KR20230122136A - 슬립 상태 검출 장치 및 서스펜션 제어 장치 - Google Patents

슬립 상태 검출 장치 및 서스펜션 제어 장치 Download PDF

Info

Publication number
KR20230122136A
KR20230122136A KR1020237024951A KR20237024951A KR20230122136A KR 20230122136 A KR20230122136 A KR 20230122136A KR 1020237024951 A KR1020237024951 A KR 1020237024951A KR 20237024951 A KR20237024951 A KR 20237024951A KR 20230122136 A KR20230122136 A KR 20230122136A
Authority
KR
South Korea
Prior art keywords
slip ratio
wheel
wheel speed
vehicle
slip
Prior art date
Application number
KR1020237024951A
Other languages
English (en)
Inventor
유키 요시다
류스케 히라오
신고 나스
Original Assignee
히다치 아스테모 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 아스테모 가부시키가이샤 filed Critical 히다치 아스테모 가부시키가이샤
Publication of KR20230122136A publication Critical patent/KR20230122136A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • B60G17/0182Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method involving parameter estimation, e.g. observer, Kalman filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/22Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/39Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/21Traction, slip, skid or slide control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/86Suspension systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

서스펜션 제어 유닛은, 차륜의 슬립 상태를 검출하기 위한 슬립 상태 검출 장치를 갖고 있다. 슬립 상태 검출 장치는, 제2 슬립비 산출부와, 슬립비 배분 산출부와, 제3 슬립비 산출부를 구비한다. 제2 슬립비 산출부는, 전후 가속도 센서에서 검출되는 차량의 전후 가속도(전후 가속도)와 타이어 특성(슬립비 계수)에 따라 타이어 특성 고려 슬립비(제2 슬립비)를 구한다. 슬립비 배분 산출부 및 제3 슬립비 산출부는, 타이어 특성 고려 슬립비(제2 슬립비)를, 각 차륜의 회전 속도 신호에 따라 구해지는 각 차륜의 슬립비의 비율로 보정하여, 각 차륜의 보정 슬립비(제3 슬립비)를 구한다.

Description

슬립 상태 검출 장치 및 서스펜션 제어 장치
본 개시는, 예컨대, 자동차 등의 차량에 탑재되는 슬립 상태 검출 장치 및 서스펜션 제어 장치에 관한 것이다.
특허문헌 1에는, 차체의 가감 속도, 차륜의 회전 속도를 검출하고, 타이어 비틀림 스프링 요소 및 서스펜션 전후 스프링 요소를 고려하여, 타이어의 상태를 판정하는 타이어 상태 판정 장치가 기재되어 있다. 특허문헌 2에는, 차륜의 슬립률 변화량을 구하여, 차륜속 변동량의 게인을 보정하는 서스펜션 제어 장치가 기재되어 있다.
특허문헌 1: 일본 특허 공개 제2003-306093호 공보 특허문헌 2: 일본 특허 공개 제2015-051719호 공보
그런데, 차륜속 센서의 검출값 등의 차륜 속도의 변화로부터 차체의 상하 방향의 상태(예컨대, 서스펜션의 스트로크, 상하 가속도)를 추정하는 경우, 근소한 슬립이 발생하여도 추정 정밀도가 저하할 우려가 있다.
본 발명의 일실시형태의 목적은, 슬립비, 나아가서는, 차체의 상하 방향의 상태의 추정 정밀도를 향상시킬 수 있는, 슬립 상태 검출 장치 및 서스펜션 제어 장치를 제공하는 데 있다.
본 발명의 일실시형태는, 슬립 상태 검출 장치로서, 전후 가속도 검출부에서 검출된 차량의 전후 가속도와 타이어 특성에 따라 타이어 특성 고려 슬립비를 구하는, 타이어 특성 고려 슬립비 확정부와, 상기 타이어 특성 고려 슬립비를, 각 차륜의 회전 속도 신호에 따라 구해지는 각 차륜의 슬립비로 보정하여, 각 차륜의 보정 슬립비를 구하는, 보정 슬립비 확정부를 갖는다.
또한, 본 발명의 일실시형태는, 서스펜션 제어 장치로서, 차량의 전후 가속도를 검출하여, 전후 가속도 신호를 출력하는, 전후 가속도 검출부와, 각 차륜의 회전 속도를 검출하여, 각 차륜의 회전 속도 신호를 출력하는, 차륜 회전 속도 검출부와, 상기 전후 가속도 신호와 상기 각 차륜의 회전 속도 신호를 입력하고, 입력된 상기 전후 가속도 신호와 타이어 특성으로부터 타이어 특성 고려 슬립비를 구하며, 상기 타이어 특성 고려 슬립비를, 상기 각 차륜의 회전 속도 신호에 따라 보정하여 각 차륜의 보정 슬립비를 구하고, 상기 각 차륜의 회전 속도 신호에 기초하여 차체의 상하 이동을 추정하며, 추정된 차체의 상하 이동을 상기 각 차륜의 보정 슬립비에 기초하여 보정하고, 보정된 차체의 상하 이동에 기초한 제어 신호를 출력하는, 제어 장치와, 차체와 차륜측 부재 사이에 마련되며, 상기 제어 신호에 따라, 상기 차륜측 부재로부터의 입력에 대한 차체의 상태를 변화시키는, 액추에이터를 갖는다.
본 발명의 일실시형태에 따르면, 슬립비, 나아가서는, 차체의 상하 방향의 상태의 추정 정밀도를 향상시킬 수 있다.
도 1은 실시형태에 따른 슬립 상태 검출 장치 및 서스펜션 제어 장치가 탑재된 4륜 자동차를 나타내는 전체 구성도이다.
도 2는 도 1 중의 컨트롤러(ECU), 감쇠력 가변형 완충기(제어 댐퍼) 등을 나타내는 블록도이다.
도 3은 도 2 중의 차량 상태 추정부를 나타내는 블록도이다.
도 4는 도 3 중의 차량 상하 상태 추정부를 나타내는 블록도이다.
도 5는 도 4 중의 차륜속 추정부를 나타내는 블록도이다.
도 6은 도 5 중의 제2 차륜속 산출부를 나타내는 블록도이다.
도 7은 도 6 중의 슬립비 산출부를 나타내는 블록도이다.
도 8은 도 6 중의 슬립비 교체 계수 산출부를 나타내는 블록도이다.
도 9는 타이어 전후력의 합(Fx), 타이어 상하력의 합(Fz), 차체 전후 가속도(보정 전후 가속도(Gxf)), 차량 중량(m), 중력 가속도(g)를 나타내는 설명도이다.
도 10은 각 바퀴의 차륜속(VwFL, VwFR, VwRL, VwRR), 차체 전후속(VBx)을 나타내는 설명도이다.
도 11은 「슬립비」와 「타이어 전후력/타이어 상하력」의 관계의 일례를 나타내는 특성선도이다.
도 12는 「전후 가속도/g(=타이어 전후력/타이어 상하력)」와 「슬립비」의 관계의 일례를 나타내는 특성선도이다.
이하, 실시형태에 따른 슬립 상태 검출 장치 및 서스펜션 제어 장치를, 차량으로서의 자동차(보다 구체적으로는, 4륜 자동차)에 이용하는 경우를 예로 들어, 첨부 도면을 참조하면서 설명한다.
도 1에 있어서, 자동차인 차량(1)의 보디를 구성하는 차체(2)의 하측에는, 예컨대 좌우의 전륜(3)과 좌우의 후륜(4)(한쪽만 도시)의 합계 4개의 차륜(3, 4)이 마련된다. 좌우의 전륜(3)과 차체(2) 사이에는, 각각 전륜측의 서스펜션(5, 5)(이하, 전륜 서스펜션(5)이라고 함)이 개재되어 마련된다. 전륜 서스펜션(5)은, 현가 스프링(6)(이하, 스프링(6)이라고 함), 및, 스프링(6)과 병렬로 마련되는 감쇠력 조정식 완충기(7)(이하, 완충기(7)라고 함)를 구비한다.
좌우의 후륜(4)과 차체(2) 사이에는, 각각 후륜측의 서스펜션(8, 8)(이하, 후륜 서스펜션(8)이라고 함)이 개재되어 마련된다. 후륜 서스펜션(8)은, 현가 스프링(9)(이하, 스프링(9)이라고 함), 및, 스프링(9)과 병렬로 마련되는 감쇠력 조정식 완충기(10)(이하, 완충기(10)라고 함)를 구비한다. 완충기(7, 10)는, 예컨대, 감쇠력의 조정이 가능한 유압식의 실린더 장치(감쇠력 가변식 쇼크 업소버)가 되는 세미액티브 댐퍼에 의해 구성된다. 즉, 차량(1)에는, 감쇠력 가변식 쇼크 업소버를 이용한 세미액티브 서스펜션 시스템이 탑재되어 있다.
여기서, 완충기(7, 10)는, 차량(1)의 차체(2)와 차륜(3, 4)(보다 구체적으로는, 차륜(3, 4)을 지지하는 차륜측 부재) 사이에 마련되는 감쇠력 가변형의 감쇠력 발생 장치(감쇠력 가변형 완충기)이다. 완충기(7, 10)는, 차량(1)의 자세를 제어하는 차체 자세 제어 장치에 상당한다. 즉, 완충기(7, 10)는, 후술하는 서스펜션 제어 유닛(21)에 의해 발생 감쇠력의 특성(감쇠력 특성)이 가변으로 제어된다. 이 때문에, 완충기(7, 10)에는, 감쇠력 특성을 하드한 특성(경특성)으로부터 소프트한 특성(연특성)으로 연속적(내지 다단계)으로 조정하기 위해, 감쇠력 조정 밸브 및 솔레노이드 등을 포함하는 감쇠력 조정 액추에이터(도시하지 않음)가 부설된다. 완충기(7, 10)는, 서스펜션 제어 유닛(21)으로부터 감쇠력 조정 액추에이터에 공급되는 지령 전류(제어 신호, 제어 지령)에 따라 감쇠력 특성이 가변으로 조정된다.
또한, 감쇠력 조정 밸브로서는, 감쇠력 발생 밸브의 파일럿압을 제어하는 압력 제어 방식이나 통로 면적을 제어하는 유량 제어 방식 등, 종래부터 알려져 있는 구조를 이용할 수 있다. 또한, 완충기(7, 10)는, 감쇠력을 연속적(내지 다단계)으로 조정할 수 있으면 좋고, 예컨대, 공압 댐퍼나 전자 댐퍼, 전기 점성 유체 댐퍼, 자성 유체 댐퍼여도 좋다. 또한, 완충기(7, 10)는, 에어 스프링(공기 스프링)을 이용하는 에어 댐퍼(에어 서스펜션), 전후 좌우의 유압 실린더를 배관으로 접속하는 유압 댐퍼(차고 조정 장치), 좌우의 차륜의 움직임에 대하여 힘을 부여하는 스태빌라이저 등이어도 좋다. 또한, 완충기(7, 10)는, 추진력을 발생시킬 수 있는 액압식 액추에이터, 전동식 액추에이터 또는 기압식 액추에이터에 의해 구성되는, 풀 액티브 댐퍼여도 좋다. 즉, 차량(1)에 풀 액티브 댐퍼를 이용한 풀 액티브 서스펜션 시스템을 탑재하여도 좋다.
다음에, 차량(1)의 상태를 검출하는 각종 센서(11, 12, 13, 14, 15) 및 스위치(16)에 대해서 설명한다.
도 1에 나타내는 바와 같이, 차량(1)에는, 전후 가속도 센서(11), 횡가속도 센서(12), 차륜속 센서(13), 조타각 센서(14), 요 레이트(yaw rate) 센서(15), 및, 브레이크 스위치(16)가 마련된다. 이들 센서(11, 12, 13, 14, 15) 및 스위치(16)는, 차량(1)에 일반적으로 탑재되는 센서 및 스위치, 보다 구체적으로는, 차량(1)의 제동, 구동, 조타의 제어에 주로 이용되는 센서 및 스위치이다.
전후 가속도 검출 수단으로서의 전후 가속도 센서(11)는, 예컨대 차량(1)의 스프링 상측이 되는 차체(2)에 마련된다. 전후 가속도 센서(11)는, 차량(1)(차체(2))의 전후 방향의 가속도(감속도, 가속도)를 검출한다. 전후 가속도 센서(11)의 검출 정보(전후 가속도에 대응하는 신호)는, 예컨대 차내 LAN 통신인 CAN(17)(후술하는 도 2)을 통해 차량(1)에 탑재되는 각종 컨트롤러(ECU)로 출력된다. 예컨대, 도시는 생략하지만, 전후 가속도 센서(11)의 정보(전후 가속도)는, CAN(17)을 통해, 차량(1)의 제구동 시스템(제동 시스템, 구동 시스템)의 컨트롤러(제구동용 ECU, 제동용 ECU, 구동용 ECU), 차량(1)의 조타 시스템의 컨트롤러(조타용 ECU) 등으로 출력된다. 또한, 후술하는 도 2에 나타내는 바와 같이, 전후 가속도 센서(11)의 정보(전후 가속도 센서값)는, CAN(17)을 통해 차량(1)의 서스펜션 시스템의 컨트롤러가 되는 서스펜션 제어 유닛(21)(서스펜션용 ECU)으로 출력된다.
횡가속도 센서(12)는, 예컨대 차량(1)의 스프링 상측이 되는 차체(2)에 마련된다. 횡가속도 센서(12)는, 차량(1)(차체(2))의 좌우 방향의 가속도(횡가속도, 좌우 가속도)를 검출한다. 횡가속도 센서(12)의 검출 정보(횡가속도에 대응하는 신호)는, 예컨대 CAN(17)을 통해 각종 컨트롤러(ECU)에 출력된다. 예컨대, 후술하는 도 2에 나타내는 바와 같이, 횡가속도 센서(12)의 정보(횡가속도 센서값)는, CAN(17)을 통해, 서스펜션 제어 유닛(21)(서스펜션용 ECU)으로 출력된다.
차륜 회전 속도 검출 수단으로서의 차륜속 센서(13)는, 예컨대 차륜(3, 4)을 지지하는 차륜 지지용 허브 유닛에 마련된다. 차륜속 센서(13)는, 각각의 차륜(3, 4)에 대응하여 마련된다. 차륜속 센서(13)는, 차륜(3, 4)의 회전 속도(차륜속)를 검출한다. 차륜속 센서(13)의 검출 정보(차륜속에 대응하는 신호)는, 예컨대 CAN(17)을 통해 각종 컨트롤러(ECU)로 출력된다. 예컨대, 후술하는 도 2에 나타내는 바와 같이, 차륜속 센서(13)의 정보(차륜속 센서값×4)는, CAN(17)을 통해 서스펜션 제어 유닛(21)(서스펜션용 ECU)으로 출력된다.
조타각 센서(14)는, 예컨대 차량(1)의 조타 장치(도시하지 않음)에 마련된다. 조타각 센서(14)는, 차량(1)을 운전하는 드라이버의 스티어링 조작에 의해 생기는 조타각(회전각) 또는 차륜(전륜(3))의 타각을 검출한다. 조타각 센서(14)의 검출 정보(조타각에 대응하는 신호)는, 예컨대 CAN(17)을 통해 각종 컨트롤러(ECU)로 출력된다. 예컨대, 후술하는 도 2에 나타내는 바와 같이, 조타각 센서(14)의 정보(조타각 센서값)는, CAN(17)을 통해 서스펜션 제어 유닛(21)(서스펜션용 ECU)으로 출력된다.
요 레이트 센서(15)는, 예컨대 차량(1)의 스프링 상측이 되는 차체(2)에 마련된다. 요 레이트 센서(15)는, 차량(1)(차체(2))의 상하 방향으로 연장되는 요축(연직축) 둘레의 회전각 속도인 요 레이트(차체 요 레이트)를 검출한다. 요 레이트 센서(15)의 검출 정보(요 레이트에 대응하는 신호)는, 예컨대 CAN(17)을 통해 각종 컨트롤러(ECU)로 출력된다. 예컨대, 후술하는 도 2에 나타내는 바와 같이, 요 레이트 센서(15)의 정보(요 레이트 센서값)는, CAN(17)을 통해, 서스펜션 제어 유닛(21)(서스펜션용 ECU)으로 출력된다.
브레이크 스위치(16)는, 예컨대 브레이크 페달(도시하지 않음)에 마련된다. 브레이크 스위치(16)는, 브레이크 페달의 조작의 유무를 검출한다. 예컨대, 브레이크 스위치(16)는, 브레이크 페달이 조작(답입)되면, 브레이크 작동 플래그에 대응하는 ON 신호를 출력한다. 브레이크 스위치(16)의 검출 정보(브레이크 조작 있음에 대응하는 ON 신호)는, 예컨대 CAN(17)을 통해 각종 컨트롤러(ECU)로 출력된다. 예컨대, 후술하는 도 2에 나타내는 바와 같이, 브레이크 스위치(16)의 ON 신호(브레이크 작동 상태에 대응하는 브레이크 작동 플래그)는, CAN(17)을 통해 서스펜션 제어 유닛(21)(서스펜션용 ECU)으로 출력된다.
다음에, 완충기(7, 10)를 제어하는 서스펜션 제어 유닛(21)에 대해서 설명한다.
제어 장치로서의 서스펜션 제어 유닛(21)은, 마이크로 컴퓨터, 전원회로, 구동 회로를 포함하여 구성되고, ECU(Electronic Control Unit)라고도 불린다. 서스펜션 제어 유닛(21)은, 서스펜션 시스템용의 컨트롤러(제어 장치), 즉, 서스펜션용 ECU(완충기용 ECU)이다. 서스펜션 제어 유닛(21)은, 센서(11, 12, 13, 14, 15), 스위치(16) 등에 의해 검출되는 정보, 즉, 센서 정보 및 스위치 정보 등에 기초하여, 완충기(7, 10)를 제어(감쇠력을 조정)한다. 이 경우, 서스펜션 제어 유닛(21)은, 센서 정보 및 스위치 정보에 기초하여 차량(1)의 상태를 추정하고, 추정된 차량(1)의 상태에 따라 완충기(7, 10)를 제어한다.
도 2에 나타내는 바와 같이, 서스펜션 제어 유닛(21)은, CAN(17)에 접속된다. 이에 의해, 서스펜션 제어 유닛(21)에는, CAN(17)을 통해, 전후 가속도 센서(11)의 신호(전후 가속도 센서값), 횡가속도 센서(12)의 신호(횡가속도 센서값), 차륜속 센서(13)의 신호(차륜속 센서값×4), 조타각 센서(14)의 신호(조타각 센서값), 요 레이트 센서(15)의 신호(요 레이트 센서값), 브레이크 스위치(16)의 신호(브레이크 작동 상태에 대응하는 브레이크 작동 플래그)가 CAN 신호로서 입력된다. 또한, 서스펜션 제어 유닛(21)에는, 운전 지원 시스템 동작 상태에 대응하는 신호(ABS, TCS, VSC 등의 제동에 관한 시스템이 브레이크 조작하고 있는 상태에 대응하는 브레이크 작동 플래그)가, CAN 신호로서 입력된다. 한편, 서스펜션 제어 유닛(21)의 출력측은, 제어 댐퍼인 완충기(7, 10)에 접속된다. 서스펜션 제어 유닛(21)은, 완충기(7, 10)의 감쇠력 조정 액추에이터(예컨대, 감쇠력 조정 밸브의 밸브 개방압을 조정하는 솔레노이드)에 제어 신호(지령 전류, 제어 지령)를 출력한다.
도 1에 나타내는 바와 같이, 서스펜션 제어 유닛(21)은, CPU(연산 처리 장치) 등의 연산 처리를 행하는 컨트롤부(21A), 및, ROM, RAM, 불휘발성 메모리 등의 메모리를 포함하는 기억부(21B)를 구비한다. 기억부(21B)에는, 센서(11, 12, 13, 14, 15), 스위치(16) 등의 정보(입력 신호)로부터 차량 상태(차량 운동, 차량 거동)를 연산(추정)하는 처리 프로그램, 차량의 상태(차량 운동, 차량 거동)로부터 완충기(7, 10)에서 발생시켜야 하는 감쇠력을 연산하는 처리 프로그램, 발생시켜야 하는 감쇠력에 대응하는 제어 신호(제어 지령)를 출력하는 처리 프로그램, 등이 저장된다.
완충기(7, 10)의 감쇠력을 연산하는 제어칙(승차감의 제어칙, 조종 안정성의 제어칙)으로서는, 예컨대, 스카이 훅 제어칙, BLQ 제어칙(쌍선형 최적 제어칙) 또는 H∞ 제어칙 등을 이용할 수 있다. 서스펜션 제어 유닛(21)은, 예컨대, 스프링상이 되는 차체(2)의 운동(거동)을 완충기(7, 10)의 감쇠력에 의해 감속시키는 경우는, 완충기(7, 10)의 감쇠력을 크게 하고, 스프링상이 되는 차체(2)의 운동(거동)을 완충기(7, 10)의 감쇠력에 의해 가속시키는 경우는, 완충기(7, 10)의 감쇠력을 억제한다. 감쇠력 가변 댐퍼인 완충기(7, 10)는, 감쇠력을 가변시켜 적절하게 각 차륜(3, 4)의 상하 이동을 감쇠시킴으로써, 차체(2)의 진동을 억제하는 기능을 가지고 있다.
그런데, 전술한 특허문헌 2에 기재된 서스펜션 제어 장치는, 차륜 속도(차륜속)의 변동량으로부터 스프링상(차체측)과 스프링하(차륜측)의 상대 변위 속도를 산출하고, 산출한 상대 변위 속도에 기초하여 감쇠력 가변 댐퍼의 감쇠력을 제어한다. 이 경우에, 특허문헌 2의 서스펜션 제어 장치는, 구동 토크 등을 이용하여 차륜속 변동량에 곱하는 게인을 변화시킴으로써, 차륜의 슬립률의 변화에 기인하는 차륜 속도 변량을 제거한다.
이러한 차륜속으로부터 상대 변위 속도를 산출하는 경우, 즉, 차륜속으로부터 차량(차체)의 상하 운동을 추정(산출)하는 경우, 차륜속 센서에서 검출되는 차륜속(차륜속 센서 신호)으로부터 차량(차체)의 상하 운동에 기인하는 차륜속(상하 운동 기인 차륜속)을 추출한다. 이 경우, 상하 운동 기인 차륜속은, 예컨대, 「차륜속 센서 신호」로부터 「차량의 제구동(제동, 구동)에 기인하는 차륜속(제구동 차륜속)」 및 「차륜의 슬립에 기인하는 차륜속(차륜 슬립 기인 차륜속)」을 뺌으로써 구할 수 있다.
여기서, 차량이 정속으로 직진 주행하고 있는 경우는, 차륜(타이어)의 슬립비가 미소하다. 이 때문에, 상하 운동 기인 차륜속은, 차륜 슬립 기인 차륜속을 무시하고 구하는 것이 생각된다. 즉, 상하 운동 기인 차륜속은, 「차륜속 센서 신호」로부터 「차량의 제구동(제동, 구동)에 기인하는 차륜속(제구동 차륜속)」을 뺌으로써 구하는 것이 생각된다. 보다 구체적으로는, 상하 운동 기인 차륜속을 「Vwz」로 하고, 차륜속 센서 신호에 의한 차륜속을 「Vwse」로 하며, 제구동 차륜속(제동 구동 차륜속)에 대응하는 전후 가속도를 「Gx」로 한 경우에, 상하 운동 기인 차륜속(Vwz)을 다음 수학식 1로 구하는 것이 생각된다.
그러나, 차륜 슬립 기인 차륜속이 큰 경우는, 상하 운동 기인 차륜속의 추정 오차가 커져, 상하 운동 상태량이 발산할 가능성이 있다. 그래서, 이것을 억제하기 위해, 상하 운동 기인 차륜속의 추정에, 예컨대, 어떤 1륜의 차륜속에서 임계값 이상의 슬립이 발생한 경우는, 좌우 반대의 차륜속을 이용하고, 좌우 어느 쪽의 바퀴도 임계값 이상의 슬립이 발생한 경우는, 차체속(차속)을 이용하는 것이 생각된다. 그러나, 이 경우는, 슬립을 상정하고 있지 않기 때문에, 가감속에 의해 생기는 슬립에 따라 상하 운동 기인 차륜속의 추정 정밀도가 저하할 가능성이 있다. 또한, 소 슬립 발생 시는, 좌우 반대륜의 차륜속을 이용하기 때문에, 예컨대, 입력에 좌우차가 있는 노면에서 추정 정밀도가 저하할 가능성이 있다. 또한, 차체속을 이용하는 경우, 차체속에 상하 운동 기인의 성분이 포함되지 않기 때문에, 차체의 상하 운동의 추정이 곤란해질 가능성이 있다.
그래서, 실시형태에서는, 타이어 특성(예컨대, 사전에 타이어 특성 시험에서 취득한 이미 알고 있는 타이어 특성)과 차체 전후 가속도로부터 슬립비를 구한다. 이 경우, 차체의 전후 가속도를 이용하기 때문에, 각 타이어(각각의 차륜)의 슬립비는, 동일한 것(동일한 값)으로서 구해진다. 이 때문에, 실시형태에서는, 차륜속으로부터 계산한 각 바퀴의 슬립비로부터 각 바퀴의 슬립의 비율을 계산한다. 그리고, 「차체 전후 가속도로부터 구한 각 바퀴의 슬립비(동일한 값)」를 「차륜속으로부터 계산한 각 바퀴의 슬립의 비율」로 배분함으로써, 각 바퀴의 슬립비를 산출(보정)한다. 실시형태에서는, 이와 같이 구한 각 바퀴의 슬립비를 이용하여, 각 바퀴의 차륜 슬립 기인 차륜속을 구한다. 이 때문에, 차륜 슬립 기인 차륜속을 정밀도 좋게 구할 수 있다.
그리고, 실시형태에서는, 이러한 차륜 슬립 기인 차륜속을 이용하여, 차륜속 센서에서 검출되는 차륜속(차륜속 센서 신호)으로부터 불필요한 성분이 되는 차륜 슬립 기인 차륜속을 뺀다(제거한다). 즉, 차륜속 센서에서 검출되는 차륜속(차륜속 센서 신호)으로부터 상하 운동 기인 차륜속을 추출할 때에, 차륜속 센서에서 검출되는 차륜속(차륜속 센서 신호)으로부터 전술한 바와 같이 구한 차륜 슬립 기인 차륜속을 뺀다(제거한다). 이 때문에, 상하 운동 기인 차륜속의 추정 정밀도를 향상시킬 수 있다.
또한, 실시형태에서는, 전술한 바와 같이 산출한 각 바퀴의 슬립비를 슬립이 작을 때(소 슬립 시)에 이용한다. 예컨대, 슬립비가 0.02 이하 등의 작은 경우는, 전술한 바와 같이 산출한 각 바퀴의 슬립비, 즉, 차체 전후 가속도와 타이어 특성에 기초한 슬립비를 보정(각 바퀴에 배분)하여 구한 각 바퀴의 슬립비(이하, 「전후 가속도에 기초한 슬립비」라고도 함)를 이용한다. 이에 대하여, 소 슬립보다 큰 중 슬립 시, 예컨대, 슬립비가 0.02 이상 0.08 이하인 경우는, 그때의 슬립에 따라, 전후 가속도에 기초한 슬립비로부터, 차륜속과 차체 속도에 기초하여 산출한 슬립비(이하, 「차륜속에 기초한 슬립비」라고도 함)로 전환한다. 구체적으로는, 차륜속에 기초한 슬립비를 입력으로 하여 슬립비 전환 계수를 산출하고, 이 산출한 슬립비 전환 계수를 이용하여, 전후 가속도에 기초한 슬립비와 차륜속에 기초한 슬립비를 서서히 교체한다.
또한, 소 슬립의 상한(=중 슬립의 하한)이 되는 슬립비(예컨대, 0.02)는, 타이어 특성에 따라 설정할 수 있다. 예컨대, 소 슬립의 상한은, 후술하는 바와 같이, 타이어 특성이 선형의 범위인 슬립비에 기초하여 설정할 수 있다. 또한, 중 슬립의 상한이 되는 슬립비(예컨대, 0.08)는, 트랙션 컨트롤 시스템 등의 운전 지원 시스템이 작동을 개시하는 슬립비에 기초하여 설정할 수 있다. 또한, 소 슬립의 범위 및 중 슬립의 범위(즉, 슬립비 「0.02」 및 「0.08」)는 예시이며, 이들 값은, 차량(1)의 종류, 사양, 타이어의 종류, 사양 등에 따라 변화한다. 바꾸어 말하면, 슬립비를 구하기 위한 타이어 특성은, 차량(1)의 종류마다, 사양마다, 타이어의 종류마다, 사양마다 설정된다.
이하, 슬립비의 산출(추정), 차륜 슬립 기인 차륜속의 산출(추정)을 포함하는 차량 상태(차량 운동, 차량 거동)의 산출(추정)을 행하며, 산출(추정)된 차량 상태(차량 운동, 차량 거동)에 기초하여 완충기(7, 10)의 제어를 행하는 서스펜션 제어 유닛(21)에 대해서, 도 1에 더하여, 도 2 내지 도 12도 참조하면서 설명한다.
실시형태의 서스펜션 시스템은, 완충기(7, 10)와, 완충기(7, 10)에 제어 신호(제어 지령)를 출력하는 서스펜션 제어 유닛(21)과, 차량(1)에 탑재된 센서가 되는 전후 가속도 센서(11) 및 차륜속 센서(13)를 포함하여 구성된다. 서스펜션 시스템은, 전후 가속도 센서(11)의 전후 가속도 정보, 차륜속 센서(13)의 차륜속 정보 등으로부터 차량(1)의 상태(보다 구체적으로는, 스프링상 속도, 피스톤 속도, 피스톤 변위, 롤 레이트, 피치 레이트)를 추정하고, 추정된 차량(1)의 상태에 따라 완충기(7, 10)의 감쇠력을 제어한다.
서스펜션 제어 유닛(21)(컨트롤부(21A))은, 차량(1)에 마련된 전후 가속도 센서(11), 차륜속 센서(13) 등의 센서의 센서값으로부터 차량(1)의 상태를 추정하고, 추정된 차량(1)의 상태에 따라 완충기(7, 10)에 제어 신호(제어 지령)를 출력한다. 이 때문에, 도 1에 나타내는 바와 같이, 차량(1)은, 전후 가속도 센서(11), 횡가속도 센서(12), 차륜속 센서(13), 조타각 센서(14), 요 레이트 센서(15), 및, 브레이크 스위치(16)를 구비한다. 도 2에 나타내는 바와 같이, 서스펜션 제어 유닛(21)에는, CAN(17)을 통해, 전후 가속도 센서값에 대응하는 신호, 횡가속도 센서값에 대응하는 신호, 차륜속 센서값에 대응하는 신호(×4), 조타각 센서값에 대응하는 신호, 요 레이트 센서값에 대응하는 신호, 브레이크 작동 상태에 대응하는 신호, 운전 지원 시스템 동작 상태에 대응하는 신호가 입력된다.
도 2에 나타내는 바와 같이, 서스펜션 제어 유닛(21)은, 차량 상태 추정부(22)(차체 상태 추정부)와, 서스펜션 제어부(23)(제어 신호 출력부)를 구비한다. 차량 상태 추정부(22)는, CAN(17)을 통해 입력되는 입력 신호에 기초하여 차량 상태(차체 상태)를 추정한다. 즉, 차량 상태 추정부(22)는, 전후 가속도, 횡가속도, 차륜속(×4), 조타각, 요 레이트 등에 대응하는 입력 신호에 기초하여, 스프링상 속도(차체 상하 속도), 피스톤 속도(상대 속도), 피스톤 변위(상대 변위), 롤 레이트(차체 롤 레이트), 피치 레이트(차체 피치 레이트) 등의 차량 상태를 연산(추정)한다. 스프링상 속도는, 예컨대, 차륜(3, 4)의 위치에서의 차체(2)의 상하 속도에 대응하고, 피스톤 속도는, 완충기(7, 10)의 피스톤의 속도(신축 속도, 상대 속도)에 대응하며, 피스톤 변위는, 완충기(7, 10)의 피스톤의 변위량(신축량)에 대응한다. 차량 상태 추정부(22)는, 추정한 차량 상태(스프링상 속도, 피스톤 속도, 피스톤 변위, 롤 레이트, 피치 레이트 등)를 서스펜션 제어부(23)로 출력한다.
서스펜션 제어부(23)에는, 차량 상태 추정부(22)(차량 상하 상태 추정부(25), 보다 구체적으로는, 상하 운동 추정부(27))로부터, 스프링상 속도, 피스톤 속도, 피스톤 변위, 롤 레이트, 피치 레이트가 입력된다. 또한, 도시는 생략하지만, 서스펜션 제어부(23)에는, 필요에 따라, 차체 속도, 차륜 속도, 전후 가속도, 횡가속도, 조타각 등이 입력된다. 제어 로직부인 서스펜션 제어부(23)는, 이들의 입력과 제어칙에 기초하여, 완충기(7, 10)에서 발생시켜야 하는 감쇠력을 산출한다. 즉, 서스펜션 제어부(23)는, 차량 상태가 되는 스프링상 속도, 피스톤 속도, 피스톤 변위, 롤 레이트, 피치 레이트, 차체 속도, 차륜 속도, 전후 가속도, 횡가속도, 조타각에 따라, 완충기(7, 10)에서 발생시켜야 하는 감쇠력을 연산한다. 서스펜션 제어부(23)는, 완충기(7, 10)에서 발생시켜야 하는 감쇠력에 따른 제어 신호(제어 지령, 지령 전류)를 제어 댐퍼인 완충기(7, 10)로 출력한다. 즉, 서스펜션 제어부(23)는, 차량(1)이 적절하게 제어되는 댐퍼 지령값에 대응하는 제어 신호(제어 지령, 지령 전류)를 완충기(7, 10)의 감쇠력 조정 액추에이터(예컨대, 감쇠력 조정 밸브의 밸브 개방압을 조정하는 솔레노이드)로 출력한다. 또한, 서스펜션 제어부(23)의 제어 신호(댐퍼 제어 전류값)는, 차량 상태 추정부(22)에 입력된다.
이와 같이, 실시형태의 세미액티브 서스펜션 시스템은, CAN(17)과, 서스펜션 제어 유닛(21)과, 세미액티브 서스펜션의 완충기(7, 10)로 구성된다. 서스펜션 제어 유닛(21)은, 각 바퀴(3, 4)의 차륜속이나 차체(2)의 전후 가속도 등의 차재 센서의 검출 신호를 CAN(17)으로부터 취득할 수 있다. 서스펜션 제어 유닛(21)은, CAN(17)으로부터 취득한 정보에 기초하여 완충기(7, 10)의 제어에 필요한 상대 속도나 스프링상 상하 속도 등의 차량 운동 상태량을 추정하는, 차량 상태 추정부(22)와, 차량 상태 추정부(22)가 추정한 차량 운동 상태량에 기초하여 완충기(7, 10)를 제어하는, 세미액티브 제어 로직으로서의 서스펜션 제어부(23)를 구비한다. 완충기(7, 10)는, 서스펜션 제어부(23)로부터의 제어 지령값(제어 지령)에 기초하여, 감쇠력이 제어된다.
후술하는 도 3에 나타내는 바와 같이, 차량 상태 추정부(22)는, 상대 속도 등의 상하 운동 상태를 추정하는 VSE 알고리즘(상하 방향 VSE 알고리즘)으로서의 차량 상하 상태 추정부(25)와, 횡활각 등의 평면 운동 상태를 추정하는 VSE 알고리즘(평면 방향 VSE 알고리즘)으로서의 차량 XY 평면 상태 추정부(24)를 통합한, 3차원의 차량 운동 상태 추정 알고리즘(즉, 3차원의 차량 운동 상태를 추정하는 알고리즘)이다. 그리고, 후술하는 도 4에 나타내는 바와 같이, 차량 상하 상태 추정부(25)는, 차륜속 및 피치 레이트 추정부(26)와, 상하 운동 추정부(27)로 구성된다. 차륜속 및 피치 레이트 추정부(26)는, CAN(17)으로부터 취득한 차륜속이나 전후 가속도 등과 차량 XY 평면 상태 추정부(24)에서 추정된 횡활각 등을 입력으로 하여, 차량(1)의 상하 운동에 의해 생기는 차륜속인 상하 운동 기인 차륜속(제3 차륜속)이나 피치 레이트 등을 추정한다.
상하 운동 추정부(27)는, 상하 운동 기인 차륜속(제3 차륜속)이나 피치 레이트를 관측값(y), 전후 가속도 등을 입력값(u)으로 하여, 상대 속도나 스프링상 상하 속도 등의 상하 운동 상태량을 추정한다. 여기서, 상하 운동 추정부(27)는, 연산 부하 저감을 목적으로 하여 선형 칼만 필터를 이용하고, 서스펜션 감쇠력이나 상하 운동 기인 차륜속을 선형화할 수 있는 정상 성분과 선형화할 수 없는 비정상 성분을 분리하며, 비정상 성분은 상하 운동 추정부(27) 내에서 1 계산 주기 앞의 상하 운동 추정부(27)의 출력(전회값)이나 서스펜션 제어부(23)로부터 취득한 제어 지령값, 차륜속 및 피치 레이트 추정부(26)에서 추정한 차량(1)의 평면 운동에 기인하는 차륜속을 입력으로 하여 추정하고, 입력값(u)으로서 상하 운동 상태량의 추정에 이용한다.
이러한 차량 운동 상태의 추정(산출)을 행하는 차량 상태 추정부(22)에 대해서, 도 2에 더하여 도 3도 참조하면서 설명한다.
차량 상태 추정부(22)에는, CAN(17)을 통해, 전후 가속도 센서값, 횡가속도 센서값, 차륜속 센서값(×4), 조타각 센서값, 요 레이트 센서값, 브레이크 작동 상태, 운전 지원 시스템 동작 상태 등이 입력된다. 또한, 차량 상태 추정부(22)에는, 서스펜션 제어부(23)로부터 제어 신호(제어 지령)가 입력된다. 차량 상태 추정부(22)는, 이들의 입력에 기초하여, 차량(1)의 XY 평면 방향의 상태를 추정(산출)하며, 차량(1)의 상하 방향(Z 방향)의 상태를 추정(산출)한다. X 방향, Y 방향, Z 방향은, 차량(1)의 좌표계(차량 좌표계)이다(도 1).
즉, 차량 상태 추정부(22)는, 차량(1)의 XY 평면 방향의 상태로서, 차속, 제1 슬립비 등의 차량(1)의 XY 평면 방향에 관한 상태값을 추정한다. 또한, 차량 상태 추정부(22)는, 차량(1)의 상하 방향의 상태로서, 상대 속도(피스톤 속도), 차체 상하 속도(스프링상 속도), 상대 변위(피스톤 변위), 롤 레이트, 피치 레이트 등의 차량(1)의 상하 방향에 관한 상태값을 추정한다. 이 때문에, 도 3에 나타내는 바와 같이, 차량 상태 추정부(22)는, 차량(1)의 XY 평면 방향의 상태를 추정(산출)하는 차량 XY 평면 상태 추정부(24)와, 차량(1)의 상하 방향의 상태를 추정(산출)하는 차량 상하 상태 추정부(25)를 구비한다.
차량 XY 평면 상태 추정부(24)에는, CAN(17)을 통해, 전후 가속도 센서값, 횡가속도 센서값, 차륜속 센서값(×4), 조타각 센서값, 요 레이트 센서값, 브레이크 작동 상태, 운전 지원 시스템 동작 상태 등이 입력된다. 또한, 차량 XY 평면 상태 추정부(24)에는, 차량 상하 상태 추정부(25)로부터 스프링상 속도(차체 상하 속도), 피스톤 속도(상대 속도), 피스톤 변위(상대 변위), 롤 레이트, 피치 레이트가 입력된다. 차량 XY 평면 상태 추정부(24)는, 예컨대, 차량(1)의 속도(차체 전후속)가 되는 차속을 산출한다. 차속은, 예컨대, 차륜속 센서값(×4)으로부터 산출(추정)한다. 또한, 차량 XY 평면 상태 추정부(24)는, 예컨대, 차륜속에 기초한 슬립비가 되는 제1 슬립비를 산출한다.
제1 슬립비는, 예컨대, 차속과 차륜속 센서값으로부터 산출한다. 여기서, 도 10에 나타내는 바와 같이, 차속(차체 전후속)을 「VBx」로 하고, 좌측의 전륜(3)의 차륜속 센서값을 「VwFL」로 하며, 우측의 전륜(3)의 차륜속 센서값을 「VwFR」로 하고, 좌측의 후륜(4)의 차륜속 센서값을 「VwRL」로 하며, 우측의 후륜(4)의 차륜속 센서값을 「VwRR」로 한다. 이 경우, 차륜속 센서값을 「Vw」로 하고, 첨자인 「FL」, 「FR」, 「RL」, 「RR」은, 각각 차륜(3, 4)의 위치에 대응한다. 그리고, 차륜속에 기초한 슬립비인 제1 슬립비를 「λ」로 하면, 차륜속에 기초한 슬립비가 되는 제1 슬립비(λ)는, 다음 수학식 2로 산출할 수 있다.
차량 XY 평면 상태 추정부(24)는, 수학식 2에 기초하여, 각각의 차륜(3, 4)마다 제1 슬립비(λ)를 산출한다. 차량 XY 평면 상태 추정부(24)는, 산출한 차속 및 제1 슬립비를 차량 상하 상태 추정부(25)로 출력한다. 또한, 수학식 2의 분모가 0 근방(예컨대, 절대값이 0.000001 m/s 이하)인 경우는, 분모를 슬립비 0할 방지값이 되는 0.000001 m/s로 치환한다. 또한, 차속(차체 전후속)(VBx)이 2 ㎞/h 이하에서는, CAN 신호에 차륜속이 출력되지 않기 때문에, 슬립비는 추정하지 않고 「0」을 출력한다. 슬립비는, 절대값 1을 넘지 않기 때문에, 구한 슬립비는 포화 처리(최대값: 1, 최소값: -1)를 행한 후, 출력한다.
다음에, 차량 상하 상태 추정부(25)에 대해서, 도 3에 더하여 도 4도 참조하면서 설명한다.
차량 상하 상태 추정부(25)에는, 서스펜션 제어부(23)로부터 제어 신호(제어 지령)가 입력된다. 또한, 차량 상하 상태 추정부(25)에는, CAN(17)을 통해, 전후 가속도 센서값, 횡가속도 센서값, 차륜속 센서값(×4), 조타각 센서값, 요 레이트 센서값, 브레이크 작동 상태, 운전 지원 시스템 동작 상태 등이 입력된다. 또한, 차량 상하 상태 추정부(25)에는, 차량 XY 평면 상태 추정부(24)로부터 차속, 제1 슬립비 등이 입력된다. 차량 상하 상태 추정부(25)는, 이들의 입력에 기초하여, 스프링상 속도(차체 상하 속도), 피스톤 속도(상대 속도), 피스톤 변위(상대 변위), 롤 레이트, 피치 레이트를 추정한다. 이 때문에, 도 4에 나타내는 바와 같이, 차량 상하 상태 추정부(25)는, 차륜속 및 피치 레이트 추정부(26)와, 상하 운동 추정부(27)를 구비한다.
차륜속 및 피치 레이트 추정부(26)에는, 서스펜션 제어부(23)로부터 제어 신호가 입력된다. 또한, 차륜속 및 피치 레이트 추정부(26)에는, CAN(17)을 통해, 횡가속도(횡가속도 센서값), 전후 가속도(전후 가속도 센서값), 그 외의 필요한 LAN 신호(CAN 신호)가 입력된다. 또한, 차륜속 및 피치 레이트 추정부(26)에는, 차량 XY 평면 상태 추정부(24)로부터 차속, 제1 슬립비가 입력된다. 차륜속 및 피치 레이트 추정부(26)는, 이들의 입력에 기초하여, 차량(1)(차체(2))의 상하 운동에 기인하는 차륜속인 상하 운동 기인 차륜속(제3 차륜속)을 추정(산출)한다. 또한, 차륜속 및 피치 레이트 추정부(26)는, 차량(차체(2))의 좌우 방향으로 연장되는 피치축 둘레의 회전각 속도에 대응하는 피치 레이트를 추정(산출)한다. 차륜속 및 피치 레이트 추정부(26)는, 추정한 상하 운동 기인 차륜속(제3 차륜속) 및 피치 레이트를 상하 운동 추정부(27)로 출력한다.
상하 운동 추정부(27)에는, 서스펜션 제어부(23)로부터 제어 신호가 입력된다. 또한, 상하 운동 추정부(27)에는, CAN(17)을 통해, 횡가속도(횡가속도 센서값), 전후 가속도(전후 가속도 센서값)가 입력된다. 또한, 상하 운동 추정부(27)에는, 차륜속 및 피치 레이트 추정부(26)로부터 상하 운동 기인 차륜속(제3 차륜속) 및 피치 레이트가 입력된다. 상하 운동 추정부(27)는, 이들의 입력에 기초하여, 스프링상 속도(차체 상하 속도), 피스톤 속도(상대 속도), 피스톤 변위(상대 변위), 롤 레이트, 피치 레이트를 추정한다. 상하 운동 추정부(27)는, 차량(1)을 모델화한 차량 모델(운동 방정식)을 이용하여 계측할 수 없는 정보를 추정하는 옵저버, 예컨대, 전회 추정값과 관측값을 바탕으로 금회값을 추정하는 칼만 필터에 대응한다.
도 4에 나타내는 바와 같이, 차륜속 및 피치 레이트 추정부(26)는, 상하 운동 기인 차륜속(제3 차륜속)을 추정(산출)하는 차륜속 추정부(28)와, 피치 레이트를 추정(산출)하는 피치 레이트 추정부(29)를 구비한다. 또한, 후술하는 도 5에 나타내는 바와 같이, 차륜속 및 피치 레이트 추정부(26)는, 제1 차륜속 및 타이어 상하력 산출부(30)를 구비한다. 피치 레이트 추정부(29)는, 예컨대, 「CAN(17)으로부터 취득한 센서값」과 「차량 XY 평면 상태 추정부(24)에서 추정된 차량(1)의 평면 방향에 관한 상태량」을 입력으로 하여, 피치 레이트를 추정한다. 피치 레이트 추정부(29)는, 추정한 피치 레이트를 상하 운동 추정부(27)로 출력한다.
다음에, 차륜속 추정부(28), 제1 차륜속 및 타이어 상하력 산출부(30)에 대해서, 도 4에 더하여 도 5도 참조하면서 설명한다.
도 5에 나타내는 바와 같이, 차륜속 추정부(28)에는, CAN(17)으로부터의 전후 가속도(전후 가속도 센서값) 및 브레이크 조작 플래그(브레이크 작동 상태)와, 차량 XY 평면 상태 추정부(24)로부터의 차속 및 제1 슬립비와, 제1 차륜속 및 타이어 상하력 산출부(30)로부터의 제1 차륜속(드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속) 및 타이어 상하력(드라이버 조작 기인 타이어 상하력)이 입력된다. 차륜속 추정부(28)는, 이들 입력에 기초하여, 차량(1)(차체(2))의 상하 운동에 기인하는 차륜속인 상하 운동 기인 차륜속(제3 차륜속)을 추정(산출)한다. 차륜속 추정부(28)는, 추정한 상하 운동 기인 차륜속(제3 차륜속)을 상하 운동 추정부(27)로 출력한다.
실시형태에서는, 상하 운동 기인 차륜속(제3 차륜속)은, 「차량(1)(차체(2))의 상하 운동에 기인하는 차륜속」, 보다 구체적으로는, 「노면 변위에 기인하는 차륜속(노면 입력에 의한 상하 운동 기인 차륜속)」에 대응한다. 즉, 「차륜속 센서(13)의 차륜속(차륜속 센서값)」은, 「차량(1)의 제구동(제동, 구동)에 기인하는 차륜속(제구동 기인 차륜속)」과, 「드라이버의 조작에 기초한 상하 운동에 기인하는 차륜속(드라이버 조작 대응 상하 운동 기인 차륜속)」과, 「각 차륜(3, 4)의 슬립에 기인하는 차륜속(슬립 기인 차륜속)」과, 「차량(1)(차체(2))의 상하 운동에 기인하는 차륜속(노면 변위에 기인하는 차륜속)」이 포함된다. 상하 운동 기인 차륜속(제3 차륜속)은, 「차륜속 센서(13)의 차륜속(차륜속 센서값)」으로부터, 「차량(1)의 제구동(제동, 구동)에 기인하는 차륜속」과 「드라이버의 조작에 기초한 상하 운동에 기인하는 차륜속」과 「각 차륜(3, 4)의 슬립에 기인하는 차륜속」을 뺀 차륜속에 대응한다.
차륜속 추정부(28)에는, 제1 차륜속 및 타이어 상하력 산출부(30)로부터 「드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속(제1 차륜속)」이 입력된다. 후술하는 바와 같이, 제1 차륜속 및 타이어 상하력 산출부(30)에서는, 「차륜속 센서(13)의 차륜속(차륜속 센서값)」으로부터 「드라이버 조작 대응 상하 운동 기인 차륜속」을 뺀 「드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속(제1 차륜속)」을 산출한다. 제1 차륜속 및 타이어 상하력 산출부(30)는, 산출한 「드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속(제1 차륜속)」을 차륜속 추정부(28)로 출력한다. 차륜속 추정부(28)는, 「드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속(제1 차륜속)」으로부터 「차량(1)의 제구동(제동, 구동)에 기인하는 차륜속」과 「각 차륜(3, 4)의 슬립에 기인하는 차륜속」을 뺌으로써, 「차량(1)(차체(2))의 상하 운동에 기인하는 차륜속(노면 변위에 기인하는 차륜속)」이 되는, 상하 운동 기인 차륜속(제3 차륜속)을 산출한다. 차륜속 추정부(28)의 설명에 앞서, 제1 차륜속 및 타이어 상하력 산출부(30)에 대해서 설명한다.
제1 차륜속 및 타이어 상하력 산출부(30)는, 「드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속(제1 차륜속)」과 「드라이버 조작에 의해 생기는 타이어 상하력(드라이버 조작 기인 타이어 상하력)」을 산출한다. 제1 차륜속 및 타이어 상하력 산출부(30)는, 산출한 제1 차륜속 및 타이어 상하력을 차륜속 추정부(28)(제2 차륜속 산출부(31))로 출력한다. 「드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속(제1 차륜속)」은, 「내륜차를 고려한 차륜속(무게 중심 위치 환산 차륜속)」과 「드라이버 조작 대응 상하 운동 기인 차륜속(드라이버 입력에 의한 상하 운동 기인 차륜속)」의 차로부터 구한다. 「내륜차를 고려한 차륜속(무게 중심 위치 환산 차륜속)」은, 「조타각(조타각 센서값)」과 「차체 요 레이트(요 레이트 센서값)」와 「차륜속 센서(13)의 차륜속(차륜속 센서값)」으로부터 구할 수 있다. 이 때문에, 제1 차륜속 및 타이어 상하력 산출부(30)에는, 조타각 센서값과 요 레이트 센서값과 차륜속 센서값(×4)이 입력된다.
여기서, 차량(1)의 선회 시에는, 선회 반경의 내직경측의 차륜(내륜)과 외직경측의 차륜(외륜)에 회전차가 발생한다. 그 대책으로서, 내륜차를 고려한 차륜속을 산출한다. 즉, 4륜의 차륜속(차륜속 센서값)을, 차량(1)의 무게 중심 위치에서의 차륜속(VWcgfl, VWcgfr, VWcgrl, VWcgrr)으로 환산한다. 구체적으로는, 다음 수학식 3∼수학식 6을 이용하여, 각각의 차륜(4륜)의 무게 중심 위치 환산 차륜속(VWcgfl, VWcgfr, VWcgrl, VWcgrr)을 산출한다. 또한, 하기의 수학식 3∼수학식 6에서는, 차륜속을 구한 후, 정밀도 향상을 위해 4륜 공통이라고 생각되는 유효 회전 반경으로 나누고, 프론트와 리어에서 다른 유효 회전 반경을 곱함으로써, 무게 중심 위치 환산 차륜속을 구하고 있다.
첨자인 「fl」, 「fr」, 「rl」, 「rr」은, 각각 차륜(3, 4)의 위치에 대응한다. 수식 중, 「VWfl」, 「VWfr」, 「VWrl」, 「VWrr」은 4륜의 차륜속(센서 차륜속 센서값)이고, 「δ」는 타이어각이며, 「df」는 전륜의 트레드폭이고, 「dr」은 후륜의 트레드폭이며, 「rsen」은 요 레이트 센서값이고, 「Rrollo」는 타이어 실행 반경 초기값이며, 「Rrollf」는 전륜 타이어 실행 반경이고, 「Rrollr」은 전륜 타이어 실행 반경이다.
한편, 「드라이버 조작 대응 상하 운동 기인 차륜속(드라이버 입력에 의한 상하 운동 기인 차륜속)」은, 「드라이버 조작에 의해 생기는 차체 피치 레이트」와, 「드라이버 조작에 의해 생기는 댐퍼 상대 변위·상대 속도」와, 「드라이버 조작에 의해 생기는 타이어 상하력」과, 「차체 속도(차속)」로부터 구한다. 「드라이버 조작에 의해 생기는 차체 피치 레이트」는, 「차체 전후 가속도(전후 가속도 센서값)」로부터 구한다. 또한, 「드라이버 조작에 의해 생기는 댐퍼 상대 변위·상대 속도」는, 「드라이버 조작에 의해 생기는 차체 피치 레이트」와, 「드라이버 조작에 의해 생기는 차체 롤 레이트」로부터 구한다. 「드라이버 조작에 의해 생기는 차체 롤 레이트」는, 「차체 속도(차속)」와 「차체 요 레이트(요 레이트 센서값)」와 「조타각(조타각 센서값)」으로부터 구한다. 또한, 「드라이버 조작에 의해 생기는 타이어 상하력」은, 「드라이버 조작에 의해 생기는 댐퍼 상대 변위·상대 속도」와, 「댐퍼 지령값으로부터 구한 댐퍼 감쇠력」과, 「차체 전후 가속도(전후 가속도 센서값)」와, 「차체 횡가속도(횡가속도 센서값)」로부터 구한다. 이 때문에, 제1 차륜속 및 타이어 상하력 산출부(30)에는, 조타각 센서값과 요 레이트 센서값과 차륜속 센서값(×4) 외에, 차속과 전후 가속도 센서값과 댐퍼 지령값(댐퍼 제어 전류값)과 횡가속도 센서값이 입력된다.
제1 차륜속 및 타이어 상하력 산출부(30)는, 차속과 전후 가속도 센서값과 요 레이트 센서값과 조타각 센서값과 댐퍼 지령값(댐퍼 제어 전류값)과 횡가속도 센서값에 기초하여, 「드라이버 조작 대응 상하 운동 기인 차륜속(드라이버 입력에 의한 상하 운동 기인 차륜속)」을 산출한다. 이 경우, 「드라이버 조작 대응 상하 운동 기인 차륜속(드라이버 입력에 의한 상하 운동 기인 차륜속)」은, 「드라이버 입력에 의한 피치 변동 기인의 차륜속」과 「드라이버 입력에 의한 서스펜션 변위 기인의 차륜속」과 「드라이버 입력에 의한 하중 변동 기인의 차륜속」으로부터 산출할 수 있다.
「드라이버 입력에 의한 피치 변동 기인의 차륜속」은, 다음과 같이 산출한다. 즉, 드라이버 입력에 의한 피치 변동 기인의 차륜속을 「VWza」로 하고, 차체 무게 중심 높이를 「h」로 하고, 드라이버 입력에 의한 피치 레이트를 θyd로 한 경우, VWza는 하기의 수학식 7을 이용하여 산출한다.
「드라이버 입력에 의한 서스펜션 변위 기인의 차륜속」은, 다음과 같이 산출한다. 즉, 드라이버 입력에 의한 서스펜션 변위 기인의 차륜속을 「VWzb」로 하고, 서스펜션(완충기)의 상대 변위를 「Z21」로 하며, 서스펜션(완충기)의 상대 속도를 「V21」로 한 경우, VWzb는, 하기의 수학식 8을 이용하여 산출한다. 수학식 8 중, α1, α2는, 차륜 전후 변위와 상대 변위의 관계의 근사 곡선의 2차와 1차, 0차 계수이다. 「α」는, 차고 센서를 이용한 실측 상당의 상하 운동 기인 차륜속으로부터 맞출 수 있다.
「드라이버 입력에 의한 하중 변동 기인의 차륜속」은, 다음과 같이 산출한다. 즉, 드라이버 입력에 의한 하중 변동 기인의 차륜속을 「VWzc」로 하고, 추정 차체 전후속인 차속을 「Vbx」로 하며, 타이어에 작용하는 서스펜션 기인의 상하력을 「DFtz」로 하고, 타이어 유효 회전 반경을 「rtire」로 하며, 타이어 상하 스프링 정수를 「kt」로 하고, 접지 하중에 대한 타이어 유효 회전 반경의 근사 직선의 기울기를 「η」로 한 경우, VWzc는, 하기의 수학식 9를 이용하여 산출한다. 「η」는, 타이어 사양으로부터 선형화하여 구한다.
「드라이버 조작 대응 상하 운동 기인 차륜속(드라이버 입력에 의한 상하 운동 기인 차륜속)」은, 산출한 「드라이버 입력에 의한 피치 변동 기인의 차륜속」, 「드라이버 입력에 의한 서스펜션 변위 기인의 차륜속」 및 「드라이버 입력에 의한 하중 변동 기인의 차륜속」을 모두 더함으로써 산출할 수 있다.
이와 같이, 제1 차륜속 및 타이어 상하력 산출부(30)는, 「드라이버 조작 대응 상하 운동 기인 차륜속(드라이버 입력에 의한 상하 운동 기인 차륜속)」을 산출한다. 제1 차륜속 및 타이어 상하력 산출부(30)는, 전술한 「내륜차를 고려한 차륜속(무게 중심 위치 환산 차륜속)」으로부터 전술한 「드라이버 조작 대응 상하 운동 기인 차륜속(드라이버 입력에 의한 상하 운동 기인 차륜속)」을 감산함으로써, 「드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속(제1 차륜속)」을 산출한다. 또한, 제1 차륜속 및 타이어 상하력 산출부(30)는, 「드라이버 조작에 의해 생기는 댐퍼 상대 변위·상대 속도」와, 「댐퍼 지령값으로부터 구한 댐퍼 감쇠력」과, 「차체 전후 가속도(전후 가속도 센서값)」와, 「차체 횡가속도(횡가속도 센서값)」로부터 「드라이버 조작에 의해 생기는 타이어 상하력」을 산출한다. 제1 차륜속 및 타이어 상하력 산출부(30)는, 산출한 「드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속(제1 차륜속)」 및 「드라이버 조작에 의해 생기는 타이어 상하력」을 차륜속 추정부(28)로 출력한다.
다음에, 차륜속 추정부(28)에 대해서 설명한다.
도 5에 나타내는 바와 같이, 차륜속 추정부(28)는, 제2 차륜속 산출부(31)와, 제3 차륜속 산출부(32)를 구비한다. 제2 차륜속 산출부(31)에는, CAN(17)으로부터의 전후 가속도(전후 가속도 센서값) 및 브레이크 조작 플래그(브레이크 작동 상태)와, 차량 XY 평면 상태 추정부(24)로부터의 차속 및 제1 슬립비와, 제1 차륜속 및 타이어 상하력 산출부(30)로부터의 제1 차륜속(드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속) 및 타이어 상하력(드라이버 조작 기인 타이어 상하력)이 입력된다.
즉, 제2 차륜속 산출부(31)에는, 전후 가속도와, 브레이크 작동 플래그와, 차속과, 각각의 차륜(3, 4)마다의 타이어 상하력과, 각각의 차륜(3, 4)마다의 제1 차륜속과, 각각의 차륜(3, 4)마다의 제1 슬립비가 입력된다. 제2 차륜속 산출부(31)는, 전후 가속도와, 브레이크 작동 플래그와, 차속과, 타이어 상하력(드라이버 조작 기인 타이어 상하력)과, 제1 차륜속(드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속)과, 제1 슬립비(차륜속에 기초하는 슬립비)에 기초하여, 제2 차륜속(차륜 슬립 고려 차륜속)을 산출한다. 제2 차륜속(차륜 슬립 고려 차륜속)은, 슬립 기인 차륜속 및 드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속에 대응한다.
즉, 제2 차륜속 산출부(31)는, 「드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속(제1 차륜속)」으로부터 「각 차륜(3, 4)의 슬립에 기인하는 차륜속」을 뺌으로써, 제2 차륜속(차륜 슬립 고려 차륜속)을 산출하고, 이 산출한 제2 차륜속을 제3 차륜속 산출부(32)로 출력한다. 제2 차륜속(차륜 슬립 고려 차륜속)은, 「차량(1)의 제구동(제동, 구동)에 기인하는 차륜속」과, 「차량(1)(차체(2))의 상하 운동에 기인하는 차륜속(노면 변위에 기인하는 차륜속)」이 포함된 차륜속에 대응한다.
제3 차륜속 산출부(32)에는, 전후 가속도와, 각각의 차륜(3, 4)마다의 제2 차륜속이 입력된다. 제3 차륜속 산출부(32)는, 전후 가속도와, 제2 차륜속(차륜 슬립 고려 차륜속)에 기초하여, 제3 차륜속(상하 운동 기인 차륜속)을 산출한다. 즉, 제3 차륜속 산출부(32)는, 전후 가속도에 기초하여, 차량(1)의 제구동(제동, 구동)에 기인하는 차륜속을 산출한다. 제3 차륜속 산출부(32)는, 「차륜 슬립 고려 차륜속(제2 차륜속)」으로부터 「차량(1)의 제구동(제동, 구동)에 기인하는 차륜속」을 뺌으로써, 제3 차륜속(상하 운동 기인 차륜속)을 산출하고, 이 산출한 제3 차륜속을 상하 운동 추정부(27)로 출력한다. 제3 차륜속(상하 운동 기인 차륜속)은, 「차량(1)(차체(2))의 상하 운동에 기인하는 차륜속(노면 변위에 기인하는 차륜속)」에 대응한다.
다음에, 제2 차륜속 산출부(31)에 대해서, 도 6을 참조하면서 설명한다.
제2 차륜속 산출부(31)는, 제2 차륜속(차륜 슬립 고려 차륜속), 즉, 「차량(1)의 제구동(제동, 구동)에 기인하는 차륜속」과, 「차량(1)(차체(2))의 상하 운동에 기인하는 차륜속(노면 변위에 기인하는 차륜속)」이 포함된 차륜속을 산출한다. 구체적으로는, 제2 차륜속 산출부(31)는, 제1 차륜속(드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속)으로부터 슬립에 기인하는 차륜속을 뺌으로써, 차륜 슬립 고려 차륜속이 되는 제2 차륜속을 산출한다. 이 때문에, 제2 차륜속 산출부(31)는, 보정 전후 가속도 산출부(33)와, 슬립비 교체 계수 산출부(34)와, 슬립비 산출부(35)와, 슬립 기인 차륜속 산출부(36)와, 감산부(37)를 구비한다.
보정 전후 가속도 산출부(33)에는, 전후 가속도와 타이어 상하력(드라이버 조작 기인 타이어 상하력)과 브레이크 작동 플래그가 입력된다. 보정 전후 가속도 산출부(33)는, 차량(1)을 2륜 구동차로 한 경우에, 구동 시에 생기는 전후 가속도를 4륜 구동차 상당으로 보정하는 처리를 행한다. 이것은, 후술하는 전후 가속도에 기초한 슬립비의 산출 처리(도 7의 제2 슬립비 산출부(38), 슬립비 배분 산출부(39), 제3 슬립비 산출부(40))가 4륜에 의한 제구동을 전제로 한 슬립비의 산출(추정)이기 때문이다. 즉, 보정 전후 가속도 산출부(33)는, 전후 가속도를 4륜 구동차 상당의 전후 가속도로 환산하는 처리를 행한다.
보정 전후 가속도 산출부(33)는, 전후 가속도와 타이어 상하력(드라이버 조작 기인 타이어 상하력)과 브레이크 작동 플래그를 입력으로 하여, 보정 전후 가속도를 출력한다. 브레이크 작동 플래그가 「1」인 제동 시는, 4륜으로 제동을 행하기 때문에, 보정은 불필요하다. 이 경우, 전후 가속도를 「Gx」로 하면, 보정 전후 가속도 「Gxf」는, 다음 수학식 10으로 표시된다.
다음에, 브레이크 작동 플래그가 「0」인 구동 시는, 전륜 구동의 차량(1)에서는, 보정이 필요하다. 이 경우, 드라이버 조작 기인 타이어 상하력을 「FzoFL」, 「FzoFR」, 「FzoRL」, 「FzoRR」로 하면, 보정 전후 가속도 「Gxf」는, 다음 수학식 11로 표시된다. 또한, 「Fzo」는 드라이버 조작 기인 타이어 상하력에 대응하고, 첨자인 「FL」, 「FR」, 「RL」, 「RR」은, 각각 차륜(3, 4)의 위치에 대응한다.
타이어 전후력의 상한은, 타이어 상하력의 크기에 비례한다. 즉, 2륜 구동차와 4륜 구동차의 가속도의 비는, 구동륜에 작용하는 타이어 상하력의 비와 같다고 생각된다. 보정 전후 가속도 산출부(33)에서는, 이 관계에 기초하여, 4륜과와 구동륜의 타이어 상하력의 비를 구하고, 그것에 2륜 구동차의 구동 시의 전후 가속도를 곱함으로써, 4륜 구동차 상당의 전후 가속도를 추정(산출)한다. 보정 전후 가속도 산출부(33)는, 산출한 보정 전후 가속도(Gxf)를 슬립비 산출부(35)로 출력한다.
슬립비 교체 계수 산출부(34)에는, 제1 슬립비, 즉, 차량 XY 평면 상태 추정부(24)에서 산출된 차륜속에 기초한 슬립비가 입력된다. 도 8에 나타내는 바와 같이, 슬립비 교체 계수 산출부(34)는, 「제1 슬립비」와 「슬립비 교체 계수」의 관계(도 8 중의 특성선(34A))에 기초하여, 입력된 제1 슬립비의 값에 대응하는 슬립비 교체 계수를 산출한다. 즉, 슬립비 교체 계수 산출부(34)는, 차륜속으로부터 추정한 슬립비가 되는 제1 슬립비를 입력으로 하여, 도 8에 나타내는 특성선(34A)의 관계에 기초하여, 슬립비 교체 계수를 산출한다. 후술하는 바와 같이, 슬립비 교체 계수는, 전후 가속도에 기초한 슬립비(후술의 제3 슬립비)와 차륜속에 기초한 슬립비(제1 슬립비)를 서서히 교체하는 처리에 사용한다.
도 8에 나타내는 바와 같이, 슬립비 교체 계수는, 슬립비가 작은 측의 임계값 이하일 때는 「0」, 큰 측의 임계값 이상일 때는 「1」이 되고, 그 사이는, 선형 보간된다. 작은 측의 임계값(예컨대, 0.02)은, 후술하는 전후 가속도와 타이어 특성에 기초한 슬립비(후술하는 제3 슬립비)로 차륜 슬립 고려 차륜속을 산출하는 슬립비의 상한으로서 설정할 수 있다. 한편, 큰 측의 임계값(예컨대, 0.08)은, 트랙션 컨트롤 시스템 등의 운전 지원 시스템이 작동을 개시하는 슬립비에 기초하여 설정할 수 있다.
즉, 실시형태에서는, 예컨대, 제1 슬립비가 0.02 이하인 경우는, 슬립비 교체 계수로서 「0」을 산출하고, 제1 슬립비가 0.08 이상인 경우는, 슬립비 교체 계수로서 「1」을 산출한다. 제1 슬립비가 0.02 이상 0.08 이하인 경우는, 선형 보간된 비례 관계의 특성에 기초하여 슬립비 교체 계수를 산출한다. 슬립비 교체 계수는, 그때의 차륜속에 기초한 슬립비에 따라, 후술하는 전후 가속도와 타이어 특성에 기초한 슬립비(제3 슬립비)와 차륜속에 기초한 슬립비(제1 슬립비)를 전환하기 위한 계수가 된다. 슬립비 교체 계수 산출부(34)는, 산출한 슬립비 교체 계수를 슬립비 산출부(35)로 출력한다.
슬립비 산출부(35)에는, 보정 전후 가속도(Gxf)와, 브레이크 작동 플래그와, 제1 슬립비(차륜속에 기초하는 슬립비)와, 슬립비 교체 계수가 입력된다. 슬립비 산출부(35)는, 보정 전후 가속도(Gxf)와 브레이크 작동 플래그와 제1 슬립비와 슬립비 교체 계수에 기초하여, 슬립비(제5 슬립비)를 산출한다. 슬립비 산출부(35)는, 산출한 슬립비(제5 슬립비)를 슬립 기인 차륜속 산출부(36)로 출력한다. 슬립비 산출부(35)의 상세에 대해서는 후술한다.
슬립 기인 차륜속 산출부(36)에는, 제1 차륜속과, 차속과, 슬립비(제5 슬립비)가 입력된다. 슬립 기인 차륜속 산출부(36)는, 슬립비 산출부(35)에서 추정(산출)한 슬립비(제5 슬립비)와, 제1 차륜속 및 타이어 상하력 산출부(30)에서 산출한 드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속인 제1 차륜속과, 차속을 입력으로 하여, 슬립 기인 차륜속을 산출한다. 슬립 기인 차륜속을 「Vwslip」로 하고, 제5 슬립비를 「λm」으로 하며, 제1 차륜속을 「Vwno」로 하고, 차속을 「Vb」로 한 경우에, 슬립 기인 차륜속(Vwslip)은, 다음 수학식 12로 표시된다. 슬립 기인 차륜속 산출부(36)는, 수학식 12에 기초하여 슬립 기인 차륜속(Vwslip)을 산출하고, 산출한 슬립 기인 차륜속(Vwslip)을 감산부(37)로 출력한다.
감산부(37)에는, 제1 차륜속과, 슬립 기인 차륜속(Vwslip)이 입력된다. 감산부(37)는, 드라이버 조작 대응 상하 운동 기인 차륜속 없는 차륜속인 제1 차륜속(Vwno)으로부터 슬립 기인 차륜속(Vwslip)을 뺌으로써, 제2 차륜속을 산출한다. 차륜 슬립 고려 차륜속이 되는 제2 차륜속은, 「차량(1)의 제구동(제동, 구동)에 기인하는 차륜속」과, 「차량(1)(차체(2))의 상하 운동에 기인하는 차륜속(노면 변위에 기인하는 차륜속)」이 포함된 차륜속에 대응한다. 감산부(37)는, 산출한 제2 차륜속(차륜 슬립 고려 차륜속)을 제3 차륜속 산출부(32)로 출력한다.
다음에, 슬립비 산출부(35)에 대해서, 도 7을 참조하면서 설명한다.
슬립비 산출부(35)는, 제2 슬립비 산출부(38)와, 슬립비 배분 산출부(39)와, 제3 슬립비 산출부(40)와, 곱셈부(41)와, 각 바퀴 슬립비 선택부(42)를 구비한다. 제2 슬립비 산출부(38)에는, 보정 전후 가속도가 입력된다. 제2 슬립비 산출부(38)는, 보정 전후 가속도 산출부(33)에서 산출된 보정 전후 가속도로부터 타이어 특성에 기초한 슬립비(제2 슬립비)를 산출한다. 즉, 제2 슬립비 산출부(38)는, 차량(1)의 차체(2)의 전후 가속도(차체 전후 가속도)와 타이어 특성(예컨대, 사전에 타이어 특성 시험으로 취득한 이미 알고 있는 타이어 특성)으로부터 각 바퀴의 슬립비(슬립 성분)를 산출한다. 보다 구체적으로는, 슬립비 산출부(35)에서는, 전후 가속도(차체 전후 가속도)에 대하여 타이어 전후 특성에 기초한 슬립비 곱셈 계수(슬립비 계수)를 곱셈하여 슬립비를 추정한다.
도 11 및 도 12에 타이어 전후 특성을 나타낸다. 도 11의 특성선(44)은, 「슬립비」와 「타이어 전후력/타이어 상하력」의 관계의 일례를 나타낸다. 도 12의 특성선(45)은, 「전후 가속도/g (= 타이어 전후력/타이어 상하력)」와 「슬립비」의 관계의 일례를 나타낸다. 도 12는 도 11의 종축과 횡축을 교체하여 이하에서 설명하는 식을 이용하여 표기를 바꾸고 있다. 또한, 도 12의 특성선(45)은, 도 11의 특성선(44) 중 슬립비가 0∼0.1인 범위에 대응한다. 또한, 도 11 및 도 12에 나타내는 특성은, 차량(1)의 종류, 사양, 타이어의 종류, 사양 등에 따라 변화한다. 실시형태에서는, 도 11 및 도 12에 나타내는 특성을 갖는 차량(1) 및 타이어를 예로서 설명한다.
도 9에 나타내는 바와 같이, 타이어 전후력의 합을 「Fx」로 하고, 차량(1)에 생기고 있는 타이어 상하력의 합을 「Fz」로 하며, 차량 중량을 「m」으로 하고, 중력 가속도를 「g」로 하며, 가속도를 「Gx」로 하고, 마찰 계수를 「μ」로 한다. 이 경우, 운동 방정식으로부터 하기의 수학식 13이 얻어진다.
그리고, 타이어 전후력을 타이어 상하력으로 나눈 값은, 다음 수학식 14로 표시된다.
또한, 타이어 상하력이 차체의 하중만이라고 가정하면, 다음 수학식 15가 된다.
그리고, 도 12의 기울기를 슬립비 계수 「kws」로 하고, 보정 전후 가속도를 「Gxf」로 하며, 슬립비를 「λgx」로 하면, 슬립비(λgx)는, 다음 수학식 16으로 표시된다.
이 수학식 16으로부터, 예컨대, 도 12에서는, 슬립비 계수(kws)는, 0.04가 된다. 슬립비 산출부(35)는, 각 바퀴의 보정 전후 가속도(Gxf)와 슬립비 계수(kws)를 곱함으로써, 타이어 특성에 기초한 각 바퀴의 슬립비(제2 슬립비)를 산출한다. 실시형태에서는, 실용 영역을 선형 범위, 예컨대, 슬립비 0.02(소 슬립 영역)까지로 하고 있다. 즉, 이 실용 영역에서는, 슬립비 계수(kws)는 선형이기 때문에, 슬립비 계수(kws)를 선형에 근사하여 사용한다.
한편, 수학식 16에서는, 모든 차륜의 슬립비가 같은 것으로 가정하기 때문에, 각 바퀴의 슬립비의 배분을 행할 필요가 있다. 이 때문에, 슬립비 배분 산출부(39)에서, 배분율을 산출하고, 제2 슬립비 산출부(38)에서 산출한 제2 슬립비를 제3 슬립비 산출부(40)에서 각 바퀴에 배분한다. 이 때문에, 제2 슬립비 산출부(38)는, 산출한 슬립비, 즉, 도 11에 나타내는 타이어 특성(슬립비 계수)과 전후 가속도(보정 전후 가속도)에 기초하여 산출한 제2 슬립비를 제3 슬립비 산출부(40)로 출력한다.
슬립비 배분 산출부(39)에는, 브레이크 작동 플래그와, 제1 슬립비가 입력된다. 슬립비 배분 산출부(39)는, 제1 슬립비, 즉, 차륜속으로부터 산출한 각 바퀴의 슬립비에 기초하여, 각 바퀴의 슬립비의 비율을 산출한다. 슬립비 배분 산출부(39)에서는, 슬립비를 구하는 것이 아니라, 각 바퀴의 슬립비의 배분(비율)만을 계산한다. 즉, 전술의 수학식 2를 이용하여 차량 XY 평면 상태 추정부(24)에서 산출되는 제1 슬립비는, 각 바퀴마다 산출할 수 있지만, 상하 운동 기인 차륜속을 포함하기 때문에, 차륜 슬립 기인 차륜속을 구하기 위해서는 정밀도가 낮다. 그러나, 각 바퀴의 슬립비의 대략적인 배분은, 크게 어긋나 있지 않다. 그래서, 슬립비 배분 산출부(39)에서는, 각 바퀴의 제1 슬립비로부터 각 바퀴의 슬립 비율을 산출한다.
구체적으로는, 슬립비 배분 산출부(39)는, 하기의 수학식 17을 이용하여, 각 바퀴의 슬립비의 비율(배분)을 산출한다. 수학식 17 중, 「Rλ」는 비율, 「λ」는 슬립비(제1 슬립비)에 대응한다. 또한, 첨자인 「oo」은, 차륜(3, 4)의 위치가 되는 「FL」, 「FR」, 「RL」, 「RR」 중 어느 하나에 대응한다. 예컨대, 좌측의 전륜(3)의 비율(Rλ)은 「RλFL」이 되고, 슬립비(제1 슬립비)는 「λFL」이 된다.
또한, 차량(1)은 2륜 구동이기 때문에, 감속 시는 4륜으로 분류하고, 그 이외에는, 구동륜으로 분류하여, 종동륜의 슬립비는 0으로 한다. 감속 시인지 그 이외인지는, 브레이크 작동 플래그에 의해 판정한다. 슬립비 배분 산출부(39)는, 산출한 각 바퀴의 슬립비의 비율(배분), 즉, 비율(RλFL), 비율(RλFR), 비율(RλRL), 비율(RλRR)을 제3 슬립비 산출부(40)로 출력한다.
제3 슬립비 산출부(40)에는, 제2 슬립비와 각 바퀴의 슬립비의 비율(RλFL, RλFR, RλRL, RλRR)이 입력된다. 제3 슬립비 산출부(40)는, 제2 슬립비 산출부(38)에서 산출한 제2 슬립비(타이어 특성에 기초하는 각 바퀴의 슬립비)와 슬립비 배분 산출부(39)에서 산출한 비율(각 바퀴의 슬립비의 비율)에 기초하여, 각 바퀴의 슬립비를 산출한다. 구체적으로는, 각 바퀴의 각각에서 제2 슬립과 비율을 곱함으로써, 각 바퀴의 슬립비(제3 슬립비)를 산출한다. 제3 슬립비 산출부(40)에서 산출되는 슬립비는, 차체 전후 가속도와 타이어 특성에 기초한 슬립비(제2 슬립비)를 보정(각 바퀴에 배분)하여 구한 각 바퀴의 슬립비, 즉, 전후 가속도와 타이어 특성으로부터 산출한 슬립비(제3 슬립비)에 대응한다. 제3 슬립비 산출부(40)는, 산출한 제3 슬립비를 각 바퀴 슬립비 선택부(42)로 출력한다.
제3 슬립비는, 중 슬립(예컨대, 0.02 이상)이 된 경우에, 상하 운동 기인 차륜속의 추정 오차가 커져, 상하 운동 상태량이 발산할 가능성이 있다. 그래서, 실시형태에서는, 그때의 슬립비에 따라, 전후 가속도와 타이어 특성으로부터 산출한 슬립비(제3 슬립비)를 차륜속에 기초한 슬립비(제1 슬립비)로 서서히 교체한다. 이 때문에, 실시형태에서는, 전술한 슬립비 교체 계수 산출부(34)와, 곱셈부(41)와, 각 바퀴 슬립비 선택부(42)를 구비한다. 이에 의해, 슬립비가 중 슬립(예컨대, 0.02 이상)이 된 경우의 상하 운동 상태량의 발산을 방지한다.
즉, 곱셈부(41) 및 각 바퀴 슬립비 선택부(42)에서는, 전후 가속도에 기초한 슬립비(제3 슬립비)를 차륜속으로 구한 슬립비에 따라 차륜속에 기초한 슬립비(제1 슬립비)로 전환한다. 곱셈부(41)에는, 차륜속에 기초한 슬립비(제1 슬립비)와 슬립비 교체 계수가 입력된다. 곱셈부(41)는, 차륜속에 기초한 슬립비(제1 슬립비)와 슬립비 교체 계수를 곱함으로써, 교체용의 차륜속에 기초한 슬립비(제4 슬립비)를 산출한다. 곱셈부(41)는, 산출한 제4 슬립비(교체용 제1 슬립비)를 각 바퀴 슬립비 선택부(42)로 출력한다.
각 바퀴 슬립비 선택부(42)에는, 브레이크 작동 플래그와, 제3 슬립비와, 제4 슬립비가 입력된다. 각 바퀴 슬립비 선택부(42)는, 브레이크 조작 상황에 따라, 제3 슬립비와 제4 슬립비 중 어느 하나를 선택하고, 선택한 슬립비를 최종적인 슬립비(제5 슬립비)로서, 슬립 기인 차륜속 산출부(36)로 출력한다. 즉, 각 바퀴 슬립비 선택부(42)는, 제3 슬립비와 제4 슬립비를 비교하여, 브레이크 비작동 중은 값이 큰 슬립비를 선택하고, 브레이크 작동 중은 값이 작은 슬립비를 선택한다. 각 바퀴 슬립비 선택부(42)는, 선택한 슬립비(제3 슬립비 또는 제4 슬립비)를 제5 슬립비로서 슬립 기인 차륜속 산출부(36)로 출력한다.
브레이크 작동 상태로 대소를 나누는 이유는, 브레이크 작동 상태에 따라 가속도의 정부가 변하여도, 보다 큰 슬립비(절대값의 큰 슬립비)를 선택할 수 있도록 하기 위해서이다. 또한, 각 바퀴 슬립비 선택부(42)에서 제3 슬립비와 제4 슬립비를 선택하는 이유, 바꾸어 말하면, 차륜속으로부터 구한 슬립비를 항상 채용하지 않는 이유는, 차륜속으로부터 구한 슬립비는 상하 운동 성분(상하 운동 기인 차륜속)도 포함되기 때문이다. 즉, 차륜속으로부터 구한 슬립비는 상하 운동 성분(상하 운동 기인 차륜속)도 포함되기 때문에, 차륜속으로부터 구한 슬립비를 100% 채용하면, 상하 운동의 상태 추정이 곤란해지기 때문이다.
이와 같이, 실시형태에 따르면, 서스펜션 제어 유닛(21)은, 차륜(3, 4)의 슬립 상태를 검출하기 위한 슬립 상태 검출 장치(43)를 갖는다. 슬립 상태 검출 장치(43)는, 타이어 특성 고려 슬립비 확정 수단으로서의 제2 슬립비 산출부(38)와, 보정 슬립비 확정 수단으로서의 슬립비 배분 산출부(39) 및 제3 슬립비 산출부(40)를 구비한다. 제2 슬립비 산출부(38)는, 전후 가속도 센서(11)에서 검출된 차량(1)의 전후 가속도 신호(전후 가속도)와 타이어 특성(슬립비 계수)에 따라 타이어 특성 고려 슬립비(제2 슬립비)를 구한다. 슬립비 배분 산출부(39) 및 제3 슬립비 산출부(40)는, 타이어 특성 고려 슬립비(제2 슬립비)를, 각 차륜(3, 4)의 회전 속도 신호(차륜속)에 따라 구하는 각 바퀴의 슬립비(보다 구체적으로는, 슬립비의 비율)로 보정하여 각 바퀴의 보정 슬립비(제3 슬립비)를 구한다. 이 때문에, 각 차륜(3, 4)의 슬립비, 나아가서는, 슬립비에 기초하여 산출되는 슬립 기인 차륜속의 정밀도를 향상시킬 수 있다.
또한, 실시형태에 따르면, 전후 가속도 검출 수단으로서의 전후 가속도 센서(11)와, 차륜 회전 속도 검출 수단으로서의 차륜속 센서(13)와, 제어 장치로서의 서스펜션 제어 유닛(21)과, 액추에이터로서의 완충기(7, 10)(감쇠력을 조정하는 감쇠력 조정 밸브, 솔레노이드 등의 감쇠력 조정 기구)를 구비한다. 전후 가속도 센서(11)는, 차량(1)의 전후 가속도를 검출하여, 전후 가속도 신호를 출력한다. 차륜속 센서(13)는, 각 차륜(3, 4)의 회전 속도를 검출하여, 각 차륜(3, 4)의 회전 속도 신호를 출력한다.
서스펜션 제어 유닛(21)은, 전후 가속도 신호와 각 차륜(3, 4)의 회전 속도 신호를 입력한다. 서스펜션 제어 유닛(21)(예컨대, 제2 슬립비 산출부(38))은, 입력된 전후 가속도 신호(전후 가속도)와 타이어 특성(슬립비 계수)으로부터 타이어 특성 고려 슬립비(제2 슬립비)를 구한다. 서스펜션 제어 유닛(21)(예컨대, 슬립비 배분 산출부(39) 및 제3 슬립비 산출부(40))은, 타이어 특성 고려 슬립비를, 각 차륜(3, 4)의 회전 속도 신호(차륜속)에 따라 보정(배분)하여 각 바퀴의 보정 슬립비(제3 슬립비)를 구한다.
서스펜션 제어 유닛(21)(예컨대, 슬립 기인 차륜속 산출부(36), 감산부(37), 제3 차륜속 산출부(32), 상하 운동 추정부(27))은, 각 차륜(3, 4)의 회전 속도 신호(차륜속)에 기초하여, 추정된 차체(2)의 상하 이동을 각 바퀴의 보정 슬립비에 기초하여 보정한다. 서스펜션 제어 유닛(21)(예컨대, 서스펜션 제어부(23))은, 보정된 차체(2)의 상하 이동에 기초한 제어 신호를 출력한다. 완충기(7, 10)(감쇠력 조정 기구)는, 차체(2) 및 차륜(3, 4)측 부재 사이에 마련된다. 완충기(7, 10)(감쇠력 조정 기구)는, 서스펜션 제어 유닛(21)의 제어 신호에 따라, 차륜(3, 4)측 부재로부터의 입력에 대한 차체(2)의 상태를 변화시킨다. 이 때문에, 실시형태에서는, 차체(2)의 상하 방향의 상태의 추정 정밀도를 향상시킬 수 있어, 차량(1)의 승차감, 조종 안정성을 향상시킬 수 있다.
실시형태에 따른 슬립 상태 검출 장치 및 서스펜션 제어 장치(서스펜션 시스템)는, 전술과 같은 구성을 갖는 것이며, 다음에 그 작동에 대해서 설명한다.
차량(1)의 주행 등에 따라 차량(1)의 거동(상태)이 변화하면, 그 거동의 변화는, 차량(1)에 탑재된 전후 가속도 센서(11), 횡가속도 센서(12), 차륜속 센서(13), 요 레이트 센서(15) 등에 의해 검출된다. 또한, 차량(1)의 운전자인 드라이버의 조작은, 조타각 센서(14), 브레이크 스위치(16) 등에 의해 검출된다. 이들 센서(11, 12, 13, 14, 15) 및 스위치(16)의 검출 신호는, CAN(17)을 통해 완충기(7, 10)를 제어하는 서스펜션 제어 유닛(21)에 입력된다. 서스펜션 제어 유닛(21)은, 입력된 신호에 기초하여 완충기(7, 10)의 감쇠력을 제어하는 제어 신호를 완충기(7, 10)로 출력한다. 이에 의해, 차량(1)의 승차감, 조종 안정성을 향상시킬 수 있다.
여기서, 실시형태에 따르면, 서스펜션 제어 유닛(21)의 슬립 상태 검출 장치(43)는, 차량(1)의 전후 가속도와 타이어 특성에 따라 「타이어 특성 고려 슬립비(제2 슬립비)」를 구하고, 이 「타이어 특성 고려 슬립비(제2 슬립비)」를 각 차륜(3, 4)의 회전 속도(차륜속)에 따라 구한 각 바퀴의 슬립비로 보정함으로써, 각 바퀴의 「보정 슬립비(제3 슬립비)」를 구한다. 이 때문에, 각 바퀴의 슬립비를 「보정 슬립비(제3 슬립비)」로서 정밀도 좋게 구할 수 있다. 이에 의해, 슬립비의 추정 정밀도를 향상시킬 수 있다.
또한, 실시형태에 따르면, 서스펜션 제어 유닛(21)은, 차량(1)의 전후 가속도와 타이어 특성으로부터 구한 「타이어 특성 고려 슬립비(제2 슬립비)」를 각 차륜(3, 4)의 회전 속도(차륜속)에 따라 보정하여 각 바퀴의 「보정 슬립비(제3 슬립비)」를 구하고, 이 「보정 슬립비(제3 슬립비)」에 기초하여, 각 차륜(3, 4)의 회전 속도로부터 추정된 「차체(2)의 상하 이동」을 보정한다. 이 때문에, 차체(2)의 상하 방향의 상태를 정밀도 좋게 구할 수 있다. 이에 의해, 차체(2)의 상하 방향의 상태의 추정 정밀도를 향상시킬 수 있다. 더구나, 서스펜션 제어 유닛(21)은, 보정된 차체(2)의 상하 이동에 기초하여, 차체(2)의 상태를 변화시키는 완충기(7, 10)(감쇠력 조정 기구)를 제어하기 때문에, 차량(1)의 승차감, 조종 안정성을 향상시킬 수 있다.
또한, 실시형태에서는, 타이어 특성으로서, 사전에 타이어 특성 시험으로 취득한 이미 알고 있는 타이어 특성을 이용하는 경우를 예로 들어 설명하였다. 그러나, 이에 한정되지 않고, 예컨대, 차량(1)의 주행 중에 검출되는 차륜속, 차속, 가속도 등의 검출값에 기초하여 타이어 특성을 학습(기계 학습)하고, 학습 결과에 따라 타이어 특성을 가변으로 하여도 좋다. 또한, 타이어 특성은, 차량(1)의 타이어를 교환하였을 때, 예컨대, 표준 타이어(여름 타이어)로부터 스터드리스 타이어(겨울 타이어), 에코 타이어 또는 스포츠 주행 타이어(하이 그립 타이어) 등으로 교환하였을 때에, 변화할 가능성이 있다. 이 때문에, 타이어 교환을 행하였을 때(즉, 타이어 특성이 변하였을 때)는, 필요에 따라, 새로운 타이어의 종류, 사양 등에 대응하는 타이어 특성으로 설정을 변경한다.
실시형태에서는, 완충기(7, 10)로서, 감쇠력 조정식 유압 완충기, 즉, 유압식의 세미액티브 댐퍼를 이용하는 경우를 예로 들어 설명하였다. 그러나, 이에 한정되지 않고, 완충기(액추에이터)는, 예컨대, ER 댐퍼(전기 점성 유체 댐퍼) 등의 다른 형식의 세미액티브 댐퍼를 이용하여도 좋다. 또한, 완충기(액추에이터)는, 예컨대, 풀 액티브 댐퍼의 유압 액추에이터, 에어서스펜션 장치의 에어 스프링, 스태빌라이저와 이 스태빌라이저의 효력을 조정하는 조정용 액추에이터, 전자 서스펜션을 구성하는 리니어 모터 등, 차체와 차륜(차륜측 부재) 사이에 마련되는 각종 힘 발생 장치를 이용할 수 있다.
이상 설명한 실시형태에 기초한 슬립 상태 검출 장치 및 서스펜션 제어 장치로서, 예컨대 하기에 서술하는 양태의 것이 생각된다.
제1 양태로서는, 슬립 상태 검출 장치로서, 전후 가속도 검출부에서 검출된 차량의 전후 가속도와 타이어 특성에 따라 타이어 특성 고려 슬립비를 구하는, 타이어 특성 고려 슬립비 확정부와, 상기 타이어 특성 고려 슬립비를, 각 차륜의 회전 속도 신호에 따라 구해지는 각 차륜의 슬립비로 보정하여, 각 차륜의 보정 슬립비를 구하는, 보정 슬립비 확정부를 갖는다.
이 제1 양태에 따르면, 차량의 전후 가속도와 타이어 특성에 따라 「타이어 특성 고려 슬립비」를 구하고, 이 「타이어 특성 고려 슬립비」를 각 차륜의 회전 속도에 따라 구해지는 각 바퀴의 슬립비로 보정함으로써, 각 바퀴의 「보정 슬립비」를 구한다. 이 때문에, 각 바퀴의 슬립비를 「보정 슬립비」로서 정밀도 좋게 구할 수 있다. 이에 의해, 슬립비의 추정 정밀도를 향상시킬 수 있다.
제2 양태로서는, 서스펜션 제어 장치로서, 차량의 전후 가속도를 검출하여, 전후 가속도 신호를 출력하는, 전후 가속도 검출부와, 각 차륜의 회전 속도를 검출하여, 각 차륜의 회전 속도 신호를 출력하는, 차륜 회전 속도 검출부와, 상기 전후 가속도 신호와 상기 각 차륜의 회전 속도 신호를 입력하고, 입력된 상기 전후 가속도 신호와 타이어 특성으로부터 타이어 특성 고려 슬립비를 구하며, 상기 타이어 특성 고려 슬립비를, 상기 각 차륜의 회전 속도 신호에 따라 보정하여 각 차륜의 보정 슬립비를 구하고, 상기 각 차륜의 회전 속도 신호에 기초하여 차체의 상하 이동을 추정하며, 추정된 차체의 상하 이동을 상기 각 차륜의 보정 슬립비에 기초하여 보정하고, 보정된 차체의 상하 이동에 기초한 제어 신호를 출력하는, 제어 장치와, 차체와 차륜측 부재 사이에 마련되며, 상기 제어 신호에 따라, 상기 차륜측 부재로부터의 입력에 대한 차체의 상태를 변화시키는, 액추에이터를 갖는다.
이 제2 양태에 따르면, 차량의 전후 가속도와 타이어 특성으로부터 구한 「타이어 특성 고려 슬립비」를 각 차륜의 회전 속도에 따라 보정하여 각 바퀴의 「보정 슬립비」를 구하고, 이 「보정 슬립비」에 기초하여, 각 차륜의 회전 속도부터 추정된 「차체의 상하 이동」을 보정한다. 이 때문에, 차체의 상하 방향의 상태를 정밀도 좋게 구할 수 있다. 이에 의해, 차체의 상하 방향의 상태의 추정 정밀도를 향상시킬 수 있다. 더구나, 보정된 차체의 상하 이동에 기초하여, 차체의 상태를 변화시키는 액추에이터를 제어하기 때문에, 차량의 승차감, 조종 안정성을 향상시킬 수 있다.
또한, 본 발명은 상기한 실시형태에 한정되는 것이 아니며, 여러 가지 변형예가 포함된다. 예컨대, 상기한 실시형태는 본 발명을 알기 쉽게 설명하기 위해 상세하게 설명한 것이며, 반드시 설명한 모든 구성을 구비하는 것에 한정되는 것이 아니다. 또한, 어떤 실시형태의 구성의 일부를 다른 실시형태의 구성으로 치환하는 것이 가능하고, 또한, 어떤 실시형태의 구성에 다른 실시형태의 구성을 더하는 것도 가능하다. 또한, 각 실시형태의 구성의 일부에 대해서, 다른 구성의 추가·삭제·치환을 하는 것이 가능하다.
본원은 2021년 1월 27일자 출원의 일본국 특허 출원 제2021-011007호에 기초한 우선권을 주장한다. 2021년 1월 27일자 출원의 일본국 특허 출원 제2021-011007호의 명세서, 특허청구의 범위, 도면, 및 요약서를 포함하는 전체 개시 내용은, 참조에 의해 본원에 전체로서 삽입된다.
1: 차량, 2: 차체, 3: 전륜(차륜), 4: 후륜(차륜), 7, 10: 완충기(액추에이터), 11: 전후 가속도 센서(전후 가속도 검출 수단), 12: 횡가속도 센서, 13: 차륜속 센서(차륜 회전 속도 검출 수단), 14: 조타각 센서, 15: 요 레이트 센서, 16: 브레이크 스위치, 17: CAN, 21: 서스펜션 제어 유닛(제어 장치), 23: 서스펜션 제어부, 27: 상하 운동 추정부, 38: 제2 슬립비 산출부(타이어 특성 고려 슬립비 확정 수단), 39: 슬립비 배분 산출부(보정 슬립비 확정 수단), 40: 제3 슬립비 산출부(보정 슬립비 확정 수단), 43: 슬립 상태 검출 장치

Claims (2)

  1. 슬립 상태 검출 장치로서,
    전후 가속도 검출부에서 검출된 차량의 전후 가속도와 타이어 특성에 따라 타이어 특성 고려 슬립비를 구하는, 타이어 특성 고려 슬립비 확정부와,
    상기 타이어 특성 고려 슬립비를, 각 차륜의 회전 속도 신호에 따라 구해지는 각 차륜의 슬립비로 보정하여, 각 차륜의 보정 슬립비를 구하는, 보정 슬립비 확정부
    를 갖는 것인, 슬립 상태 검출 장치.
  2. 서스펜션 제어 장치로서,
    차량의 전후 가속도를 검출하여, 전후 가속도 신호를 출력하는, 전후 가속도 검출부와,
    각 차륜의 회전 속도를 검출하여, 각 차륜의 회전 속도 신호를 출력하는, 차륜 회전 속도 검출부와,
    상기 전후 가속도 신호와 상기 각 차륜의 회전 속도 신호를 입력하고, 입력된 상기 전후 가속도 신호와 타이어 특성으로부터 타이어 특성 고려 슬립비를 구하며, 상기 타이어 특성 고려 슬립비를, 상기 각 차륜의 회전 속도 신호에 따라 보정하여 각 차륜의 보정 슬립비를 구하고, 상기 각 차륜의 회전 속도 신호에 기초하여 차체의 상하 이동을 추정하며, 추정된 차체의 상하 이동을 상기 각 차륜의 보정 슬립비에 기초하여 보정하고, 보정된 차체의 상하 이동에 기초한 제어 신호를 출력하는, 제어 장치와,
    차체와 차륜측 부재 사이에 마련되며, 상기 제어 신호에 따라, 상기 차륜측 부재로부터의 입력에 대한 차체의 상태를 변화시키는, 액추에이터
    를 갖는 것인, 서스펜션 제어 장치.
KR1020237024951A 2021-01-27 2022-01-20 슬립 상태 검출 장치 및 서스펜션 제어 장치 KR20230122136A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021011007 2021-01-27
JPJP-P-2021-011007 2021-01-27
PCT/JP2022/001879 WO2022163471A1 (ja) 2021-01-27 2022-01-20 スリップ状態検出装置およびサスペンション制御装置

Publications (1)

Publication Number Publication Date
KR20230122136A true KR20230122136A (ko) 2023-08-22

Family

ID=82653389

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237024951A KR20230122136A (ko) 2021-01-27 2022-01-20 슬립 상태 검출 장치 및 서스펜션 제어 장치

Country Status (5)

Country Link
JP (1) JP7369879B2 (ko)
KR (1) KR20230122136A (ko)
CN (1) CN116829381A (ko)
DE (1) DE112022000824T5 (ko)
WO (1) WO2022163471A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306093A (ja) 2002-04-11 2003-10-28 Toyota Central Res & Dev Lab Inc 物理量推定装置及びタイヤ状態判定装置
JP2015051719A (ja) 2013-09-06 2015-03-19 本田技研工業株式会社 サスペンション制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108170A1 (en) 2002-11-18 2006-05-25 Hiroaki Ishikawa Axle unit with slip sensor and slip meansurement method
EP2899086A4 (en) 2012-09-20 2016-06-01 Pioneer Corp DEVICE FOR ESTIMATING THE SLIP RATIO AND METHOD FOR ESTIMATING THE SLIP RATIO
WO2018105399A1 (ja) 2016-12-09 2018-06-14 日立オートモティブシステムズ株式会社 車両運動状態推定装置
JP2020117196A (ja) 2019-01-28 2020-08-06 日立オートモティブシステムズ株式会社 車両運動状態推定装置
TWI704029B (zh) 2019-07-08 2020-09-11 聖杰國際股份有限公司 用於工具機之刀庫使用的刀桿鎖定暨解鎖結構

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306093A (ja) 2002-04-11 2003-10-28 Toyota Central Res & Dev Lab Inc 物理量推定装置及びタイヤ状態判定装置
JP2015051719A (ja) 2013-09-06 2015-03-19 本田技研工業株式会社 サスペンション制御装置

Also Published As

Publication number Publication date
WO2022163471A1 (ja) 2022-08-04
JPWO2022163471A1 (ko) 2022-08-04
DE112022000824T5 (de) 2023-11-23
CN116829381A (zh) 2023-09-29
JP7369879B2 (ja) 2023-10-26

Similar Documents

Publication Publication Date Title
US9375990B2 (en) Suspension control device
JP6653396B2 (ja) 車両運動状態推定装置
JP5886956B2 (ja) サスペンション制御装置
US9061562B2 (en) Suspension control apparatus
US8718872B2 (en) Vehicle attitude controller
US8880293B2 (en) Vehicle motion control apparatus and suspension control apparatus
US8322728B2 (en) Suspension control apparatus
KR102172306B1 (ko) 차량 거동 제어 장치
KR20150032804A (ko) 서스펜션 장치
EP1659008A1 (en) Method for the regulation or control of the damping force of an adjustable vehicle damper
JP6130816B2 (ja) 減衰力可変ダンパの制御装置
JP6161476B2 (ja) サスペンション制御装置
CN107444052B (zh) 车辆用衰减力控制装置
JP2020117196A (ja) 車両運動状態推定装置
JP5613727B2 (ja) サスペンション制御装置
JP5818748B2 (ja) サスペンション制御装置
WO2022113426A1 (ja) サスペンション制御装置、車両およびサスペンション制御方法
KR20230122136A (ko) 슬립 상태 검출 장치 및 서스펜션 제어 장치
US11945428B2 (en) Vehicle motion control apparatus
JP6252456B2 (ja) 車両制御装置
JP6003523B2 (ja) 車両挙動制御装置及び車両挙動制御方法
JP2014008887A (ja) サスペンション制御装置
JP2015150912A (ja) 換算係数取得装置
JP6031929B2 (ja) 車両挙動制御装置及び車両挙動制御方法
JP2006131062A (ja) サスペンション装置およびサスペンション制御方法