다.
본 발명의 일 구체예에 따르면, 상기 고리매개 등온증폭용 프라이머 세트는 서열번호 1 내지 서열번호 6으로 이루어진 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 표적 유전자의 일부 염기서열과 상보적인 복수개의 주형 서열은 서열번호 7 내지 서열번호 9로 이루어진 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 표적 유전자는 SARS-CoV-2 바이러스 유래 염기서열일 수 있다.
서열번호 1 내지 서열번호 6으로 이루어진 고리매개 등온증폭용 프라이머 세트와 서열번호 7 내지 서열번호 9로 이루어진 주형 서열을 사용할 경우, 서열번호 10으로 이루어진 SARS-CoV-2 바이러스 유래 RNA를 높은 민감도 및 선택성으로 검출할 수 있으므로, SARS-CoV-2 바이러스의 신속한 현장진단에 효과적으로 활용될 수 있다.
본 발명의 일 구체예에 따르면, 상기 SARS-CoV-2 바이러스 유래 염기서열은 서열번호 10일 수 있다.
본 발명의 일 구체예에 따르면, 상기 조성물은 하기 화학식 1로 표시되는 화합물을 더 포함할 수 있다:
기존의 유전자를 진단하는 방법은 복잡한 합성 과정을 거친 여러 개의 올리고뉴클레오티드와 유전자에 표식 해놓은 형광으로 신호를 증폭 시키는 방법을 사용하나, 이러한 방법들은 시간과 비용이 많이 들고, 형광분석기가 필요하기 때문에 신속한 현장진단에 적합하지 못하였다.
본 발명의 화학식 1로 표시되는 화합물은 다양한 핵산 증폭 반응에서 필연적으로 방출되는 피로인산염과 선택적으로 친화성이 높을 뿐만 아니라, 시각적으로 변화의 검출이 가능하므로, 핵산의 증폭 방법과 조합되어 핵산 증폭 반응이 이루어졌는지를 실시간으로 분석하기 위한 발색 탐지체로 활용될 수 있다.
본 발명의 조성물은 고리매개 등온증폭에 필요한 시약을 더 포함할 수 있다. 예를 들어, 완충액, DNA 중합효소, DNA 중합 효소 조인자, UDG 및/또는 dNTPs 등을 포함할 수 있으나, 이에 한정되는 것은 아니며, 당업자에 의해 용이하게 선택될 수 있다.
본 발명의 다른 양상은 피검체로부터 생물학적 시료를 수득하는 단계; 상기 시료에 표적 유전자의 일부 염기서열과 상보적인 복수개의 주형 서열 및 리가아제(ligase)를 첨가하여 주형 서열의 다중 결찰(multiple ligation)을 수행하는 단계; 상기 다중 결찰된 주형 서열의 증폭 반응을 수행하는 단계; 및 상기 주형 서열의 증폭 반응이 확인될 경우, 상기 피검체에 상기 표적 유전자가 존재하는 것으로 결정하는 단계를 포함하는 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법을 제공한다.
본 명세서의 불필요한 반복 기재에 의한 과도한 복잡성을 피하기 위하여 공통 사항은 그 기재를 생략한다.
본 발명의 정보제공방법에 따르면, RNA 바이러스의 유전자 진단을 위해 사용되는 역전사 과정을 없애고 대신 복수개의 주형 서열의 결찰(ligation)을 이용하여 cDNA 합성 및 등온 유전자 증폭을 수행하게 되며, 표적 유전자의 염기서열과 1-mer 이상 차이가 나는 경우 복수개의 주형 서열이 일부 또는 전부 결찰되지 않아 cDNA가 형성되지 않으므로, cDNA의 증폭반응에 의하여 높은 민감도 및 선택성으로 RNA 바이러스의 신속한 현장 분자 진단(자가진단)이 가능하다.
본 발명의 일 구체예에 따르면, 상기 복수개의 주형 서열은 2 내지 10개인 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 표적 유전자는 20 내지 200개의 염기서열로 이루어진 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 다중결찰은 Splint R 리가아제에 의해 이루어질 수 있다.
본 발명의 일 구체예에 따르면, 상기 증폭 반응은 고리매개 등온증폭일 수 있다.
본 발명의 일 구체예에 따르면, 상기 복수개의 주형 서열은 서열번호 7 내지 서열번호 9로 이루어진 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 표적 유전자는 SARS-CoV-2 바이러스 유래 염기서열일 수 있다.
본 발명의 일 구체예에 따르면, 상기 SARS-CoV-2 바이러스 유래 염기서열은 서열번호 10일 수 있다.
본 발명의 일 구체예에 따르면, 상기 증폭 반응의 확인은 상기 증폭 반응 전 또는 상기 증폭 반응 후, 하기 화학식 1로 표시되는 화합물을 첨가하여 증폭 산물의 색이 변화하는 것을 확인하여 이루어지는 것일 수 있다:
[화학식 1]
.
표적 유전자가 포함되어 있는지 알 수 없는 생물학적 시료를 화학식 1로 표시되는 화합물 및 목적 핵산의 증폭에 필요한 시약과 함께 증폭한다. 상기 시료에 표적 유전자가 포함되어 있을 경우, 핵산 증폭 과정에서 과량의 피로인산염이 발생하게 되며, 표적 유전자가 포함되어 있지 않을 경우 핵산 증폭은 이루어지지 않으므로 상기 시료 내의 피로인산염 함량에는 유의적인 변화가 일어나지 않는다.
본 발명의 화학식 1로 표시되는 화합물은 피로인산염에 대해 선택적 친화성을 나타내므로, 생물학적 시료에 표적 유전자가 존재할 경우 핵산 증폭 반응 중 또는 반응 후 핵산 증폭 반응 과정에서 생성된 피로인산염과 화학식 1로 표시되는 화합물이 반응하게 된다. 한편, 화학식 1로 표시되는 화합물이 피로인산염과 반응할 경우 Cu2+ 이온이 대체되고 로다민 고리 폐쇄에 의해 흡광도가 감소되므로, 반응 전 분홍색을 나타내던 시료의 색이 반응 후 무색을 나타내게 된다. 따라서, 생물학적 시료에 표적 유전자가 존재할 경우, 상기 시료의 핵산 증폭 반응 중 또는 반응 후 시료의 색이 무색으로 변하게 되므로, 이를 시각적으로 인식하여 생물학적 시료에 표적 유전자가 존재하는지 여부를 간편하게 결정할 수 있다.
역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물, 및 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법에 따르면, 역전사 효소를 이용한 cDNA의 합성 없이 실온에서 30분 내외의 짧은 반응 시간만으로도 시각적 변화를 통하여 표적 유전자를 검출할 수 있으므로, RNA 바이러스 등의 현장 유전자 분자 진단에 유용하게 활용될 수 있다.
도 1은 dLig-LAMP 및 RT-LAMP 분석의 개략도, 피로인산염 인식을 통한 PP Probe 센싱 메커니즘 및 LAMP 프라이머 결합 부위를 나타낸 그림이다.
도 2는 dLig-LAMP를 사용한 프라이머 및 주형이 없는 음성 대조군 실험 결과를 나타낸 사진 및 그래프이다: (a) 20% PAGE 결과, (b) PP 프로브를 사용한 샘플 1 내지 8의 비색 검출 사진, 및 (c) PP 프로브를 사용할 때 샘플 1 내지 8의 흡광도 스펙트럼.
도 3은 dLig-LAMP 시스템의 감도를 나타낸 그래프이다: (a) dLig-LAMP 반응 혼합물의 흡수 스펙트럼, 및 (b) 555nm에서의 흡광도와 표적 RNA 농도의 대수 사이의 선형 관계를 나타낸 그래프
도 4는 dLig-LAMP 분석의 선택성을 나타낸 그래프이다: (a) RT-LAMP와 dLig-LAMP의 PAGE 결과, (b) dLig-LAMP 및 PP 프로브를 사용한 비색 검출, 및 (c) dLig-LAMP 반응에서 PP 프로브의 흡광도.
도 5는 다중 결찰 보조 LAMP 반응 결과를 나타낸 사진 및 그래프이다: (a) 샘플 1 및 2의 PAGE 결과, (b) PP 프로브를 사용하여 샘플 1 및 2의 피로인산염 감지를 통한 비색 검출, 및 (c) 표적 음성 대조군의 존재하에 샘플 1및 샘플 2의 흡광도 스펙트럼.
도 6은 (a) 8 내지 1000copy/reaction(copy/rxn) 범위의 농도에서 전체 게놈 SARS-CoV-2를 사용하여 수행된 dLig-LAMP 분석의 민감도, 및 (b) 555nm에서의 흡광도 측면에서 다양한 박테리아 게놈 대비 전체 게놈 SARS-CoV-2에 대한 dLig-LAMP 분석의 선택성을 나타낸 그래프이다.
도 7은 (a) 내지 (c) 전체 게놈 SARS-CoV-2를 사용하여 8 내지 1000copy/reaction(copy/rxn) 범위의 농도에서 수행된 dLig-LAMP 분석의 민감도를 나타낸 형광 스펙트럼, 및 (d) 3회 반복 연구의 선형 관계를 나타낸 그래프이다.
도 8은 dLig-LAMP/PP 프로브 시스템의 임상 검증 결과를 나타낸 사진 및 그래프이다: (a) 비색 검출 분석 결과, 및 (b) 555nm에서의 흡광도를 나타낸 그래프.
도 9는 Demonstration of our Ligation-RPA assay by Polyacrylamide gel electrophoresis (PAGE) of. Lane M: 25/100 bp Ladder, Lane 1: SARS Cov-2 positive Lig-RPA, Lane 2: SARS Cov-2 negative Lig-RPA. Around <40 mers size location in gel some bands are visible for both lane 1 (blur & very light) and lane 2 (clear).
도 10은 Color change mechanism of PK-Probe.
도 11은 Optimization of Lig-RPA reaction with PK-probe. (A) 2.5 μM concentration was needed to get optimized visibly significant color change condition in between positive and negative reaction. (B) Absorbance value of negative and positive Lig-RPA reaction with PK-Probe. All absorbances were measured at 575 nm.
도 12는 Optimization of PK-probe/Lig-RPA assay. (A) Colorimetric analysis of time dependent sensitivity. Lane 1: 0 min - 0 min Lig + 0 min RPA, Lane 2: 20 min - 10 min Lig + 10 min RPA, Lane 3: 25 min - 10 min Lig + 15 min RPA, Lane 4: 30 min - 15 min Lig + 15 min RPA, Lane 5: 35 min - 15 min Lig + 20 min RPA, Lane 6: 40 min - 15 min Lig + 25 min RPA, Lane 7: 50 min - 20 min Lig + 30 min RPA, Lane 8: 1 hour - 20 min Lig + 40 min RPA. (B) Absorbance reading according to following 4(A) colorimetric tests. (C) Colorimetric analysis of temperature dependent study. Here, Lane 1: at 37℃ Lig-RPA (negative), Lane 2: at 20℃ Lig-RPA, Lane 3: at 25℃ Lig-RPA, Lane 4: at 30℃ Lig-RPA, Lane 5: at 37℃ Lig-RPA (positive). (D) Absorbance reading of PK-Probe/Lig-RPA system according to temperature dependent study. All absorbances were measured at 575 nm.
도 13은 Figure 5: Sensitivity reaction performed with PK-probe/Lig-RPA assay. (A) Polyacrylamide gel electrophoresis (PAGE) of Ligation-RPA sensitivity test with different copy number from 500 copies to 0 copy. Lane M: 100 bp Ladder, Lane 1: 500 copies, Lane 2: 200 copies, Lane 3: 100 copies, Lane 4 50 copies, Lane 5: 20 copies, Lane 6: 10 copies, Lane 7: 0 copy. (B) Colorimetric analysis of sensitivity test of Ligation-RPA with PK-Probe with different copy number from 0 copy to 500 copies. Lane 1: 0 copy, Lane 2: 10 copies, Lane 3: 20 copies, Lane 4: 50 copies, Lane 5: 100 copies, Lane 6: 200 copies, Lane 7: 500 copies. (C) Sensitivity study, using full-genome SARS-CoV-2 at concentrations from 0 to 500 copies/reaction (copies/rxn). All reactions were repeated three times; error bars are presented in the graph. All absorbances were measured at 575 nm. A: Absorbance in the presence of target; A0: absorbance in the absence of target; y-axis: absolute value. Obtained LOD value is 11.6 copies/rxn by the 3σ method [LOD = 3 *μL* (SD/S), where SD is the standard deviation and S is the slope of the plot].
도 14는 Selectivity study of Lig-RPA performed by several mismatches and in the presence of bacterial genomes, determined in terms of absorbance at 575 nm. All reactions were repeated three times; error bars are presented in the chart. (A) Bar Diagram of the PK-Probe/Lig-RPA system selectivity by mismatches target in ligation templates. (B) Bar Diagram of the PK-Probe/Lig-RPA system selectivity performed by several bacterial genomes.
도 15는 Polyacrylamide gel electrophoresis (PAGE) of Ligation-RPA selectivity test. Lane M: 25/100 bp Ladder, Lane 1: Ligation-RPA with middle 1 mismatch, Lane 2: Ligation-RPA, Lane 3: Ligation-RPA with head /ligation site 1 mismatch, Lane 4: Ligation-RPA with 2 mismatch (head & middle), Lane 5: Ligation-RPA with 3 mismatch (head 1 & middle 2). (B) Polyacrylamide gel electrophoresis (PAGE) of RT-RPA selectivity test with different mismatch reverse primers during cDNA synthesis. Lane M: 25/100 bp ladder, Lane 1: RT-RPA positive, Lane 2: RT-RPA with 1 mismatch, Lane 3: RT-RPA with 2 mismatch, Lane 4: RT-RPA with 3 mismatches. (C) Colorimetric analysis of selectivity test of Ligation-RPA with PK-Probe. Lane 1: Ligation-RPA, Lane 2: Ligation-RPA with middle 1 mismatch, Lane 3: Ligation-RPA with head /ligation site 1 mismatch, Lane 4: Ligation-RPA with 2 mismatch (head & middle), Lane 5: Ligation-RPA with 3 mismatch (head 1 & middle 2). (D) Colorimetric analysis of selectivity test of RT-RPA with PK-Probe with different mismatch reverse primers during cDNA synthesis. Lane 1: RT-RPA positive, Lane 2: RT-RPA with 1 mismatch, Lane 3: RT-RPA with 2 mismatches, Lane 4: RT-RPA with 3 mismatches.
도 16은 Validation of PK-probe/Lig-RPA assay onto nasal swab sample against SARS Cov-2 positive and negative case. (A) Colorimetric test analysis as Lane 1: Nasal swab SARS Cov-2 positive, Lane 2: Nasal swab SARS Cov-2 negative. (B) Absorbance reading according to colorimetric test. All absorbances were measured at 575 nm.
이하 본 발명을 하나 이상의 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
1. 실험방법
1-1. 일반적 정보
모든 DNA 올리고뉴클레오티드 및 dNTP 혼합물(dATP, dTTP, dCTP, dGTP)은 Bioneer 및 Cosmo Genetech(한국)에서 구입하였다. 표적 RNA 및 미스매치 표적 RNA는 시험관내 전사를 사용하여 합성하였다. Splint R Ligase, WarmStart RTx Reverse Transcriptase 및 Bst 2.0 WarmStart DNA 중합효소는 New England Biolabs(미국)에서 구입하였다. PP(pyrophosphate-sensing) 프로브는 이전에 보고된 절차(Analytica Chimica Acta, 1176, 338765)에 따라 준비되었으며 스펙트럼은 설명된 것과 일치하였다. UV-Vis 흡수 스펙트럼은 Shimadzu(일본) UV-1650PC 분광 광도계를 사용하여 기록되었다. 형광은 PF-6500 분광형광계(JASCO, Japan)를 사용하여 기록되었다. 모든 광학 측정은 석영 큐벳(경로 길이: 1cm)을 사용하여 실온에서 수행되었다.
모든 겔 전기영동은 20% 폴리아크릴아미드 겔(PAGE)에서 수행되었다. 40% Acrylamide/Bis Solution 29:1(BIO-RAD, USA에서 구입, 15㎖), 10X TBE 완충액(3㎖), 20% 과황산암모늄 용액(H2O에 용해, 300㎖)을 하나의 튜브에 혼합하고 물을 30㎖의 총 부피로 첨가하였다. TEMED를 첨가하여 20% 폴리아크릴아미드 젤을 제조하였다. 젤을 180V에서 14시간 동안 처리된 전기영동 기기(CBS Scientific, California, USA)에 로딩하였다. 젤은 EtBr 용액에서 10분 동안 염색되었으며, 염색 후 30분 동안 물로 세척하였다. 젤 사진 및 비색 검출 이미지는 트랜스일루미네이터 하에서 모바일 장치로 캡처되었다.
1-2. dLig-LAMP 반응
dLig-LAMP 반응은 총 용액 부피 20㎕로 수행되었다. LAMP 프라이머 혼합물은 16μM의 FIP/BIP 프라이머, 2μM의 F3/B3 프라이머, 4μM의 LF/LB 프라이머를 포함하여 준비되었다. 10nM의 LT-1/LT-2/LT-3 템플릿을 포함하는 cDNA 템플릿 혼합물을 준비하였다. 하나의 dLig-LAMP 반응의 경우, LAMP 프라이머 혼합물(2㎕), cDNA 템플릿 혼합물(2㎕), 10x 등온 증폭 완충액[200mM의 Tris-HCl, 100mM의 (NH4)2SO4, 500mM의 KCl, 20mM의 MgSO4; 25℃에서 pH8.8; 2㎕], 10x Splint R 리가아제 완충액(500mM의 Tris-HCl, 100mM의 MgCl2 및 10mM의 ATP, 25℃에서 pH7.5, 2㎕) 및 dNTP 혼합물(2mM의 dATP, dCTP, dGTP 및 dTTP, 5㎕)을 1.5㎖ 튜브에 첨가하였으며, 표적(5㎕)을 첨가하였다. 마지막으로 효소 Splint R Ligase(25U/㎕, 1㎕) 및 Bst 2.0 WarmStart DNA 중합효소(8U/㎕, 1㎕)를 반응에 추가하였다. 혼합물을 37℃에서 15분 동안 배양한 다음 65℃에서 45분 동안 배양하였다.
1-3. dLig-LAMP의 프라이머 및 템플릿 음성 대조군
음성 대조군의 dLig-LAMP 반응은 프라이머 또는 템플릿 중 하나를 제외하고 표준 절차에 의하여 수행되었다. 모든 반응은 PAGE를 사용하여 모니터링되었다. 비색 검출 완충액(30%의 10mM HEPES 완충액 및 70% 아세토니트릴; 180㎕)을 dLig-LAMP 혼합물에 첨가하여 비색 검출 분석을 위한 총 부피 200㎕를 제조하였다. 반응 튜브에 PP Probe(25mM, 1㎕)를 넣고 1분간 흔들어주었으며, 자세한 분석을 위해 PP Probe 존재하에서 수행된 반응의 흡광도를 측정하였다.
1-4. 감도 및 선택성 측정
dLig-LAMP 반응은 표준 절차를 사용하여 수행되었다. 감도 측정을 위해 표적 RNA의 용액을 1aM에서 1nM 범위의 농도로 준비하였다. 재현성을 결정하기 위해 반응은 3회 수행되었으며, 감도는 흡광도로 측정되었다. 선택성 측정을 위해 3개의 다른 표적(일치된 표적, 1염기 불일치 표적 및 2염기 불일치 표적)이 사용되었다. PAGE 결과는 RT-LAMP 분석을 사용하여 얻은 결과와 비교되었다. 하나의 RT-LAMP 반응에는 LAMP 프라이머 혼합물(2㎕), 10x 등온 증폭 완충액[200mM의 Tris-HCl, 100mM의 (NH4)2SO4, 500mM의 KCl, 20mM의 MgSO4; 25℃에서 pH8.8; 2㎕], dNTP 혼합물(dATP, dCTP, dGTP 및 dTTP의 2mM, 5㎕), 물(4㎕), 표적(5㎕), WarmStart RTx Reverse Transcriptase(15U/㎕, 1㎕) 및 Bst 2.0 WarmStart DNA 중합효소(8U/㎕, 1㎕). RT-LAMP 반응 혼합물을 65℃에서 1시간 동안 인큐베이션하였다. 각 반응은 dLig-LAMP 분석의 재현성을 결정하기 위해 세 번 수행되었으며, 선택성은 흡광도로 측정되었다.
1-5. 다중 결찰 보조 LAMP 반응(Multiple ligation-assisted LAMP reaction)
10nM의 LTs-1, LTs-2, LTs-3, LTs-4, LTs-5, LTs-6, LTs-7, LTs-8, LTs-9, LTs-10 및 LTs-11를 포함하도록 짧은 결찰 템플릿 혼합물을 준비하였다. 비교를 위해 10nM의 LTs-1, LTs-2, LTs-3, LTs-4, LTs-5, LTs-6 불일치, LTs-7, LTs-8, LTs-9, LTs-10 및 LTs-11을 포함하여 하나의 템플릿 불일치 짧은 결찰 템플릿 혼합물을 준비하였다. 하나의 다중 결찰 보조 LAMP 반응을 위하여, LAMP 프라이머 혼합물(2㎕)과 짧은 결찰 템플릿 혼합물 또는 하나의 템플릿 불일치 짧은 결찰 템플릿 혼합물(2㎕)을 첨가하였다. 다른 모든 프로토콜은 dLig-LAMP 프로세스의 프로토콜과 동일하게 수행하였다. 표적 RNA 농도는 1nM이었다. 모든 반응은 PAGE를 사용하여 확인되었다. 비색 검출 완충액(10mM HEPES 완충액의 30% 및 70% 아세토니트릴; 180㎕)을 dLig-LAMP 반응 혼합물에 첨가하여 비색 검출 분석을 위한 총 부피 200㎕를 제공하였다. 반응 튜브에 PP Probe(25mM, 1㎕)를 넣고 1분간 흔들어주었다. 자세한 분석을 위해 PP Probe 존재하에서 수행된 반응의 흡광도를 측정하였다.
1-6. 전체 게놈 SARS-CoV-2 민감도 및 박테리아 게놈 선택성 연구
5000copy/㎖로 할당된 AccuPlex™SARS-CoV-2 참조 재료 키트(Seracare, Milford, MA, USA)가 스파이크 샘플에 사용되었다. SARS-CoV-2 RNA는 제조사가 제공한 추출 프로토콜에 따라 eMAG(BioMerieux, MarcylEtoile, France)를 사용하여 입력 부피 200㎕ 및 용리 부피 50㎕로 추출하였다. 추출된 RNA의 복제 농도는 약 20copy/㎕였다. 농도를 증가시키기 위해 SARS-CoV-2 RNA를 동결건조하여 200copy/㎕의 농도를 제공하였다. 민감도 연구를 위해 RNA 샘플을 물에 희석하여 1.6~200 copy/㎕ 범위의 농도를 제공하였다. 모든 샘플의 흡광도는 dLig-LAMP 시스템과 PP Probe를 사용하여 측정되었다. LOD를 얻기 위해 선형 플롯을 계산하였다. 선택성 연구를 위해 상기도의 정상 세균총인 9가지 유형의 세균 게놈 샘플을 준비하였다. 모든 세균 DNA 샘플은 DNA 추출 완충액(Seegene, Seoul, South Korea)을 사용하여 끓는 방법으로 추출하였다. 추출된 세균 게놈은 dLig-LAMP assay와 PP Probe를 이용하여 검사하고 SARS-CoV-2 게놈과 비교하였다. 자세한 분석을 위해 PP Probe 존재하에서 수행된 반응의 흡광도 및 형광도를 측정하였다.
1-7. 임상 샘플 준비 및 검증
본 시험은 전북대학교병원 기관심사위원회(CUIH 2021-11-005)의 승인을 받았다. SARS-CoV-2 및 기타 5개 바이러스 샘플(인플루엔자 A 바이러스, 인플루엔자 B 바이러스, 호흡기 세포융합 바이러스 A, 호흡기 세포융합 바이러스 B, 인간 라이노바이러스)에 대한 총 40개의 잔류 샘플 실시간 역전사 PCR(rRT- PCR)이 본 시험에 등록되었다: 20개의 양성 샘플, 20개의 음성 샘플 및 5개의 기타 바이러스 샘플. 샘플은 eNAT 튜브(Copan Italy, Brescia, Italy)에 수집된 비인두 면봉에서 얻었으며, 임상 테스트 후 -20℃에서 보관되었다. 핵산은 제조사의 프로토콜을 사용하여 Magna Pure 24(Roche Diagnostics, Basel, Swiss) 또는 eMAG(BioMerieux, Marcy-l'Etoile, France)로 추출되었다. rRT-PCR 테스트는 Allplex SARS-CoV-2 Assay(Seegene, Seoul, South Korea)를 사용하여 수행되었다. N 유전자에서 양성 샘플의 사이클 임계값(Ct) 값은 22.33 내지 36.15이었다. 임상 검증을 위해 dLig-LAMP 반응과 PP Probe를 사용하여 SARS-CoV-2 테스트에 대한 40개의 반응 및 선택성 테스트에 대한 6개의 반응을 수행하였다. 자세한 분석을 위해 PP Probe 존재하에서 수행된 반응의 흡광도를 측정하였다.
2. 실험결과
2-1. 최적화
Splint R Ligase에 의해 매개되는 표적 cDNA의 합성을 위한 세 가지 템플릿(LT1, LT2, LT3)을 설계하였다(표 1).
명칭 염기서열(5'→3') 서열번호
F3 AACACAAGCTTTCGGCAG 서열번호 1
B3 GAAATTTGGATCTTTGTCATCC 서열번호 2
FIP TGCGGCCAATGTTTGTAATCAGCCAAGGAAATTTTGGGGAC 서열번호 3
BIP CGCATTGGCATGGAAGTCACTTTGATGGCACCTGTGTAG 서열번호 4
LF TTCCTTGTCTGATTAGTTC 서열번호 5
LB ACCTTCGGGAACGTGGTT 서열번호 6
LT-1 GAAATTTGGATCTTTGTCATCCAATTTGATGGCACCTGTGTAGGTCAACCACGTTCCCGAAGGTGTGACTTCCATGC 서열번호 7
LT-2 pho-CAATGCGCGACATTCCGAAGAACGCTGAAGCGCTGGGGGCAAATTGTGCAATTTGCGGCCAATGTTTGTAATCAGT 서열번호 8
LT-3 pho-TCCTTGTCTGATTAGTTCCTGGTCCCCAAAATTTCCTTGGGTTTGTTCTGGACCACGTCTGCCGAAAGCTTGTGT 서열번호 9
Target RNA aacacaagctttcggcagacgtggtccagaacaaacccaaggaaattttggggaccaggaactaatcagacaaggaactgattacaaacattggccgcaaattgcacaatttgcccccagcgcttcagcgttcttcggaatgtcgcgcattggcatggaagtcacaccttcgggaacgtggttgacctacacaggtgccatcaaattggatgacaaagatccaaatttc 서열번호 10
One-based-mismatched target RNA aacacaagctttcggcagacgtggtccagaacaaacccaaggaaattttggggaccaggaattaatcagacaaggaactgattacaaacattggccgcaaattgcacaatttgcccccagcgcttcagcgttcttcggaatgtcgcgcattggcatggaagtcacaccttcgggaacgtggttgacctacacaggtgccatcaaattggatgacaaagatccaaatttc 서열번호 11
Two-base-mismatched target RNA aacacaagctttcggcagacgtggtccagaacaaacccaaggaaattttggggaccaggaattaatcagacaaggaactgattacaaacattggccgcaaattgcacaatttgcccccagcgcttcagcgttcttcggaatgtcgcgcatgggcatggaagtcacaccttcgggaacgtggttgacctacacaggtgccatcaaattggatgacaaagatccaaatttc 서열번호 12
그 중, LT2 및 LT3 템플릿은 결찰 이벤트에 대해 5'-말단에 모노포스페이트 단위를 제시하였다. 5'-말단에 포스페이트 변형을 포함하는 템플릿은 또한 완벽하게 일치하는 표적 RNA의 존재 하에 Splint R Ligase에 의한 결찰이 발생하도록 한다.
LAMP 증폭 과정을 위해 6개의 프라이머(F3, B3, FIP, BIP, LF, LB; 표 S1)를 설계하였다. 선택성을 조사하기 위해 표적 RNA뿐만 아니라 1염기 및 2염기 불일치 표적 RNA도 설계하였다(표 1). 도 1(검정 상자)에서 빨간색 문자로 표적 RNA의 불일치 지점을 강조 표시하였다. 이론적으로 일반적인 RT-PCR 또는 RT-LAMP 시스템은 1염기 또는 2염기 불일치 염기서열과 완벽하게 일치하는 염기서열을 구별할 수 없으며, 일치하지 않는 서열 앰플리콘으로 유전자를 증폭한다. 대조적으로, 본 발명의 dLig-LAMP 시스템은 결찰 단계 동안 불일치 지점을 식별하였다. 즉, Splint R Ligase는 완벽하게 일치하는 표적 RNA 서열이 있는 경우에만 상보적인 cDNA 서열을 생성하였다. 결찰 템플릿 중 하나가 일치하지 않으면 cDNA가 합성되지 않았다. 따라서, 본 발명의 dLig-LAMP 분석의 선택성이 일반 RT-LAMP 또는 RT-PCR의 선택성보다 우수한 것으로 예상되었다.
우선, dLig-LAMP 분석이 SARS-CoV-2 N 유전자 서열의 존재 하에서 작동하는지 여부를 확인하였다. 도 2a에 따르면, dLig-LAMP 분석이 표적 SARS-CoV-2 N 유전자 서열에 대해 기능한 반면, 프라이머나 템플릿이 없는 경우에는 작동하지 않는 것으로 확인되었다. dLig-LAMP 시스템에는 6개의 프라이머와 3개의 템플릿이 필요하다. 폴리아크릴아미드 겔 전기영동(PAGE) 이미지에 따르면, 음성 대조군 레인(레인 1-7)은 증폭 패턴을 나타내지 않았지만 모든 프라이머와 템플릿이 존재하는 레인 8에서는 증폭 패턴이 확인되었다. 따라서, dLig-LAMP는 LAMP에 대한 모든 프라이머와 세 가지 주형으로 작동했지만 그 중 하나가 없을 때는 전혀 작동하지 않는 것으로 나타났다. 다음으로, PP Probe를 사용하여 DNA 증폭 중에 형성된 피로인산염을 감지할 때 비색 검출 가능성을 조사하였다(도 2b). dLig-LAMP 분석은 LAMP DNA 증폭 동안 다량의 피로인산염을 방출하였다. 방출된 피로인산염은 PP 프로브에서 Cu2+ 이온을 추출하여 색상이 분홍색에서 무색으로 변할 수 있는데, SARS-CoV-2 N 유전자가 있을 때만 그러한 극적인 색 변화가 나타난 것으로 확인되었다. PAGE 관찰과 유사하게 다른 샘플 1-7은 색상 변화를 일으키지 않았다. 흡수 스펙트럼은 표적 SARS-CoV-2 N 유전자(샘플 8)가 있는 경우 PP 프로브의 특성 신호인 555 nm(최대)에서 흡수의 극적인 감소를 나타냈지만 . 다른 샘플에서는 이와 같은 변화가 나타나지 않는 것으로 확인되었다(도 2c). 따라서 dLig-LAMP 시스템과 PP Probe를 결합하면 비색 신호 변화로 표적 SARS-CoV-2 N 유전자를 검출할 수 있음이 확인되었다.
2-2. 모델 대상에 대한 감도 및 선택성
다음으로, 표적 RNA의 농도를 1aM에서 1nM으로 변화시킬 때 dLig-LAMP 분석의 감도를 측정하였다. 도 3a는 다양한 농도에서 dLig-LAMP 반응을 수행한 후 기록된 PP 프로브의 흡광도 스펙트럼을 나타낸다. 스펙트럼은 dLig-LAMP 분석의 감도가 표적 RNA의 로그 농도에 의존한다는 것을 보여준다. 정확한 감도를 얻기 위해 3회의 농도 의존 실험을 반복하여 검출 한계(LOD)를 측정하였다. 각 농도에서 얻은 평균 흡광도 변화 값의 선형 플롯에서(도 3b), 3σ 방법[LOD = 3X(SD/S), SD는 표준 편차, S는 로그 플롯의 기울기]을 사용하여 LOD 값을 계산한 결과, dLig-LAMP 분석을 사용할 때 LOD는 1.36fM인 것으로 확인되었다.
dLig-LAMP 시스템의 선택성은 PAGE를 사용하여 결정된 바와 같이 RT-LAMP 시스템의 선택성보다 훨씬 높은 것으로 나타났다(도 4a). dLig-LAMP 분석은 증폭 밴드의 출현으로 1-2-염기 불일치 시퀀스에서 완벽하게 일치하는 시퀀스를 명확하게 구별하였다. 대조적으로, RT-LAMP 분석은 완벽하게 일치하는 시퀀스와 일치하지 않는 시퀀스를 구별하였다. 표적 없이 얻은 샘플을 제외한 모든 서열은 증폭된 DNA에 상응하는 밴드를 제공하였다. 일치하지 않는 서열은 SARS-CoV-2 N 유전자에도 결합하고 cDNA를 생성하기 위해 역전사가 진행되었을 것이다. dLig-LAMP 분석은 템플릿에 불일치가 나타나면 cDNA를 생성하지 않았다. cDNA가 없으면 LAMP 프로세스가 작동할 수 없다. dLig-LAMP 분석 시스템에 PP Probe를 추가했을 때 표적 SARS-CoV-2 N 유전자가 있는 경우에만 분홍색에서 무색으로 극적인 색상 변화가 나타났다(도 4b). 도 4c는 SARS-CoV-2 N 유전자, 1염기 불일치 표적 및 2염기 불일치 표적으로 수행한 dLig-LAMP/PP 프로브 분석의 흡광도 강도를 나타낸다. dLig-LAMP 분석은 하나의 염기가 일치하지 않는 경우에도 일치하지 않는 염기서열과 완벽하게 일치하는 표적 염기서열을 구별하는 데 매우 선택적인 것으로 확인되었다. dLig-LAMP 시스템의 선택성은 일반 RT-LAMP 시스템보다 높지만 ligation template의 제한된 길이로 인해 불규칙한 위치에 나타날 경우 mismatch를 구별하기 어려울 수 있다고 고려된다. 즉, 템플릿이 단축되면 이중체의 안정성은 완벽하게 일치하는 시퀀스와 일치하지 않는 시퀀스의 차이에 민감할 수 있고 모든 영역에서 완벽하게 일치하는 시퀀스와 불일치를 충분히 구별할 수 있습니다.
따라서 짧은 결찰 템플릿을 사용하여 다중 결찰 보조 LAMP 반응을 조사하였다(도 5). 11개의 짧은 결찰 템플릿(LTs-1 ~ LTs-11)을 설계했으며, 각 LT 서열은 표적 RNA에 상보적이다(표 2).
명칭 염기서열(5'→3') 서열번호
LTs-1 AACACAAGCTTTCGGCAGACG 서열번호 13
LTs-2 pho-TGGTCCAGAACAAACCCAAGG 서열번호 14
LTs-3 pho-AAATTTTGGGGACCAGGAACT 서열번호 15
LTs-4 pho-AATCAGACAAGGAACTGATTA 서열번호 16
LTs-5 pho-CAAACATTGGCCGCAAATTGC 서열번호 17
LTs-6 pho-ACAATTTGCCCCCAGCGCTTC 서열번호 18
LTs-7 pho-AGCGTTCTTCGGAATGTCGCG 서열번호 19
LTs-8 pho-CATTGGCATGGAAGTCACACC 서열번호 20
LTs-9 pho-TTCGGGAACGTGGTTGACCTA 서열번호 21
LTs-10 pho-CACAGGTGCCATCAAATTGGA 서열번호 22
LTs-11 pho-TGACAAAGATCCAAATTTC 서열번호 23
LTs-6 mismatch pho-ACATTTTGGCCCCAGCACTTC 서열번호 24
또한, 하나의 템플릿(LTs-6 mismatch)을 불일치 시퀀스를 포함하도록 수정하고 템플릿 중 하나라도 대상과 일치하지 않는 경우 선택성을 다시 조사하였다. 다중 결찰 보조 LAMP 반응도 잘 작동했지만 결찰 템플릿 중 하나가 완벽하게 일치하지 않으면 진행되지 않았다. 따라서, 이 방법은 충분히 낮은 위양성 비율로 바이러스 탐지의 선택성을 높이는 데 유용한 것으로 확인되었다.
2-3. SARS-CoV-2 및 박테리아에 대한 민감도 및 선택성
본 발명의 시스템이 실질적으로 적용 가능한지 조사하기 위해 SARS-CoV-2의 전체 게놈을 사용하여 민감도 연구를 수행하였다(도 6a). SARS-CoV-2 전체 게놈의 copy 수를 8에서 100 copy/rxn으로 변경하면서 3회의 반복 실험에서 흡수 스펙트럼을 측정하였다. 그 결과, 61.4copy/rxn의 LOD(3σ 방법)를 얻었다. 이와 같은 결과에 따르면, RT-PCR 방식에 비해 검출한계가 낮지만 검출시간(본 발명의 시스템은 총 1시간 소요), 무거운 기기가 필요 없고 간단하게 치료할 수 있다는 장점이 있다. 따라서 당사의 비색 dLig-LAMP 시스템을 사용할 때의 LOD는 SARS-CoV-2의 현장 진단에 적용 가능한 것으로 확인되었다. 또한, PP 프로브는 Cu2+ 이온이 손실될 때 형광을 띠게 됩니다. 따라서 형광 분석의 LOD 값을 계산하였다(도 7). 그 결과, 형광 측정 LOD 값은 69.2 copy/rxn으로 나타나, 흡광도 분석과 유사한 기능을 가지고 있는 것으로 나타났다. 따라서 본 발명의 시스템은 흡광도와 형광 모두에서 사용할 수 있는 것으로 확인되었다.
사람에게 감염될 수 있고 입과 코의 점막에 존재하는 9개의 세균 게놈(도 6b)을 사용하여 교차 반응 가능성을 조사하였다. 실제 임상 샘플에 이러한 게놈이 포함될 수 있다. 잠재적으로 위양성 신호를 유도하는 박테리아 게놈에 의하여 교차 반응이 발생하는 경우 SARS-CoV-2가 선택적으로 감지되지 않을 것이다. 따라서 이러한 박테리아가 존재할 때 SARS-CoV-2를 표적으로 하는 비색 dLig-LAMP 시스템의 선택성을 조사하였다. 그 결과, 9가지 박테리아 중 어느 것도 dLig-LAMP 시스템과 3회 반복 실험에서 반응하지 않았으며 피로인산이 생성되지 않았다. 따라서 본 발명의 시스템은 현장 진료 SARS-CoV-2 탐지 도구로 사용하기에 적합한 것으로 확인되었다.
2-4. 임상 검증
마지막으로 PP Probe가 있는 dLig-LAMP 시스템을 사용하여 실제 임상 SARS-CoV-2 샘플을 진단하였다(도 8). 환자로부터 20개의 양성 샘플과 20개의 음성 샘플을 준비하였다. RT-LAMP를 사용하여 COVID-19 환자를 진단할 때 많은 위음성 사례가 보고되었다. 대조적으로 본 발명의 dLig-LAMP 시스템은 비색 검출 및 흡광도 스펙트럼 측정을 통해 100% 진음성(true-negative, 음성을 음성으로 분류)을 제공하였다. 또한, 양성 샘플에서도 95%의 진양성(true-positive, 양성을 양성으로 분류)을 나타냈다. 30 Ct 값 아래에서 임상 샘플은 강한 신호 변화(완전한 색상 변화)를 나타냈다. 30 Ct 값 이상에서 임상 샘플은 30 Ct 값 미만 샘플과 비교할 때 신호 변화가 적었다. 또한, 다른 유형의 임상 바이러스 게놈의 경우 선택성을 확인하였다. 5가지 다른 바이러스의 임상 샘플(인플루엔자 A 바이러스, 인플루엔자 B 바이러스, 호흡기 세포융합 바이러스 A, 호흡기 세포융합 바이러스 B 및 인간 라이노바이러스)을 준비하고 SARS-CoV-2로 테스트하였다(그림 S8). 그 결과, SARS-CoV-2를 제외한 모든 바이러스 게놈은 dLig-LAMP/PP 프로브 시스템과 반응하지 않았다.
이와 같은 임상 검증 결과에 따르면, dLig-LAMP 분석의 선택성은 일반 RT-LAMP 검출 분석에 비해 향상된 것으로 나타났다. cDNA 생산에 대한 우리의 이중 부위 결찰 경로가 더 큰 선택성을 요구하는 일부 진단에 사용할 가능성이 있으며 다양한 RNA 기반 진단을 위한 현장 진단에도 적합할 수 있다. 절차는 간단하고 신속한(1시간) 원 포트 반응으로 수행된다.
2. Experimental Section
2.1 General information
All DNA oligonucleotides were purchased from Bioneer. Splint R Ligase were obtained from New England Biolabs (United States). RPA TwistAmp® Basic Kit bought from TwistDx Limited, TABAS03KIT (USA). UV-Vis absorption spectra were recorded using Cary Series UV-Vis spectrophotometer, Agilent Technologies (United States). All optical measurements were performed at room temperature, using a quartz cuvette (path length: 1 cm). The PK-probe was prepared according to a previously reported procedure; its spectra were in accordance with those description.
All gel electrophoresis was performed in 20% polyacrylamide gel (PAGE). 40% Acrylamide/Bis Solution (Purchased from BIO-RAD, USA; 2.5 mL), 10X TBE buffer (0.5 mL), and 20% ammonium persulfate solution (dissolved in H2O) were mixed in one tube and water was added to a total volume of 5mL. TEMED was added to make 20% polyacrylamide gel. The gels were loaded in an electrophoresis instrument (BIO-RAD Mini-PROTEAN Tetra Cell, USA) at treated at 80 V for 6 h. The gels were stained in EtBr solution for 10 min; the stained gels were washed in water for 10 min. The gel photos and colorimetric detection images were captured by a mobile device under a transilluminator.
2.3 Ligation and RPA reaction condition
Total 10 μL ligation reaction volume including, seven ligation oligonucleotide templates (5μL of 10nM) with SARS Cov-2 full genome RNA (1μL, 20 copies perμL), 10X Splint-R Ligase buffer (1μL, 500 mM of Tris-HCl, 100 mM of MgCl2, and 10 mM of ATP; pH 7.5 at 25℃), 10X Bovine serum albumin (BSA); 1μL, Splint R Ligase (25 U/μL; 1μL) and added dH2O to fitted total 10μL. After mixing by slight vortex spun down and incubated at 37℃ for ~15 minutes.
Following the general procedure of the Twist Dx RPA kit, Total reaction volume 50μL contains; the primer-free rehydration buffer (29.5 μL), 5 μL of forward and reverse primers (each 50 pmole/μL), 3 μL of 100 mM DTT and 10 μL of ligated target product which were mixed with Basic reaction kit mixture containing lyophilized enzymes and a pipette was used to mix it properly. Finally, 280 mM Mg(OAc)2 (2.5 μL) added and mixed well. The reaction was incubated at 37℃ for ~30 minutes and after every 10-15 minutes, the contents of the tube were vortex-mixed and then placed back in the incubator.
2.4 Sensitivity and selectivity measurements
An AccuPlexTM SARS-CoV-2 Reference Material Kit (Seracare, Milford, MA, US), which was assigned as 5000 copies/mL, was used for spiked samples. The SARS-CoV-2 RNA was extracted using an eMAG system (bioMerieux, MarcylEtoile, France), following the extraction protocol provided by the manufacturer, with an input volume of 200 μL and an elution volume of 50 μL. The copy concentration in the extracted RNA was approximately 20 copies/μL. For the sensitivity study, the RNA sample was diluted in distilled water and lyophilized to give concentrations varying from 0 to 500 copies/μL. All the samples at each concentration were subjected to the RPA reaction with PK-probe; the absorbances were measured to calculate the LOD. For the selectivity study, nine species of bacteria that are known normal flora in the upper respiratory tract (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus feacium, Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas aeruginosa, and Acinetobacter baumannii. All bacterial DNA was extracted by the boiling method, using DNA extraction buffer (Seegene, Seoul, South Korea); viral RNA was extracted in the same manner of validation with clinical samples. The extracted bacterial DNA and viral RNA were subjected to the RPA reaction with PK-probe; their results were compared with those for the SARS-CoV-2 detection. In the sensitivity and selectivity studies, water (150 μL) was added into a 250-μL reaction tube along with 25 mM PK-probe (0.1 μL) for check the color change and later diluted with dH2O to make 1mL solution for detailed analysis as the absorbance of each reaction mixture was measured in the presence of PK-probe.
3. Results and discussion
3.1. Selection of target site and primer design
Based on our hypothesis, we designed seven templates (Lig T1, Lig T2, Lig T3, Lig T4, Lig T4, Lig T5, Lig T6, and Lig T7,) for the synthesis of target cDNA (complementary "N gene" of SARS Cov-2) mediated by Splint R Ligase (Table S1). Among them, the LT2 to LT7 templates presented a monophosphate unit at the 5´-end for the ligation event. The templates containing a phosphate modification at the 5´-end would also allow the ligation by Splint R Ligase to occur in the presence of perfectly matched target RNA. We designed two primers (Lig-RPA fwd pri and Lig-RPA rev pri) for the RPA amplification process. Both RPA primer length designed around ~35 mers which is almost similar length to ligation templates so in absence of target there is no chance of PPi release by only primer extension of Lig-T1 and Lig-T7. To examine the selectivity, we designed some mismatch templates also (Lig-T3 tail 1 mm, Lig-T4 mid 1mm and Lig-T4 2mm) with one- and two-base-mismatches where we highlighted the mismatched points with red marked (Table S1). In RT-RPA experiment case, Lig-RPA rev primer used as specific primer during reverse transcription. We prepared target 220bp long complementary sequence of "N gene" by ligation of 7 templates (~32bp each) and then examined the RPA amplification reaction targeting on "N gene" region in SARS-CoV-2. Designing the target templates that binds to the specific region of viral RNA for ligation reaction is the significant step for selective detection of SARS-CoV-2 in our Lig-RPA system. Here, we attempted to find the selective binding region by using 100 copies of the SARS-CoV-2 genome and analysed the outcome through Polyacrylamide gel electrophoresis (see Figure 9).
Just after ligation step by SplintR Ligase to get cDNA confirmation gel band is not possible because corresponding to RNA copy number added ligation templates (DNA) concentration was also so less that will not show visible band in gel. But if there is success ligation in presence of target "N" gene of SARS Cov-2 then RPA amplification will happen and it will show specific band at ~220 mers location (lane 1) whereas in absence of target, there will be no ligation which lead to no RPA amplification and finally no band will show up at ~220 mers position (lane 2). So, indirectly we tried to prove that after ligation reaction target "N" gene complementary cDNA produced and next targeted on that cDNA RPA also worked and gel band appeared at ~220 mers location. So, according to gel electrophoresis data it is confirmed that our system hypothesis is working.
3.2. Working mechanism of PK-probe
PK-probe is a Copper complex of a thienyl-hydrazone rhodamine derivative. A series of Cu-complex probes are used in colorimetric detection of DNA/RNA amplification. Even though they are selective to PPi they show cross reaction with DTT --40. Other type of AuNCs-Cu2+ system that can detect PPi in human urine 41. But the PK-probe is the only one probe that exhibited high selectivity toward PPi in presence of natural deoxynucleotide triphosphates (dNTPs), DTT, PPi, cysteine. PK probe is a pink colored probe having ring opened rhodamine entity which is complexed with copper. As this probe comes in contact with the pyrophosphate the latter will form complexation with copper, which was coordinated to the rhodamine entity, As Pk probe releases its copper there will be self-driven rhodamine ring closure this results in the disappearance of pink color since there is decrease in the color simultaneous decrease in absorbance was observed. Even though DTT is a good competitor to form copper complex, PK probe selectively gives out its copper to the PPi and there will be a large decrease in absorbance in the presence of PPi. It works as selective and specific colorimetric sensor for PPi that is highly resistant to all other biomolecules and buffer components, particularly large amounts of DTT and human serum.
Based on PK-probe work mechanism we tried to testify our hypothesis by applying PK-probe combined with Lig-RPA system and this detection system already succeeded to discriminate SARS-CoV-2 selectively from the other bacterial genomes based on "N gene" target region demonstrated by gel electrophoresis (see Figure-1). Thus, we were hopeful that PK-probe could carry out successfully as colorimetric probe by changing its own pink color into colorless in presence of pyrophosphate(PPi) during the Lig-RPA assay.
To examine the success of the PK-probe/Lig-RPA system, we performed the negative conditions in the absence target and positive reaction in presence of target and then tested their response with varied PK-probe concentration. ). At first, by naked eye we figured out the saturation point of PK-probe which is around 10 μM and took absorbance reading. Color difference between positive and negative with this probe concentration was not good enough to discriminate (see Figure S1). So, later we focused on positive reaction should be almost colorless by naked eye or positive reaction absorbance value should be near to 0 (a.u.) like 3(B). So based on discrimination capability in naked eye, at 2.5 μM concentration we noticed negative reaction still showed pink color but positive reaction almost colorless. So, then recorded absorbance reading and thus we confirmed that 2.5 μM concentration is optimized condition for our Lig-RPA system. Finally recorded all data following optimized condition (2.5 μM). According to Figure-3 data analysis, 3(A); it clearly demonstrates that their significant color change between positive and negative reaction which visible by naked eye. From figure 3(B), according to absorbance reading comparison based on qualitative control there is also drastic difference at 575 nm wavelength.
3.3. Optimization
During optimization of the PK-probe/Lig-RPA detection assay, we checked the activity of our system based on temperature and time dependent sensitivity study. Based on time dependent study we tried combined Lig-RPA from 0 min to 1 hour; as it is already well proven that 10 min is enough for ligation by SplintR Ligase and RPA takes less than 20 min to amplify even in presence 1 copy number of DNA --42,43. So, following our result analysis after total 20 minutes diagnosis time (Lig 10 min and RPA 10 min) already showed significant differentiable colorimetric outcome in naked eye and after 30 min more clear visibility was there; see Figure 12(A) and 12(B).
Based on temperature SplintR Ligase enzyme recommended optimized activity at 37 ℃ and RPA recommended optimized activity at 39 ℃ to 42 ℃ but enzymes can activate from 16 ℃ and even at room temperature condition both enzymes can work fine 43,44. Focusing on point-of-care testing if detection is possible in ambient/room temperature that will be simpler and more feasible so, we tried our assay Lig-RPA with different temperature conditions like at 20 ℃, 25 ℃, 30 ℃ and 37 ℃. After experiment, we obtained that at 20 ℃~37 ℃ temperature range our system is working well even from 20℃, assay outcome is satisfying enough to discriminate as qualitative analysis, though higher efficiency showed at 37 ℃; see Figure 12(C) and 12(D).
We also tried RT-RPA reaction to compare with our system and we found following RT-RPA system target gene-based selectivity is very weak and produced other non-target/unwanted products during reaction which can prevail false positive outcome. Accordingly, we confirmed that our reaction is more selective than RT-RPA reaction (see Figure-15).
3.4. Sensitivity
We examined the sensitivity of the detection when using our PK-probe and Lig-RPA system. To ensure similar conditions for calculation of the detection limit, we used a full-genome SARS-CoV-2 RNA sample with assigned copy numbers, and prepared samples of various concentrations for the sensitivity study. First, we performed all the Lig-RPA reactions using SARS-CoV-2 RNA; then, we added the PK-probe. We measured the sensitivity in terms of the absorbance at 575 nm. Sensitivity test has done from 0 copy to 500 copies and their reaction confirmed by polyacrylamide gel electrophoresis (PAGE); see Figure 13(A) and their corresponding colorimetric data on Figure 13(B).
From Figure 13(A), gel electrophoresis of sensitivity experiment based on different copy numbers is showing specific ~220 mers length amplified product from 20 copy to 500 copy number of target Sars Cov-2 RNA and 0 copy case so band visibility is there at target position. Colorimetric case 5(B) also 0 copy reaction is showing whole pink whereas increment with target copy number more colorless property of PK-probe is visible. After 3 times experiment of this sensitivity, based on absorbance value at 575 nm wavelength (see Figure S2) we calculated limit of detection at 11.6 copy number of target with Pearson's r .99843 which is clearly appearing with high sensitivity; 5(C). The average change in absorbance at each specific concentration; the inset reveals that linear relationship used to calculate the limit of detection (LOD) through the 3σ method [LOD = 3 *μL* (SD/S), where SD is the standard deviation and S is the slope of the plot]; see figure 3(C) and S1. We obtained an LOD of 11.6 copies/rxn. Thus, our PK-probe / Lig-RPA system was extremely sensitive, functioning even in the presence of only a small copy number of viral RNA from SARS-CoV-2. In general, RNA viruses have very low concentrations of their genomes; therefore, ultra-sensitive detection is necessary. In our system, 11.6 copies/μL was sufficient for detection of the RNA.
3.5. Selectivity
To determine the selectivity of Lig-RPA detection method, firstly checked mismatch-based response of Lig-RPA system with PK-Probe. In SplintR Ligase based ligation reaction, even single mismatch can weaken the ligation. So, based on this concept we designed single, double, and triple mismatches in the ligation templates as LT3 tail region and LT4 head and mid region. Reactions are also confirmed by gel electrophoresis; see Figure 15(A) and colorimetric data 7(C). Following gel electrophoresis data, color change and absorbance data (see Figure S3) there are clear differentiation from single mismatch to triple mismatches. From triple mismatches, it is almost showing negative that proved highly selective; see Figure 14(A). For more selectivity study, we employed several bacterial genomes to examine whether cross-reactions occurred with our amplification system. To further identify the most selective region, we prepared nine species of bacteria that are known as normal flora in the upper respiratory tract (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus feacium, Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas aeruginosa, and Acinetobacter baumannii). We performed the Lig-RPA reactions with these nine types of bacterial genomes that are found in the nose and mouth, notably in the mucous membrane 14(B). Because COVID-19 samples are typically taken from the mouth and nose, the virus and bacteria would be present if there were any bacterial infection.
Any diagnostic system that reacted with these bacteria would diagnose the patient as a false-positive; therefore, selective detection is necessary for practical application and these bacteria did not react with the Lig-RPA system; there were the absorbance values showing almost negative because no amplification occurred and, therefore, the system could not produce pyrophosphate. The colorimetric detection was consistent with the absorbance change; see Figure S4. Colorimetric test data presented on supporting information; see Figure S5.
Theoretically, a general RT-RPA or RT-PCR or RT-LAMP system cannot discriminate the perfectly matched sequence from one or two base-mismatched sequences because when the reaction primers bind to the target RNA, they might be able to amplify the gene with mismatched-sequence amplicons. In contrast, we expected that our Lig-RPA system might discriminate mismatched points during the ligation step. Splint R Ligase produces complementary cDNA sequences only in the presence of a perfectly matched target RNA sequence; if one of the ligation templates does not match, the cDNA would not be synthesized. Therefore, we expected that the selectivity of our Lig-RPA assay would be superior to that of general RT-RPA or RT-LAMP or RT-PCR. To evaluate our system's strong selectivity with other commonly used techniques such as RT-RPA, we checked mismatch conditions with PK-Probe/RT-RPA. As comparison between Lig-RPA and RT-RPA we checked amplified product by Polyacrylamide gel electrophoresis (see Figure 13). From the Gel electrophoresis and colorimetric test comparison data between Lig-RPA and RT-RPA (see Figure 13(A) & 13(B) and 13(C) & 13(D)) clearly showed that our system has high selectivity for target-based detection.
Gel electrophoresis-based comparison between Lig-RPA and RT-RPA following 15(A) and 15(C); Lig-RPA positive reaction case gel band is specific with less unwanted amplified product compared to RT-RPA and from 1 mismatch to 3 mismatch there is periodically less amplified RPA product gel band visible including negative case no band at all. But in RT-RPA assay positive or 1 to 3 mismatch every time almost similar amplified product gel band appeared. According to colorimetric test 15(B); there is clear differentiable color variation among every mismatch wise, but RT-RPA based colorimetric test 15(D) showed almost similar color change for every case which can lead into high probability of false positive/negative outcome. So, based on this selectivity data analysis it is clearly demonstrating that our system Lig-RPA is having strong selectivity than RT-RPA.
Nasal Swab sample validation
To testify our system in real sample condition we tried with nasal swab sample as we made negative case; collected nasal swab from SARS Cov-2 negative individual and positive case; SARS Cov-2 negative nasal swab sample spiked with SARS Cov-2 whole genome RNA about 100 copies. Later, prepared positive and negative nasal swab sample added into PK-probe/Lig-RPA solution and kept for incubation at optimized reaction condition. Finally, the outcome came out very satisfying with drastic color change between positive and negative reaction and analysis almost similar to control experiment; see Figure16.
이제까지 본 발명에 대하여 그 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
<110> INDUSTRIAL COOPERATION FOUNDATION JEONBUK NATIONAL UNIVERSITY <120> Composition for Target Gene Detection based on Loop-Mediated Isothermal Amplification <130> DHP22-149 <160> 24 <170> KoPatentIn 3.0 <210> 1 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F3 <400> 1 aacacaagct ttcggcag 18 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> B3 <400> 2 gaaatttgga tctttgtcat cc 22 <210> 3 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> FIP <400> 3 tgcggccaat gtttgtaatc agccaaggaa attttgggga c 41 <210> 4 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> BIP <400> 4 cgcattggca tggaagtcac tttgatggca cctgtgtag 39 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> LF <400> 5 ttccttgtct gattagttc 19 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> LB <400> 6 accttcggga acgtggtt 18 <210> 7 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> LT-1 <400> 7 gaaatttgga tctttgtcat ccaatttgat ggcacctgtg taggtcaacc acgttcccga 60 aggtgtgact tccatgc 77 <210> 8 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> LT-2 <400> 8 caatgcgcga cattccgaag aacgctgaag cgctgggggc aaattgtgca atttgcggcc 60 aatgtttgta atcagt 76 <210> 9 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> LT-3 <400> 9 tccttgtctg attagttcct ggtccccaaa atttccttgg gtttgttctg gaccacgtct 60 gccgaaagct tgtgt 75 <210> 10 <211> 229 <212> DNA <213> Artificial Sequence <220> <223> Target RNA <400> 10 aacacaagct ttcggcagac gtggtccaga acaaacccaa ggaaattttg gggaccagga 60 actaatcaga caaggaactg attacaaaca ttggccgcaa attgcacaat ttgcccccag 120 cgcttcagcg ttcttcggaa tgtcgcgcat tggcatggaa gtcacacctt cgggaacgtg 180 gttgacctac acaggtgcca tcaaattgga tgacaaagat ccaaatttc 229 <210> 11 <211> 229 <212> DNA <213> Artificial Sequence <220> <223> One-based-mismatched target RNA <400> 11 aacacaagct ttcggcagac gtggtccaga acaaacccaa ggaaattttg gggaccagga 60 attaatcaga caaggaactg attacaaaca ttggccgcaa attgcacaat ttgcccccag 120 cgcttcagcg ttcttcggaa tgtcgcgcat tggcatggaa gtcacacctt cgggaacgtg 180 gttgacctac acaggtgcca tcaaattgga tgacaaagat ccaaatttc 229 <210> 12 <211> 229 <212> DNA <213> Artificial Sequence <220> <223> Two-base-mismatched target RNA <400> 12 aacacaagct ttcggcagac gtggtccaga acaaacccaa ggaaattttg gggaccagga 60 attaatcaga caaggaactg attacaaaca ttggccgcaa attgcacaat ttgcccccag 120 cgcttcagcg ttcttcggaa tgtcgcgcat gggcatggaa gtcacacctt cgggaacgtg 180 gttgacctac acaggtgcca tcaaattgga tgacaaagat ccaaatttc 229 <210> 13 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-1 <400> 13 aacacaagct ttcggcagac g 21 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-2 <400> 14 tggtccagaa caaacccaag g 21 <210> 15 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-3 <400> 15 aaattttggg gaccaggaac t 21 <210> 16 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-4 <400> 16 aatcagacaa ggaactgatt a 21 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-5 <400> 17 caaacattgg ccgcaaattg c 21 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-6 <400> 18 acaatttgcc cccagcgctt c 21 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-7 <400> 19 agcgttcttc ggaatgtcgc g 21 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-8 <400> 20 cattggcatg gaagtcacac c 21 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-9 <400> 21 ttcgggaacg tggttgacct a 21 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-10 <400> 22 cacaggtgcc atcaaattgg a 21 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> LTs-11 <400> 23 tgacaaagat ccaaatttc 19 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LTs-6 mismatch <400> 24 acattttggc cccagcactt c 21

Claims (18)

  1. 표적 유전자의 일부 염기서열과 상보적인 복수개의 주형 서열;
    리가아제(ligase);
    고리매개 등온증폭(loop-mediated isothermal amplification) 시약; 및
    고리매개 등온증폭용 프라이머 세트를 포함하고,
    상기 복수개의 주형 서열이 모두 결찰(ligation)될 경우 상기 표적 유전자 전체 염기서열과 상보적인 것인 다중 결찰 보조 재조합효소 중합효소 증폭(mLig-RPA) 방법.
  2. 제 1 항에 있어서, 상기 복수개의 주형 서열은 2 내지 10개인 것인 표적 유전자 검출용 조성물.
  3. 제 1 항에 있어서, 상기 표적 유전자는 20 내지 200개의 염기서열로 이루어진 것인 표적 유전자 검출용 조성물.
  4. 제 1 항에 있어서, 상기 리가아제는 Splint R 리가아제인 것인 표적 유전자 검출용 조성물.
  5. 제 1 항에 있어서, 상기 고리매개 등온증폭용 프라이머 세트는 서열번호 1 내지 서열번호 6으로 이루어진 것인 표적 유전자 검출용 조성물.
  6. 제 1 항에 있어서, 상기 표적 유전자의 일부 염기서열과 상보적인 복수개의 주형 서열은 서열번호 7 내지 서열번호 9로 이루어진 것인 표적 유전자 검출용 조성물.
  7. 제 1 항에 있어서, 상기 표적 유전자는 SARS-CoV-2 바이러스 유래 염기서열인 것인 표적 유전자 검출용 조성물.
  8. 제 7 항에 있어서, 상기 SARS-CoV-2 바이러스 유래 염기서열은 서열번호 10인 것인 표적 유전자 검출용 조성물.
  9. 제 1 항에 있어서, 상기 조성물은 하기 화학식 1로 표시되는 화합물을 더 포함하는 것인 표적 유전자 검출용 조성물:
    [화학식 1]
    .
  10. 피검체로부터 생물학적 시료를 수득하는 단계;
    상기 시료에 표적 유전자의 일부 염기서열과 상보적인 복수개의 주형 서열 및 리가아제(ligase)를 첨가하여 주형 서열의 다중 결찰(multiple ligation)을 수행하는 단계;
    상기 다중 결찰된 주형 서열의 증폭 반응을 수행하는 단계; 및
    상기 주형 서열의 증폭 반응이 확인될 경우, 상기 피검체에 상기 표적 유전자가 존재하는 것으로 결정하는 단계
    를 포함하는 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법.
  11. 제 10 항에 있어서, 상기 복수개의 주형 서열은 2 내지 10개인 것인 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법.
  12. 제 10 항에 있어서, 상기 표적 유전자는 20 내지 200개의 염기서열로 이루어진 것인 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법.
  13. 제 10 항에 있어서, 상기 다중결찰은 Splint R 리가아제에 의해 이루어지는 것인 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법.
  14. 제 10 항에 있어서, 상기 증폭 반응은 고리매개 등온증폭인 것인 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법.
  15. 제 10 항에 있어서, 상기 복수개의 주형 서열은 서열번호 7 내지 서열번호 9로 이루어진 것인 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법.
  16. 제 10 항에 있어서, 상기 표적 유전자는 SARS-CoV-2 바이러스 유래 염기서열인 것인 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법.
  17. 제 16 항에 있어서, 상기 SARS-CoV-2 바이러스 유래 염기서열은 서열번호 10인 것인 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법.
  18. 제 10 항에 있어서, 상기 증폭 반응의 확인은 상기 증폭 반응 전 또는 상기 증폭 반응 후, 하기 화학식 1로 표시되는 화합물을 첨가하여 증폭 산물의 색이 변화하는 것을 확인하여 이루어지는 것인 피검체로부터 표적 유전자의 존재 여부를 결정하기 위한 정보제공방법:
    [화학식 1]
    .
KR1020220036576A 2022-03-24 2022-03-24 역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭 방법 KR20230138683A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220036576A KR20230138683A (ko) 2022-03-24 2022-03-24 역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭 방법
PCT/KR2023/003648 WO2023182742A1 (ko) 2022-03-24 2023-03-20 역전사를 사용하지 않는 결찰 방법을 이용한 cdna 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220036576A KR20230138683A (ko) 2022-03-24 2022-03-24 역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭 방법

Publications (1)

Publication Number Publication Date
KR20230138683A true KR20230138683A (ko) 2023-10-05

Family

ID=88101793

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220036576A KR20230138683A (ko) 2022-03-24 2022-03-24 역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭 방법

Country Status (2)

Country Link
KR (1) KR20230138683A (ko)
WO (1) WO2023182742A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102294552B1 (ko) 2019-12-11 2021-08-27 대한민국 자두곰보바이러스의 검출을 위한 고리매개 등온증폭 프라이머 세트 및 이의 용도

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9745616B2 (en) * 2011-05-17 2017-08-29 Dxterity Diagnostics Incorporated Methods and compositions for detecting target nucleic acids
WO2017223026A1 (en) * 2016-06-20 2017-12-28 Miroculus Inc. Detection of rna using ligation actuated loop mediated amplification methods and digital microfluidics
KR102109196B1 (ko) * 2020-02-11 2020-05-11 대한민국 2019 신종코로나바이러스 검출용 lamp 조성물 및 이의 용도
KR102375698B1 (ko) * 2020-07-16 2022-03-17 충북대학교 산학협력단 코로나 바이러스 검출을 위한 프라이머 세트 및 이의 용도

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102294552B1 (ko) 2019-12-11 2021-08-27 대한민국 자두곰보바이러스의 검출을 위한 고리매개 등온증폭 프라이머 세트 및 이의 용도

Also Published As

Publication number Publication date
WO2023182742A1 (ko) 2023-09-28

Similar Documents

Publication Publication Date Title
De Felice et al. Isothermal amplification-assisted diagnostics for COVID-19
US11008629B1 (en) Rapid diagnostic test using colorimetric LAMP
Parida et al. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases
US9809846B2 (en) Compositions, kits, uses and methods for amplified detection of an analyte
CN108796131A (zh) 可视化鉴别口蹄疫病毒和蓝舌病病毒的二重荧光rt-lamp检测组、试剂盒及其应用
CN110106290A (zh) 一种基于CRISPR/Cas系统用于检测ASFV的现场快速检测方法及试剂盒
CN113186341B (zh) CRISPR介导的一步式恒温扩增检测SARS-CoV-2的方法
WO2012077819A1 (ja) 標的核酸の検出方法及びキット
Choi et al. Dual-site ligation-assisted loop-mediated isothermal amplification (dLig-LAMP) for colorimetric and point-of-care determination of real SARS-CoV-2
WO2022006536A1 (en) Crispr-cas-based detection of sars-cov-2 using recombinase polymerase amplification
Kim et al. Colorimetric molecular diagnosis of the HIV gag gene using DNAzyme and a complementary DNA-extended primer
Lu et al. Rapid and highly specific detection of communicable pathogens using one-pot loop probe-mediated isothermal amplification (oLAMP)
Kim et al. Advanced target‐specific probe‐based real‐time loop‐mediated isothermal amplification assay for the rapid and specific detection of porcine circovirus 3
Choi et al. Point-of-care COVID-19 testing: colorimetric diagnosis using rapid and ultra-sensitive ramified rolling circle amplification
CN113684317B (zh) 一种基于CRISPR-Cas12b对乙肝病毒B型和C型的超灵敏快速检测及鉴别系统
CA3073954A1 (en) Nicking and extension amplification reaction (near) of respiratory syncytial virus species
Jang et al. Highly sensitive and rapid detection of porcine circovirus 2 by avidin–biotin complex based lateral flow assay coupled to isothermal amplification
CN101443457B (zh) 利用pcr的扩增产物的制造方法及其用途
KR20230138683A (ko) 역전사를 사용하지 않는 결찰 방법을 이용한 cDNA 합성 기반 표적 유전자 검출용 조성물 및 다중 결찰 보조 재조합효소 중합효소 증폭 방법
Wang et al. Application of molecular beacons in real-time PCR
CN110878380B (zh) 一种检测水泡性口炎病毒印第安那型和新泽西型的引物组合物、试剂盒及方法
KR102076343B1 (ko) 실시간 lamp법을 이용한 아데노바이러스 55형 검출용 조성물 및 이의 용도
Zhang et al. A CRISPR/Cas12a-assisted array for Helicobacter pylori DNA analysis in saliva
KR20220060668A (ko) CRISPR-Cas 시스템과 멀티플렉스 LAMP 프라이머 세트를 이용한 인플루엔자 바이러스의 검출 방법
CN116348614A (zh) 开关寡核苷酸