KR20230080832A - 비대칭 n형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기 - Google Patents

비대칭 n형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기 Download PDF

Info

Publication number
KR20230080832A
KR20230080832A KR1020210168334A KR20210168334A KR20230080832A KR 20230080832 A KR20230080832 A KR 20230080832A KR 1020210168334 A KR1020210168334 A KR 1020210168334A KR 20210168334 A KR20210168334 A KR 20210168334A KR 20230080832 A KR20230080832 A KR 20230080832A
Authority
KR
South Korea
Prior art keywords
formula
organic semiconductor
chain
organic
branched
Prior art date
Application number
KR1020210168334A
Other languages
English (en)
Inventor
윤성철
고서진
이창진
하종운
이운학
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020210168334A priority Critical patent/KR20230080832A/ko
Priority to PCT/KR2022/019281 priority patent/WO2023101448A1/ko
Publication of KR20230080832A publication Critical patent/KR20230080832A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

N형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기가 개시된다.

Description

비대칭 N형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기{Design and synthesis of asymmetric n-type organic semiconducting materials for organic photodector}
비대칭 N형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기에 관한 것이다.
광 검출기는 빛을 전기 신호로 변환시키는 소자로, 광다이오드 및 광트랜지스터 등을 포함한다. 이러한 광 검출기는 산업뿐만 아니라 가정에도 광범위하게 보급되어 있다. 예를 들어, 광 검출기를 사용하는 디지털 카메라는 자동화된 이미지 처리를 위한 간단하고 경제적인 솔루션이며, 또한 진단 영상 처리를 위한 의학 공학에 사용될 수 있다.
하지만, 종래의 실리콘 기반의 광 검출기의 경우 물질 고유의 속성으로 인하여 낮은 가소성을 가지며 제한된 파장 영역을 검출하는 등 근본적인 단점들을 갖는다. 이는 최근의 가소성 및 착용 가능한 전자기기 영역에 적용하고, 광대역 파장을 검출하는 광 검출기의 제조에 장애가 되고 있다. 이에, 가요성/광대역 파장의 검출이 요구되는 전자기기에 적용하기 위한 요건들을 만족하기 위해 여러 형태들로 가공될 수 있고, 선택된 재료의 시스템에 따라 가시 광선 영역 이외의 근적외선 영역을 흡수할 수 있는 유기 반도체 물질을 기반으로 하는 유기 광 검출기에 대한 요구가 늘어나고 있다.
한편, 대부분의 유기 광 검출기는 보다 높은 전하 분리 효과를 갖도록 P형 유기 반도체 물질(도너:전자공여체) 및 n형 유기 반도체 물질(억셉터:전자수용체)를 갖는 벌크이종접합(BHJ)구조가 고려된다.
벌크이종접합(BHJ)구조에서 p-형 유기 반도체는 여기자를 형성하는 광자 흡수체로서 작용한다. 이러한 여기자는 p-형 유기 반도체와 n-형 유기 반도체 사이의 계면으로 이동하고, 여기서 해리한다. n-형 유기 반도체의 LUMO가 p-형 유기 반도체의 것보다 낮기 때문에, 정공이 p-형 유기 반도체에 남아있으면서 n-형 반도체는 전자를 수용할 수 있다. 분리 후에, 정공 및 전자는 상응하는 전극으로 전송된다.
유기 광 검출기에 통상적으로 사용되는 n-형 유기 반도체 물질은 풀러렌, 예컨대 PCBM[C60] 또는 PCBM[C70]을 기반으로 한다. 그러나, 이러한 풀러렌은 약한 광흡수, 화학적 구조 및 에너지 밴드갭 튜닝의 한계, 대면적에서의 고분자에 비해 낮은 점도, 합성 시 이성질체 및 분리에 따른 고비용 등 해결해야할 문제점들이 많이 남아 있다. 이러한 문제를 해결하기 위해 에너지 레벨이 조정가능하고 근적외선 영역 영역의 빛의 흡수 특성이 우수한 비풀러렌계 n-형 유기 반도체 물질에 대한 연구 개발이 빠르게 진행되고 있다.
이와 관련된 종래의 기술로, 특허문헌 1에서는 광대역 감광 전-고분자 유기광전자소자로서, 가시영역(VIS) 감광 전자-주게(p-형) 고분자 및 적외영역(NIR) 감광 전자-받게(n-형) 고분자의 나노구조화된 벌크이형접합층(BHT layers)들을 포함하여 근적외영역 내지 가시영역에 걸치는 광대역에서 감광이 가능한광대역 감광 전-고분자 유기광전자소자가 제공된 바 있다.
다양한 근적외선 영역의 소재들이 개발되고 있으나, 여전히 근적외선 영역의 흡수를 갖는 물질의 설계와 합성에 관한 연구는 미비하며 해결해야 할 영역이다. 특히 대표적인 근적외선 흡수가 가능한 유기광검출기 기술을 개시하는 비특허문헌 1에서 제시하는 COTIC-4F의 경우 근적외선까지 흡수가 가능할 뿐만 아니라 우수한 광검출능을 보였다. 하지만 여전히 높은 dark current로 인해 dark-current 제어를 위한 소재 개발이 필요하다.
특허문헌 1 : 대한민국 등록특허 제10-1772095호
비특허문헌 1 : Adv. Energy Mater. 2018, 1801212
이에, 본 발명에서는 A-D'-D''-A'-A 형태의 골격을 갖는 유기 반도체로써 A' 위치에 강한 전자받개 특성을 갖는 유닛을 도입하여 bandgap 변화를 최소화 하면서 동시에 우수한 광검출능을 갖는 유닛을 제공하고자 하며, 벤조티아디아졸(Benzothiadiazole, BT)의 경우 강한 전자수용 특성을 갖는 유닛이며 싸이클로펜타디티오펜(cyclopentadithiophene, CPDT)과 강한 intrachange transfer(ICT) 특성을 유도할 수 있도록 하며 이에 pi-bridge로 알콕시 티오펜(alkoxy thiophene)과 BT가 혼합된 화합물을 설계하여 소재의 결정성과 비대칭이 dark current에 미치는 영향에 대해 제시하고자 한다.
상기 목적을 달성하기 위하여, 본 발명의 일 측면에서
하기 화학식 1로 표시되는 유기 반도체 화합물이 제공된다.
<화학식 1>
Figure pat00001
(상기 화학식 1에서,
R1은 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C30의 직쇄 또는 C3 내지 C30의 분지쇄 알킬기이고,
L1
Figure pat00002
또는
Figure pat00003
이고, R2는 C4 내지 C30의 직쇄 또는 분지쇄 알킬기 또는 C4 내지 C30의 직쇄 또는 분지쇄 알콕시기이고,
L2
Figure pat00004
,
Figure pat00005
,
Figure pat00006
,
Figure pat00007
또는
Figure pat00008
이고, X1은 황(S), 산소(O) 또는 셀레늄(Se)이고, X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소(H) 또는 불소(F)이고, R3는 서로 동일하거나 상이하고, 각각 독립적으로 C4 내지 C30의 직쇄 또는 분지쇄 알킬기이고, R4
Figure pat00009
또는
Figure pat00010
이고, R5는 C4 내지 C30의 직쇄 또는 분지쇄 알킬기이고,
T는
Figure pat00011
,
Figure pat00012
,
Figure pat00013
,
Figure pat00014
,
Figure pat00015
또는
Figure pat00016
이고, X3는 서로 동일하거나 상이하고, 각각 독립적으로 수소(H), 불소(F), 브롬(Br) 또는 염소(Cl)이고, R6는 C1 내지 C20의 직쇄 또는 C3 내지 C20의 분지쇄 알킬기이다.)
또한, 본 발명의 다른 측면에서
하기 화학식 4로 표시되는 화합물, 하기 화학식 5로 표시되는 화합물 및 하기 화학식 6으로 표시되는 화합물을 반응시키켜 반응물을 제조하는 단계;
상기 반응물을
Figure pat00017
,
Figure pat00018
,
Figure pat00019
,
Figure pat00020
,
Figure pat00021
또는
Figure pat00022
과 반응시켜 상기의 유기 반도체 화합물을 제조하는 방법이 제공된다.
<화학식 4>
Figure pat00023
<화학식 5>
Figure pat00024
<화학식 6>
Figure pat00025
(상기 화학식 4에서, R1은 화학식 1의 정의와 동일하고, X4는 할로겐기이고,
상기 화학식 5에서, L2는 화학식 1의 정의와 동일하고, X5는 할로겐기이고,
상기 화학식 6에서, L1은 화학식 1의 정의와 동일하고, X6는 할로겐기이고,
상기 X3 또는 R6는 화학식 1의 정의와 동일하다.)
나아가, 본 발명의 다른 일 측면에서
상기에 따른 유기 반도체 화합물을 포함하는 유기 광활성층이 제공된다.
또한, 본 발명의 또 다른 측면에서
상기에 따른 유기 광활성층을 포함하는 유기 광 검출기가 제공된다.
나아가, 본 발명의 또 다른 일 측면에서
제1 전극;
상기 제1 전극과 대향하여 구비되는 제2 전극; 및
상기 제1 전극과 상기 제2 전극 사이에 구비되는 상기에 따른 유기 반도체 화합물을 포함하는 광활성층;을 포함하는 유기 태양전지가 제공된다.
본 발명의 일 측면에서 제시하는 화합물은 A-D'-D''-A'-A 골격이 도입된 신규 유기 반도체 화합물로서 A-D'-D''-D'-A 구조인 종래 COTIC-4F 물질과 대비하여 유사한 광학적밴드갭을 가지는 효과와 동시에 낮은 dark current를 확보하여 유기 광검출기에 보다 높은 성능을 보여줄 수 있다. 본 발명에서는 A' 유닛으로 강한 전자받개 특성을 갖는 벤조티아디아졸(Benzothiadiazole, BT)을 선택하여 기존의 alkoxy thiophene의 우수한 평면성은 감소하지만 분자내 강한 ICT 형성과 강한 전자받개 특성으로 인해 깊은 Frontier molecular orbital energy 준위를 가질 수 있으며 이는 dark current 감소효과에 영향을 끼친다.
도 1은 실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 제조된 유기 반도체 화합물의 흡광 스펙트럼을 나타낸 것이고;
도 2는 실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 제조된 유기 반도체 화합물을 순환전류법으로 분석한 그래프이고;
도 3은 실시예 3, 실시예 4, 비교예 3 및 비교예 4에서 제조된 유기 광 검출기의 암전류 밀도를 나타낸 그래프이고;
도 4는 실시예 3, 실시예 4, 비교예 3 및 비교예 4에서 제조된 유기 광 검출기의 반응도를 나타낸 그래프이고;
도 5는 실시예 3, 실시예 4, 비교예 3 및 비교예 4에서 제조된 유기 광 검출기의 검출능을 나타낸 그래프이다.
본 발명의 일 측면에서
하기 화학식 1로 표시되는 유기 반도체 화합물이 제공된다.
<화학식 1>
Figure pat00026
(상기 화학식 1에서,
R1은 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C30의 직쇄 또는 C3 내지 C30의 분지쇄 알킬기이고,
L1
Figure pat00027
또는
Figure pat00028
이고, R2는 C4 내지 C30의 직쇄 또는 분지쇄 알킬기 또는 C4 내지 C30의 직쇄 또는 분지쇄 알콕시기이고,
L2
Figure pat00029
,
Figure pat00030
,
Figure pat00031
,
Figure pat00032
또는
Figure pat00033
이고, X1은 황(S), 산소(O) 또는 셀레늄(Se)이고, X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소(H) 또는 불소(F)이고, R3는 서로 동일하거나 상이하고, 각각 독립적으로 C4 내지 C30의 직쇄 또는 분지쇄 알킬기이고, R4
Figure pat00034
또는
Figure pat00035
이고, R5는 C4 내지 C30의 직쇄 또는 분지쇄 알킬기이고,
T는
Figure pat00036
,
Figure pat00037
,
Figure pat00038
,
Figure pat00039
,
Figure pat00040
또는
Figure pat00041
이고, X3는 서로 동일하거나 상이하고, 각각 독립적으로 수소(H), 불소(F), 브롬(Br) 또는 염소(Cl)이고, R6는 C1 내지 C20의 직쇄 또는 C3 내지 C20의 분지쇄 알킬기이다.)
상기 '치환'이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
상기 '치환 또는 비치환된' 이라는 용어는 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 에스터기; 카보닐기; 카복실기; 히드록시기; 시클로알킬기; 실릴기; 아릴알케닐기; 아릴옥시기; 알킬티옥시기; 알킬술폭시기; 아릴술폭시기; 붕소기; 알킬아민기; 아랄킬아민기; 아릴아민기; 헤테로고리기; 아릴아민기; 아릴기; 니트릴기; 니트로기; 히드록시기; 및 N, O, S 원자 중 1개 이상을 포함하는 헤테로 고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환되었거나 또는 어떠한 치환기도 갖지 않는 것을 의미할 수 있다. 상기 치환기들은 추가의 치환기로 치환 또는 비치환될 수 있다.
일 실시예에 있어서, 상기 유기 반도체 화합물은 하기 화학식 2로 표시되는 것일 수 있다.
<화학식 2>
Figure pat00042
(상기 화학식 2에서,
R1은 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C30의 직쇄 또는 C3 내지 C30의 분지쇄 알킬기이고,
R7은 C4 내지 C30의 직쇄 또는 분지쇄 알킬기이다.)
일례로, 상기 R7은 C7 내지 C14의 분지쇄 알킬기일 수 있고, C7 내지 C10의 분지쇄 알킬기일 수 있고, C11 내지 C14의 분지쇄 알킬기일 수 있고, 상기 R7
Figure pat00043
또는
Figure pat00044
일 수 있다.
일 실시예에 있어서, 상기 유기 반도체 화합물은 하기 화학식 3으로 표시되는 것일 수 있다.
<화학식 3>
Figure pat00045
(상기 화학식 3에서,
R7은 C4 내지 C30의 직쇄 또는 분지쇄 알킬기이다.)
일례로, 상기 R7은 C7 내지 C14의 분지쇄 알킬기일 수 있고, C7 내지 C10의 분지쇄 알킬기일 수 있고, C11 내지 C14의 분지쇄 알킬기일 수 있고, 상기 R7
Figure pat00046
또는
Figure pat00047
일 수 있다.
또한, 본 발명의 다른 측면에서
하기 화학식 4로 표시되는 화합물, 하기 화학식 5로 표시되는 화합물 및 하기 화학식 6으로 표시되는 화합물을 반응시키켜 반응물을 제조하는 단계;
상기 반응물을
Figure pat00048
,
Figure pat00049
,
Figure pat00050
,
Figure pat00051
,
Figure pat00052
또는
Figure pat00053
과 반응시켜 상기의 유기 반도체 화합물을 제조하는 방법이 제공된다.
<화학식 4>
Figure pat00054
<화학식 5>
Figure pat00055
<화학식 6>
Figure pat00056
(상기 화학식 4에서, R1은 화학식 1의 정의와 동일하고, X4는 할로겐기이고,
상기 화학식 5에서, L2는 화학식 1의 정의와 동일하고, X5는 할로겐기이고,
상기 화학식 6에서, L1은 화학식 1의 정의와 동일하고, X6는 할로겐기이고,
상기 X3 또는 R6는 화학식 1의 정의와 동일하다.)
상기 화학식 4로 표시되는 화합물, 상기 화학식 5으로 표시되는 화합물 및 상기 화학식 6으로 표시되는 화합물을 반응시키되, 순차적으로 반응시켜 1차 반응물을 제조하는 것일 수 있다.
이후, 1차 반응물과
Figure pat00057
,
Figure pat00058
,
Figure pat00059
,
Figure pat00060
,
Figure pat00061
또는
Figure pat00062
과 반응시켜 본 발명의 일 측면에서 제공되는 유기 반도체 화합물을 합성할 수 있다.
나아가, 본 발명의 다른 일 측면에서
상기에 따른 유기 반도체 화합물을 포함하는 유기 광활성층이 제공되고, 상기 유기 광활성층을 포함하는 유기 광 검출기가 제공된다.
상기 유기 반도체 화합물은 N형 유기 반도체 화합물로 근적외선 영역의 빛을 흡수할 수 있어 상기 유기 반도체 화합물을 포함하는 유기 광 검출기는 근적외선 영역의 빛을 흡수하는 데 있어 보다 우수한 특성을 나타낼 수 있다.
더욱 나아가, 본 발명의 또 다른 측면에서
제1 전극;
상기 제1 전극과 대향하여 구비되는 제2 전극; 및
상기 제1 전극과 상기 제2 전극 사이에 구비되는 상기에 따른 유기 반도체 화합물을 포함하는 광활성층;을 포함하는 유기 태양전지가 제공된다.
상기 제1 전극은 기판 상에 위치할 수 있으며, 상기 기판은 투명성, 표면평활성, 취급용이성 및 방수성이 우수한 유리기판 또는 투명 플라스틱 기판이 될 수 있으나, 이에 한정되지 않으며, 유기 태양전지에 통상적으로 사용되는 기판이면 제한되지 않는다. 구체적으로 유리 또는 PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PP(polypropylene), PI(polyimide), TAC(triacetyl cellulose) 등이 있으나. 이에 한정되는 것은 아니다.
상기 제1 전극은 투명하고 전도성이 우수한 물질이 될 수 있으나, 이에 한정되지 않는다. 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸싸이오펜), 폴리[3,4-(에틸렌-1,2-디옥시)싸이오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
상기 제2 전극은 일함수가 작은 금속이 될 수 있으나, 이에 한정되지 않는다. 구체적으로 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al, LiO2/Al, LiF/Fe, Al:Li, Al:BaF2, Al:BaF2:Ba와 같은 다층 구조의 물질이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 제1 전극과 상기 제2 전극 사이에 구비되는 광활성층은 전술한 바와 같은 유기 반도체 화합물을 포함한다. 상기 유기 반도체 화합물은 N형 유기 반도체 화합물이고, 상기 광활성층은 P형 유기 반도체 화합물을 더 포함할 수 있다. 상기 P형 유기 반도체 화합물은 P3HT, PBDT-TPD, PTB7, PCE 10, PBDB-T 및 PM6 중 1종 이상일 수 있으나 이에 제한된 것은 아니다.
상기 유기 태양전지는 상기 제1 전극 및 상기 제2 전극 사이에 구비되는 전자수송층 및 정공수송층을 포함한다.
상기 전자수송층은 전자추출금속 산화물(electron-extracting metal oxides)이 될 수 있으며, 구체적으로 아연 산화물(ZnO), 티타늄 산화물(TiO2) 및 세슘 카보네이트(Cs2CO3) 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 정공수송층은 몰리브데늄 산화물(MoO3), PEDOT:PSS(Poly(3,4-ethylenediocythiophene) doped with poly(styrenesulfonic acid)), 바나듐 산화물(V2O5), 니켈 산화물(NiO) 및 텅스텐 산화물(WO2) 등이 될 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예 및 실험예를 통하여 본 발명을 상세히 설명한다.
단, 하기의 실시예 및 실험예는 본 발명을 설명하기 위한 것일 뿐, 본 발명의 내용이 하기의 실시예 및 실험예에 의하여 한정되는 것은 아니다.
<실시예 1> 유기 반도체 화합물의 제조_COBIC-4F-EH
하기 반응식 1에 따라 유기 반도체 화합물을 준비하였다.
<반응식 1>
Figure pat00063
7-(4,4-Bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)benzo[c][1,2,5]thiadiazole-4-carbaldehyde (1)의 합성
둥근바닥 플라스크에 화합물 4,4-bis(2ethylhexyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-2,6-diyl)(trimethylstannane) (0.50 g, 0.88 mmol)과 5-bromo-Benzothiadiazole-2-carbaldehyde (215 mg, 0.88 mmol), Pd(PPh3)4 (92 mg, 0.08 mmol)을 무수 toluene 40 mL에 녹인 후 120℃ 조건에서 16시간 반응한다. 반응물을 dichloromethane을 통해 유기층을 추출하고, 컬럼크로마토그래피를 통하여 화합물 (1)을 수득한다. 1H NMR (400 MHz, CDCl3, ppm): δ10.68 (s, 1H), 8.26-8.29 (t, 1H), 8.19-8.21 (d, 1H), 7.92-7.95 (td, 1H), 7.28-7.29 (d, 1H), 6.98-7.01 (q, 1H), 1.93-2.05 (m,4H), 1.25-1.28 (m, 2H), 0.86-1.02 (m, 16H), 0.59-0.64 (m, 12H).
7-(4,4-Bis(2-ethylhexyl)-6-(3-((2-ethylhexyl)oxy)-5-formylthiophen-2-yl)-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)benzo[c][1,2,5]thiadiazole-4-carbaldehyde (2)의 합성
둥근바닥 플라스크에 화합물 (1) (350mg, 0.62mmol), 5-bromo-4-((2-ethylhexyl)oxy)thiophene carbaldehyde (266mg, 0.744mmol), Pd(OAc)2 (16.7 mg, 0.07 mmol), Pt Bu2Me.HBF4 (31 mg, 0.12 mmol), pivalicacid (63.3 mg, 0.62 mmol), potassium carbonate (257 mg, 1.86 mmol)를 무수 toluene 6 mL 및 무수 N,N-dimethylformamide 6 mL로 녹인후 140℃ 조건에서 16시간 반응한다. 반응물을 dichloromethane을 이용하여 유기층을 추출하고, 100% dichloromethane 의 컬럼크로마토그래피를 통하여 화합물 (2)을 수득한다. 1H NMR (400 MHz, CDCl3, ppm): δ 10.70 (s, 1H), 9.77 (s, 1H), 8.27-8.24 (t, 1H), 8.20-8.22 (d, 1H), 7.94-7.97 (td, 1H), 7.48 (s, 1H), 7.34 (s, 1H), 4.11-4.12 (d, 2H), 2.00-2.03 (m, 1H), 1.59-1.64(m, 2H), 1.31-1.39 (m, 4H), 0.95-1.00 (m, 24H), 0.61-0.64 (m, 18H).
2-((Z)-2-((7-(6-(5-(((Z)-1-(dicyanomethylene)-5,6-difluoro-3-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl)-3-((2-ethylhexyl)oxy)thiophen-2-yl)-4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)methylene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (COBIC-4F-EH)의 합성
둥근바닥 플라스크에 (2) (250 mg, 0.29 mmol), 및 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (147 mg, 0.64 mmol)을 넣고 무수 chloroform 20 mL에 녹인다. 그후 pyridine 0.2 mL를 천천히 넣어주고 45℃ 조건에서 3시간 반응한다. 100% chloroform 의 컬럼크로마토그래피를 통하여 화합물 (COBIC-4F-EH)을 수득한다. 1H NMR (400MHz, CDCl3, ppm): δ 9.61(s, 1H), 9.27-9.30 (td, 1H), 8.71 (s, 1H), 8.60-8.56 (q, 1H), 8.49-8.53 (q, 1H), 8.31-8.36 (t, 1H), 8.02-8.05 (td, 1H), 7.76-7.72 (t, 1H), 7.64-7.68 (m, 2H), 7.50 (s, 1H), 4.16-4.17 (d, 2H), 2.06-2.12 (m, 2H), 1.62-1.65 (m, 1H), 1.34-1.42 (m, 12H), 0.89-1.05 (m, 24H), 0.64-0.80 (m, 18H).
<실시예 2> 유기 반도체 화합물의 제조_COBIC-4F-BO
하기 반응식 2에 따라 유기 반도체 화합물을 준비하였다.
<반응식 2>
Figure pat00064
7-(4,4-Bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)benzo[c][1,2,5]thiadiazole-4-carbaldehyde (3)의 합성
둥근바닥 플라스크에 화합물 4,4-bis(2ethylhexyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-2,6-diyl)(trimethylstannane) (0.50 g, 0.88 mmol)과 5-bromo-Benzothiadiazole-2-carbaldehyde (215 mg, 0.88 mmol), Pd(PPh3)4 (92 mg, 0.08 mmol)을 무수 toluene 40 mL에 녹인 후 120℃ 조건에서 16시간 반응한다. 반응물을 dichloromethane을 이용하여 유기층을 추출하고, 컬럼크로마토그래피를 통하여 화합물 (3)을 수득한다. 1H NMR (400 MHz, CDCl3, ppm): δ10.68 (s, 1H), 8.26-8.29 (t, 1H), 8.19-8.21 (d, 1H), 7.92-7.95 (td, 1H), 7.28-7.29 (d, 1H), 6.98-7.01(q, 1H), 1.93-2.05 (m,4H), 1.25-1.28 (m, 2H), 0.86-1.02 (m, 16H), 0.59-0.64 (m, 12H).
7-(6-(3-((2-Butyloctyl)oxy)-5-formylthiophen-2-yl)-4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)benzo[c][1,2,5]thiadiazole-4-carbaldehyde (4)의 합성
둥근바닥 플라스크에 화합물 (3) (350 mg, 0.62 mmol), 5-bromo-4-((2-ethylhexyl)oxy)thiophene carbaldehyde (266 mg, 0.744 mmol), Pd(OAc)2 (16.7 mg, 0.07 mmol), Pt Bu2Me.HBF4 (31 mg, 0.12 mmol), pivalicacid (63.3 mg, 0.62 mmol), potassium carbonate (257 mg, 1.86 mmol)를 혼합 후 무수 toluene 6 mL 및 무수 dimethylformamide 6 mL 로 녹인후 140℃ 조건에서 16시간 반응한다. 반응물을 dichloromethane을 이용하여 유기층을 추출하고, 컬럼크로마토그래피를 통하여 화합물 (4)을 수득한다. 1H NMR (400MHz, CDCl3, ppm): δ 10.70 (s, 1H), 9.77 (s, 1H), 8.27-8.24 (t, 1H), 8.20-8.22 (d, 1H), 7.94-7.97 (td, 1H), 7.48 (s, 1H), 7.34 (s, 1H), 4.11-4.12 (d, 2H), 2.00-2.03 (m, 1H), 1.59-1.64 (m, 2H), 1.31-1.39 (m, 4H), 0.95-1.00 (m, 24H), 0.61-0.64(m, 18H).
2-((Z)-2-((7-(6-(3-((2-Butyloctyl)oxy)-5-(((Z)-1-(dicyanomethylene)-5,6-difluoro-3-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl)thiophen-2-yl)-4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)methylene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (COBIC-4F-BO)의 합성
둥근바닥 플라스크에 (4) (250 mg, 0.29 mmol), 및 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (147 mg, 0.64 mmol) 을 넣고 무수 chloroform 20 mL 에 녹인다. 그후 pyridine 0.2 mL를 천천히 넣어주고 45℃ 조건에서 3시간 반응한다. 100% chloroform의 컬럼크로마토그래피를 통하여 화합물 (COBIC-4F-BO)을 수득한다. 1H NMR (400MHz, CDCl3, ppm): δ8.70 (s, 2H), 8.50-8.54 (dd, 2H), 7.61-7.68 (m, 4H), 7.49 (s, 2H) 4.15-4.16 (d, 4H), 1.92-2.02 (m, 4H), 1.57-1.67 (m, 4H), 1.33-1.40 (m,24H), 0.87-1.01 (m, 32H), 0.62-0.72 (m, 16H).
<비교예 1> 유기 반도체 화합물의 제조_CBTIC-4F
하기 반응식 3에 따라 유기 반도체 화합물을 준비하였다.
<반응식 3>
Figure pat00065
7,7'-(4,4-Bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl)bis(benzo[c][1,2,5]thiadiazole-4-carbaldehyde) (5)의 합성
둥근바닥 플라스크에 화합물 4,4-bis(2ethylhexyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-2,6-diyl)-bis(trimethylstannane) (0.50 g, 0.88 mmol)과 Pd(PPh3)4 (92 mg, 0.08 mmol) 무수 toluene 40 mL에 녹인 후 5-bromo-Benzothiadiazole-2-carbaldehyde (430 mg, 1.77 mmol) 을 적가한 후 120℃ 조건에서 16시간 반응한다. 반응물을 dichloromethane을 이용하여 유기층을 추출하고, 컬럼크로마토그래피를 통하여 화합물 (5)을 수득한다. 1H NMR for compound (400MHz, CDCl3, ppm): δ10.72 (s, 2H), 8.30-8.34 (t, 2H), 8.23-8.25 (d, 2H) 7.99-8.02 (td, 2H), 2.04-2.10 (m, 4H), 0.97-1.05 (m, 16H), 0.78-0.83 (m, 2H), 0.63-0.66 (t, 12H).
2,2'-((2Z,2'Z)-(((4,4-Bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (CBTIC-4F)의 합성
둥근바닥 플라스크에 (5) (250 mg, 0.29 mmol), 및 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (147 mg, 0.64 mmol)을 넣고 무수 chloroform 20 mL 에 녹인다. 그후 pyridine 0.2 mL를 천천히 넣어주고 45℃ 조건에서 3시간 반응한다. 100% chloroform 의 컬럼크로마토그래피를 통하여 화합물 (CBTIC-4F)을 수득한다. 1H NMR (400MHz, CDCl3, ppm): δ 9.60 (s, 2H), 9.25-9.29 (td, 2H), 8.56-8.60 (q, 2H), 8.35-8.43 (q, 2H) 8.02-8.05 (td, 4H), 7.72-7.76 (t, 4H), 2.09-2.15 (m, 4H), 1.01-1.09 (m,16H), 0.82-0.85 (m, 2H), 0.64-0.69 (m, 12H).
<비교예 2> 유기 반도체 화합물의 제조_COTIC-4F-EH
하기 반응식 4에 따라 유기 반도체 화합물을 준비하였다.
<반응식 4>
Figure pat00066
5,5'-(4,4-Bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-2-carbaldehyde) (6)의 합성. 둥근바닥 플라스크에 화합물 4,4-bis(2ethylhexyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-2,6-diyl)-bis(trimethylstannane) (0.30 g, 0.41 mmol) ), 5-bromo-3-(2-ethylhexyl)oxy-thiophene-2-carbaldehyde (464 mg, 1.23 mmol) 과 Pd(PPh3)4 (72 mg, 0.08 mmol)을 무수 toluene 40 mL에 녹인 후 120℃ 조건에서 16시간 반응한다. 반응물을 dichloromethane을 이용하여 유기층을 추출하고, 컬럼크로마토그래피를 통하여 화합물 (6)을 수득한다. 1H NMR (400 MHz, CDCl3, ppm): δ9.75 (s, 2H), 7.42 (s, 2H), 7.32 (s, 2H) 4.09-4.11 (d, 4H), 1.83-1.91 (m, 4H), 1.57-1.60 (m, 4H), 1.37-1.40 (m,8H), 0.92-1.01(m, 32H), 0.60-0.72 (m, 16H).
2,2'-((2Z,2'Z)-(((4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (COTIC-4F-EH)의 합성
둥근바닥 플라스크에 (6) (250 mg, 0.29 mmol), 및 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (147 mg, 0.64 mmol) 을 넣고 무수 chloroform 20 mL 에 녹인다. 그후 pyridine 0.2 mL를 천천히 넣어주고 45℃ 조건에서 3시간 반응한다. 컬럼크로마토그래피를 통하여 화합물 (COTIC-4F-EH)을 수득한다 1H NMR (400 MHz, CDCl3, ppm): δ 8.70(s, 2H), 8.50-8.54 (dd, 2H), 7.61-7.68 (m, 4H), 7.49 (s, 2H), 4.15-4.16 (d, 4H), 1.92-2.02 (m, 4H), 1.57-1.67 (m, 4H), 1.33-1.40 (m, 24H), 0.87-1.01 (m, 32H), 0.62-0.72 (m, 16H).
<실시예 3> 유기 광 검출기 제조-1
ITO(Indium Tin Oxide) 유리 상에, 알콜에 용해된 diethyl zinc 용액을 이용하여 ZnO층을 30 nm의 두께로 형성하였다. 이후, PCE10 및 실시예 1의 N형 유기 반도체 화합물인 COBIC-4F-EH를 1:1의 비율(몰비)로 혼합 후 클로로포름 용매에 용해하고, 이를 2000 rpm에서 30초간 스핀코팅하여 약 100 nm 두께의 광활성층을 형성하였다. 이후, 진공도 3×10-7 torr 이하의 진공 증착기에서 MoO3/Ag를 순차적으로 각각 7 nm와 100 nm의 두께로 증착하여 유기 광 검출기 소자(PCE10:COBIC-4F-EH)를 제조하였다.
<실시예 4> 유기 광 검출기 제조-2
상기 실시예 3에서 광활성층의 N형 유기 반도체 화합물을 실시예 2의 화합물인 COBIC-4F-BO를 사용한 것을 제외하고 상기 실시예 3과 동일하게 수행하여 유기 광 검출기 소자(PCE10:COBIC-4F-BO)를 제조하였다.
<비교예 3> 유기 광 검출기 제조-3
상기 실시예 3에서 광활성층의 N형 유기 반도체 화합물을 비교예 1의 화합물인 CBTIC-4F를 사용한 것을 제외하고 상기 실시예 3과 동일하게 수행하여 유기 광 검출기 소자(PCE10:CBTIC-4F)를 제조하였다.
<비교예 4> 유기 광 검출기 제조-4
상기 실시예 3에서 광활성층의 N형 유기 반도체 화합물을 비교예 2의 화합물인 COTIC-4F-EH를 사용한 것을 제외하고 상기 실시예 3과 동일하게 수행하여 유기 광 검출기 소자(PCE10:COTIC-4F-EH)를 제조하였다.
<실험예 1> 광흡수 특성
상기 실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 제조된 유기 반도체 화합물의 광흡수 특성 및 전기화학적 특성을 확인하기 위하여 광흡수 스펙트럼을 측정하여 도 1에 나타내었고 최대흡수파장(λmax) 및 λedge은 표 1에 나타내었다. 또한, 전기적순환전류법(Cyclic Voltammetry) 측정을 수행하였으며 그 결과를 도 2 및 표 1에 나타내었다.
λmax [nm] λedge [nm] Eg opt [eV] LUMO [eV] HOMO [eV]
비교예 2 980 1119 1.11 -4.27 -5.38
실시예 1 900 1102 1.12 -4.30 -5.42
실시예 2 980 1119 1.11 -4.36 -5.47
비교예 1 825 1050 1.18 -4.32 -5.50
* Eg opt : 에너지 밴드갭
상기 도 1 및 표 1에 나타낸 바와 같이, 비교예 2의 경우 1.10 eV의 좁은 밴드갭을 가지며 -5.38의 HOMO 준위를 가지는 것을 확인하였다. 이를 A'인 BT 유닛을 도입한 실시예 1과 실시예 2의 경우 BT가 도입하면서 평면성이 무너졌어도 강한 전자받개 특성으로 인해 효과적인 ICT를 유도할 수 있어 광학적밴드갭이 1.12/1.11 eV로 비교예 2와 큰 차이를 보이지 않았다. 하지만 강한 전자받개 특성으로 인해 HOMO 준위가 감소하는 것을 볼 수 있었다. A'의 양쪽으로 치환된 비교예 2의 경우 분자구조적 평면성이 무너져 blue-shift된 광학적 특성을 볼 수 있었으며, 강한 전자받개특성을 갖는 BT가 두개 치환되었기에 가장 깊은 HOMO 준위를 갖는 것을 확인하였다.
<실험예 2> 유기 광 검출기 특성
상기 실시예 3, 실시예 4, 비교예 3 및 비교예 4에서 제조된 유기 광 검출기의 특성을 확인하기 위하여 암전류밀도(Dark current density), 광감응도(Responsivity) 및 검출능(Detectivity)을 측정하였으며, 그 결과를 도 3 내지 도 5 및 표 2에 나타내었다.
Ra
[A/W]
Rat 1050 nm
[A/W]
PDCR
[(Jphoto-Jdark)/Jdark]
D*a
[cmHz1/2/W]
D* at 1050 nm
[cmHz1/2/W]
비교예 4 980 1137 1.11 -4.11 -5.22
실시예 3 900 1115 1.08 -4.20 -5.28
실시예 4 980 1140 1.07 -4.20 -5.28
비교예 3 825 1063 1.14 -4.18 -5.32
a measurement values at the optimum wavelength; λPTB7-Th:COTIC-4F-EH ~ 1000 nm, λPTB7-Th:COTIC-4F-BO ~ 990 nm, λPTB7-Th:COBIC-4F-EH ~ 970 nm, λPTB7-Th:COBIC-4F-BO ~ 960 nm, λPTB7-Th:CBTIC-4F ~ 890 nm
상기 도 3 내지 5 및 표 2에 나타낸 바와 같이, 합성된 N형 유기 반도체 화합물을 전자받개 공여체로 이용하고 P형 유기고분자인 PCE-10을 전자주개 공여체로 이용하여 OPD 소자를 제작하였다. 제작결과 실시예 2의 경우 가장 깊은 암전류를 가지는 것을 확인 할 수 있었으면 비교예 2의 경우 가장 높은 암전류 값을 보여주었다. OPD에서 광검출능을 산출함에 있어 낮은 암전류의 경우 필수적인 조건이기에 A-D-D'-A'-A 구조의 경우 효과적으로 암전류를 감소시킬 수 있었다. 실시예 3, 4의 경우 비교예 4에 비해 다소 낮은 광감응도를 보였으며, 이를 통해 광검출능을 산출하였을 때 실시예 3이 가장 높은 광검출능을 보였다.

Claims (10)

  1. 하기 화학식 1로 표시되는 유기 반도체 화합물:
    <화학식 1>
    Figure pat00067

    (상기 화학식 1에서,
    R1은 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C30의 직쇄 또는 C3 내지 C30의 분지쇄 알킬기이고,
    L1
    Figure pat00068
    또는
    Figure pat00069
    이고, R2는 C4 내지 C30의 직쇄 또는 분지쇄 알킬기 또는 C4 내지 C30의 직쇄 또는 분지쇄 알콕시기이고,
    L2
    Figure pat00070
    ,
    Figure pat00071
    ,
    Figure pat00072
    ,
    Figure pat00073
    또는
    Figure pat00074
    이고, X1은 황(S), 산소(O) 또는 셀레늄(Se)이고, X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소(H) 또는 불소(F)이고, R3는 서로 동일하거나 상이하고, 각각 독립적으로 C4 내지 C30의 직쇄 또는 분지쇄 알킬기이고, R4
    Figure pat00075
    또는
    Figure pat00076
    이고, R5는 C4 내지 C30의 직쇄 또는 분지쇄 알킬기이고,
    T는
    Figure pat00077
    ,
    Figure pat00078
    ,
    Figure pat00079
    ,
    Figure pat00080
    ,
    Figure pat00081
    또는
    Figure pat00082
    이고, X3는 서로 동일하거나 상이하고, 각각 독립적으로 수소(H), 불소(F), 브롬(Br) 또는 염소(Cl)이고, R6는 C1 내지 C20의 직쇄 또는 C3 내지 C20의 분지쇄 알킬기이다).
  2. 제1항에 있어서,
    상기 유기 반도체 화합물은 하기 화학식 2로 표시되는 것인 유기 반도체 화합물:
    <화학식 2>
    Figure pat00083

    (상기 화학식 2에서,
    R1은 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C30의 직쇄 또는 C3 내지 C30의 분지쇄 알킬기이고,
    R7은 C4 내지 C30의 직쇄 또는 분지쇄 알킬기이다).
  3. 제1항에 있어서,
    상기 유기 반도체 화합물은 하기 화학식 3으로 표시되는 것인 유기 반도체 화합물:
    <화학식 3>
    Figure pat00084

    (상기 화학식 3에서,
    R7은 C4 내지 C30의 직쇄 또는 분지쇄 알킬기이다).
  4. 제3항에 있어서,
    상기 R7
    Figure pat00085
    또는
    Figure pat00086
    인 유기 반도체 화합물.
  5. 하기 화학식 4로 표시되는 화합물, 하기 화학식 5로 표시되는 화합물 및 하기 화학식 6으로 표시되는 화합물을 반응시키켜 반응물을 제조하는 단계;
    상기 반응물을
    Figure pat00087
    ,
    Figure pat00088
    ,
    Figure pat00089
    ,
    Figure pat00090
    ,
    Figure pat00091
    또는
    Figure pat00092
    과 반응시켜 제1항의 유기 반도체 화합물을 제조하는 방법:
    <화학식 4>
    Figure pat00093

    <화학식 5>
    Figure pat00094

    <화학식 6>
    Figure pat00095

    (상기 화학식 4에서, R1은 화학식 1의 정의와 동일하고, X4는 할로겐기이고,
    상기 화학식 5에서, L2는 화학식 1의 정의와 동일하고, X5는 할로겐기이고,
    상기 화학식 6에서, L1은 화학식 1의 정의와 동일하고, X6는 할로겐기이고,
    상기 X3 또는 R6는 화학식 1의 정의와 동일하다).
  6. 제1항에 따른 유기 반도체 화합물을 포함하는 유기 광활성층.
  7. 제6항에 따른 유기 광활성층을 포함하는 유기 광 검출기.
  8. 제1 전극;
    상기 제1 전극과 대향하여 구비되는 제2 전극; 및
    상기 제1 전극과 상기 제2 전극 사이에 구비되는 제1항에 따른 유기 반도체 화합물을 포함하는 광활성층;을 포함하는 유기 태양전지.
  9. 제8항에 있어서,
    상기 광활성층은 P형 유기 반도체 화합물을 더 포함하는 유기 태양전지.
  10. 제8항에 있어서,
    상기 유기 태양전지는 상기 제1 전극 및 상기 제2 전극 사이에 구비되는 전자수송층 및 정공수송층을 포함하는 유기 태양전지.
KR1020210168334A 2021-11-30 2021-11-30 비대칭 n형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기 KR20230080832A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210168334A KR20230080832A (ko) 2021-11-30 2021-11-30 비대칭 n형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기
PCT/KR2022/019281 WO2023101448A1 (ko) 2021-11-30 2022-11-30 비대칭 n형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210168334A KR20230080832A (ko) 2021-11-30 2021-11-30 비대칭 n형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기

Publications (1)

Publication Number Publication Date
KR20230080832A true KR20230080832A (ko) 2023-06-07

Family

ID=86612702

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210168334A KR20230080832A (ko) 2021-11-30 2021-11-30 비대칭 n형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기

Country Status (2)

Country Link
KR (1) KR20230080832A (ko)
WO (1) WO2023101448A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772095B1 (ko) 2015-11-02 2017-08-29 경북대학교 산학협력단 광대역 감광 전-고분자 유기광전자소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102444719B1 (ko) * 2016-10-05 2022-09-16 라이너지 테크 인코포레이션 유기 광검출기
KR101962848B1 (ko) * 2017-07-17 2019-03-27 포항공과대학교 산학협력단 비대칭 알킬기가 치환된 유기 반도체 화합물 및 이를 포함하는 태양전지

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772095B1 (ko) 2015-11-02 2017-08-29 경북대학교 산학협력단 광대역 감광 전-고분자 유기광전자소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
비특허문헌 1 : Adv. Energy Mater. 2018, 1801212

Also Published As

Publication number Publication date
WO2023101448A1 (ko) 2023-06-08

Similar Documents

Publication Publication Date Title
TWI671304B (zh) 雜環化合物及含彼之有機電子裝置
KR102491794B1 (ko) 중합체 및 이를 포함하는 유기 전자 소자
KR102389997B1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
KR102285566B1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
JP6798088B2 (ja) ヘテロ環化合物およびこれを含む有機電子素子
US10756276B2 (en) Organic photodiode and organic image sensor including the same
KR20200119046A (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
KR20180106894A (ko) 고분자, 고분자를 포함하는 유기태양전지 및 고분자를 포함하는 페로브스카이트 태양전지
KR102471839B1 (ko) 헤테로환 화합물, 이를 포함하는 유기 전자 소자 및 이를 이용한 유기 전자 소자의 제조 방법
KR20230080832A (ko) 비대칭 n형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기
KR102083711B1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
KR20230080850A (ko) 시아노기를 함유하는 n형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 광 검출기
KR102552045B1 (ko) 헤테로환 화합물, 이를 포함하는 유기 전자 소자 및 이를 이용한 유기 전자 소자의 제조 방법
KR102610463B1 (ko) 헤테로환 화합물, 이를 포함하는 유기 전자 소자 및 이를 이용한 유기 전자 소자의 제조 방법
KR102635061B1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
JP6051102B2 (ja) 有機光電変換素子および有機薄膜太陽電池
KR102661218B1 (ko) 근적외선 흡수가 가능한 n-형 유기 반 도체 화합물 및 이를 포함하는 유기광검출기
KR20230131526A (ko) 근적외선 흡수가 가능한 p-형 유기 반도체 화합물 및 이를 함유하는 유기광검출기
KR102428979B1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
KR20200119612A (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
KR102247317B1 (ko) 신규한 스피로 화합물 및 이를 이용하는 유기 전자 소자
US20230132149A1 (en) Ultra narrow bandgap non-fullerene-acceptor based organic electronics
KR102475970B1 (ko) 헤테로환 화합물, 이를 포함하는 유기 전자 소자 및 이를 이용한 유기 전자 소자의 제조 방법
KR20240024483A (ko) 비닐기를 함유하는 유기 반도체 화합물 및 이를 포함하는 유기 광 검출기
KR102314981B1 (ko) 플루오린 알킬 말단을 가지는 공액 고분자 및 이를 포함하는 유기광전소자 및 광검출기