KR20230066113A - 작업 평면에 레이저 라인을 생성하는 장치 - Google Patents

작업 평면에 레이저 라인을 생성하는 장치 Download PDF

Info

Publication number
KR20230066113A
KR20230066113A KR1020237012649A KR20237012649A KR20230066113A KR 20230066113 A KR20230066113 A KR 20230066113A KR 1020237012649 A KR1020237012649 A KR 1020237012649A KR 20237012649 A KR20237012649 A KR 20237012649A KR 20230066113 A KR20230066113 A KR 20230066113A
Authority
KR
South Korea
Prior art keywords
axis
optical
caustic
laser
illumination
Prior art date
Application number
KR1020237012649A
Other languages
English (en)
Inventor
율리안 헬스테른
안드리아스 하임즈
마르틴 비머
Original Assignee
트룸프 레이저-운트 시스템테크닉 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 트룸프 레이저-운트 시스템테크닉 게엠베하 filed Critical 트룸프 레이저-운트 시스템테크닉 게엠베하
Publication of KR20230066113A publication Critical patent/KR20230066113A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lasers (AREA)

Abstract

작업 평면(14)에 레이저 라인(12)을 생성하는 장치는, 제1 원시 레이저 빔(20a)을 생성하도록 설정된 제1 레이저 광원(16a)을 갖는다. 이 장치는 또한 제2 원시 레이저 빔(20b)을 생성하도록 설정된 제2 레이저 광원(16b)을 갖는다. 제1 빔 경로(32a)를 갖는 광학 조립체(22)는 제1 원시 레이저 빔(20a)을 수신하고, 제1 원시 레이저 빔을 제1 광축(34a)을 따라, 제1 코스틱(Kaustik)(38a) 및 제1 빔 프로파일(40a)을 갖는 제1 조명 빔(24a)으로 성형한다. 광학 조립체(22)의 제2 빔 경로(32b)는 제2 원시 레이저 빔(20b)을 수신하고, 제2 원시 레이저 빔을 제2 광축(34b)을 따라, 제2 코스틱(38b) 및 제2 빔 프로파일(40b)을 갖는 제2 조명 빔(24b)으로 성형한다. 제1 및 제2 조명 빔(24a, 24b)은 중첩된 방식으로 작업 평면(14)으로 지향되어, 공통 조명 방향(18)을 정의한다. 제1 및 제2 빔 프로파일(40a, 40b)은, 공통 조명 방향(18)에 수직으로, 각각 장축 빔 폭을 갖는 장축 및 단축 빔 폭을 갖는 단축을 갖는다. 제1 및 제2 빔 프로파일(40a, 40b)은 함께 작업 평면(14)에 레이저 라인(12)을 형성한다. 일 양태에 따르면, 광학 조립체(22)는 제1 코스틱(38a) 및 제2 코스틱(38b)을 조명 방향(18)으로 서로에 대해 오프셋되어 위치시키도록 설정된다.

Description

작업 평면에 레이저 라인을 생성하는 장치
본 발명은 작업 평면에 레이저 라인을 생성하는 장치에 관한 것으로서, 제1 원시 레이저 빔을 생성하도록 설정된 제1 레이저 광원, 제2 원시 레이저 빔을 생성하도록 설정된 제2 레이저 광원, 및 제1 원시 레이저 빔을 수신하고 제1 광축을 따라 제1 코스틱(Kaustik) 및 제1 빔 프로파일을 갖는 제1 조명 빔으로 성형하는 제1 빔 경로, 및 제2 원시 레이저 빔을 수신하고 제2 광축을 따라 제2 코스틱 및 제2 빔 프로파일을 갖는 제2 조명 빔으로 성형하는 제2 빔 경로를 갖는 광학 조립체를 갖고, 여기서 제1 및 제2 조명 빔은 중첩된 방식으로 작업 평면으로 지향되어 공통 조명 방향을 정의하고, 여기서 제1 및 제2 빔 프로파일은 공통 조명 방향에 수직으로 각각 장축 빔 폭을 갖는 장축 및 단축 빔 폭을 갖는 단축을 포함하고, 여기서 제1 및 제2 빔 프로파일은 함께 작업 평면에 레이저 라인을 형성한다.
이러한 장치는 예를 들어 US 2014/0027417 A1에 도시되어 있다.
이러한 장치의 선형 레이저 조명은 일반적으로 공작물을 가공하는 데 사용된다. 공작물은 예를 들어 캐리어 재료로서 역할을 하는 유리판 위의 플라스틱 재료일 수 있다. 플라스틱 재료는 특히 유기 발광 다이오드, 소위 OLEDs 및/또는 박막 트랜지스터가 생성되는 필름일 수 있다. OLED 필름은 스마트폰, 태블릿-PCs, TV 및 다른 스크린 디스플레이 장치의 최신 디스플레이에 사용된다. 전자 구조가 생성된 후 필름은 유리 캐리어로부터 분리되어야 한다. 이는, 유리판에 대해 정의된 속도로 이동되고 유리판을 통해 필름의 접착 연결을 분리하는 얇은 레이저 라인 형태의 레이저 조명으로 수행될 수 있다. 실제로 이러한 적용은 종종 LLO 또는 레이저 리프트 오프(Laser Lift Off)라고 한다.
정의된 레이저 라인으로 공작물을 조명하는 다른 적용 분야는 캐리어 플레이트 상에서 비정질 실리콘을 라인별로 용융하는 것이다. 레이저 라인은 여기에서도 마찬가지로 공작물 표면에 대해 정의된 속도로 이동된다. 용융을 통해 비교적 저렴한 비정질 실리콘이 고품질의 다결정 실리콘으로 전환될 수 있다. 실제로 이러한 적용은 종종 SLA(Solid State Laser Annealing)라고 한다.
이러한 적용 분야를 위해, 가능한 가장 넓은 작업 영역을 커버하기 위해 한 방향으로는 가능한 한 길고 이에 비해 각각의 프로세스에 필요한 에너지 밀도를 제공하기 위해 다른 방향으로는 매우 짧은 작업 평면 상의 레이저 라인이 필요하다. 따라서, 작업 평면에 평행한 길고 가늘은 레이저 라인을 생성할 수 있는 장치가 바람직하다. 레이저 라인이 진행하는 방향은 일반적으로 장축이라고 하며, 라인 두께는 소위 빔 프로파일의 단축이라고 한다. 일반적으로 레이저 라인은 두 개의 축에서 각각 정의된 강도 곡선을 가져야 한다. 예를 들어, 레이저 라인이 장축에서 가능한 한 직사각형이거나 또는 경우에 따라 사다리꼴인 강도 프로파일을 갖는 것이 바람직하며, 여기서 후자가 더 긴 전체 라인을 형성하기 위해 여러 개의 레이저 라인이 결합되는 경우 유리할 수 있다. 단축에는 적용 분야에 따라 직사각형 강도 프로파일(소위 탑햇 프로파일), 가우시안 프로파일 또는 다른 강도 프로파일이 필요하다.
WO 2018/019374 A1은 광학 조립체의 광학 요소와 관련된 많은 세부사항들을 갖는 적합한 장치를 개시하고 있다. 레이저 소스는 원시 레이저 빔을 생성하며, 이 원시 레이저 빔은 소위 빔 변환기의 도움으로 제1 공간 방향으로 매우 넓게 퍼지고, 그 후 장축을 얻기 위해 균질화된다. 레이저 빔은 단축을 얻기 위해 제2 수직 공간 방향으로 포커싱된다. 제1 및 제2 공간 방향은 레이저 빔이 작업 평면에 충돌하는 빔 방향에 수직이다. 하나의 예시적인 실시예에서는, 이러한 방식으로 매우 긴 레이저 라인을 형성하기 위해, 다수의 이러한 레이저 라인이 각각의 장축 방향으로 서로 옆에 배열될 수 있음이 지시된다. 이러한 예시적인 실시예에서, 각각 작업 영역 상에 레이저 라인을 형성하는 2 개의 평행 조명 빔은 따라서 장축 방향으로 오프셋된다.
위에서 언급된 US 2014/0027417 A1은 서두에서 언급된 유형의 장치를 개시하며, 여기서 제1 조명 빔 및 제2 조명 빔은 각각의 단축 방향으로 서로 오프셋된다. 여기서 제1 빔 프로파일 및 제2 빔 프로파일은 이러한 방식으로 공작물에 입력되는 에너지를 레이저 가공 과정 중에 변경되는 재료 특성에 적응시키기 위해, 계단형 강도 프로파일을 갖는 레이저 라인을 함께 형성한다.
DE 10 2018 200 078 A1은 단축에 대해 광학 굴절력을 갖는 텔레스코프 조립체로 레이저 라인을 생성하기 위한 광학 조립체를 개시하고 있다. 텔레스코프 조립체는 광축을 따라 서로에 대해 이동 가능한 제1 렌즈 그룹 및 제2 렌즈 그룹을 포함한다. 제어 유닛은 레이저 라인의 강도 및 소위 반치전폭, 즉, 강도의 50 %에서의 라인 폭(Full Width at Half Maximum)(FWHM)을 시간적으로 가능한 한 일정하게 유지하기 위해, 레이저 빔 소스가 레이저 빔을 생성하는 동안의 이동을 제어한다. 레이저 빔이 생성되는 동안 광학 조립체의 특성이 변경될 수 있음이 밝혀졌다. 특히, 레이저 빔의 결과로서 광학 요소의 가열에 의해 소위 열 렌즈가 형성될 수 있고, 이는 조립체의 광학 특성을 변경시킨다. DE 10 2018 200 078 A1은 이로부터 발생되는 초점 위치의 변화를, 텔레스코프 렌즈를 서로에 대해 변위시킴으로써 보상하거나 또는 적어도 감소시키는 것을 제안한다.
이러한 솔루션의 단점은 텔레스코프 렌즈의 위치를 조정하는 데 필요한 기계적 노력이다. 이동은 광학 조립체의 마모 및/또는 오정렬로 이어질 수 있다. 이를 고려하여, 본 발명의 목적은, 대안적인 방식으로 이러한 장치의 작업 영역 내에서 작업 평면을 유지하는 데 기여하는 서두에서 언급된 유형의 장치를 제공하는 것이다.
본 발명의 일 양태에 따르면, 이러한 목적을 달성하기 위해, 서두에서 언급된 유형의 장치가 특정되고, 여기서 광학 조립체는 제1 코스틱 및 제2 코스틱을 조명 방향으로 서로에 대해 오프셋되어 위치시키도록 설정된다.
레이저 빔의 코스틱은 광학 조립체의 출력으로부터 소위 빔 초점, 즉, 최소 빔 직경의 위치까지 그리고 이를 넘어서는 조명 또는 빔 전파 방향에서의 빔 직경의 경로를 나타낸다. 빔 초점은 종종 빔 웨이스트(beam waist)라고도 하므로, 코스틱은 레이저 빔의 빔 웨이스트를 포함한다. 따라서, 바람직한 예시적인 실시예에서, 특히 제1 및 제2 조명 빔의 빔 웨이스트는 조명 또는 빔 전파 방향으로 서로에 대해 오프셋된다. 이들 예시적인 실시예에서, 광학 조립체는 결과적으로 제1 조명 빔의 빔 웨이스트(제1 빔 웨이스트) 및 제2 조명 빔의 빔 웨이스트(제2 빔 웨이스트)를 조명 방향에서 서로에 대해 오프셋되어 위치시키도록 설정된다. 바람직한 실시예에서, 제1 코스틱 및 제2 코스틱은 특히 단축의 코스틱을 고려할 때 조명 방향으로 서로 오프셋되지만, 장축의 코스틱을 고려할 때 그렇지 않거나 또는 기껏해야 미미하게 오프셋된다.
본 신규한 장치는 단축에서 빔 프로파일의 포커싱을 발생시키는 광학 조립체 또는 광학 요소의 서로에 대한 기계적 조정을 생략할 수 있게 하는데, 오프셋된 코스틱이 단축에서 (그리고 또한 장축에서도) 겹치기 때문이다. 결과적으로, 공작물의 가공을 위한 프로세스 윈도우가 증가된다. 열 렌즈 또는 다른 효과로 인해 초점 드리프트가 있더라도, 레이저 작동 중에 기계적인 조정 없이 공작물을 프로세스 윈도우에 유지할 수 있다.
따라서 바람직하게는, 빔 프로파일의 단축에 대해 광학 굴절력을 갖는 광학 요소는 서로에 대해 고정된 간격을 갖는다. 일부 바람직한 실시예에서, 광학 요소는 각각 고정된다. 이는 기계적 마모를 감소시키고, 기계적 이동으로 인해 광학 조립체가 오정렬될 수 있는 위험도 감소시킨다.
오히려, 본 신규한 장치는 적어도 2 개의 중첩된 그리고 서로 오프셋된 코스틱에 의해 빔의 방향(이하에서, 또한 종 방향이라고도 함)으로 공정 윈도우를 구체적으로 확대한다는 사상에 기초한다. 따라서 바람직한 예시적인 실시예에서, 본 신규한 장치는 레이저 광원의 작동 출력 및/또는 작동 지속시간에 따라 광학 요소의 가열 결과로서의 초점 드리프트를 의식적으로 감수한다. 그러나, 광학 조립체는 특히 단축에서 공동으로 형성된 빔 프로파일의 빔 품질을 감소시키도록 특별히 설정되어, 초점 위치가 드리프트는 경우에도 빔 프로파일이 프로세스 윈도우에 유지된다. 기계적 트래킹 대신에, 광학 조립체는 서로 오프셋된 2 개의 코스틱을 통해 더 깊은 피사계 심도를 위해 특별히 설계된다.
따라서, 본 신규한 장치는 피사계 심도와 초점 이동 사이의 관계가 긍정적인 영향을 받는 광학 조립체를 갖는다. 본 장치의 프로세스 윈도우는 종래 기술의 장치에 비해 증가된다. 기계적 트래킹 및 이와 관련된 단점을 회피할 수 있다. 따라서 위에서 언급된 목적은 충분히 달성된다.
바람직한 실시예에서, 광학 조립체는 제1 빔 경로에 있는 제1 빔 변환기 및 제2 빔 경로에 있는 제2 빔 변환기를 포함하고, 여기서 제1 빔 변환기는 제1 빔 프로파일을 생성하기 위해 제1 원시 레이저 빔을 성형하고, 여기서 제2 빔 변환기는 제2 빔 프로파일을 생성하기 위해 제2 원시 레이저 빔을 성형하며, 여기서 제1 광축 및 제2 광축은 공통 시스템 축을 정의하고, 여기서 제1 빔 변환기 및 제2 빔 변환기는 공통 시스템 축을 따라 서로에 대해 오프셋되어 배열된다.
이러한 실시예에서, 제2 코스틱에 대한 제1 코스틱의 오프셋은, 각각의 조명 빔에 대해 "별도의" 빔 변환기를 제공함으로써 달성되고, 여기서 (적어도) 2 개의 빔 변환기는 공통 시스템 축을 따라 서로 오프셋된다. 이러한 실시예는 제1 빔 경로 및 제2 빔 경로가 또한 동일한 방식으로 구현될 수 있다는 이점을 갖는다. 특히, 2 개의 부분 레이저 빔에 영향을 미치고 따라서 (적어도) 2 개의 조명 빔을 형성하는 조립체의 광학 요소는 서로 평행하게 위치될 수 있다. 이는 본 신규한 장치의 제조 및 유지 보수를 단순화한다. 또한, 장축에서 공동으로 형성된 빔 프로파일은 이러한 실시예에서 거의 영향을 받지 않는다.
추가 실시예에서, 광학 조립체는 대응하는 제1 및/또는 제2 빔 프로파일을 생성하기 위해 제1 원시 레이저 빔 및/또는 제2 원시 레이저 빔을 변환하는 적어도 하나의 빔 변환기를 포함하고, 광학 조립체는 제2 빔 경로에, 제1 코스틱에 대해 제2 코스틱을 오프셋시키는 광학 요소를 포함한다.
이러한 실시예에서, 제2 코스틱에 대한 제1 코스틱의 오프셋은, 제2 빔 경로가 제1 빔 경로에 비해 적어도 하나의 추가 광학 요소를 포함함으로써 달성된다. 따라서, 제1 및 제2 빔 경로는 상이할 수 있다. 추가 광학 요소는 적어도 하나의 빔 변환기 상류에 또는 하류에 배열될 수 있다. 따라서, 이러한 구성의 예시적인 실시예는 원칙적으로 두 개의 조명 빔에 대한 공통 빔 변환기를 포함할 수 있어서, 제1 및 제2 조명 빔에 대한 빔 경로는 공통 빔 변환기 하류에서만 상이하다. 이러한 구성의 다른 실시예에서, 광학 조립체는 제1 및 제2 빔 경로 각각에 빔 변환기를 포함한다. 이러한 구성의 일부 바람직한 실시예에서, 추가 광학 요소는 제1 코스틱의 위치에 비해 제2 코스틱의 위치를 변위시키는 텔레스코프일 수 있다. 이러한 구성은 기존의 설계를 기반으로 추가 광학 요소를 이용하여 비교적 쉽게 본 신규한 장치를 구현할 수 있다는 이점을 갖는다.
추가 실시예에서, 제1 코스틱은 조명 방향으로 프로세스 윈도우 길이를 갖는 프로세스 윈도우를 정의하고, 제1 코스틱 및 제2 코스틱은 정의된 거리만큼 조명 방향으로 오프셋되며, 정의된 거리는 프로세스 윈도우 길이의 1.5 배 미만이고 프로세스 윈도우 길이의 0.5 배 초과이며, 바람직하게는 프로세스 윈도우 길이의 1.2 배 미만이고 프로세스 윈도우 길이의 0.8 배 초과이며, 특히 바람직하게는 프로세스 윈도우 길이의 1.1 배 미만이고 프로세스 윈도우 길이의 0.9 배 초과이다.
이러한 실시예에서, 코스틱의 서로에 대한 오프셋은 광학 조립체의 피사계 심도의 크기 정도이다. 이 경우, 피사계 심도는 조명 방향을 따라 단축에서 빔 폭 FWHM의 백분율 편차를 통해 정의될 수 있다. 특히, 피사계 심도는, 단축 빔 폭이 빔 웨이스트의 단축 빔 폭과 비교하여 1 % 또는 1 %와 10 % 사이의 다른 비율만큼 증가된 단축 코스틱의 지점들 사이의 거리로 정의될 수 있다. 이러한 구성은 대규모 분석에서 제1 코스틱에 대한 제2 코스틱 오프셋에 대해 매우 유리한 치수임이 입증되었는데, 이는 빔 프로파일의 장축에 미치는 영향이 상당히 작기 때문에 레이저 라인의 품질에 미치는 영향이 상당히 적은 프로세스 윈도우의 적절한 확대를 가능하게 하기 때문이다.
추가 실시예에서, 광학 조립체는 제1 및 제2 빔 프로파일의 단축에 대해 우세한 광학 굴절력을 갖는 적어도 하나의 렌즈를 포함하고, 여기서 렌즈는 단축에 대해 유효 직경을 가지며, 여기서 제1 및/또는 제2 조명 빔은 유효 직경의 50 % 초과, 바람직하게는 70 % 초과, 더 바람직하게는 90 % 초과에 걸쳐 렌즈를 조명한다.
이러한 실시예에서, 적어도 하나의 렌즈는 공지된 장치에서 통상적인 것보다 더 넓은 영역에 걸쳐 조명된다. 다른 말로 하면, 적어도 하나의 렌즈는 에지 영역까지 조명된다. 포커싱될 레이저 빔에 의한 적어도 하나의 렌즈의 넓은 영역에 걸친 조명은 한편으로는 적어도 하나의 렌즈가 국부적으로 덜 강하게 가열되는 결과를 가져온다. 따라서, 이러한 실시예는 장치의 작동 중에 열 렌즈의 형성 및 초점 드리프트를 감소시키는 데 유리하게 기여한다. 또한, 이러한 실시예는, 코스틱의 오프셋이 피사계 심도의 크기 내에 유리하게 있을 수 있고 피사계 심도가 더 작은 경우에 상응하여 더 작게 선택될 수 있기 때문에, 본 신규한 장치의 보다 컴팩트한 설계를 가능하게 한다. 광학 조립체의 이미징 스케일 때문에, 이 경우 예를 들어 또한 위에서 언급된 제2 빔 변환기에 대한 제1 빔 변환기의 오프셋도 더 작게 선택될 수 있다. 이러한 실시예는 SLA 적용 분야에 특히 유리하며, 단축에서의 빔 프로파일이 탑햇 특성을 갖는 적용 분야에 더 일반적이다.
추가 실시예에서, 제1 빔 경로는 제1 중간 이미지를 생성하고, 제2 빔 경로는 제2 중간 이미지를 생성하고, 제1 광축 및 제2 광축은 공통 시스템 축을 정의하고, 여기서 제1 및 제2 중간 이미지는 공통 시스템 축을 따라 서로에 대해 오프셋되어 배열된다.
또한, 이러한 실시예는 빔 프로파일이 단축에서 탑햇 특성을 갖는 적용 분야에 특히 유리하다. 코스틱의 상대적인 오프셋은 여기에서 중간 이미지를 변위시킴으로써 간단한 방식으로 달성될 수 있다. 프로세스 윈도우 또는 각각의 빔 경로의 프로세스 윈도우 내의 웨이스트 위치는 대물렌즈 상류에 위치된 공액 평면을 정의한다. 이것은 상류에 위치된 광학 장치의 유리한 구성에 의해 변위될 수 있다. 일부 바람직한 예시적인 실시예에서, 광학 조립체는 제2 빔 경로에서, 제1 빔 경로의 대응하는 단축 텔레스코프와 비교하여 공통 시스템 축을 따라 변위되는 단축 텔레스코프를 포함한다. 유리하게는, 이러한 변위는 본 신규한 장치의 조립 및 조정 중에 구현될 수 있어, 비용 효율적인 구현을 가능하게 한다. 텔레센트릭 조건을 유지하면서 변위를 구현하는 것이 바람직하다. 본 실시예는 제1 및 제2 코스틱의 분리된 이미지 위치를 생성한다.
추가 실시예에서, 광학 조립체는 제1 빔 경로에 있는 제1 빔 변환기 및 제2 빔 경로에 있는 제2 빔 변환기를 포함하고, 여기서 제2 빔 변환기는 제2 광축을 중심으로 제1 빔 변환기에 대해 회전된다.
바람직하게는, 이 실시예의 광학 조립체는, 각각의 빔 변환기에 충돌하기 전에 각각의 원시 레이저 빔을 시준하는 다수의 렌즈를 갖는 시준 광학 장치를 포함한다. 유리하게는, 제2 빔 경로의 렌즈 중 적어도 하나의 렌즈는 제1 빔 경로의 대응하는 렌즈에 대해 제2 광축을 따라 변위되므로, 평행한 빔 경로에서 각각의 원시 레이저 빔의 시준이 서로 상이하다. 이러한 실시예는 매우 효율적인 방식으로 빔 코스틱의 상대적인 변위를 허용한다.
추가 실시예에서, 광학 조립체는 제1 및 제2 빔 경로에서 전용 다이어프램 없이 작업 평면에 제1 및 제2 빔 프로파일을 포커싱한다.
이러한 실시예는 특히 LLO 적용 분야에 유리하다. 이것은 예를 들어 슬릿 다이어프램과 같은 전용 다이어프램을 생략함으로써, 낮은 손실로 레이저 에너지를 작업 평면으로 효율적으로 전달할 수 있다.
추가 실시예에서, 광학 조립체는 각각의 장축 및 각각의 단축에서 제1 및 제2 빔 프로파일을 중첩시킨다.
이러한 실시예에서, 제1 및 제2 빔 프로파일은 장축 및 단축 모두에서 대체로 특히 90 % 초과에 걸쳐 중첩되어 놓여 있다. 이들은 장축 및 단축 모두에서 중첩된 레이저 라인을 형성한다. 이러한 실시예는 장축에서 매우 균일한 강도 분포 및 단축에서 정의된 강도 프로파일에 유리하게 기여한다.
위에서 언급된 특징들 및 이하에서 더 설명될 특징들은 각각의 경우에 명시된 조합으로 사용될 수 있을 뿐만 아니라, 본 발명의 범위를 벗어나지 않는 한, 다른 조합으로도 또는 그 자체로 사용될 수 있음은 말할 필요도 없다.
본 발명의 실시예가 도면에 예시되어 있고, 다음 상세한 설명에서 보다 상세히 설명된다.
도 1의 A 및 도 1의 B는 본 신규한 장치의 제1 예시적인 실시예의 단순화된 표현을 도시한다.
도 2는 제1 예시적인 실시예 및 추가적인 예시적인 실시예를 설명하기 위한 빔 프로파일의 단순화된 표현을 도시한다.
도 3은 본 신규한 장치의 일부 예시적인 실시예에 따라 조명 방향으로 서로 오프셋되어 배열된 2 개의 빔 웨이스트의 단순화된 표현을 도시한다.
도 4의 A 및 도 4의 B는 본 신규한 장치의 제2 실시예의 개략도를 도시한다.
도 5는 본 신규한 장치의 추가 실시예를 설명하기 위해 매우 단순화된 표현을 도시한다.
도 6의 A 및 도 6의 B는 본 신규한 장치의 다른 예시적인 실시예의 개략도를 도시한다.
도 1의 A 및 도 1의 B에서, 본 신규한 장치의 제1 실시예는 전체적으로 참조 번호 10으로 표시된다. 도 1의 A는 여기에서 작업 평면(14)의 영역에 배치된 레이저 라인(12)을 위로부터 본 단순화된 표현으로 장치(10)를 도시한다. 장치(10)는 제1 레이저 광원(16a) 및 제2 레이저 광원(16b)을 가지며, 이들은 각각 예를 들어 적외선 범위 또는 UV 범위에서 레이저 광을 생성하는 고체 레이저일 수 있다. 예를 들어, 레이저 광원(16a, 16b)은 각각 1030 nm 범위의 파장을 갖는 Nd:YAG 레이저를 포함할 수 있다. 다른 예에서, 레이저 광원(16a, 16b)은 다이오드 레이저, 엑시머 레이저 또는 고체 레이저를 포함할 수 있으며, 이들은 각각 150 nm 내지 350 nm, 500 nm 내지 530 nm 또는 900 nm 내지 1070 nm의 파장을 갖는 레이저 광을 생성한다. 또한, 본 신규한 장치의 실시예는 Nd:YAG 레이저, 다이오드 레이저, 엑시머 레이저 또는 고체 레이저를 포함할 수 있으며, 이들의 원시 레이저 빔은 예를 들어 스플리터 미러(여기에는 도시되지 않음)를 사용하여 두 개의 부분 빔으로 분할되어, 이러한 방식으로 2 개의 원시 레이저 빔을 이하에서 설명되는 광학 조립체를 위한 입력 빔으로 제공할 수 있다. 따라서, 제1 레이저 광원(16a) 및 제2 레이저 광원(16b)은 여기에 도시되지 않은 일부 예시적인 실시예에서 후속 빔 스플리터 요소를 갖는 단일 레이저 광원을 나타낼 수 있다. 또한, 본 신규한 장치의 실시예는 2 개 초과의 레이저 광원만을 포함할 수 있다.
도 1의 B는 측면에서 볼 때, 즉, 레이저 라인(12)의 단축을 볼 때의 장치(10)를 도시한다. 이하에서, 작업 평면(14)에 대한 조명 방향(18)은 좌표축 z로 표시된다. 레이저 라인(12)은 x-축 방향으로 진행하고, 라인 폭은 y-축 방향으로 보인다. 이에 상응하게, x-축은 아래에서 장축을 나타내고, y-축은 작업 평면에 형성된 빔 프로파일의 단축을 나타낸다(도 2).
여기서 레이저 광원(16a, 16b)은 각각 원시 레이저 빔(20a, 20b)을 생성한다. 2 개의 원시 레이저 빔(20a, 20b)은 광학 조립체(22)에 의해 조명 빔(24a, 24b)으로 성형된다. 여기서 광학 조립체(22)는 x-방향(장축에 해당함)으로 제1 원시 레이저 빔(20a)을 확장하는 제1 빔 변환기(26a), 및 제2 원시 레이저 빔(20b)을 x-방향으로 확장하는 제2 빔 변환기(26b)를 포함한다. 바람직한 예시적인 실시예에서, 빔 변환기(26a, 26b)는 서두에서 설명된 WO 2018/019374 A1에 상세히 설명된 바와 같은 빔 변환기로서 각각 구현될 수 있다. 따라서, 빔 변환기(26a, 26b)는 서로 실질적으로 평행한 전면 및 후면을 갖는 투명한 모놀리식 판형 요소를 각각 포함할 수 있다. 이러한 판형 요소는 각각의 원시 레이저 빔(20a, 20b)에 대해 예각(도 1의 B 참조)으로 배열될 수 있다. 전면 및 후면은 각각 반사 코팅을 가질 수 있으므로, 각각의 원시 레이저 빔(20a, 20b)은 각각의 전면에서 판형 요소에 비스듬히 커플링-인되고, 판형 요소의 후면에서 부채꼴로 퍼져서 나오기 전에, 판형 요소 내에서 복수 회 반사를 경험한다.
광학 조립체(22)는 또한, 장축에서 성형된 제1 원시 레이저 빔 및 성형된 제2 원시 레이저 빔(20a, 20b)을 추가로 형성하는 복수의 광학 요소(28a, 28b)(여기서는 매우 단순화된 형태로 도시됨)를 갖는 장축 광학 장치(28)를 포함한다. 특히, 장축 광학 장치(28)는 하나 이상의 마이크로렌즈 어레이(여기에는 도시되지 않음), 및 각각의 원시 레이저 빔(20a, 20b)에 대한 장축에서 우세하게 포지티브인 광학 굴절력을 갖는 하나 이상의 렌즈를 각각 포함할 수 있다. 특히, 마이크로 렌즈 어레이 및 하나 이상의 렌즈는 각각, y-축을 따라 연장되고 실질적으로 장축에 대해 광학 굴절력을 갖는 원통형 렌즈를 포함할 수 있다. 마이크로렌즈 어레이 및 하나 이상의 렌즈는 특히 이미징 균질화기를 형성할 수 있으며, 이 이미징 균질화기는 2 개의 조명 빔(24a, 24b) 각각에서 장축에서 유리한 탑햇 강도 프로파일을 얻기 위해, 각각의 경우에 장축에서 원시 레이저 빔(20a, 20b)을 균질화한다.
광학 조립체(22)는 또한 단축에서 성형된 제1 원시 레이저 빔 및 제2 원시 레이저 빔(20a, 20b)을 추가로 형성하는 복수의 광학 요소(30a, 30b)(본 명세서에서는 매우 단순화된 형태로 도시됨)를 갖는 단축 광학 장치(30)를 포함한다. 도 1의 B에서 볼 수 있는 바와 같이, 제1 빔 변환기(26a), 장축 광학 장치(28a)의 광학 요소, 및 단축 광학 장치의 광학 요소(30a)는 제1 광축(34a)을 갖는 제1 빔 경로(32a)를 형성한다. 제2 빔 변환기(26b), 장축 광학 장치(28b)의 광학 요소, 및 단축 광학 장치의 광학 요소(30b)는 제2 광축(34b)을 갖는 제2 빔 경로(32b)를 형성한다. 일부 바람직한 예시적인 실시예에서, 광축(34a, 34b)은 서로 평행하게 진행한다. 그러나, 원칙적으로 광축(34a, 34b)이 서로에 대해 비스듬히 진행하는 것이 가능하다. 광축(34a, 34b)은 도시된 예시적인 실시예에서 광축(34a, 34b)에 평행하게 그리고 광축들(34a, 34b) 사이의 중심에서 진행하는 공통 시스템 축(36)을 정의한다. 일반적으로 공통 시스템 축(36)은 조명 방향(18)과 일치한다. 이것은 장치(10) 및/또는 광학 조립체(22)의 대칭축일 수 있다.
도 1의 A 및 도 1의 B에 도시된 바와 같이, 이 예시적인 실시예의 제1 빔 변환기(26a) 및 제2 빔 변환기(26b)는 (공통 시스템 축(36)에 대해) 거리(38)만큼 서로 오프셋되어 배열된다. 그 결과, 빔 경로(32a, 32b) 각각은 빔 코스틱(38a, 38b)을 생성하고, 여기서 빔 코스틱(38a, 38b)은 도 1의 B에 나타낸 바와 같이 (적어도 단축에 대해) 조명 방향으로 서로 오프셋된다. 그러나, 빔 코스틱(38a, 38b)은 작업 평면의 영역에 중첩되므로, 공통 빔 프로파일을 형성한다.
도 2는 이러한 빔 프로파일(40)을 단순화된 표현으로 도시한다. 빔 프로파일(40)은 x-축 및 y-축을 따른 각각의 위치의 함수로서 작업 평면(14) 상의 레이저 방사선의 강도(I)를 설명한다. 예시된 바와 같이, 장치(10)의 빔 프로파일(40)은 x-방향으로 장축 빔 폭을 갖는 장축(42) 및 y-방향으로 단축 빔 폭을 갖는 단축(44)을 갖는다. 단축 빔 폭(33)은 예를 들어 반치전폭(FWHM) 또는 90 % 강도 값들 사이의 폭(최대 90 %에서의 전폭, FW@90%)으로 정의될 수 있다. 빔 프로파일(40)은 여기에 단순화된 형태로 도시된 사다리꼴 강도 곡선에서 벗어나 단축에서 가우시안 프로파일 또는 탑햇 프로파일일 수 있다(후자는 실제로 유한한 에지 경사도를 가짐). 작업 평면의 영역에서 조명 빔(24a, 24b)의 이상적으로 일치하는 중첩으로 인해, 빔 프로파일(40)은 대응하는 조명 빔(24a, 24b)의 2 개의 거의 동일한 빔 프로파일(40a, 40b)로부터 형성된다. 공작물(여기에는 도시되지 않음)을 가공하기 위해, 빔 프로파일(40)은 전형적으로 작업 평면(14)에 대해 x-방향에 대해 횡방향으로, 특히 y-방향으로 이동된다.
도 3은 서로에 대해 오프셋된 2 개의 중첩을 단순화된 표현으로 도시한다. 2 개의 빔 코스틱(38a, 38b) 각각은 빔 웨이스트(42a 또는 42b)를 포함하고, 여기서 각각의 조명 빔(24a, 24b)은 각각의 최소 빔 직경을 갖는다. 또한, 서로에 대해 오프셋된 2 개의 빔 코스틱(38a, 38b) 각각은, 예를 들어 레일리 길이를 사용하여 정의될 수 있는 피사계 심도를 갖는다. 일부 실시예에서, 피사계 심도는 조명 방향(18)을 따라 단축에서 빔 폭 FWHM 또는 최대 FW@90%의 백분율 편차를 통해 정의된다. 특히, 피사계 심도는, 각각의 단축 빔 폭이 각각의 빔 웨이스트(42a, 42b)에서의 단축 빔 폭과 비교하여 1 % 또는 1 %와 10 % 사이의 다른 비율만큼 증가된 단축 코스틱(38a, 38b)의 지점들 사이의 거리로 정의될 수 있다. 각각의 경우 피사계 심도는 각각의 개별 조명 빔(24a, 24b)에 대한 프로세스 윈도우 길이(46a, 46b)를 갖는 프로세스 윈도우를 정의한다.
도 3에 나타낸 바와 같이, 일부 예시적인 실시예에서, 광학 조립체(22)는 제1 및 제2 빔 코스틱(38a, 38b)을 대략 피사계 심도(46a, 46b)의 크기 정도인 거리(48)만큼 오프셋하도록 설정된다. 조명 방향(18)으로 오프셋된 빔 코스틱(38a, 38b)의 중첩으로 인해, 장치(10)는 확대된 프로세스 윈도우(50)를 갖는다.
도 1의 B에서, 참조 번호 52는 단축에 대한 ― 바람직하게는 원통형 ― 렌즈(30a)의 유효 직경을 나타낸다. 일부 바람직한 예시적인 실시예에서, 성형될 레이저 빔은 렌즈(30a) 및 예를 들어 렌즈(30b)와 같은 광학 조립체(22)의 대응하는 추가 렌즈를 에지 영역까지, 즉, 예를 들어 유효 직경(52)의 70 % 또는 심지어 90 %에 걸쳐 조명한다. 이것의 결과는, 조명 빔(24a, 24b)의 피사계 심도가 감소된다는 것이며, 이는 빔 변환기의 오프셋(38)을 최소화하기 위해 유리하다. 예를 들어, 일부 예시적인 실시예에서, 거리(38)는 약 100 ㎛의 빔 코스틱(38a, 38b) 사이의 거리(48)를 얻기 위해 약 250 mm일 수 있는데, 그 이유는 거리(48)가 오프셋(38)과 회절 지수(M2)의 곱에 대응하기 때문이다. 회절 지수는 빔 웨이스트에서 동일한 직경을 갖는 이상적인 가우시안 빔의 발산각과 비교하여 실제 레이저 빔의 발산각을 나타낸다.
도 4의 A 및 도 4의 B는 여기서 참조 번호 10'으로 표시되는 본 신규한 장치의 추가 실시예를 도시한다. 그 외에는 동일한 참조 번호는 이전과 동일한 요소를 나타낸다. 도 4의 A 및 도 4의 B에 따른 예시적인 실시예에서, 빔 코스틱(38a, 38b)의 오프셋은 제2 빔 경로(32b)에 배열된 추가 광학 요소(54)에 의해 달성된다. 일부 예시적인 실시예에서, 추가 광학 요소(54)는 도 4의 B에 도시된 바와 같이 제2 빔 경로(32b)에서 빔 변환기(26b)의 하류에 배열될 수 있다. 다른 예시적인 실시예에서, 추가 광학 요소(54)는 제2 빔 경로(32b)에서 빔 변환기(26b)의 상류에 배열될 수 있다. 일부 바람직한 실시예에서, 추가 광학 요소(54)는 제1 추가 광학 요소(54a) 및 제2 추가 광학 요소(54b)를 갖는 텔레스코프 조립체일 수 있다. 추가 광학 요소(54a, 54b)는 특히 렌즈 요소 또는 미러 요소일 수 있다. 추가 광학 요소(54)로 인해, 빔 변환기(26a, 26b)는 시스템 축(36)에 대해 "동일한 레벨"에, 즉, 상대적 오프셋(38) 없이 배열될 수 있다. 도 4의 B에 도시된 바와 같이, 추가 광학 요소(54)는 주로 빔 프로파일(40)의 단축에 영향을 미치는 광학 굴절력을 갖는다.
도 5는 단축에 대한 빔 경로(32b)의 단순화된 표현으로 본 신규한 장치의 다른 실시예를 도시한다. 장축에서 빔 성형을 위한 광학 요소는 단순화를 위해 여기에 도시되지 않는다. 그 외에는 동일한 참조 번호는 이전과 동일한 요소를 나타낸다. 이 예시적인 실시예에서, 빔 경로(32b)는 빔 경로(32b)를 따라 빔 변환기(26b)의 중간 이미지(60)를 생성하는 렌즈 요소(56, 58)를 갖는 단축 텔레스코프를 포함한다. 중간 이미지(60)는 추가 렌즈 요소(62)에 의해 작업 평면(14) 상에 이미징된다. 이러한 실시예는, 작업 평면(14) 영역의 빔 프로파일이 특히 SLA 적용 분야에서 요구되는 바와 같이 단축에서 탑햇 프로파일인 경우에 특히 유리하다. 여기서 빔 코스틱(38b)의 오프셋은 도 1의 A 및 도 1의 B를 참조하여 위에서 설명된 바와 같이 빔 변환기(26b)를 오프셋함으로써 달성되고, 및/또는 렌즈 요소(56, 58)를 갖는 단축 텔레스코프의 적절한 조정 및/또는 치수 설정을 통해 가능한 중간 이미지(60)의 변위를 통해 달성될 수 있다.
도 6의 A 및 도 6의 B는 본 신규한 장치의 다른 실시예를 도시한다. 동일한 참조 번호는 이전과 동일한 요소를 나타낸다. 도 6의 A 및 도 6의 B에 따른 예시적인 실시예에서, 빔 코스틱(38a, 38b)의 상대적인 오프셋은, 도 6의 B에 화살표(66)로 표시된 바와 같이, 제2 빔 경로(32b)의 빔 변환기(26b)가 제1 빔 경로(32a)의 빔 변환기(26a)와 비교하여 z-축에 대해 회전됨으로써, 달성된다. z-축에 대한 회전(66)은 출구측 빔 패킷의 수직 오프셋을 발생시키고, 작업 평면(14)에서 단축 빔 프로파일의 에지 경사도에 영향을 미친다. 이에 대한 세부사항은 DE 10 2018 115 126 B4 및 본 출원인의 동일한 우선권의 WO 2019/243042 A1에 설명되어 있으며, 이들은 참조로 여기에 포함된다. 또한, 이 예시적인 실시예의 장치는 각각의 빔 변환기(26a, 26b)의 상류에 시준 광학 장치(68a, 68b)를 각각 갖는다. 각각의 시준 광학 장치(68a, 68b)는 각각의 빔 변환기(26a, 26b)에 충돌하기 전에 각각의 원시 레이저 빔(20a, 20b)을 시준한다. 이 예시적인 실시예의 바람직한 변형예에서, 각각의 시준 광학 장치(68a, 68b)는 다수의 렌즈(70a, 72a 또는 70b, 72b)를 포함한다. 유리하게는 제2 빔 경로(32b)의 렌즈 중 적어도 하나의 렌즈, 예를 들어 렌즈(70b)는 대응하는 렌즈(70a)에 대해 z-방향으로 변위되어, 평행 빔 경로(32a, 32b)에서 각각의 원시 레이저 빔(20a, 20b)의 시준은 서로 상이하게 된다. 빔 변환기(26b)의 회전(66)과 함께, 렌즈(70b)의 변위에 의한 시준의 변화는 코스틱(38b)의 매우 유리한 변위로 이어진다. 일부 예시적인 실시예에서, 렌즈(70a, 72a 또는 70b, 72b)는 각각 텔레스코프 조립체를 형성할 수 있다. 변경된 시준은 또한 각각의 빔 변환기(26b)의 실질적으로 상류에 위치할 수도 있다.

Claims (9)

  1. 작업 평면(14)에 레이저 라인(12)을 생성하는 장치로서,
    제1 원시 레이저 빔(20a)을 생성하도록 설정된 제1 레이저 광원(16a), 제2 원시 레이저 빔(20b)을 생성하도록 설정된 제2 레이저 광원(16b), 및 상기 제1 원시 레이저 빔(20a)을 수신하고 제1 광축(34a)을 따라 제1 코스틱(Kaustik)(38a) 및 제1 빔 프로파일(40a)을 갖는 제1 조명 빔(24a)으로 성형하는 제1 빔 경로(32a), 및 상기 제2 원시 레이저 빔(20b)을 수신하고 제2 광축(34b)을 따라 제2 코스틱(38b) 및 제2 빔 프로파일(40b)을 갖는 제2 조명 빔(24b)으로 성형하는 제2 빔 경로(32b)를 갖는 광학 조립체(22)를 갖고, 상기 제1 조명 빔 및 상기 제2 조명 빔(24a, 24b)은 중첩된 방식으로 상기 작업 평면(14)으로 지향되어 공통 조명 방향(18)을 정의하고, 상기 제1 빔 프로파일 및 상기 제2 빔 프로파일(40a, 40b)은 상기 공통 조명 방향(18)에 수직으로 각각 장축 빔 폭을 갖는 장축 및 단축 빔 폭을 갖는 단축을 포함하고, 상기 제1 빔 프로파일 및 상기 제2 빔 프로파일(40a, 40b)은 함께 상기 작업 평면(14)에 상기 레이저 라인(12)을 형성하고,
    상기 광학 조립체(22)는 상기 제1 코스틱(38a) 및 상기 제2 코스틱(38b)을 상기 공통 조명 방향(18)으로 서로에 대해 오프셋되어 위치시키도록 설정되는 것을 특징으로 하는 장치.
  2. 제1항에 있어서,
    상기 광학 조립체(22)는 상기 제1 빔 경로(32a)에 있는 제1 빔 변환기(26a) 및 상기 제2 빔 경로(32b)에 있는 제2 빔 변환기(26b)를 포함하고, 상기 제1 빔 변환기(26a)는 상기 제1 빔 프로파일(40a)을 생성하기 위해 상기 제1 원시 레이저 빔(20a)을 성형하고, 상기 제2 빔 변환기(26b)는 상기 제2 빔 프로파일(40b)을 생성하기 위해 상기 제2 원시 레이저 빔(20b)을 성형하며, 상기 제1 광축(34a) 및 상기 제2 광축(34b)은 공통 시스템 축(36)을 정의하고, 상기 제1 빔 변환기(26a) 및 상기 제2 빔 변환기(26b)는 상기 공통 시스템 축(36)을 따라 서로에 대해 오프셋되어 배열되는 것을 특징으로 하는 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 광학 조립체(22)는 대응하는 상기 제1 빔 프로파일 및/또는 제2 빔 프로파일(40a, 40b)을 생성하기 위해 상기 제1 원시 레이저 빔(20a) 및/또는 상기 제2 원시 레이저 빔(20b)을 성형하는 적어도 하나의 빔 변환기(26a, 26b)를 포함하고, 상기 광학 조립체(22)는 상기 제2 빔 경로(34b)에, 상기 제1 코스틱(38a)에 대해 상기 제2 코스틱(38b)을 오프셋시키는 광학 요소(54)를 포함하는 것을 특징으로 하는 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 제1 코스틱(38a)은 조명 방향(18)으로 프로세스 윈도우 길이(46a)를 갖는 프로세스 윈도우(46a)를 정의하고, 상기 제1 코스틱(38a) 및 상기 제2 코스틱(38b)은 상기 조명 방향(18)으로 정의된 거리(48)만큼 오프셋되고, 상기 정의된 거리(48)는 상기 프로세스 윈도우 길이(46a)의 1.5 배 미만이고 상기 프로세스 윈도우 길이(46a)의 0.5 배 초과이며, 바람직하게는 상기 프로세스 윈도우 길이의 1.2 배 미만이고 상기 프로세스 윈도우 길이의 0.8 배 초과이며, 특히 바람직하게는 상기 프로세스 윈도우 길이(46a)의 1.1 배 미만이고 상기 프로세스 윈도우 길이의 0.9 배 초과인 것을 특징으로 하는 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 광학 조립체(22)는 상기 제1 빔 프로파일 및 상기 제2 빔 프로파일(40a, 40b)의 상기 단축에 대해 우세한 광학 굴절력을 갖는 적어도 하나의 렌즈(30a)를 포함하고, 상기 렌즈(30a)는 상기 단축에 대해 유효 직경(52)을 갖고, 상기 제1 조명 빔 및/또는 상기 제2 조명 빔(24a, 24b)은 상기 유효 직경(52)의 50 % 초과, 바람직하게는 70 % 초과, 더 바람직하게는 90 % 초과에 걸쳐 상기 렌즈를 조명하는 것을 특징으로 하는 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 제1 빔 경로(32a)는 제1 중간 이미지를 생성하고, 상기 제2 빔 경로(32b)는 제2 중간 이미지(60)를 생성하며, 상기 제1 광축(34a) 및 상기 제2 광축(34b)은 공통 시스템 축(36)을 정의하고, 상기 제1 중간 이미지 및 상기 제2 중간 이미지(60)는 상기 공통 시스템 축(36)을 따라 서로에 대해 오프셋되어 배열되는 것을 특징으로 하는 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 광학 조립체(22)는 상기 제1 빔 경로(32a)에 있는 제1 빔 변환기(26a) 및 상기 제2 빔 경로(32b)에 있는 제2 빔 변환기(26b)를 포함하고, 상기 제2 빔 변환기(26b)는 상기 제2 광축(34b)을 중심으로 상기 제1 빔 변환기(26a)에 대해 회전되는(66) 것을 특징으로 하는 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 광학 조립체(22)는 상기 제1 빔 경로 및 상기 제2 빔 경로(32a, 32b)에서 전용 다이어프램 없이 상기 작업 평면(14)에 상기 제1 빔 프로파일 및 상기 제2 빔 프로파일(40a, 40b)을 포커싱하는 것을 특징으로 하는 장치.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 광학 조립체(22)는 상기 각각의 장축 및 상기 각각의 단축에서 상기 제1 빔 프로파일 및 상기 제2 빔 프로파일(40a, 40b)을 중첩시키는 것을 특징으로 하는 장치.
KR1020237012649A 2020-10-07 2021-10-07 작업 평면에 레이저 라인을 생성하는 장치 KR20230066113A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102020126267.1 2020-10-07
DE102020126267.1A DE102020126267A1 (de) 2020-10-07 2020-10-07 Vorrichtung zum Erzeugen einer Laserlinie auf einer Arbeitsebene
PCT/EP2021/077644 WO2022074095A1 (de) 2020-10-07 2021-10-07 Vorrichtung zum erzeugen einer laserlinie auf einer arbeitsebene

Publications (1)

Publication Number Publication Date
KR20230066113A true KR20230066113A (ko) 2023-05-12

Family

ID=78134935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237012649A KR20230066113A (ko) 2020-10-07 2021-10-07 작업 평면에 레이저 라인을 생성하는 장치

Country Status (7)

Country Link
US (1) US20230236431A1 (ko)
JP (1) JP2023545747A (ko)
KR (1) KR20230066113A (ko)
CN (1) CN116323071A (ko)
DE (1) DE102020126267A1 (ko)
TW (1) TW202231394A (ko)
WO (1) WO2022074095A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022108300A1 (de) 2022-04-06 2023-10-12 Trumpf Laser- Und Systemtechnik Gmbh Vorrichtung zum Erzeugen einer definierten Laserlinie auf einer Arbeitsebene

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028438A (ja) * 2003-07-11 2005-02-03 Disco Abrasive Syst Ltd レーザ光線を利用する加工装置
US7679029B2 (en) * 2005-10-28 2010-03-16 Cymer, Inc. Systems and methods to shape laser light as a line beam for interaction with a substrate having surface variations
DE102008027229B4 (de) 2008-06-06 2016-06-30 Limo Patentverwaltung Gmbh & Co. Kg Vorrichtung zur Strahlformung
US8937770B2 (en) 2012-07-24 2015-01-20 Coherent Gmbh Excimer laser apparatus projecting a beam with a selectively variable short-axis beam profile
US10226837B2 (en) * 2013-03-15 2019-03-12 Nlight, Inc. Thermal processing with line beams
EP4331768A3 (en) 2016-07-27 2024-04-24 TRUMPF Laser GmbH Laser line illumination
DE102018200078B4 (de) 2018-01-04 2020-07-02 Innovavent Gmbh Optisches System und Verfahren zum Erzeugen einer Beleuchtungslinie
DE102018115126B4 (de) 2018-06-22 2020-02-13 Trumpf Laser- Und Systemtechnik Gmbh Optische Anordnung zur Umwandlung eines Eingangslaserstahls in einen linienartigen Ausgangsstrahl sowie Lasersystem mit einer solchen optischen Anordnung

Also Published As

Publication number Publication date
CN116323071A (zh) 2023-06-23
US20230236431A1 (en) 2023-07-27
WO2022074095A1 (de) 2022-04-14
TW202231394A (zh) 2022-08-16
JP2023545747A (ja) 2023-10-31
DE102020126267A1 (de) 2022-04-07

Similar Documents

Publication Publication Date Title
JP4698460B2 (ja) レーザアニーリング装置
JP4322359B2 (ja) レーザ加工装置
KR101647279B1 (ko) 마이크로렌즈 어레이를 이용하여 라인을 생성하기 위한 광학적 설계
KR100862481B1 (ko) 다중 빔 레이저 장치
JP2006278491A (ja) 照射装置
KR20100105386A (ko) 광학계 및 레이저 가공 장치
TWI834736B (zh) 雷射加工系統
KR102509883B1 (ko) 비정질 실리콘 기재의 균일한 결정화를 위한 섬유 레이저-기반 시스템
KR20230066113A (ko) 작업 평면에 레이저 라인을 생성하는 장치
KR101912450B1 (ko) 멀티빔을 이용한 레이저 가공 장치 및 이에 사용되는 광학계
CN112213862B (zh) 用于使光辐射强度均匀化的光学系统
KR20230048546A (ko) 작업 평면 상에 정의된 레이저 라인을 생성하는 장치
JP2004146823A5 (ko)
JP7377273B2 (ja) レーザシステム
KR20240006068A (ko) 작업 평면에 규정된 레이저 조명을 생성하기 위한 장치
WO2023053543A1 (ja) レーザ処理装置
KR20230098902A (ko) 작업 평면에서 정의된 레이저 조명을 생성하는 장치
JP2004356282A (ja) 光照射装置、レーザアニール装置、およびコリメータ調整装置
KR20240146689A (ko) 라인 광학계
KR20240146690A (ko) 라인 광학계
CN118765223A (zh) 线光学系统
JP2004158569A (ja) 照射装置及び照射方法、並びにアニール装置及びアニール方法
JP2014034035A (ja) レーザ加工装置