KR20230117970A - 다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치 - Google Patents

다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치 Download PDF

Info

Publication number
KR20230117970A
KR20230117970A KR1020220014389A KR20220014389A KR20230117970A KR 20230117970 A KR20230117970 A KR 20230117970A KR 1020220014389 A KR1020220014389 A KR 1020220014389A KR 20220014389 A KR20220014389 A KR 20220014389A KR 20230117970 A KR20230117970 A KR 20230117970A
Authority
KR
South Korea
Prior art keywords
dielectric
layer
thickness
disposed
reflective pad
Prior art date
Application number
KR1020220014389A
Other languages
English (en)
Inventor
조은형
김효철
이성희
이정엽
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020220014389A priority Critical patent/KR20230117970A/ko
Priority to US17/891,332 priority patent/US20230244017A1/en
Publication of KR20230117970A publication Critical patent/KR20230117970A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0025Machining, e.g. grinding, polishing, diamond turning, manufacturing of mould parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Filters (AREA)

Abstract

다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치가 개시된다. 개시된 광학 장치는, 하부 광학층; 상기 하부 광학층 위에 배치된 것으로, 활성 영역과 비활성 영역을 갖는 나노 구조물층; 및 상기 하부 광학층과 상기 나노 구조물층 사이에서 상기 나노 구조물층의 비활성 영역에 마주하여 배치된 반사 패드;를 포함하고, 상기 나노 구조물층은 상기 활성 영역 내에서 패터닝되어 있고 상기 비활성 영역 내에서 패터닝되지 않은 제1 유전체 및 상기 제1 유전체의 패턴들 사이를 채우는 제2 유전체를 포함하며, 상기 제1 유전체와 제2 유전체는 서로 다른 굴절률을 가지는 서로 다른 유전체 재료를 포함할 수 있다.

Description

다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치 {Optical apparatus including multilayered optical film structure and method and apparatus of planarizing multilayered optical film structure and }
개시된 실시예들은 다층 광학 박막 구조를 포함하는 광학 장치 및 복수의 광학 박막을 포함하는 다층 광학 박막 구조를 평탄화하는 방법 및 평탄화 장치에 관한 것이다.
최근 빛의 파장보다 작은 나노 규모의 구조물들을 배열하여 자연계에 존재하지 않는 특성을 얻을 수 있는 메타 구조가 개발되고 있다. 예를 들어, 메타 구조를 이용하여 회절 한계 이하의 스팟 크기를 갖는 렌즈를 제작하거나, 그 밖에도 광 손실 또는 색수차가 적은 분광 필터, 컬러 필터, 프리즘, 편광 필터 등을 제작하는 연구가 진행되고 있다. 또한 메타 구조는 이미지 센서, 분광기, 현미경 등과 같은 다양한 광학 장치들에 응용될 수 있다.
한편, 메타 구조를 포함하는 광학 장치의 제작 시에 나노 규모의 구조물들 사이의 공간을 갭 충전 물질로 채우고 갭 충전 물질을 평탄화하는 공정이 수행될 수 있다. 그런데, 메타 구조를 포함하는 다양한 광학 장치들은 메타 구조 이외에도 복수의 광학 박막을 포함하며, 이러한 복수의 광학 박막은 평탄화 공정의 정밀한 종말점 검출(endpoint detection)을 어렵게 하는 원인이 된다.
다층 광학 박막 구조를 포함하는 광학 장치를 제공한다.
복수의 광학 박막을 포함하는 다층 광학 박막 구조를 정밀하게 평탄화하는 방법 및 장치를 제공한다.
일 실시예에 따른 광학 장치는, 하부 광학층; 상기 하부 광학층 위에 배치된 것으로, 활성 영역과 비활성 영역을 갖는 나노 구조물층; 및 상기 하부 광학층과 상기 나노 구조물층 사이에서 상기 나노 구조물층의 비활성 영역에 마주하여 배치된 반사 패드;를 포함하고, 상기 나노 구조물층은 상기 활성 영역 내에서 패터닝되어 있고 상기 비활성 영역 내에서 패터닝되지 않은 제1 유전체 및 상기 제1 유전체의 패턴들 사이를 채우는 제2 유전체를 포함하며, 상기 제1 유전체와 제2 유전체는 서로 다른 굴절률을 가지는 서로 다른 유전체 재료를 포함할 수 있다.
상기 비활성 영역에서 상기 제1 유전체의 상부 표면의 높이는 상기 활성 영역서 상기 제1 유전체의 상부 표면의 높이보다 높을 수 있다.
상기 제2 유전체는 상기 제1 유전체의 상부 표면을 덮도록 배치되며, 상기 제2 유전체의 상부 표면은 평탄한 표면을 가질 수 있다.
상기 활성 영역에서 상기 제1 유전체의 상부 표면 위의 상기 제2 유전체의 두께는 상기 비활성 영역에서 상기 제1 유전체의 상부 표면 위의 상기 제2 유전체의 두께보다 상기 반사 패드의 두께만큼 더 클 수 있다.
예를 들어, 상기 반사 패드의 두께는 10 nm 내지 50 nm일 수 있다.
예를 들어, 상기 반사 패드는 5 μm2 내지 25 μm2의 면적을 갖는 원형 또는 다각형일 수 있다.
상기 제2 유전체는 상기 활성 영역 내에서 상기 제1 유전체의 패턴들 사이에만 배치되며, 상기 제1 유전체와 제2 유전체가 평탄한 공동의 상부 표면을 갖고, 상기 활성 영역 내의 제1 유전체의 두께는 상기 반사 패드 위의 제1 유전체의 두께보다 클 수 있다.
상기 광학 장치는 상기 하부 광학층과 상기 나노 구조물층 사이에 배치되며 상기 반사 패드를 덮도록 배치된 식각 정지층을 더 포함할 수 있다.
상기 비활성 영역에서 상기 식각 정지층의 상부 표면의 높이는 상기 활성 영역에서 상기 식각 정지층의 상부 표면의 높이보다 상기 반사 패드의 두께만큼 높을 수 있다.
상기 광학 장치는 상기 하부 광학층과 상기 나노 구조물층 사이에 배치된 식각 정지층을 더 포함하며, 상기 반사 패드는 상기 식각 정지층 위에 배치될 수 있다.
예를 들어, 상기 제1 유전체의 각각의 패턴의 폭 또는 직경은 10 nm 내지 400 nm이고, 상기 제1 유전체의 각각의 패턴의 두께는 100 nm 내지 1500 nm일 수 있다.
상기 하부 광학층은 상기 활성 영역에 마주하여 배열된 복수의 광센싱셀 및 상기 비활성 영역에 마주하여 배열된 구동 회로부를 포함하는 센서 기판이고, 상기 나노 구조물층은 상기 활성 영역 내에서 상기 복수의 광센싱셀과 마주하여 배치된 복수의 렌즈 소자를 포함하는 메타 렌즈층이며, 상기 복수의 렌즈 소자 각각에서 상기 제1 유전체는 평면 광학 메타 렌즈를 형성하도록 패터닝될 수 있다.
상기 하부 광학층은 상기 활성 영역에 마주하여 배열된 복수의 광센싱셀 및 상기 비활성 영역에 마주하여 배열된 구동 회로부를 포함하는 센서 기판이고, 상기 나노 구조물층은 상기 활성 영역 내에서 상기 복수의 광센싱셀과 마주하여 배치된 복수의 컬러 필터를 포함하는 메타 컬러 필터층이며, 상기 복수의 컬러 필터에서 복수의 제1 유전체와 복수의 제2 유전체가 수평 방향을 따라 번갈아 배열될 수 있다.
상기 광학 장치는 상기 하부 광학층과 상기 나노 구조물층 사이에 배치된 제1 반사기 및 상기 나노 구조물층 위에 배치된 제2 반사기를 더 포함하며, 상기 반사 패드는 상기 제1 반사기 상에서 상기 비활성 영역에 배치될 수 있다.
상기 나노 구조물층은 상기 광학 장치의 두께 방향으로 적층된 제1 나노 구조물층 및 제2 나노 구조물층을 포함할 수 있다.
상기 광학 장치는 상기 제1 나노 구조물층과 상기 제2 나노 구조물층 사이에 배치된 제1 금속 반사층, 및 상기 제2 나노 구조물층 위에 배치된 제2 금속 반사층을 더 포함할 수 있다.
상기 하부 광학층은 상기 활성 영역에 마주하여 배열된 복수의 광센싱셀 및 상기 비활성 영역에 마주하여 배열된 구동 회로부를 포함하는 센서 기판이고, 상기 제1 나노 구조물층, 상기 제1 금속 반사층, 상기 제2 나노 구조물층, 및 상기 제2 금속 반사층은 활성 영역 내에 배열된 복수의 분광 필터를 포함하는 분광 필터층을 형성하도록 구성될 수 있다.
일 실시예에 따른 광학 장치는 제조 방법은, 하부 광학층을 형성하는 단계; 상기 하부 광학층의 상부 표면의 가장자리 영역 내에 반사 패드를 형성하는 단계; 상기 하부 광학층과 반사 패드를 모두 덮도록 일정한 두께로 식각 정지층을 형성하는 단계; 상기 식각 정지층 위에 제1 유전체를 일정한 두께로 형성하는 단계; 활성 영역 내에 배치된 제1 유전체를 패터닝하는 단계; 상기 패터닝된 제1 유전체의 패턴들 사이의 공간을 채우고 상기 제1 유전체를 덮도록 제2 유전체를 형성하는 단계; 및 상기 제2 유전체의 상부 표면을 평탄화하는 단계;를 포함하며, 상기 평탄화 단계는: 상기 반사 패드에 조명광을 조사하고 상기 반사 패드로부터의 반사광을 검출하는 단계; 및 시뮬레이션을 통해 미리 얻은 상기 제2 유전체의 두께에 따른 반사광의 시뮬레이션 반사도 스펙트럼과 상기 반사광을 검출하여 얻은 실측 반사도 스펙트럼을 비교함으로써, 연마 속도, 제2 유전체의 두께, 및 평탄화 종료 시점을 결정하는 단계;를 포함할 수 있다.
상기 반사 패드는 상기 제1 유전체가 패터닝되지 않은 비활성 영역과 마주하여 배치될 수 있다.
상기 활성 영역에서 상기 제1 유전체의 상부 표면 위의 상기 제2 유전체의 두께는 상기 비활성 영역에서 상기 제1 유전체의 상부 표면 위의 상기 제2 유전체의 두께보다 상기 반사 패드의 두께만큼 더 클 수 있다.
상기 시뮬레이션 반사도 스펙트럼과 실측 반사도 스펙트럼을 비교하는 단계는: 상기 제2 유전체의 복수의 이산된 두께들에 대한 시뮬레이션을 통해 시뮬레이션 반사도 스펙트럼을 마련하는 단계; 및 시뮬레이션 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장을 상기 실측 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장과 비교하는 단계;를 포함할 수 있다.
상기 연마 속도, 제2 유전체의 두께, 및 평탄화 종료 시점을 결정하는 단계는: 실측 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장과 일치하는 반사도 피크 파장 또는 흡수도 피크 파장을 갖는 시뮬레이션 반사도 스펙트럼을 찾아 선택하는 단계; 및 선택된 시뮬레이션 반사도 스펙트럼에 대응하는 제2 유전체의 두께를 상기 제2 유전체의 실제 두께로 추정하는 단계;를 포함할 수 있다.
일 실시예에 따른 평탄화 장치는, 반사 패드를 포함하는 웨이퍼를 지지하고 회전시키는 캐리어; 상기 웨이퍼의 평탄화 대상 표면을 연마하는 연마 패드; 평탄화 모니터링을 위하여 상기 웨이퍼에 조명광을 조사하는 광원; 상기 웨이퍼로부터 반사된 반사광을 검출하는 광검출기; 및 상기 광검출기로부터 제공되는 반사광의 스펙트럼 정보를 분석하여 연마 속도 및 평탄화 대상 층의 두께를 계산하는 프로세서;를 포함하며, 상기 프로세서는: 상기 평탄화 대상 층의 복수의 이산된 두께들에 대한 시뮬레이션을 통해 시뮬레이션 반사도 스펙트럼을 마련하는 단계; 상기 웨이퍼의 반사 패드로부터 반사된 반사광을 이용하여 실측 반사도 스펙트럼을 얻는 단계; 및 상기 시뮬레이션 반사도 스펙트럼과 상기 실측 반사도 스펙트럼을 비교함으로써, 연마 속도, 상기 평탄화 대상 층의 두께, 및 평탄화 종료 시점을 결정하는 단계;를 수행하도록 구성될 수 있다.
상기 프로세서는, 상기 시뮬레이션 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장을 상기 실측 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장과 비교하도록 구성될 수 있다.
또한 상기 프로세서는: 상기 실측 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장과 일치하는 반사도 피크 파장 또는 흡수도 피크 파장을 갖는 시뮬레이션 반사도 스펙트럼을 찾아 선택하는 단계; 및 선택된 시뮬레이션 반사도 스펙트럼에 대응하는 상기 평탄화 대상 층의 두께를 상기 평탄화 대상 층의 실제 두께로 추정하는 단계;를 수행하도록 구성될 수 있다.
개시된 실시예들에 따르면 다층 광학 박막 구조를 평탄화하는 과정에서 복수의 광학 박막으로 인한 측정 오류를 최소화함으로써 광학적으로 정밀하게 종말점을 검출할 수 있다. 따라서 평탄화 공정을 정확하게 종료할 수 있으므로 메타 구조를 포함하는 광학 박막의 두께를 정밀하게 제어하는 것이 가능하다.
도 1은 일 실시예에 따른 다층 광학 박막 구조를 포함하는 광학 장치의 구조를 개략적으로 보이는 단면도이다.
도 2는 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다.
도 3은 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다.
도 4a 내지 도 4d는 도 3에 도시된 광학 장치를 제조하는 과정을 개략적으로 보이는 단면도이다.
도 5는 복수의 광학 장치를 제조하기 위한 웨이퍼 상에 배열된 복수의 반사 패드의 위치를 예시적으로 보이는 평면도이다.
도 6a 및 도 6b는 반사 패드가 형성된 제1 위치 및 제2 위치에서의 반사도 스펙트럼을 비교하여 보이는 그래프이다.
도 7a 및 도 7b는 반사 패드가 형성되지 않은 제3 위치 및 제4 위치에서의 반사도 스펙트럼을 비교하여 보이는 그래프이다.
도 8a 내지 도 8c는 반사 패드가 형성된 제1 위치에서 평탄화 공정의 진행에 따른 반사도 스펙트럼 변화를 예시적으로 보인다.
도 9a 내지 도 9c는 반사 패드가 형성되지 않은 제3 위치에서 평탄화 공정의 진행에 따른 반사도 스펙트럼 변화를 예시적으로 보인다.
도 10a는 평탄화 후 반사 패드가 형성된 제1 위치에 대한 TEM 측정 결과를 예시적으로 보이고, 도 10b는 제1 위치에 인접한 활성 영역에 대한 TEM 측정 결과를 예시적으로 보인다.
도 11a는 평탄화 후 반사 패드가 형성된 제2 위치에 대한 TEM 측정 결과를 예시적으로 보이고, 도 11b는 제2 위치에 인접한 활성 영역에 대한 TEM 측정 결과를 예시적으로 보인다.
도 12는 일 실시예에 따른 평탄화 장치의 구성을 개략적으로 보이는 개념도이다.
도 13은 일 실시예에 따른 평탄화 방법을 개략적으로 보이는 흐름도이다.
도 14는 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다.
도 15는 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다.
도 16은 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다.
도 17은 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다.
도 18은 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다.
이하, 첨부된 도면들을 참조하여, 다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치에 대해 상세하게 설명한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다. 또한, 이하에 설명되는 실시예는 단지 예시적인 것에 불과하며, 이러한 실시예들로부터 다양한 변형이 가능하다.
이하에서, "상부" 나 "상"이라고 기재된 것은 접촉하여 바로 위에 있는 것뿐만 아니라 비접촉으로 위에 있는 것도 포함할 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
"상기"의 용어 및 이와 유사한 지시 용어의 사용은 단수 및 다수 모두에 해당하는 것일 수 있다. 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 이러한 단계들은 적당한 순서로 행해질 수 있으며, 반드시 기재된 순서에 한정되는 것은 아니다.
또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다.
모든 예들 또는 예시적인 용어의 사용은 단순히 기술적 사상을 상세히 설명하기 위한 것으로서 청구범위에 의해 한정되지 않는 이상 이런 예들 또는 예시적인 용어로 인해 범위가 한정되는 것은 아니다.
도 1은 일 실시예에 따른 다층 광학 박막 구조를 포함하는 광학 장치의 구조를 개략적으로 보이는 단면도이다. 도 1을 참조하면, 광학 장치(100)는 서로 다른 기능 또는 구성을 갖는 복수의 광학 박막층이 배치된 다층 광학 박막 구조를 가질 수 있다. 예를 들어, 광학 장치(100)는 하부 광학층(110) 및 하부 광학층(110) 위에 배치된 나노 구조물층(130)을 포함할 수 있다. 나노 구조물층(130)은 패터닝된 제1 유전체(131) 및 제1 유전체(131)의 패턴들 사이를 채우는 제2 유전체(132)를 포함할 수 있다. 제1 유전체(131)와 제2 유전체(132)는 서로 다른 굴절률을 가지는 서로 다른 유전체 재료를 포함할 수 있다. 제2 유전체(132)는 제1 유전체(131)의 패턴들 사이를 채울 뿐만 아니라 제1 유전체(131)의 상부 표면을 완전히 덮도록 배치될 수 있다.
하부 광학층(110)은 나노 구조물층(130)을 지지하는 역할과 함께 다양한 광학적 기능을 수행할 수 있는 층이다. 도 1에는 하부 광학층(110)이 편의상 하나의 층으로 단순하게 표시되었지만, 하부 광학층(110)은 복수의 층들 및 구조물들을 포함할 수 있다. 예컨대, 광학 장치(100)가 이미지 센서인 경우, 하부 광학층(110)은 입사광을 전기적 신호로 변환하는 광센서들 및 구동 회로를 포함할 수 있다. 광학 장치(100)가 발광 장치 또는 디스플레이 장치인 경우, 하부 광학층(110)은 발광 소자들 및 구동 회로를 포함할 수 있다. 광학 장치(100)는 수동(passive) 광학 소자일 수도 있다. 이 경우, 하부 광학층(110)은 나노 구조물층(130)의 동작을 돕기 위한 공진기, 반사기 등의 역할을 하는 다층 구조를 포함할 수 있다. 또한, 하부 광학층(110)은 능동 소자와 수동 광학 소자를 모두 포함할 수도 있다.
나노 구조물층(130)은 제1 유전체(131)의 패턴 형태에 따라 소정의 광학적 작용을 수행하도록 구성된 메타 구조물을 포함할 수 있다. 예를 들어, 나노 구조물층(130)의 제1 유전체(131)는 렌즈, 프리즘, 편광자, 컬러 필터, 분광 필터 중에서 적어도 하나의 역할을 수행하도록 패터닝될 수 있다. 제1 유전체(131)의 각각의 패턴은 빛의 파장보다 작은 크기를 가질 수 있다. 예를 들어, 제1 유전체(131)의 각각의 패턴의 폭 또는 직경은 약 10 nm 내지 약 400 nm, 또는 약 10 nm 내지 약 300 nm, 또는 약 10 nm 내지 약 200 nm일 수 있으며, 제1 유전체(131)의 각각의 패턴의 두께는 약 100 nm 내지 약 1500 nm일 수 있다. 제1 유전체(131)의 패턴들은 2차원 배열된 원기둥 또는 다각형 기둥의 형태를 가질 수도 있으며, 또는 1차원 배열된 막대의 형태를 가질 수도 있다. 메타 구조물의 광학적 작용은 제1 유전체(131)의 패턴 형태, 패턴들의 배열 형태, 패턴의 크기와 두께, 유전체 재료의 굴절률, 제2 유전체(132)의 유전체 재료의 굴절률 등에 의해 결정될 수 있다.
또한, 나노 구조물층(130)은 광학적으로 유효한 작용을 하는 활성 영역(R1) 및 활성 영역(R1)의 주변에 인접하여 배치되며 광학적인 동작과 무관한 비활성 영역(R2)을 포함할 수 있다. 예를 들어, 비활성 영역(R2)은 나노 구조물층(130)의 일측 가장자리 부근에 위치할 수 있다. 나노 구조물층(130)의 제1 유전체(131)는 활성 영역(R1) 내에서만 패터닝되어 있으며 비활성 영역(R2) 내에 있는 제1 유전체(131)는 패터닝되지 않을 수 있다. 다시 말해, 메타 구조물이 형성되어 있어서 렌즈, 프리즘, 편광자, 컬러 필터, 분광 필터 등과 같은 유효한 광학적 작용을 하는 영역이 활성 영역(R1)이며, 메타 구조물이 존재하지 않아서 광학적 기능을 수행하지 않는 영역은 비활성 영역(R2)이라고 볼 수 있다.
광학 장치(100)는 하부 광학층(110)과 나노 구조물층(130) 사이에서 나노 구조물층(130)의 비활성 영역(R2)에 마주하여 배치된 반사 패드(120)를 더 포함할 수 있다. 예컨대, 반사 패드(120)는 비활성 영역(R2)에서 하부 광학층(110)의 상부 표면의 일측 가장자리 위에 배치될 수 있다. 하부 광학층(110) 위에 있는 제1 유전체(131)는 비활성 영역(R2)에서 반사 패드(120)를 덮도록 배치될 수 있다. 제1 유전체(131)는 광학 장치(100)의 전체 영역 내에서 일정한 두께를 가진다. 따라서, 제1 유전체(131)는 반사 패드(120)로 인하여 활성 영역(R1)과 비활성 영역(R2) 사이에 단차를 갖게 된다. 다시 말해, 비활성 영역(R2)에서 제1 유전체(131)의 상부 표면의 높이는 활성 영역(R1)에서 제1 유전체(131)의 상부 표면의 높이보다 높을 수 있다.
제1 유전체(131)를 덮는 제2 유전체(132)의 상부 표면은 광학 장치(100)의 전체 영역에서 평탄한 표면을 가질 수 있다. 따라서, 활성 영역(R1)에서 제1 유전체(131)의 상부 표면 위의 제2 유전체(132)의 두께(t2)는 비활성 영역(R2)에서 제1 유전체(131)의 상부 표면 위의 제2 유전체(132)의 두께(t3)보다 반사 패드(120)의 두께(t1)만큼 더 클 수 있다. 다시 말해, 활성 영역(R1)에서 제1 유전체(131)의 상부 표면 위의 제2 유전체(132)의 두께(t2)는 반사 패드(120)의 두께(t1)와 비활성 영역(R2)에서 제1 유전체(131)의 상부 표면 위의 제2 유전체(132)의 두께(t3)와의 합(t1 + t3)과 같을 수 있다.
이러한 반사 패드(120)는 후술하는 제2 유전체(132)의 평탄화 공정에서 종말점 검출(endpoint detection)을 위해 사용될 수 있다. 반사 패드(120)가 비활성 영역(R2) 내에만 배치되어 있기 때문에, 반사 패드(120)는 광학 장치(100)의 동작에는 실질적으로 영향을 주지 않으며 광학 장치(100)를 제작하는 동안에만 이용될 수 있다. 광학 장치(100)를 제작할 때, 제2 유전체(132)의 평탄화 공정에서 반사 패드(120)로부터 반사되는 빛의 스펙트럼을 모니터링 함으로써, 하부 광학층(110)에 의한 방해를 거의 받지 않고 활성 영역(R1)에서 제1 유전체(131)의 상부 표면 위의 제2 유전체(132)의 두께(t2)를 정밀하게 제어하는 것이 가능하다. 제2 유전체(132)의 평탄화 공정에 대해서 후에 보다 구체적으로 설명한다.
반사 패드(120)는 비교적 높은 반사율을 갖는 금속 재료로 이루어질 수 있다. 예를 들어, 반사 패드(120)는 금(Au), 은(Ag), 알루미늄(Al), 구리(Cu), 텅스텐(W), 몰리브덴(Mo), 백금(Pt) 중에서 적어도 하나의 금속 또는 이들의 합금을 포함할 수 있다. 반사 패드(120)가 충분히 높은 반사율을 갖도록 반사 패드(120)의 두께(t1)는 약 10 nm 이상일 수 있다. 또한, 제1 유전체(131)의 단차를 최소화하고 제2 유전체(132)의 두께를 적절히 선택할 수 있도록, 반사 패드(120)의 두께(t1)는 약 50 nm 이하일 수 있다. 다시 말해, 반사 패드(120)의 두께(t1)는 약 10 nm 내지 약 50 nm일 수 있다. 또한, 반사 패드(120)는 후술하는 제2 유전체(132)의 평탄화 공정에서 빛을 충분히 반사하면서도 비활성 영역(R2)이 지나치게 커지지 않도록 적절한 면적을 가질 수 있다. 예를 들어, 반사 패드(120)의 면적은 약 5 μm2 내지 약 25 μm2일 수 있다. 또한, 반사 패드(120)의 폭(W) 또는 직경은, 예를 들어, 약 2 μm 내지 약 5 μm일 수 있다.
도 2는 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다. 도 2를 참조하면, 다른 실시예에 따른 광학 장치(100a)에서 제1 유전체(131)의 상부 표면과 제2 유전체(132)의 상부 표면이 동일한 높이를 가질 수 있다. 이 경우, 광학 장치(100a)의 전체 영역에서 제1 유전체(131)와 제2 유전체(132)가 평탄한 공동의 상부 표면을 가질 수 있다. 제2 유전체(132)는 활성 영역(R1) 내에서 제1 유전체(131)의 패턴들 사이에만 배치되며, 제1 유전체(131)의 상부 표면 위에는 존재하지 않는다. 또한, 제2 유전체(132)는 비활성 영역(R2) 내에는 존재하지 않는다. 또한, 활성 영역(R1) 내의 제1 유전체(131)의 두께는 반사 패드(120) 위의 제1 유전체(131)의 두께보다 클 수 있다. 광학 장치(100a)의 나머지 구성들은 도 1에 도시된 광학 장치(100)의 구성들과 동일하므로 설명을 생략한다.
도 3은 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다. 도 3을 참조하면, 광학 장치(100b)는 하부 광학층(110)과 반사 패드(120)를 덮도록 배치된 식각 정지층(121)을 더 포함할 수 있다. 나노 구조물층(130)은 식각 정지층(121) 위에 배치될 수 있다. 다시 말해, 식각 정지층(121)은 나노 구조물층(130)과 하부 광학층(110) 사이에 배치될 수 있다. 식각 정지층(121)은 반사 패드(120)로 인하여 활성 영역(R1)과 비활성 영역(R2) 사이에 단차를 갖는다. 다시 말해, 비활성 영역(R2)에서 식각 정지층(121)의 상부 표면의 높이는 활성 영역(R1)에서 식각 정지층(121)의 상부 표면의 높이보다 상기 반사 패드(120)의 두께만큼 더 높을 수 있다. 식각 정지층(121)은 후술하는 제1 유전체(131)의 패터닝 공정에서 제1 유전체(131)의 식각 종료 시점을 결정하고 하부 광학층(110)을 보호하는 역할을 할 수 있다. 식각 정지층(121)은, 예를 들어, 알루미늄 산화물(Al2O3), 하프늄 산화물(HfO2), 및 실리콘 질화물(SiNx) 중에서 선택된 적어도 하나의 재료를 포함할 수 있다. 또한, 식각 정지층(121)의 두께는, 약 3 nm 내지 약 50 nm, 또는 약 5 nm 내지 약 15 nm일 수 있다. 광학 장치(100b)의 나머지 구성들은 도 1에 도시된 광학 장치(100)의 구성들과 동일하므로 설명을 생략한다.
도 4a 내지 도 4d는 도 3에 도시된 광학 장치를 제조하는 과정을 개략적으로 보이는 단면도이다.
도 4a를 참조하면, 하부 광학층(110)을 먼저 형성한다. 하부 광학층(110)의 구조는 광학 장치의 용도에 따라 결정될 수 있다. 앞서 설명한 바와 같이, 하부 광학층(110)은 광센서, 발광 소자, 구동 회로 등과 같은 능동 소자, 공진기, 반사기 등과 같은 수동 소자, 또는 능동 소자와 수동 광학 소자를 모두 포함하는 구조를 가질 수 있다. 그런 후, 하부 광학층(110) 위에 반사 패드(120)를 형성할 수 있다. 반사 패드(120)는, 후속하는 공정에서 제1 유전체(131)가 패터닝되지 않는 비활성 영역(R2)인, 하부 광학층(110)의 상부 표면의 가장자리 영역 내에 형성될 수 있다. 예를 들어, 하부 광학층(110)의 전체 상부 표면 위에 약 10 nm 내지 약 50 nm의 두께로 반사성 금속 재료를 증착한 후에, 반사성 금속 재료를 패터닝함으로써 하부 광학층(110)의 가장자리 부분에 반사 패드(120)가 형성될 수 있다. 반사 패드(120)는, 예를 들어, 약 2 μm 내지 약 5 μm의 폭 또는 직경을 갖는 원형 또는 다각형 형태로 형성될 수 있다.
많은 수의 광학 장치가 하나의 웨이퍼 상에서 동시에 형성될 수 있는데, 모든 광학 장치에 대해 반사 패드(120)가 형성될 필요는 없다. 하나의 웨이퍼 상에서 형성되는 복수의 광학 장치 중에서 소수의 광학 장치에만 반사 패드(120)가 선택적으로 형성될 수 있다. 예를 들어, 하나의 웨이퍼 상에 2개 내지 10개 정도의 반사 패드(120)만이 형성될 수 있다.
도 5는 복수의 광학 장치를 제조하기 위한 웨이퍼 상에 배열된 복수의 반사 패드의 위치를 예시적으로 보이는 평면도이다. 도 5에서 실선으로 표시된 복수의 사각형들은 웨이퍼(101) 상에서 광학 장치들이 형성될 영역들이다. 도 5에는 예시적으로, 광학 장치들이 형성될 복수의 영역 중 4개의 영역의 가장자리에만 반사 패드(120)가 형성된 것으로 도시되었다. 반사 패드(120)의 개수는 웨이퍼(101)의 크기, 공정 오차 등을 고려하여 적절히 선택될 수 있다. 도 5에서 M1 및 M2는 후속하는 평탄화 공정에서 반사 패드(120)로부터 반사되는 빛의 스펙트럼을 예시적으로 모니터링할 위치를 나타낸다. 또한, NP1 및 NP2는 후속하는 평탄화 공정에서 비교예를 위하여 반사 패드(120)가 없는 하부 광학층(110)으로부터 반사되는 빛의 스펙트럼을 예시적으로 모니터링할 위치를 나타낸다.
도 4b를 참조하면, 하부 광학층(110)과 반사 패드(120)를 모두 덮도록 식각 정지층(121)이 일정한 두께로 형성될 수 있다. 그런 후, 식각 정지층(121)의 전체 상부 표면 위에 제1 유전체(131)가 일정한 두께로 형성될 수 있다. 예를 들어, 식각 정지층(121)은 약 3 nm 내지 약 50 nm 또는 약 5 nm 내지 약 15 nm의 두께로 형성될 수 있다. 또한, 제1 유전체(131)는 약 100 nm 내지 약 1500 nm의 두께로 형성될 수 있다. 하부 광학층(110)의 가장자리에 배치된 반사 패드(120)로 인하여, 반사 패드(120)를 덮고 있는 식각 정지층(121)의 가장자리 부분은 식각 정지층(121)의 다른 부분보다 위쪽으로 돌출될 수 있다. 마찬가지로, 반사 패드(120) 위에 있는 제1 유전체(131)의 가장자리 부분은 제1 유전체(131)의 다른 부분보다 위쪽으로 돌출될 수 있다. 따라서, 식각 정지층(121)과 제1 유전체(131) 각각은 단차진 형상을 가질 수 있다.
도 4c를 참조하면, 제1 유전체(131)를 패터닝할 수 있다. 예를 들어, 리소그래피 및 식각 기술을 이용하여 제1 유전체(131)를 패터닝할 수 있으며, 식각 정지층(121)이 노출될 때 식각을 중단할 수 있다. 제1 유전체(131)의 패턴 형태는 광학 장치의 용도에 따라 결정될 수 있다. 예를 들어, 제1 유전체(131)는 렌즈, 프리즘, 편광자, 컬러 필터, 분광 필터 중에서 적어도 하나의 역할을 수행하도록 패터닝될 수 있다. 제1 유전체(131)의 패터닝은 광학적으로 유효한 기능을 갖는 활성 영역 내에 있는 제1 유전체(131)에 대해서만 수행될 수 있으며, 반사 패드(120)가 위치한 비활성 영역 내에 있는 제1 유전체(131)는 패터닝되지 않는다.
도 4d를 참조하면, 제1 유전체(131)를 완전히 덮도록 제2 유전체(132)가 형성될 수 있다. 제2 유전체(132)는 제1 유전체(131)와 상이한 굴절률을 갖는 유전체 재료로 이루어질 수 있다. 제2 유전체(132)는 제1 유전체(131)의 패턴들 사이의 공간을 완전히 채우도록 형성될 수 있다. 예를 들어, 제2 유전체(132)는 화학 기상 증착(chemical vapor deposition, CVD)이나 원자층 증착(atomic layer deposition, ALD) 방식으로 형성될 수 있다. 또한, 제2 유전체(132)는 제1 유전체(132)의 상부 표면 위로 소정의 두께로 형성될 수 있다. 이 경우, 반사 패드(120) 위에 있는 제2 유전체(132)의 가장자리 부분은 제2 유전체(132)의 다른 부분보다 위쪽으로 돌출될 수 있다.
제2 유전체(132)를 형성한 후, 단차를 갖는 제2 유전체(132)의 상부 표면을 평탄화하기 위하여 평탄화 공정이 수행될 수 있다. 평탄화 공정은, 예를 들어, 화학 기계적 평탄화(chemical mechanical polishing, CMP) 방식으로 수행될 수 있다. 평탄화 공정이 진행됨에 따라 제1 유전체(132)의 상부 표면 위에 남아 있는 제2 유전체(132)의 두께가 점차 작아지게 된다. 평탄화 공정이 종료되면 제2 유전체(132)의 상부 표면 전체가 평평한 상태가 될 수 있다. 이러한 평탄화 공정 후에 남아 있는 제2 유전체(132)의 두께에 따라 광학 장치의 성능이 달라질 수 있다. 따라서, 평탄화 공정에서 제1 유전체(132)의 상부 표면 위에 있는 제2 유전체(132)의 두께를 목표 두께에 근접하도록 정밀하게 제어하는 것이 중요하다.
실시예에 따르면, 평탄화 공정에서 반사 패드(120)로부터 반사되는 빛의 스펙트럼을 모니터링함으로써 연마 속도 및 제2 유전체(132)의 두께를 추정하고, 평탄화 산포를 균일하게 제어하며, 평탄화 종료 시점을 결정할 수 있다. 예를 들어, 평탄화 공정을 진행하면서 in-situ 방식 또는 ex-situ 방식으로 반사 패드(120)에 백색의 조명광(L1)을 조사하고 반사 패드(120)로부터의 반사광(L2)을 검출할 수 있다. 그리고, 시뮬레이션을 통해 얻은 제2 유전체(132)의 두께에 따른 반사광(L2)의 예상 스펙트럼과 실제로 측정하여 얻은 반사광(L2)의 스펙트럼을 비교함으로써, 연마 속도 및 제2 유전체(132)의 두께를 추정할 수 있다.
예를 들어, 도 6a 및 도 6b는 반사 패드(120)가 형성된 제1 위치(M1) 및 제2 위치(M2)에서의 반사도 스펙트럼을 비교하여 보이는 그래프이고, 도 7a 및 도 7b는 반사 패드(120)가 형성되지 않은 제3 위치(NP1) 및 제4 위치(NP2)에서의 반사도 스펙트럼을 비교하여 보이는 그래프이다. 도 6a 내지 도 7b에 도시된 그래프는, 하부 광학층(110)이 CMOS(complementary metal-oxide-semiconductor) 이미지 센서(CIS)이며, 제1 유전체(131)이 303 nm 두께의 SiO2이고, 반사 패드(120)가 23 nm 두께의 Mo이며, 식각 정지층(121)이 HfO2이고, 제2 유전체(132)가 TiO2인 구조에 대해 예시된 것이다.
도 6a 및 도 6b에서 실선으로 표시된 그래프는 제1 및 제2 위치(M1, M2)에서 제1 유전체(131) 위에 제2 유전체(132)가 존재하지 않은 경우 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 점선으로 표시된 그래프는 제2 유전체(132)의 두께가 146.5 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 쇄선으로 표시된 그래프는 제2 유전체(132)의 두께가 27 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이다. 또한, 원으로 표시된 그래프는 반사광(L2)을 실측한 결과이다. 도 6a 및 도 6b를 참조하면, 반사 패드(120)가 형성된 제1 및 제2 위치(M1, M2)에서, 제1 유전체(131) 위에 제2 유전체(132)가 존재하지 않은 경우에는 비교적 단순한 반사도 스펙트럼이 형성된다. 제1 유전체(131) 위에 제2 유전체(132)가 증착된 후에는 복수의 반사도 피크(peak)를 갖는 반사도 스펙트럼이 형성될 수 있다. 그리고, 평탄화 공정에 의해 제2 유전체(132)의 두께가 얇아지면서 반사도 스펙트럼은 제2 유전체(132)가 존재하지 않은 경우의 반사도 스펙트럼에 근접하게 된다. 도 6a 및 도 6b에서 반사광(L2)을 실측하여 얻은 반사도 스펙트럼을 시뮬레이션 결과와 비교하면 제2 유전체(132)의 두께가 대략 146.5 nm임을 알 수 있다. 또한, 서로 다른 제1 위치(M1)와 제2 위치(M2)에서 실측한 반사도 스펙트럼이 거의 동일하다는 것을 알 수 있다.
도 7a 및 도 7b에서 굵은 실선으로 표시된 그래프는 제3 및 제4 위치(NP1, NP2)에서 제1 유전체(131) 위에 제2 유전체(132)가 존재하지 않은 경우 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 점선으로 표시된 그래프는 제2 유전체(132)의 두께가 146.5 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 쇄선으로 표시된 그래프는 제2 유전체(132)의 두께가 50 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이다. 또한, 가는 실선으로 표시된 그래프는 반사광(L2)을 실측한 결과이다. 도 6a 및 도 6b의 그래프와 비교하면, 반사 패드(120)가 형성되지 않은 제3 및 제4 위치(NP1, NP2)에서는 많은 수의 반사도 피크를 갖는 비교적 복잡한 반사도 스펙트럼이 형성된다는 것을 알 수 있다. 이러한 결과는 조명광(L1)이 하부 반사층(110) 내의 다양한 층 또는 다양한 구조물들로부터 반사되기 때문에 일어난다. 따라서 반사광(L2)을 실측하여 얻은 반사도 스펙트럼을 시뮬레이션 결과와 비교하기가 상대적으로 어려울 수 있다. 또한, 위치에 따라 하부 반사층(110) 내의 층들의 두께가 균일하지 않기 때문에, 서로 다른 제3 위치(NP1)와 제4 위치(NP2)에서 얻은 반사도 스펙트럼이 서로 조금씩 다를 수 있다. 따라서, 제2 유전체(132)의 두께를 정확하게 추정하기 어려우며 추정된 두께 값에 큰 오차가 발생할 수 있다.
도 8a 내지 도 8c는 반사 패드(120)가 형성된 제1 위치(M1)에서 평탄화 공정의 진행에 따른 반사도 스펙트럼 변화를 예시적으로 보인다. 도 8a에서 점선으로 표시된 그래프는 제2 유전체(132)의 두께가 146.5 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 도 8b에서 점선으로 표시된 그래프는 제2 유전체(132)의 두께가 68 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 도 8c에서 점선으로 표시된 그래프는 제2 유전체(132)의 두께가 7 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이다. 도 8a 내지 도 8c에서 굵은 실선으로 표시된 그래프는 제1 유전체(131) 위에 제2 유전체(132)가 존재하지 않은 경우 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 쇄선으로 표시된 그래프는 제2 유전체(132)의 두께가 27 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 원으로 표시된 그래프는 반사광(L2)을 실측한 결과이다. 반사광(L2)을 실측하여 얻은 반사도 스펙트럼과 시뮬레이션을 통해 얻은 반사도 스펙트럼을 비교하면, 평탄화 공정의 초기(도 8a)에 제2 유전체(132)의 두께는 대략 146.5 nm이고, 평탄화 공정을 40초 수행한 후(도 8b)에 제2 유전체(132)의 두께는 대략 68 nm이며, 이때의 연마 속도가 대략 1.96 nm/s라는 것을 알 수 있다. 또한, 평탄화 공정을 30초 더 수행한 후(도 8c)에 제2 유전체(132)의 두께는 대략 7 nm이고, 연마 속도는 대략 2.03 nm/s라는 것을 알 수 있다.
반사광(L2)을 실측하여 얻은 반사도 스펙트럼과 시뮬레이션을 통해 얻은 반사도 스펙트럼을 비교할 때, 전체 파장 대역에서 반사도 분포(profile)를 비교할 수도 있지만, 반사도 피크 파장 및/또는 흡수도 피크 파장만을 선택하여 비교할 수도 있다. 예를 들어, 제2 유전체(132)의 다양한 두께들에 대해 미리 시뮬레이션하여 얻은 반사도 스펙트럼(이하, "시뮬레이션 반사도 스펙트럼")들 중, 반사광(L2)을 실측하여 얻은 반사도 스펙트럼(이하, "실측 반사도 스펙트럼")의 반사도 피크 파장 및/또는 흡수도 피크 파장과 일치하는 반사도 피크 파장 및/또는 흡수도 피크 파장을 갖는 하나의 시뮬레이션 반사도 스펙트럼을 찾아 선택할 수 있다. 그러면 선택된 시뮬레이션 반사도 스펙트럼에 대응하는 제2 유전체(132)의 두께를 제2 유전체(132)의 실제 두께로 추정할 수 있다.
실측 반사도 스펙트럼 내에서 2개 이상의 반사도 피크가 존재하는 경우, 반사도가 가장 높은 하나의 파장만을 선택하여 실측 반사도 스펙트럼과 시뮬레이션 반사도 스펙트럼을 비교하거나, 또는 반사도가 높은 순서로 2개의 파장을 선택하여 실측 반사도 스펙트럼과 시뮬레이션 반사도 스펙트럼을 비교할 수도 있다. 또는, 반사도가 높은 순서로 적어도 하나의 파장과 반사도가 낮은 순서(즉, 흡수도가 높은 순서)로 적어도 하나의 파장을 선택하여 실측 반사도 스펙트럼과 시뮬레이션 반사도 스펙트럼을 비교할 수도 있다. 연산량을 줄이기 위해, 제2 유전체(132)의 복수의 이산된 두께들에 대해 복수의 시뮬레이션 반사도 스펙트럼을 미리 계산할 수 있다. 실측 반사도 스펙트럼에서 선택된 반사도 피크 파장 및/또는 흡수도 피크 파장과 정확히 일치하는 시뮬레이션 반사도 스펙트럼이 존재하지 않는 경우, 선택된 반사도 피크 파장 및/또는 흡수도 피크 파장과 가장 가까운 2개의 시뮬레이션 반사도 스펙트럼을 찾아서 보간법으로 제2 유전체(132)의 실제 두께를 추정할 수 있다.
도 9a 내지 도 9c는 반사 패드(120)가 형성되지 않은 제3 위치(NP1)에서 평탄화 공정의 진행에 따른 반사도 스펙트럼 변화를 예시적으로 보인다. 도 9a에서 점선으로 표시된 그래프는 제2 유전체(132)의 두께가 146.5 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 도 9b에서 점선으로 표시된 그래프는 제2 유전체(132)의 두께가 78 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 도 9c에서 점선으로 표시된 그래프는 제2 유전체(132)의 두께가 15 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이다. 도 9a 내지 도 9c에서 굵은 실선으로 표시된 그래프는 제1 유전체(131) 위에 제2 유전체(132)가 존재하지 않은 경우 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 쇄선으로 표시된 그래프는 제2 유전체(132)의 두께가 50 nm일 때 반사광(L2)의 스펙트럼을 시뮬레이션한 결과이고, 가는 실선으로 표시된 그래프는 반사광(L2)을 실측한 결과이다. 도 9a는 평탄화 공정의 초기이고, 도 9b는 평탄화 공정을 40초 수행한 후의 결과이며, 도 9c는 평탄화 공정을 30초 더 수행한 후의 결과이다.
도 8b와 도 9b를 비교하면, 평탄화 공정을 40초 수행한 후, 반사 패드(120)가 형성된 제1 위치(M1)에서는 제2 유전체(132)의 두께가 68 nm으로 추정된 반면, 반사 패드(120)가 형성되지 않은 제3 위치(NP1)에서는 제2 유전체(132)의 두께가 78 nm으로 추정되었다. 또한, 도 8c와 도 9c를 비교하면, 평탄화 공정을 30초 더 수행한 후, 반사 패드(120)가 형성된 제1 위치(M1)에서는 제2 유전체(132)의 두께가 7 nm으로 추정된 반면, 반사 패드(120)가 형성되지 않은 제3 위치(NP1)에서는 제2 유전체(132)의 두께가 15 nm으로 추정되었다.
도 10a는 평탄화 후 반사 패드(120)가 형성된 제1 위치(M1)에 대한 투과 전자 현미경(transmission electron microscope, TEM) 측정 결과를 예시적으로 보이고, 도 10b는 제1 위치(M1)에 인접한 활성 영역에 대한 TEM 측정 결과를 예시적으로 보인다. 또한, 도 11a는 평탄화 후 반사 패드(120)가 형성된 제2 위치(M2)에 대한 TEM 측정 결과를 예시적으로 보이고, 도 11b는 제2 위치(M2)에 인접한 활성 영역에 대한 TEM 측정 결과를 예시적으로 보인다. TEM 측정 결과, 제1 위치(M1)에서 제2 유전체(132)의 실제 두께는 약 7.3 nm이고, 제2 위치(M2)에서 제2 유전체(132)의 실제 두께는 약 6.5 nm인 것으로 확인되었다. 또한, 제1 위치(M1)에 인접한 활성 영역(P1)에서 제2 유전체(132)의 실제 두께는 약 27.9 nm이고, 제2 위치(M2)에 인접한 활성 영역(P2)에서 제2 유전체(132)의 실제 두께는 약 26.4 nm인 것으로 확인되었다. 따라서, 반사 패드(120)가 형성된 제1 위치(M1)에서 실시예에 따라 추정된 제2 유전체(132)의 두께(7 nm)가 실측된 값과 거의 일치하는 것을 알 수 있다. 반면, 반사 패드(120)가 형성되지 않은 제3 위치(NP1)에서 추정된 제2 유전체(132)의 두께에는 오차가 있다는 것을 알 수 있다.
도 6a 내지 도 11b에서 살펴본 바와 같이, 하부 반사층(110) 위에 반사 패드(120)를 배치한 경우, 조명광(L1)의 대부분이 반사 패드(120)에 의해 반사되어 하부 반사층(110) 내부로 입사하지 않는다. 따라서, 반사 패드(120)로부터 반사된 반사광(L2)의 반사도 스펙트럼을 하부 반사층(110)에 의한 영향을 거의 받지 않고 얻을 수 있다. 개시된 실시예에 따르면, 제2 유전체층(132)의 평탄화 공정에서 하부 반사층(110) 내의 복수의 광학 박막 또는 구조물로 인한 측정 오류를 최소화함으로써 광학적으로 정밀하게 평탄화 공정의 종료 시점을 결정할 수 있으며, 제2 유전체층(132)의 두께를 정밀하게 제어하는 것이 가능하다. 또한, 반사 패드(120)가 비활성 영역에 배치되어 있기 때문에 완성된 광학 장치 또는 나노 구조물층의 성능에는 영향을 주지 않을 수 있다.
도 12는 일 실시예에 따른 평탄화 장치의 구성을 개략적으로 보이는 개념도이다. 도 12를 참조하면, 실시예에 따른 평탄화 장치(1000)는 평탄화 대상인 웨이퍼(101)를 지지하고 회전시키는 캐리어(1001), 웨이퍼(101)의 평탄화 대상 표면을 연마하는 연마 패드(1002), 평탄화 모니터링을 위하여 웨이퍼(101)에 조명광을 조사하는 광원(1003), 웨이퍼(101)로부터 반사된 반사광을 검출하는 광검출기(1005), 및 광검출기(1005)로부터 제공되는 반사광의 스펙트럼 정보를 분석하여 연마 속도 및 평탄화 대상 층의 두께를 계산하는 프로세서(1006)를 포함할 수 있다. 또한, 평탄화 장치(1000)는 조명광을 웨이퍼(101)로 진행시키고 반사광을 광검출기(1005)로 진행시키도록 배치된 빔스플리터(1004)를 더 포함할 수도 있다. 웨이퍼(101)의 상부 표면에는 도 4d에 도시된 것과 같은 광학 장치의 제조 과정에 있는 복수의 중간 구조물이 형성되어 있을 수 있다.
프로세서(1006)는 연마 속도 및 평탄화 대상 층의 두께에 관한 정보를 기초로 캐리어(1001) 및 연마 패드(1002)의 동작을 제어할 수 있다. 예를 들어, 프로세서(1006)는 웨이퍼(101)의 전체 영역에 대해 균일한 평탄화 공정이 이루어지도록 캐리어(1001) 및 연마 패드(1002)를 제어할 수 있다. 또한, 프로세서(1006)는 연마 속도 및 평탄화 대상 층의 두께에 관한 정보를 기초로 평탄화 종료 시점을 결정할 수 있다.
평탄화 장치(1000)는 웨이퍼(101) 내에 형성된 반사 패드에 조명광을 조사하고 반사 패드로부터 반사된 반사광의 스펙트럼을 분석하는 방식으로 평탄화 모니터링을 수행할 수 있다. 이를 위해, 프로세서(1006)는 웨이퍼(101) 내에 배치된 복수의 반사 패드의 위치에 관한 정보를 저장한 메모리를 포함할 수 있다. 메모리에 저장된 반사 패드의 위치에 관한 정보를 기초로 프로세서(1006)는 조명광이 반사 패드에 입사할 수 있도록 캐리어(1001), 연마 패드(1002), 광원(1003) 및/또는 빔스플리터(1004)의 위치를 제어할 수 있다.
도 13은 일 실시예에 따른 평탄화 방법을 개략적으로 보이는 흐름도이다. 도 13을 참조하면, 프로세서(1006)는 웨이퍼(101) 내의 반사 패드로부터 반사된 반사광의 스펙트럼을 분석할 수 있다. 예를 들어, 프로세서(1006)는 여러 파장에 대해 반사광의 반사도를 측정할 수 있다(S10). 그리고, 프로세서(1006)는 반사도 및/또는 흡수도의 피크 파장을 결정할 수 있다(S11). 프로세서(1006)는 실측하여 얻은 반사도 및/또는 흡수도의 피크 파장 및 평탄화 대상 층의 다양한 두께들에 대해 미리 시뮬레이션하여 얻은 복수의 시뮬레이션 반사도 스펙트럼들을 기초로 평탄화 대상 층의 현재 두께를 추정할 수 있다. 예를 들어, 프로세서(1006)는 실측하여 얻은 반사도 및/또는 흡수도의 피크 파장과 일치하거나 그에 가장 가까운 반사도 및/또는 흡수도의 피크 파장을 갖는 시뮬레이션 반사도 스펙트럼을 찾아 평탄화 대상 층의 두께를 추정할 수 있다. 이를 위해, 프로세서(1006)는 평탄화 대상 층의 다양한 두께들에 대해 미리 시뮬레이션하여 복수의 시뮬레이션 반사도 스펙트럼을 얻고 그 결과를 메모리에 저장할 수 있다. 또는 프로세서(1006)는 실시간으로 시뮬레이션을 수행하여 평탄화 대상 층의 두께를 계산할 수도 있다.
그런 후, 프로세서(1006)는 캐리어(1001) 및 연마 패드(1002)를 동작시켜 소정의 시간 동안 초기 평탄화 공정을 수행할 수 있다(S12). 예를 들어, 수 초 내지 수십 초 동안 웨이퍼(101)의 평탄화 대상 층을 평탄화할 수 있다. 프로세서(1006)는 여러 파장에 대해 반사광의 반사도를 다시 측정하고(S10), 웨이퍼(101)의 평탄화 대상 층이 초기 평탄화 공정을 통해 연마된 두께를 계산할 수 있다. 이를 통해, 프로세서(1006)는 평탄화 장치(1000)의 연마 속도를 계산할 수 있다(S13). 그러면 프로세서(1006)는 평탄화 대상 층의 현재 두께에 관한 정보, 평탄화 대상 층의 목표 두께에 관한 정보, 및 평탄화 장치(1000)의 연마 속도를 기초로 평탄화 공정이 수행될 시간을 예측할 수 있다(S14). 평탄화 대상 층의 목표 두께는 사용자에 의해 미리 입력된 값일 수 있으며, 프로세서(1006)는 사용자로부터 입력된 평탄화 대상 층의 목표 두께에 관한 정보를 프로세서(1006)의 메모리에 저장할 수 있다.
그런 후, 프로세서(1006)는 캐리어(1001) 및 연마 패드(1002)를 제어하여 웨이퍼(101)의 평탄화 대상 층에 대한 평탄화 공정을 수행할 수 있다(S15). 프로세서(1006)는 평탄화 공정을 수행하는 동안 in-situ 방식 또는 ex-situ 방식을 이용하여 실시간으로 또는 주기적으로 평탄화 공정의 진행 정도를 모니터링할 수 있다. 예를 들어, 프로세서(1006)는 웨이퍼(101) 내의 반사 패드로부터 반사된 반사광을 검출하여 얻은 반사도 및/또는 흡수도의 피크 파장을 평탄화 대상 층의 목표 두께에 대해 미리 시뮬레이션하여 얻은 반사도 및/또는 흡수도의 피크 파장과 비교할 수 있다(S16). 프로세서(1006)는 실측된 반사도 및/또는 흡수도의 피크 파장의 시프트 정도로부터 남아 있는 평탄화 대상 층의 현재 두께를 계산하고(S18), 평탄화 대상 층의 두께가 목표 두께에 도달할 때까지 상술한 S15 내지 S18의 과정을 반복할 수 있다. 최종적으로 평탄화 대상 층의 두께가 목표 두께에 도달하면 프로세서(1006)는 평탄화 작업을 종료할 수 있다(S19).
상술한 바와 같이, 웨이퍼(101) 내에서 광학 장치들이 형성될 영역들 중 비활성 영역 내에 반사 패드를 형성하고, 반사 패드로부터 반사되는 반사광의 스펙트럼을 분석함으로써, 평탄화 대상 층의 두께를 정밀하게 제어할 수 있다. 특히, 광학 장치의 다층 광학 박막 구조를 평탄화하는 과정에서 복수의 광학 박막으로 인한 측정 오류를 최소화함으로써 광학적으로 정밀하게 평탄화 작업의 종말점을 결정할 수 있다. 또한, 시뮬레이션을 통해 예측된 피크 파장과 실측된 반사광 스펙트럼 내의 피크 파장을 비교함으로써 평탄화 대상 층의 두께, 목표 두께와의 차이, 평탄화 예정 시간 등을 정밀하게 추정할 수 있다. 따라서 평탄화 공정을 정확하게 종료할 수 있으며, 특히 메타 구조를 포함하는 광학 박막의 두께를 정밀하게 제어하는 것이 가능하다.
도 14는 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다. 도 14에 도시된 광학 장치(100c)는 반사 패드(120)가 식각 정지층(121) 위에 배치되어 있다는 점에서 도 3에 도시된 광학 장치(100b)와 차이가 있다. 이 경우, 식각 정지층(121)의 상부 표면은 단차 없이 평평할 수 있다. 반사 패드(120) 위에는 제1 유전체(131) 및 제2 유전체(132)만이 존재할 수 있다. 제1 유전체(131)의 상부 표면은 반사 패드(120)로 인해 단차진 형태를 가질 수 있다. 도 14에 도시된 광학 장치(100c)의 나머지 구성들은 도 3에 도시된 광학 장치(100b)와 동일할 수 있다.
도 15는 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다. 도 15를 참조하면, 광학 장치(100d)는 2개 이상의 나노 구조물층들이 적층된 구조를 가질 수 있다. 예를 들어, 광학 장치(100d)는 하부 광학층(110), 하부 광학층(110) 상의 비활성 영역(R2) 내에 배치된 제1 반사 패드(120), 하부 광학층(110)과 제1 반사 패드(120)를 덮도록 배치된 제1 식각 정지층(121), 제1 식각 정지층(121) 위에 배치된 제1 나노 구조물층(130), 제1 나노 구조물층(130) 상의 비활성 영역(R2) 내에 배치된 제2 반사 패드(122), 제1 나노 구조물층(130)과 제2 반사 패드(122)를 덮도록 배치된 제2 식각 정지층(123), 및 제2 식각 정지층(123) 위에 배치된 제2 나노 구조물층(140)을 포함할 수 있다. 제1 나노 구조물층(130)과 제2 나노 구조물층(140)은 수직 방향으로, 다시 말해 광학 장치(100d)의 두께 방향으로 적층되도록 배치될 수 있다.
제1 나노 구조물층(130)은 패터닝된 제1 유전체(131) 및 제1 유전체(131)의 패턴들 사이를 채우는 제2 유전체(132)를 포함할 수 있다. 제1 유전체(131)는 활성 영역(R1) 내에서만 패터닝되어 있으며 비활성 영역(R2) 내에 있는 제1 유전체(131)는 패터닝되지 않을 수 있다. 또한, 제2 나노 구조물층(140)은 패터닝된 제3 유전체(141) 및 제3 유전체(141)의 패턴들 사이를 채우는 제4 유전체(142)를 포함할 수 있다. 제3 유전체(141)는 활성 영역(R1) 내에서만 패터닝되어 있으며 비활성 영역(R2) 내에 있는 제3 유전체(141)는 패터닝되지 않을 수 있다. 제3 유전체(141)와 제4 유전체(142)는 서로 다른 굴절률을 갖는 유전체 재료로 이루어질 수 있다.
도 15에 도시된 광학 장치(100d)를 제조할 때, 제1 반사 패드(120)로부터 반사된 반사광을 측정하면서 상술한 방식으로 제2 유전체(132)를 평탄화할 수 있다. 제2 유전체(132)를 평탄화한 후에, 제2 반사 패드(122)와 제2 식각 정지층(123)을 형성하고, 제2 식각 정지층(123) 위에 제3 유전체(141)를 증착 및 패터닝할 수 있다. 그런 후, 제3 유전체(141)의 패턴들 사이를 채우고 제3 유전체(141)의 상부 표면을 덮도록 제4 유전체(142)를 증착하고, 제2 반사 패드(122)로부터 반사된 반사광을 측정하면서 상술한 방식으로 제4 유전체(142)를 평탄화할 수 있다. 도 15에는 광학 장치(100d)가 2개의 나노 구조물층(130, 140)을 포함하는 것으로 예시되었으나 이에 반드시 한정되는 것은 아니며, 예를 들어, 3개 이상의 나노 구조물층들이 적층될 수도 있다.
도 16은 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다. 도 16을 참조하면, 광학 장치(200)는 센서 기판(210), 센서 기판(210) 위에 배치된 반사 패드(220), 센서 기판(210)과 반사 패드(220)를 덮도록 배치된 식각 정지층(221), 및 식각 정지층(230) 위에 배치된 메타 렌즈층(230)을 포함할 수 있다. 광학 장치(200)는, 예를 들어, 이미지 센서일 수 있다. 도시되지는 않았지만 광학 장치(200)는 메타 렌즈층(230) 위에 배치된 컬러 필터를 더 포함할 수도 있다.
센서 기판(210)은 메타 렌즈층(230)의 활성 영역(R1) 내에서 활성 영역(R1)과 마주하여 배열된 복수의 광센싱셀(211, 212, 213, 214) 및 메타 렌즈층(230)의 비활성 영역(R2) 내에서 비활성 영역(R2)과 마주하여 배치된 구동 회로부(215)를 포함할 수 있다. 복수의 광센싱셀(211, 212, 213, 214)은 입사광을 감지하여 입사광의 세기에 따라 전기적 신호를 발생시킬 수 있다. 복수의 광센싱셀(211, 212, 213, 214) 각각은, 예를 들어, 포토다이오드 및 포토다이오드를 스위칭하는 박막 트랜지스터를 포함할 수 있다. 구동 회로부(215)에는, 예를 들어, 타이밍 컨트롤러, 로우 디코더, 및 출력 회로와 같은 구동 회로들이 배치될 수 있다. 이러한 센서 기판(210)은 전술한 실시예들의 하부 광학층(110)에 대응할 수 있다.
반사 패드(220)는 센서 기판(210) 상의 비활성 영역(R2) 내에 배치될 수 있다. 예를 들어, 반사 패드(220)는 센서 기판(210)은 구동 회로부(215) 위에 배치될 수 있다.
메타 렌즈층(230)은 활성 영역(R1) 내에 배열된 복수의 렌즈 소자(LE1, LE2, LE3, LE4)를 포함할 수 있다. 복수의 렌즈 소자(LE1, LE2, LE3, LE4)는 복수의 광센싱셀(211, 212, 213, 214)과 각각 대응할 수 있으며, 복수의 광센싱셀(211, 212, 213, 214) 중 대응하는 광센싱셀과 연직 방향으로 마주하여 배치될 수 있다. 복수의 렌즈 소자(LE1, LE2, LE3, LE4) 각각은 대응하는 복수의 광센싱셀(211, 212, 213, 214)에 입사광을 집광하도록 구성될 수 있다. 이를 위해, 메타 렌즈층(230)은 패터닝된 제1 유전체(231) 및 제1 유전체(231)의 패턴들 사이를 채우고 제1 유전체(231)의 상부 표면을 덮는 제2 유전체(232)를 포함할 수 있다. 제1 유전체(231)와 제2 유전체(232)는 서로 다른 굴절률을 갖는 유전체 재료로 이루어질 수 있다. 복수의 렌즈 소자(LE1, LE2, LE3, LE4) 각각에서 제1 유전체(231)는 평면 광학 메타 렌즈를 형성하도록 패터닝될 수 있다. 제2 유전체(232)는 평평한 상부 표면을 갖도록 평탄화될 수 있다. 이러한 메타 렌즈층(230)은 전술한 실시예들의 나노 구조물층(130)에 대응할 수 있다.
도 17은 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다. 도 17을 참조하면, 광학 장치(300)는 센서 기판(310), 센서 기판(310) 위에 배치된 제1 반사기(341), 제1 반사기(341) 상에서 비활성 영역(R2) 내에 배치된 반사 패드(320), 제1 반사기(341)와 반사 패드(320)를 모두 덮도록 배치된 식각 정지층(321), 식각 정지층(321) 위에 배치된 메타 컬러 필터층(330), 및 메타 컬러 필터층(330) 위에 배치된 제2 반사기(342)를 포함할 수 있다. 광학 장치(300)는, 예를 들어, 이미지 센서일 수 있다. 센서 기판(310)은 전술한 실시예들의 하부 광학층(110)에 대응할 수 있으며, 메타 컬러 필터층(330)은 전술한 실시예들의 나노 구조물층(130)에 대응할 수 있다. 제1 반사기(341)는 하부 광학층(110)에 대응하는 센서 기판(310)과 나노 구조물층(130)에 대응하는 메타 컬러 필터층(330) 사이에 배치될 수 있다.
센서 기판(310)은 활성 영역(R1) 내에 배열된 복수의 광센싱셀(311, 312, 313, 314) 및 비활성 영역(R2) 내에 배치된 구동 회로부(315)를 포함할 수 있다. 광센싱셀(311, 312, 313, 314) 및 구동 회로부(315)는 구성은 도 16에서 설명한 광센싱셀(211, 212, 213, 214) 및 구동 회로부(215)의 구성과 동일할 수 있다.
제1 반사기(341)와 제2 반사기(342)는, 예를 들어, 굴절률이 서로 다른 2개의 유전체층을 번갈아 적층하여 형성된 분산 브래그 반사기(distributed Bragg reflector, DBR)일 수 있다. 서로 마주하여 배치된 제1 반사기(341)와 제2 반사기(342)는 빛을 공진시키는 공진기를 형성할 수 있다. 제2 반사기(342)의 상부 표면을 통해 입사한 빛은 제1 반사기(341)와 제2 반사기(342) 사이에서 공진한 후, 제1 반사기(341)의 하부 표면을 통해 출사하여 센서 기판(310)에 입사할 수 있다. 제1 반사기(341)와 제2 반사기(342) 사이에는 메타 컬러 필터층(330)이 배치되어 있다. 빛은 제1 반사기(341)와 제2 반사기(342) 사이에서 공진하는 동안 메타 컬러 필터층(330)을 반복적으로 지나간다. 따라서, 제1 반사기(341)의 하부 표면을 통해 출사하는 빛의 특성은 메타 컬러 필터층(330)의 구조에 의해 주로 결정될 수 있다.
메타 컬러 필터층(330)은 활성 영역(R1) 내에 배열된 복수의 컬러 필터(CF1, CF2, CF3, CF4)를 포함할 수 있다. 복수의 컬러 필터(CF1, CF2, CF3, CF4)는 복수의 광센싱셀(311, 312, 313, 314)과 각각 대응할 수 있으며, 복수의 광센싱셀(311, 312, 313, 314) 중 대응하는 광센싱셀과 연직 방향으로 마주하여 배치될 수 있다. 복수의 컬러 필터(CF1, CF2, CF3, CF4)는 제1 반사기(341) 및 제2 반사기(342)와 함께 작용하여 서로 다른 파장의 빛에 대해 서로 다른 투과율을 갖도록 구성될 수 있다. 이를 위해, 메타 컬러 필터층(330)은 수평 방향, 다시 말해 제1 반사기(341)의 상부 표면 또는 제2 반사기(342)의 하부 표면에 평행한 방향을 따라 번갈아 배열된 복수의 제1 유전체(331)와 복수의 제2 유전체(332)를 포함할 수 있다. 제1 유전체(331)와 제2 유전체(332)는 서로 다른 굴절률을 갖는 유전체 재료로 이루어질 수 있다. 복수의 컬러 필터(CF1, CF2, CF3, CF4)에서, 복수의 제1 유전체(331)와 복수의 제2 유전체(332)의 배열 주기 또는 피치, 각각의 제1 유전체(331)의 폭, 각각의 제2 유전체(332)의 폭 등이 서로 다를 수 있다. 비활성 영역(R2) 내에는 제1 유전체(331) 및 제2 유전체(332) 중에서 어느 하나만이 배치될 수 있다.
도 18은 또 다른 실시예에 따른 광학 장치의 구조를 개략적으로 보이는 단면도이다. 도 18을 참조하면, 광학 장치(400)는 센서 기판(410), 센서 기판(410) 상의 비활성 영역(R2) 내에 배치된 반사 패드(420), 센서 기판(410)과 반사 패드(420)를 모두 덮도록 배치된 제1 식각 정지층(421), 제1 식각 정지층(421) 위에 배치된 제1 나노 구조물층(430), 제1 나노 구조물층(430) 위에 배치된 제1 금속 반사층(441), 제1 금속 반사층(441) 위에 배치된 제2 식각 정지층(423), 제2 식각 정치층(423) 위에 배치된 제2 나노 구조물층(450), 및 제2 나노 구조물층(450) 위에 배치된 제2 금속 반사층(442)을 포함할 수 있다. 광학 장치(400)는, 예를 들어, 분광 센서일 수 있다. 센서 기판(410)은 전술한 실시예들의 하부 광학층(110)에 대응할 수 있다. 제1 금속 반사층(441)은 제1 나노 구조물층(430)과 제2 나노 구조물층(450) 사이에 배치되며, 제2 나노 구조물층(450)은 서로 마주하여 배치된 제1 금속 반사층(441)과 제2 금속 반사층(442) 사이에 배치되고, 제2 식각 정지층(423)은 제1 금속 반사층(441)과 제2 나노 구조물층(450) 사이에 배치될 수 있다.
센서 기판(410)은 활성 영역(R1) 내에 배열된 복수의 광센싱셀(411, 412, 413, 414) 및 비활성 영역(R2) 내에 배치된 구동 회로부(415)를 포함할 수 있다. 광센싱셀(411, 412, 413, 414) 및 구동 회로부(415)는 구성은 도 16에서 설명한 광센싱셀(211, 212, 213, 214) 및 구동 회로부(215)의 구성과 동일할 수 있다.
제1 나노 구조물층(430), 제1 금속 반사층(441), 제2 나노 구조물층(450), 및 제2 금속 반사층(442)은 함께 분광 필터층을 형성할 수 있다. 분광 필터층은 활성 영역(R1) 내에 배열된 복수의 분광 필터(SF1, SF2, SF3, SF4)를 포함할 수 있다. 복수의 분광 필터(SF1, SF2, SF3, SF4)는 복수의 광센싱셀(411, 412, 413, 414)과 각각 대응할 수 있으며, 복수의 광센싱셀(411, 412, 413, 414) 중 대응하는 광센싱셀과 연직 방향으로 마주하여 배치될 수 있다.
제1 나노 구조물층(430)은 복수의 분광 필터(SF1, SF2, SF3, SF4)에 대해 각각 다르게 패터닝된 제1 유전체(431) 및 제1 유전체(431)의 패턴 사이를 채우며 제1 유전체(431)의 상부 표면을 덮는 제2 유전체(432)를 포함할 수 있다. 제1 유전체(431)와 제2 유전체(431)는 서로 다른 유전체 재료를 포함할 수 있다. 또한 제1 유전체(431)는 활성 영역(R1) 내에서만 패터닝되며 비활성 영역(R2)에서는 패터닝되지 않는다.
제1 금속 반사층(441)과 제2 금속 반사층(442)은 반사성 금속 재료를 포함할 수 있다. 예를 들어, 제1 및 제2 금속 반사층(441, 442)은 금(Au), 은(Ag), 알루미늄(Al), 구리(Cu), 텅스텐(W), 몰리브덴(Mo), 백금(Pt) 중에서 적어도 하나의 금속 또는 이들의 합금을 포함할 수 있다.
제1 금속 반사층(441)과 제2 금속 반사층(442) 사이에 배치된 제2 나노 구조물층(450)은 제1 및 제2 금속 반사층(441, 442)과 함께 공진기를 형성할 수 있다. 제2 나노 구조물층(450)은 복수의 분광 필터(SF1, SF2, SF3, SF4)에서 공진기가 서로 다른 공진 파장을 갖도록 형성될 수 있다. 이를 위해, 제2 나노 구조물층(450)은 수평 방향, 다시 말해 제1 금속 반사층(441)의 상부 표면 또는 제2 금속 반사층(442)의 하부 표면에 평행한 방향을 따라 번갈아 배열된 복수의 제3 유전체(451)와 복수의 제4 유전체(452)를 포함할 수 있다. 제3 유전체(451)와 제4 유전체(452)는 서로 다른 굴절률을 갖는 유전체 재료로 이루어질 수 있다. 복수의 분광 필터(SF1, SF2, SF3, SF4)에서, 복수의 제3 유전체(451)와 복수의 제4 유전체(452)의 배열 주기 또는 피치, 각각의 제3 유전체(451)의 폭, 각각의 제4 유전체(452)의 폭 등이 서로 다를 수 있다. 비활성 영역(R2) 내에는 제3 유전체(451) 및 제4 유전체(452) 중에서 어느 하나만이 배치될 수 있다.
도 18에 도시된 광학 장치(400)를 제조할 때, 반사 패드(420)로부터 반사된 반사광을 측정하면서 상술한 방식으로 제2 유전체(432)를 평탄화할 수 있다. 제2 유전체(432)를 평탄화한 후에, 제1 금속 반사층(441)과 제2 식각 정지층(423)을 형성하고, 제2 식각 정지층(423) 위에 제3 유전체(451)를 증착 및 패터닝할 수 있다. 그런 후, 제3 유전체(451)의 패턴들 사이를 채우고 제3 유전체(451)의 상부 표면을 덮도록 제4 유전체(452)를 증착할 수 있다. 그리고, 제3 유전체(451)와 제4 유전체(452)가 공동의 평평한 상부 표면을 갖도록 제3 유전체(451)와 제4 유전체(452)를 평탄화할 수 있다. 이때, 제1 금속 반사층(441)이 이미 형성되어 있기 때문에 추가적인 반사 패드 없이 제1 금속 반사층(441)을 반사 패드로서 활용할 수 있다. 예를 들어, 제1 금속 반사층(441)으로부터 반사된 반사광을 측정하면서 상술한 방식으로 제3 유전체(451)와 제4 유전체(452)를 평탄화할 수 있다.
상술한 다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치는 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 권리범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 권리범위에 포함된 것으로 해석되어야 할 것이다.
100, 100a, 100b, 100c, 100d.....광학 장치
101.....웨이퍼 110.....하부 광학층
120, 122.....반사 패드 121, 123.....식각 정지층
130, 140.....나노 구조물층 131, 132, 141, 142, .....유전체
200, 300, 400.....이미지 센서 1000.....평탄화 장치
1001.....캐리어 1002.....연마 패드
1003.....광원 1004.....빔스플리터
1005.....광검출기 1006.....프로세서

Claims (27)

  1. 하부 광학층;
    상기 하부 광학층 위에 배치된 것으로, 활성 영역과 비활성 영역을 갖는 나노 구조물층; 및
    상기 하부 광학층과 상기 나노 구조물층 사이에서 상기 나노 구조물층의 비활성 영역에 마주하여 배치된 반사 패드;를 포함하고,
    상기 나노 구조물층은 상기 활성 영역 내에서 패터닝되어 있고 상기 비활성 영역 내에서 패터닝되지 않은 제1 유전체 및 상기 제1 유전체의 패턴들 사이를 채우는 제2 유전체를 포함하며,
    상기 제1 유전체와 제2 유전체는 서로 다른 굴절률을 가지는 서로 다른 유전체 재료를 포함하는, 광학 장치.
  2. 제1 항에 있어서,
    상기 비활성 영역에서 상기 제1 유전체의 상부 표면의 높이는 상기 활성 영역서 상기 제1 유전체의 상부 표면의 높이보다 높은, 광학 장치.
  3. 제2 항에 있어서,
    상기 제2 유전체는 상기 제1 유전체의 상부 표면을 덮도록 배치되며, 상기 제2 유전체의 상부 표면은 평탄한 표면을 갖는, 광학 장치.
  4. 제3 항에 있어서,
    상기 활성 영역에서 상기 제1 유전체의 상부 표면 위의 상기 제2 유전체의 두께는 상기 비활성 영역에서 상기 제1 유전체의 상부 표면 위의 상기 제2 유전체의 두께보다 상기 반사 패드의 두께만큼 더 큰, 광학 장치.
  5. 제1 항에 있어서,
    상기 반사 패드의 두께는 10 nm 내지 50 nm인, 광학 장치.
  6. 제1 항에 있어서,
    상기 반사 패드는 5 μm2 내지 25 μm2의 면적을 갖는 원형 또는 다각형인, 광학 장치.
  7. 제1 항에 있어서,
    상기 제2 유전체는 상기 활성 영역 내에서 상기 제1 유전체의 패턴들 사이에만 배치되며,
    상기 제1 유전체와 제2 유전체가 평탄한 공동의 상부 표면을 갖고,
    상기 활성 영역 내의 제1 유전체의 두께는 상기 반사 패드 위의 제1 유전체의 두께보다 큰, 광학 장치.
  8. 제1 항에 있어서,
    상기 하부 광학층과 상기 나노 구조물층 사이에 배치되며 상기 반사 패드를 덮도록 배치된 식각 정지층을 더 포함하는, 광학 장치.
  9. 제8 항에 있어서,
    상기 비활성 영역에서 상기 식각 정지층의 상부 표면의 높이는 상기 활성 영역에서 상기 식각 정지층의 상부 표면의 높이보다 상기 반사 패드의 두께만큼 높은, 광학 장치.
  10. 제1 항에 있어서,
    상기 하부 광학층과 상기 나노 구조물층 사이에 배치된 식각 정지층을 더 포함하며, 상기 반사 패드는 상기 식각 정지층 위에 배치되어 있는, 광학 장치.
  11. 제1 항에 있어서,
    상기 제1 유전체의 각각의 패턴의 폭 또는 직경은 10 nm 내지 400 nm이고, 상기 제1 유전체의 각각의 패턴의 두께는 100 nm 내지 1500 nm인, 광학 장치.
  12. 제1 항에 있어서,
    상기 하부 광학층은 상기 활성 영역에 마주하여 배열된 복수의 광센싱셀 및 상기 비활성 영역에 마주하여 배열된 구동 회로부를 포함하는 센서 기판이고,
    상기 나노 구조물층은 상기 활성 영역 내에서 상기 복수의 광센싱셀과 마주하여 배치된 복수의 렌즈 소자를 포함하는 메타 렌즈층이며,
    상기 복수의 렌즈 소자 각각에서 상기 제1 유전체는 평면 광학 메타 렌즈를 형성하도록 패터닝되어 있는, 광학 장치.
  13. 제1 항에 있어서,
    상기 하부 광학층은 상기 활성 영역에 마주하여 배열된 복수의 광센싱셀 및 상기 비활성 영역에 마주하여 배열된 구동 회로부를 포함하는 센서 기판이고,
    상기 나노 구조물층은 상기 활성 영역 내에서 상기 복수의 광센싱셀과 마주하여 배치된 복수의 컬러 필터를 포함하는 메타 컬러 필터층이며,
    상기 복수의 컬러 필터에서 복수의 제1 유전체와 복수의 제2 유전체가 수평 방향을 따라 번갈아 배열되어 있는, 광학 장치.
  14. 제13 항에 있어서,
    상기 하부 광학층과 상기 나노 구조물층 사이에 배치된 제1 반사기 및 상기 나노 구조물층 위에 배치된 제2 반사기를 더 포함하며,
    상기 반사 패드는 상기 제1 반사기 상에서 상기 비활성 영역에 배치되어 있는, 광학 장치.
  15. 제1 항에 있어서,
    상기 나노 구조물층은 상기 광학 장치의 두께 방향으로 적층된 제1 나노 구조물층 및 제2 나노 구조물층을 포함하는, 광학 장치.
  16. 제15 항에 있어서,
    상기 제1 나노 구조물층과 상기 제2 나노 구조물층 사이에 배치된 제1 금속 반사층, 및 상기 제2 나노 구조물층 위에 배치된 제2 금속 반사층을 더 포함하는, 광학 장치.
  17. 제16 항에 있어서,
    상기 하부 광학층은 상기 활성 영역에 마주하여 배열된 복수의 광센싱셀 및 상기 비활성 영역에 마주하여 배열된 구동 회로부를 포함하는 센서 기판이고,
    상기 제1 나노 구조물층, 상기 제1 금속 반사층, 상기 제2 나노 구조물층, 및 상기 제2 금속 반사층은 활성 영역 내에 배열된 복수의 분광 필터를 포함하는 분광 필터층을 형성하도록 구성된, 광학 장치.
  18. 하부 광학층을 형성하는 단계;
    상기 하부 광학층의 상부 표면의 가장자리 영역 내에 반사 패드를 형성하는 단계;
    상기 하부 광학층과 반사 패드를 모두 덮도록 일정한 두께로 식각 정지층을 형성하는 단계;
    상기 식각 정지층 위에 제1 유전체를 일정한 두께로 형성하는 단계;
    활성 영역 내에 배치된 제1 유전체를 패터닝하는 단계;
    상기 패터닝된 제1 유전체의 패턴들 사이의 공간을 채우고 상기 제1 유전체를 덮도록 제2 유전체를 형성하는 단계; 및
    상기 제2 유전체의 상부 표면을 평탄화하는 단계;를 포함하며,
    상기 평탄화 단계는:
    상기 반사 패드에 조명광을 조사하고 상기 반사 패드로부터의 반사광을 검출하는 단계; 및
    시뮬레이션을 통해 미리 얻은 상기 제2 유전체의 두께에 따른 반사광의 시뮬레이션 반사도 스펙트럼과 상기 반사광을 검출하여 얻은 실측 반사도 스펙트럼을 비교함으로써, 연마 속도, 제2 유전체의 두께, 및 평탄화 종료 시점을 결정하는 단계;를 포함하는, 광학 장치의 제조 방법.
  19. 제18 항에 있어서,
    상기 반사 패드는 상기 제1 유전체가 패터닝되지 않은 비활성 영역과 마주하여 배치되는, 광학 장치의 제조 방법.
  20. 제18 항에 있어서,
    상기 활성 영역에서 상기 제1 유전체의 상부 표면 위의 상기 제2 유전체의 두께는 상기 비활성 영역에서 상기 제1 유전체의 상부 표면 위의 상기 제2 유전체의 두께보다 상기 반사 패드의 두께만큼 더 큰, 광학 장치의 제조 방법.
  21. 제18 항에 있어서,
    상기 반사 패드의 두께는 10 nm 내지 50 nm인, 광학 장치의 제조 방법.
  22. 제18 항에 있어서,
    상기 반사 패드는 5 μm2 내지 25 μm2의 면적을 갖는 원형 또는 다각형인, 광학 장치의 제조 방법.
  23. 제18 항에 있어서,
    상기 시뮬레이션 반사도 스펙트럼과 실측 반사도 스펙트럼을 비교하는 단계는:
    상기 제2 유전체의 복수의 이산된 두께들에 대한 시뮬레이션을 통해 시뮬레이션 반사도 스펙트럼을 마련하는 단계; 및
    시뮬레이션 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장을 상기 실측 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장과 비교하는 단계;를 포함하는, 광학 장치의 제조 방법.
  24. 제23 항에 있어서,
    상기 연마 속도, 제2 유전체의 두께, 및 평탄화 종료 시점을 결정하는 단계는:
    실측 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장과 일치하는 반사도 피크 파장 또는 흡수도 피크 파장을 갖는 시뮬레이션 반사도 스펙트럼을 찾아 선택하는 단계; 및
    선택된 시뮬레이션 반사도 스펙트럼에 대응하는 제2 유전체의 두께를 상기 제2 유전체의 실제 두께로 추정하는 단계;를 포함하는, 광학 장치의 제조 방법.
  25. 반사 패드를 포함하는 웨이퍼를 지지하고 회전시키는 캐리어;
    상기 웨이퍼의 평탄화 대상 표면을 연마하는 연마 패드;
    평탄화 모니터링을 위하여 상기 웨이퍼에 조명광을 조사하는 광원;
    상기 웨이퍼로부터 반사된 반사광을 검출하는 광검출기; 및
    상기 광검출기로부터 제공되는 반사광의 스펙트럼 정보를 분석하여 연마 속도 및 평탄화 대상 층의 두께를 계산하는 프로세서;를 포함하며,
    상기 프로세서는:
    상기 평탄화 대상 층의 복수의 이산된 두께들에 대한 시뮬레이션을 통해 시뮬레이션 반사도 스펙트럼을 마련하는 단계;
    상기 웨이퍼의 반사 패드로부터 반사된 반사광을 이용하여 실측 반사도 스펙트럼을 얻는 단계; 및
    상기 시뮬레이션 반사도 스펙트럼과 상기 실측 반사도 스펙트럼을 비교함으로써, 연마 속도, 상기 평탄화 대상 층의 두께, 및 평탄화 종료 시점을 결정하는 단계;를 수행하도록 구성된, 평탄화 장치.
  26. 제25 항에 있어서,
    상기 프로세서는, 상기 시뮬레이션 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장을 상기 실측 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장과 비교하도록 구성된, 평탄화 장치.
  27. 제26 항에 있어서,
    상기 프로세서는:
    상기 실측 반사도 스펙트럼의 반사도 피크 파장 또는 흡수도 피크 파장과 일치하는 반사도 피크 파장 또는 흡수도 피크 파장을 갖는 시뮬레이션 반사도 스펙트럼을 찾아 선택하는 단계; 및
    선택된 시뮬레이션 반사도 스펙트럼에 대응하는 상기 평탄화 대상 층의 두께를 상기 평탄화 대상 층의 실제 두께로 추정하는 단계;를 수행하도록 구성된, 평탄화 장치.
KR1020220014389A 2022-02-03 2022-02-03 다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치 KR20230117970A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220014389A KR20230117970A (ko) 2022-02-03 2022-02-03 다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치
US17/891,332 US20230244017A1 (en) 2022-02-03 2022-08-19 Optical apparatus including multilayered optical film structure and method and apparatus for planarizing the multilayered optical film structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220014389A KR20230117970A (ko) 2022-02-03 2022-02-03 다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20230117970A true KR20230117970A (ko) 2023-08-10

Family

ID=87431853

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220014389A KR20230117970A (ko) 2022-02-03 2022-02-03 다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치

Country Status (2)

Country Link
US (1) US20230244017A1 (ko)
KR (1) KR20230117970A (ko)

Also Published As

Publication number Publication date
US20230244017A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
JP5954801B2 (ja) ファブリペロー干渉計用のミラーおよびミラーを作製する方法
TWI579642B (zh) 抗反射塗層及吸收層蝕刻之蝕刻速率偵測
US6940592B2 (en) Calibration as well as measurement on the same workpiece during fabrication
KR101342410B1 (ko) 주기적인 회절 구조를 포함하는 층을 갖는 샘플을 측정하는시스템
US5555472A (en) Method and apparatus for measuring film thickness in multilayer thin film stack by comparison to a reference library of theoretical signatures
US20080014748A1 (en) Method and system for electronic spatial filtering of spectral reflectometer optical signals
CN1898592A (zh) 光子晶体传感器
TW202219471A (zh) 光學濾波器
KR102698578B1 (ko) 회절 광학 소자를 위한 다층 박막 스택
US10768349B2 (en) Reflective diffraction grating and fabrication method
JP2004280050A (ja) 埋込み式ワイヤグリッド偏光子
KR20020079805A (ko) 빠르고 엄격한 결합된 파 분석을 위한 층 내부의 계산들의캐싱
US20130242391A1 (en) Optical device and method for manufacturing same
US20120200852A1 (en) Spectroscopy and spectral imaging methods and apparatus
US20230010858A1 (en) Partially etched phase-transforming optical element
US10877349B2 (en) Fourier-transform interferometer using meta surface
CN111276870A (zh) 高计算效率的结构化光成像系统
JP2000049204A (ja) 半導体デバイス内の誘電体層厚さの光学的測定方法及び装置
JP2019132905A (ja) 透過型回折素子、レーザ発振器及びレーザ加工機
KR20230117970A (ko) 다층 광학 박막 구조를 포함하는 광학 장치 및 다층 광학 박막 구조의 평탄화 방법 및 장치
EP1037012B1 (en) Method and apparatus for measurements of patterned structures
KR20230004687A (ko) 트렌치의 광학 측정을 위한 타깃
JP3178182B2 (ja) 非球面ミラー製造方法
CN110596929A (zh) 硅基液晶器件及其制作方法与波长选择开关
JP2004354440A (ja) 光変調素子及び光変調方法