KR20230049059A - 염증성 질환 치료를 위한 팔모틸화/탈팔모틸화 주기 표적화 - Google Patents

염증성 질환 치료를 위한 팔모틸화/탈팔모틸화 주기 표적화 Download PDF

Info

Publication number
KR20230049059A
KR20230049059A KR1020227041059A KR20227041059A KR20230049059A KR 20230049059 A KR20230049059 A KR 20230049059A KR 1020227041059 A KR1020227041059 A KR 1020227041059A KR 20227041059 A KR20227041059 A KR 20227041059A KR 20230049059 A KR20230049059 A KR 20230049059A
Authority
KR
South Korea
Prior art keywords
stat3
smad2
dhhc7
palmitoylation
leu
Prior art date
Application number
KR1020227041059A
Other languages
English (en)
Inventor
헤닝 린
밍밍 좡
타오 유
Original Assignee
코넬 유니버시티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코넬 유니버시티 filed Critical 코넬 유니버시티
Publication of KR20230049059A publication Critical patent/KR20230049059A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/336Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having three-membered rings, e.g. oxirane, fumagillin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

본 발명은 염증성 장애를 치료하는 방법에 관한 것으로, 상기 방법은 전-염증성 전사 인자의 S-팔미토일화를 조절하는 효소의 억제제의 유효량을 상기 장애를 앓고 있는 환자에게 투여하는 것을 포함한다.

Description

염증성 질환 치료를 위한 팔모틸화/탈팔모틸화 주기 표적화
관련 출원에 대한 상호 참조
[0001] 본 출원은 2020년 4월 24일에 출원된 미국 가출원 번호 63/014,735로부터 우선권의 이익을 주장하며, 그 전체 내용은 여기에 참조로 포함된다.
연방 지원 연구 또는 개발에 관한 진술
[0002] 본 발명은 국립 보건원 (National Institutes of Health, NIH)에서 수여한 허가 번호 R35GM131808 및 R01GM121540 하에 정부 지원으로 이루어졌다. 정부는 발명에 대한 특정 권리를 가지고 있습니다.
서열 목록의 참조에 의한 통합
[0003] 2021년 4월 20일에 생성되어 EFS-Web을 통해 미국 특허청에 제출된, 38342WO_9346_02_PC_SequenceListing.txt로 명명된 ASCII 텍스트 파일의 서열 목록이 여기에 참조로 포함된다.
[0004] 시스테인 팔미토일화 (S-팔미토일화)는 단백질 막 결합 및 단백질-단백질 상호작용을 조절하는 중요한 단백질 번역-후 변형 (PTM)이다. S-팔미토일화는, 보존된 Asp-His-His-Cys 서열 모티브로 인해 DHHC로 알려진 23개의 팔미토일트랜스퍼라제에 의해 촉매되고 아실-단백질 티오에스테라제 (APT1, APT2 및 ABHD 패밀리 구성원)에 의해 제거된다. 수천 개의 인간 단백질이 S-팔미토일화를 겪는 것으로 알려져 있지만, 이 변형이 특정 생물학적 기능을 조절하기 위해 어떻게 조절되는지는 잘 알려져 있지 않다.
[0005] 궤양성 대장염 및 크론병을 포함하는 염증성 장 질환 (IBD)과 같은 만성 염증성 질환에 대한 치료 옵션은 제한적이다. IBD의 병인은 알려져 있지 않지만 IBD와 면역 조절 장애 사이의 연관성은 광범위하게 연구되었다. IBD 환자에게 풍부한 전염증성 세포가 그 진행에 기여하고, 전염증성 세포의 분화를 차단하는 것은 상기 질환의 치료에 유용할 수 있다.
[0006] 강력한 면역억제 사이토카인으로서, 형질전환 성장 인자 베타(TGFβ) 는 나이브 CD4+ T 세포로부터 조절 T (Treg) 세포의 분화를 유도함으로써 항-염증 효과기/기억 면역 세포의 성숙 및 기능을 억제한다. 그러나 인터루킨-6 (IL-6)과 결합된, TGFβ는 나이브 CD4+ T 세포로부터 전염증성 T 헬퍼 17 (Thl7) 세포의 분화를 촉진한다. Th17 세포는 레티노산 수용- 관련 고아 수용체 감마 t (ROR-γt, 유전자명 RORC) 및 인터루킨-17 (IL-17, 유전자명 IL17A)의 발현을 특징으로 한다. 다발성 경화증 (MS), 염증성 장 질환 (IBD) 및 류마티스 관절염 (RA)과 같은 많은 면역 관련 질환은 불균형적 Treg/Thl7 세포 비를 갖는 만성 염증 프로세스로, 이는 T 세포 분화가 면역 질환에서 중요한 역할을 함을 시사한다. T 세포 분화에서 TGFβ 신호 전달 경로의 중요한 역할로 인해 TGFβ의 반대 기능이 어떻게 조절되는지 이해하는 것은 면역 관련 질환을 치료하는 데 유용할 수 있다.
[0007] TH17 세포는 인터루킨-17 (IL-17, IL17A에 의해 인코딩됨) 및 레티노산 수용체-관련 고아 수용체 감마 t (RORγt, RORC에 의해 인코딩됨)의 발현을 특징으로 하는 전염증성 T 세포의 하위군이다. TH17 세포의 가속화 분화는 IBD에서 중요한 병원성 역할을 하며, TH17 세포의 풍부도는 IBD의 마우스 모델 및 환자에서 질환 활성과 상관관계가 있다. IBD 환자의 혈청에는 사이토카인이 풍부하여 나이브 CD4+ T 세포로부터 TH17을 분화를 가능케 한다. 특정 사이토카인 자극 하에서, 나이브 CD4+ T 세포 내 STAT3는 야누스 키나제 2 (JAK2)에 의해 인산화된다. 주요 전사 인자로서, p-STAT3는 다운스트림 표적 유전자 (RORCIL17A)의 발현 및 TH17 세포의 분화를 촉진한다. TH17 분화에서 STAT3의 중요한 역할에 기하여 STAT3가 어떻게 조절되는지 이해하는 것은 TH17 세포를 제어하는 새로운 방법을 제공할 수 있다.
[0008] TGFβ 신호의 세포내 전달은 세포막 상의 TGFβ 수용체 II (TGFβRII)에 대한 TGFβ의 결합에 의해 개시된다. 그 후, TGFβRII는 TGFβ 수용체 I (TGFβRI)을 인산화하고 활성화한다. TGFβ에 대한 1차 반응자로서, 마더스 어게인스트 디카펜터플레직 상동체 2 및 3 (SMAD2 및 SMAD3)는 고도로 상동성인 TGFβ 수용체 조절 SMAD (R-SMAD)이다. 이들은 카르복시 말단 (C-말단)의 2개의 세린 잔기에서 TGFβR에 의해 모집되고 인산화될 수 있다 (SMAD2의 경우 Ser465/Ser467 및 SMAD3의 경우 Ser423/Ser425). 유일하게 알려진 인간 Co-SMAD인 SMAD4는 R-SMAD와 짝을 이뤄 복합체에 전사 공동-조절자를 끌어모은다. SMAD2와 SMAD3는 동일한 업스트림 신호 전달 경로와 많은 다운스트림 파트너를 공유하지만, T 세포 분화에서는 반대 기능을 가지고 있는데, SMAD2는 Th17을 촉진하고, SMAD3는 Treg을 촉진한다. 이전 연구는, 세포외 신호-조절 키나제 (ERK)에 의한 SMAD2의 Ser255 인산화가 그의 STAT3와의 상호작용을 촉진한 다음 SMAD2-STAT3 복합체가 핵으로 전위되어 Th17 세포 분화를 촉진하는 반면, 카르복시-말단 비인산화된 SMAD3는 STAT3와 상호작용하여 Th17 세포 분화를 억제함을 시사한다. 이러한 발견은 SMAD2 Ser255 인산화가 Th17-Treg 균형을 조정할 수 있음을 시사하지만 이 인산화 과정이 어떻게 조절되는지는 거의 알려지지 않았다. 조절 메커니즘을 이해하면 Th17-Treg 비를 제어하고 면역 관련 질환을 치료하기 위한 새로운 치료 전략을 제공할 수 있다.
[0009] 마더스 어게인스트 디카펜터플레직 상동체 2 및 3 (SMAD2 및 SMAD3)는 형질전환 성장 인자 베타 (TGFβ)에 대한 반응으로 동일한 1차 신호 경로를 공유했지만, 이들은 SMAD2가 전-염증 T 헬퍼 17 (Th17)을 촉진하는 반면 SMAD3는 항-염증 조절 T (Treg) 세포를 촉진하며, T 세포 분화에 대해 반대 효과를 가진다. 그들의 반대되는 T 세포 분화 기능이 어떻게 달성되고 조절되는지는 여전히 이해해야 할 것으로 남아있으며 그러한 이해는 염증성 질환을 치료하는 데 도움이 될 수 있다.
본 발명의 요약
[0010] 본 발명의 한 측면은, 장애를 앓고 있는 환자에게 전-염증성 전사 인자의 S-팔미토일화를 조절하는 효소의 억제제의 유효량을 투여하는 것을 포함하는, 염증성 장애를 치료하는 방법에 관한 것이다.
[0011] 일부 구체예에서, 상기 효소는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 7 (ZDHHC7) 또는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 3 (ZDHHC3)이다.
[0012] 일부 구체예에서, 상기 효소는 리소포스포리파제 2 (LYPLA2)이다.
[0013] 일부 구체예에서, 상기 효소의 억제제는 핵산 억제제이다.
[0014] 일부 구체예에서, 상기 핵산 억제제는 안티센스 RNA, 작은 간섭 RNA, 마이크로RNA, 인공 마이크로RNA, 및 리보자임으로 이루어진 군으로부터 선택된다.
[0015] 일부 구체예에서, 상기 효소의 억제제는 게놈 편집 시스템이다. 일부 구체예에서, 게놈 편집 시스템은 CRISPR/Cas 시스템, Cre/Lox 시스템, TALEN 시스템, ZFN 시스템 및 상동성 재조합으로 이루어진 군으로부터 선택된다.
[0016] 일부 구체예에서, CRISPR-매개 게놈 편집은 Cas9 뉴클레아제를 인코딩하는 제1 핵산, 가이드 RNA (gRNA)를 포함하는 제2 핵산을 환자에게 도입하는 것을 포함하고, 여기서 상기 gRNA는 상기 효소를 인코딩하는 유전자에 특이적이다.
[0017] 일부 구체예에서, 상기 효소의 억제제는 소분자 억제제이다.
[0018] 일부 구체예에서, 상기 효소는 LYPLA2이고 상기 억제제는 하기 화학식을 갖는 ML349이다:
Figure pct00001
[0019] 일부 구체예에서, 상기 효소는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제이고, 상기 억제제는 2-브로모팔미트산, 세룰레닌 또는 투니카마이신으로부터 선택된다.
[0020] 일부 구체예에서, 장애는 자가면역 장애이다. 일부 구체예에서, 자가면역 장애는 염증성 장 질환, 다발성 경화증, 류마티스 관절염, 루푸스, 이식편대숙주병, I형 당뇨병, 통풍, 천식 및 건선으로 이루어진 군으로부터 선택된다.
[0021] 일부 구체예에서, 장애는 내독성 쇼크, 예를 들어 LPS-유도된 내독성 쇼크이다.
[0022] 본 특허 또는 출원 파일은 컬러로 실행된 적어도 하나의 도면을 포함한다. 컬러 도면이 있는 이 특허 또는 특허 출원 간행물의 사본은 요청 및 필요한 수수료 지불시 청에서 제공한다.
[0023] 도 1a-1d. DHHC7 (ZDHHC7과 동의어)-유도 팔미토일화는 STAT3 막 전위를 촉진한다. (a) HEK293T 세포를 플래그-STAT3 및 HA-DHHC7로 형질감염시켰다. 하이드록실아민 (NH2OH)를 처리하거나 하지 않고 STAT3의 팔미토일화 수준을 Alkl4 표지를 사용하여 검출하였다. (b) 좌, 야생형 및 DHHC7-녹아웃 HEK293T 세포에서 공초점 이미징을 사용하여 내인성 STAT3 및 JAK2의 세포내 위치를 분석하였다. 스케일 바, 50 ㎛. 우, Pearson의 상관 계수를 사용한 STAT3 및 JAK2의 공동위치화 정량. (c) 좌, DHHC7을 전위적으로 발현하는 DHHC7 녹아웃 HEK293T 세포에서 EGFP-STAT3 및 EGFP-STAT3(C108S)의 세포내 위치화. 스케일 바, 100 ㎛. 우, STAT3가 핵에서 원형질막과 내막으로 전위된 DHHC7-양성 세포의 백분율. (d) 야생형 및 DHHC7-녹아웃 HEK293T 세포를 플래그-STAT3으로 형질감염시키고 Alkl4로 표지하였다. 세포내 분획화를 수행하고 STAT3 단백질 수준을 조정하여 겔에 사용되는 야생형 및 녹아웃 세포 분획에 동일한 양의 STAT3가 존재하도록 하였다. 막 (mem.), 세포질 (cyto.) 및 핵 (nuc.) 분획에서 면역침전된 STAT3의 팔미토일화 수준을 겔-내 형광에 의해 시각화하였다. 데이터는 평균 ± s.e.m. **P < 0.01.
[0024] 도 2a-2h. APT2는 STAT3의 디팔미토일라제이고 팔미토일화/탈팔미토일화는 p-STAT3 핵 위치화를 촉진한다. (a) C108은 STAT3의 주요 팔미토일화 부위이다. HEK293T 세포를 HA-DHHC7 및 플래그-STAT3 (야생형 또는 돌연변이체)로 형질감염시키고 Alk14로 표지하였다. STAT3를 풀다운하고 Alk14 표지 및 웨스턴 블롯 분석을 수행하였다. (b) 좌, DHHC7 또는 DHHS7이 재도입된 DHHC7-녹아웃 HEK293T 세포의 세포내 분획에서 STAT3 및 p-STAT3의 야생형 또는 C108S 돌연변이체의 분포. 우, 상대적 p-STAT3 수준의 정량. (c) STAT3 및 p-STAT3의 세포내 위치화를, 여러 EGFP-STAT3 구조체 및 HA-태그된 DHHC7을 DHHC7-녹아웃 HEK293T 세포로 형질감염시킨 후 공초점 이미징을 사용하여 분석하였다. 스케일 바, 50 ㎛. (d) HEK293T 세포에서, 야생형 APT2의 과발현 - 그러나 C2S 또는 S122A 돌연변이는 아님 - 은, Alk14 표지에 의해 측정되는 바와 같이 플래그-STAT3의 팔미토일화 수준을 감소시켰다. (e) APT2는 Y705F 돌연변이에 비해 야생형 STAT3를 우선적으로 탈팔미토일화한다. DHHC7-녹아웃 HEK293T 세포를 표시된 플라스미드로 형질감염시키고 Alk14로 표지하였다. STAT3의 팔미토일화는 겔 내 형광에 의해 측정되고 (좌) 정량되었다 (우). (f) APT2 억제 또는 녹다운은 플래그-STAT3의 팔미토일화를 증가시킨다. DHHC7-녹아웃 HEK293T 세포에 HA-DHHC7 및 플래그-STAT3를 재도입하고 Alk14 표지 및 겔 내 형광 검출 전에 LYPLA2 siRNA 또는 20 μM의 ML349로 36시간 처리하였다. (g) 좌, APT2-녹다운 HEK293T 세포의 여러 가지 세포내 분획에서의 STAT3 및 p-STAT3의 분포. 우, 이들 분획에서의 상대적인 STAT3 및 p-STAT3 수준의 정량. (h) 좌, 1 μM의 JAK2 억제제 페드라티닙으로 처리하거나 처리하지 않은, DHHC7-과발현 HEK293T 세포의 세포내 분획에서 STAT3 및 p-STAT3의 분포. 우, 이들 분획에서의 상대적인 STAT3 수준의 정량. 데이터는 평균 ± s.e.m. *P < 0.05; **P < 0.01.
[0025] 도 3a-3e. STAT3 팔미토일화-탈팔미토일화 주기는 TH17 세포 분화를 촉진한다. (a) DHHC7은 마우스 비장세포에서 야생형 STAT3의 인산화를 촉진하지만 C108S 돌연변이의 인산화는 촉진하지 않는다. 좌, STAT3 및 p-STAT3 블롯; 우, 상대적 p-STAT3 수준의 정량. (b) TH17 세포 분화는 유세포 분석에 의해 a의 비장 세포 샘플에서 정량화되었다. (c) APT2 억제는 용량 의존적 방식으로 TH17 세포 분화를 감소시킨다. 마우스 비장세포를 사이토카인 칵테일 (3 ng ml-1 TGF-β, 40 ng ml-1 IL-6, 30 ng ml-1 IL-23, 20 ng ml-1 TNF 및 10 ng ml-1 IL-1β) 및 여러 농도의 ML349로 4일 동안 처리한 다음, CD4- 및 IL-17-양성 세포를 검출하기 위해 유세포 분석에 의해 수집 및 분석하였다. (d) 비장세포의 DHHC7 녹아웃은 TH17 세포 분화를 억제한다. 야생형 및 DHHC7-녹아웃 마우스 비장세포를 4일 동안 사이토카인 칵테일로 처리하여 분화를 개시한 다음, 세포를 수집하고 유세포분석기로 분석하여 CD4- 및 IL-17-양성 세포를 검출하였다. (e) 좌, 야생형 및 DHHC7-녹아웃 비장세포의 STAT3 및 p-STAT3 블롯. 우, 상대적 p-STAT3 수준의 정량. 데이터는 평균 ± s.e.m. **P < 0.01.
[0026] 도 4a-4i. STAT3 팔미토일화-탈팔미토일화 주기는 대장염을 악화시킨다. (a), (b) 26명의 건강한 참가자 (Ctrl), 24명의 크론병 환자 (CD; 7명 관해기 (rem.) 및 17명 활성기 (act.)) 및 10명의 궤양성 대장염 (UC; 1명 관해기 및 9명 활성기)로부터 인간 PBMC를 추출하였다. LYPLA2ZDHHC7 mRNA 수준을 qPCR을 사용하여 분석하였다. 상대적인 p-STAT3 수준을 웨스턴 블롯으로 정량하였다. c, d, 34명 IBD 환자에서 IL17A (c) 또는 p-STAT3 (d)와 표시된 유전자의 mRNA 수준 사이의 상관관계. (e), (f), C57BL/6J 마우스에 2.5% DSS를 자유롭게 음용수에 처리하고 ML349를 DSS 처리가 시작된 날 매일 복강내 주사하였다. 체중 변화 (e) 및 비장의 TH17 세포 수준 (f)을 평가하였다. (g), (h), 야생형 및 DHHC7-녹아웃 마우스에 2.5% DSS를 자유롭게 음용수에 처리하였다. 체중 변화 (g) 및 비장의 TH17 세포 수준 (f)을 평가하였다. (i), 팔미토일화-탈팔미토일화 주기에 의한 STAT3 조절 모델. DHHC7에 의한 STAT3의 팔미토일화는 STAT3의 막 동원 및 인산화를 촉진한다. APT2는, STAT3에 비해 p-STAT3를 선택적으로 탈팔미토일화함으로써 p-STAT3의 핵 전위를 촉진한다. 팔미토일화-탈팔미토일화 주기는 STAT3의 막 위치화 및 인산화, 및 p-STAT3의 핵 전위를 유도한다. 주기의 방향은 STAT3보다 p-STAT3에 대한 APT2의 선호도에 의해 보장된다. 데이터는 평균 ± s.e.m으로 표시됨. *P < 0.05; **P < 0.01.
[0027] 도 5a-5g. SMAD2는 DHHC7에 의해 팔미토일화된다. (a) HEK293T 세포를 플래그-SMAD2 및 표시된 HA-DHHC 플라스미드로 형질감염시키고 Alk14 대사 표지 및 겔 내 형광을 사용하여 팔미토일화 수준을 검출하였다. 사용된 모든 DHHC 유전자는 마우스에서 가져왔으며 단백질 번호는 DHHC10/Zdhhc11, DHHC11/Zdhhc23, DHHC13/Zdhhc24 및 DHHC22/Zdhhc13을 제외하고 유전자 번호에 대응한다. (b) a에서 상대적 팔미토일화 수준의 정량. 팔미토일화 수준은 SMAD2 단백질 수준에 의해 정규화되었고 대조군 (Alk14는 있지만 DHHC 과발현 없음)의 수준을 1로 설정하였다. (c), (d) HEK293T 세포를 각각 플래그-SMAD3 및 플래그-SMAD4, 및 표시된 HA-DHHC 플라스미드로 형질감염시켰다. 팔미토일화 수준은 Alk14 표지 및 겔 내 형광을 사용하여 검출되었다. (e) HEK293T 세포를 HA-DHHC1-23 플라스미드로 형질감염시키고, 팔미토일화 수준을 NH2OH 처리를 이용한 ABE 분석에 의해 검출하였다. (f) HEK293T 세포를 각각 플래그-SMAD2 및 플래그-SMAD3, 및 표시된 HA-DHHC7 플라스미드로 형질감염시켰다. 팔미토일화 수준은 Alk14 표지 및 면역블롯팅을 사용하여 검출되었다. (g) DHHC7 WT 및 녹아웃 HEK293T 세포에서 SMAD2의 팔미토일화 수준을 ABE를 사용하여 검출하였다. 정량 데이터는 평균 ± SEM으로 표시됨. 별표 (*)는 유의한 차이를 나타낸다 (**P<0.01).
[0028] 도 6a-6f. Cys41 및 Cys81 팔미토일화는 SMAD2의 막 동원을 촉진한다. (a), (b) HEK293T 세포를 HA-DHHC7 및 여러 플래그-SMAD2 시스테인 돌연변이로 형질감염시키고 Alk14로 표지하였다. 면역침전된 SMAD2의 S-팔미토일화 수준은 겔 내 형광에 의해 가시화되었다. (c) SMAD2 C41/81S 돌연변이는 DHHC7에 의해 팔미토일화될 수 없었다. DHHC7 WT 및 KO HEK293T 세포를 플래그-SMAD2 C41/81S 돌연변이 플라스미드로 형질감염시키고 Alk14로 처리하였다. 면역침전된 SMAD2 C41/81S의 S-팔미토일화 수준은 겔 내 형광에 의해 가시화되었다. (d) DHHC7을 전위적으로 발현하는 DHHC7 KO HEK293T 세포에서 SMAD2-WT 및 C41/81S 돌연변이체의 세포내 위치화를 보여주는 공초점 영상. 스케일 바, 50 ㎛. (e) SMAD2 C41/81S 돌연변이는 SMAD2 세포질 위치화를 감소시키고 핵 위치화를 증가시킨다. DHHC7 KO HEK293T 세포를 HA-DHHC7 및 표시된 플래그-SMAD2 구조체로 형질감염시키고 세포내 분획화를 수행하였다. 그런 다음 동일한 양의 핵 및 막 분획을 웨스턴 블롯 (좌)으로 분석하였다. 상대적인 SMAD2 수준을 정량하였다 (우). (f) WT 또는 비활성 돌연변이 DHHC7을 전위적으로 발현하는 DHHC7 KO HEK293T 세포의 여러 세포내 분획에서의 SMAD2 S-팔미토일화. 세포를 플래그-SMAD2로 형질감염시키고 Alk14로 표지하였다. 세포 분획을 수행하고 겔 분석을 위해 WT 및 돌연변이 세포 분획에서 SMAD2의 동일한 로딩을 확실히 하기 위해 SMAD2의 단백질 수준을 CBB에 의해 재조정하였다. 막 (Mem), 세포질 (Cyto) 및 핵 (Nuc) 분획에서 면역침전된 SMAD2의 S-팔미토일화 수준은 겔 내 형광에 의해 시각화되었다. 정량 데이터는 평균 ± SEM으로 표시됨. 별표 (*)는 유의한 차이를 나타낸다 (**P<0.01).
[0029] 도 7a-7g. APT2는 SMAD2의 디팔미토일라제이고 SMAD2의 C-말단 인산화는 S-팔미토일화와 무관하다. (a) HA-태그된 마우스 DHHC1-23을 발현하는 HEK293T 세포에서 플래그-SMAD2 (p-SMAD2(C2))의 C-말단 인산화 (Ser465/Ser467) 수준. SMAD2를 플래그 비드로 풀다운하고 웨스턴 블롯 분석을 수행하였다. (b) HEK293T 세포를 HA-태그된 DHHC7 및 플래그-SMAD2 WT 및 C41/81S 돌연변이 플라스미드로 형질감염시키고 Alk14로 처리하였다. 면역침전된 SMAD2의 S-팔미토일화 수준은 겔 내 형광에 의해 가시화되었고 p-SMAD2(C2) 수준은 웨스턴 블롯 분석에 의해 검출되었다. (c) HEK293T 세포를 표시된 대로 HA-태그된 DHHC7 및 플래그-SMAD2 플라스미드로 형질감염시키고 TGFβ로 처리하였다. SMAD2를 플래그 비드로 풀다운하고 웨스턴 블롯 분석을 수행하였다. (d) HEK293T 세포를 표시된 대로 HA-태그된 DHHC7 및 플래그-SMAD2 플라스미드로 형질감염시키고, 표시된 대로 24시간 동안 10 μM APT 억제제로 처리하였다. 면역침전된 SMAD2의 S-팔미토일화 수준은 겔 내 형광에 의해 가시화되었다. (e) WT APT2는, 아미노산 425-467 절단 돌연변이체보다 WT SMAD2에 대하여 DHHC7-도입된 S-팔미토일화를 더 잘 제거할 수 있었다. DHHC7 녹아웃 HEK293T 세포를 표시된 플라스미드로 형질감염시켰다. 세포는 Alk14로 표지되었고 SMAD2의 S-팔미토일화는 겔 내 형광에 의해 측정되었다. (f) WT APT2는, C-말단 인산화 돌연변이에 대하여 뿐만 아니라 WT SMAD2에 대하여도 DHHC7-도입된 S-팔미토일화를 제거할 수 있었다. DHHC7 녹아웃 HEK293T 세포를 표시된 플라스미드로 형질감염시켰다. 세포는 Alk14로 표지되었고 SMAD2의 S-팔미토일화는 겔 내 형광에 의해 결정되었고 p-SMAD2(C2) 수준은 웨스턴 블롯 분석에 의해 검출되었다. (g) DHHC7 녹아웃 HEK293T 세포를 표시된 플라스미드로 형질감염시켰다. SMAD2를 플래그 비드로 풀다운하고 웨스턴 블롯 분석을 수행하였다.
[0030] 도 8a-8e. DHHC7은 링커 인산화 (p-SMAD2(L3)) 및 SMAD2의 활성을 촉진한다. (a) 플래그-SMAD2 WT의 과발현 (그러나, 돌연변이는 아님)은 HEK293T 세포에서 RORC mRNA 수준을 증가시켰다. (b) DHHC7 녹아웃 HEK293T 세포를 표시된 플라스미드로 형질감염시켰다. SMAD2를 플래그 비드로 풀다운하고 웨스턴 블롯 분석을 수행하였다. (c) DHHC7 녹아웃 HEK293T 세포를 표시된 플라스미드로 형질감염시켰다. 세포 용해물을 웨스턴 블롯 분석에 적용하였다. (d) DHHC7 WT 및 녹아웃 HEK293T 세포의 여러 세포내 분획에서 SMAD2 및 p-SMAD2(L3)의 분포 (좌). 상대적인 SMAD2 및 p-SMAD2(L3) 수준을 정량하였다 (우). (e) 플래그 태그된 SMAD2를 DHHC7 WT 및 녹아웃 HEK293T 세포에 형질감염시킨 후 공초점 이미징을 사용하여 SMAD2 및 p-SMAD2(L3)의 세포내 위치화를 분석하였다 (좌). 상대적인 p-SMAD2(L3) 수준을 정량하였다 (우). 스케일 바, 50 ㎛. 값은 평균 ± SEM으로 표시된다. **, P<0.01.
[0031] 도 9a-9g. DHHC7 유도된 S-팔미토일화는 SMAD2의 SMAD4 및 STAT3와의 상호작용을 촉진한다. (a), (b) 표시된 DHHC7 과발현과 함께 HEK293T 세포에서 공동 발현될 때, 플래그-SMAD4는 HA-SMAD2를 풀다운하였다. HA-SMAD2와 플래그-SMAD4의 상호작용은 WT와 비교하여 돌연변이체 DHHC7 과발현에서 훨씬 더 약했다. HA-SMAD2 C41/81S 돌연변이체와 플래그-SMAD4의 상호작용은 훨씬 더 약했다. (c) HEK293T 세포에서 표시된 DHHC7과 공동 발현될 때 플래그-STAT3는 HA-SMAD2를 풀다운하였다. HA-SMAD2와 플래그-STAT3의 상호작용은 WT DHHC7보다 돌연변이 DHHC7에서 훨씬 더 약했다. 플래그-STAT3의 HA-SMAD2 C41/81S 돌연변이와의 상호작용은 HA-SMAD2 WT과의 상호작용보다 훨씬 약했다. (d) 플래그-SMAD2는 HEK293T 세포에서 표시된 DHHC7과 공동 발현될 때 HA-STAT3를 풀다운하였다. HA-STAT3와 플래그-SMAD2의 상호작용은 WT DHHC7보다 돌연변이 DHHC7을 발현하는 세포에서 훨씬 더 약했다. HA-STAT3의 플래그-SMAD2 C41/81S 돌연변이와의 상호작용은 플래그-SMAD2 WT와의 상호작용보다 훨씬 약했다. (e) WT 및 DHHC7 KO HEK293T 세포에서 공초점 이미징을 사용하여 플래그-SMAD2 및 HA-STAT3의 위치를 분석하였다 (좌). 스케일 바는 50 ㎛였다. SMAD2 및 STAT3의 공동 위치화는 Pearson의 상관 계수를 사용하여 정량되었다 (우). (f) WT 및 돌연변이 플래그-SMAD2는 DHHC7을 발현하는 HEK293T 세포에서 HA-STAT3를 풀다운하였다. 플래그-SMAD2 S255A 돌연변이의 HA-STAT3와의 상호작용은 훨씬 더 약했다. (g) 플래그-SMAD2 WT 및 HA-DHHC7 WT의 공동-과발현 (그러나, 돌연변이 아님)은 HEK293T 세포에서 RORC mRNA 수준을 증가시켰다. 정량 데이터는 평균 ± SEM으로 표시됨. 별표 (*)는 유의한 차이를 나타낸다 (**P<0.01).
[0032] 도 10a-10f. SMDA2의 팔미토일화-탈팔미토일화 주기는 Th17 세포 분화를 촉진한다. (a) DHHC7은 마우스 비장세포에서 링커 인산화 SMAD2를 촉진한다. SMAD2 및 p-SMAD2(L3) 블롯이 도시되고 (좌) 상대적인 p-SMAD2(L3) 수준이 정량화된다 (우). DHHC7은 또한 SMAD2 C41/81S 돌연변이체의 링커 인산화를 촉진했지만 훨씬 더 작았다. (b) (a)에서 사용된 샘플에 대한 Th17 세포 분화의 유세포 분석 정량. (c) APT2는 마우스 비장세포에서 SMAD2 WT 또는 C41/81S 돌연변이 중 어느 것의 링커 인산화에도 큰 영향을 미치지 않는다. SMAD2 및 p-SMAD2(L3) 블롯이 도시되고 (좌) 상대적인 p-SMAD2(L3) 수준이 정량화된다 (우). (d) (c)에서 사용된 샘플에 대한 Th17 세포 분화의 유세포 분석 정량. (e) WT 및 Zdhhc7 녹아웃 마우스 비장세포에서 내인성 STAT3의 플래그-SMAD2 풀다운. STAT3의 플래그-SMAD2와의 상호작용은 Zdhhc7 녹아웃 비장세포에서 훨씬 더 약했다. 표시된 블롯이 도시되고 (좌) 상대적 STAT3/SMAD2 상호작용 수준이 정량화된다 (우). (f) WT 및 APT2 녹아웃 마우스 비장세포에서 내인성 STAT3의 플래그-SMAD2 풀다운. STAT3의 플래그-SMAD2와의 상호작용은 APT2 녹아웃 비장세포에서 더 약했다. 표시된 블롯이 도시되고 (좌) 상대적인 STAT3-SMAD2 상호작용 수준이 정량화된다 (우). 정량 데이터는 평균 ± SEM으로 표시된다. *, P<0.05; **, P<0.01.
[0033] 도 11a-11c. SMAD2 S-팔미토일화는 MS 마우스 모델에서 임상 점수를 가속화한다. WT, Zdhhc7 및 Lypla2 녹아웃 C57BL/6J 마우스는 처음에 MOG35-55 및 백일해 독소로 처리되었으며, 두 번째 용량의 백일해 독소는 면역화 후 2일째에 처리되었다. 체중 변화 (a), 임상 점수 (b) 및 비장의 Th17 세포 수준 (c)이 표시된 대로 관찰되었다. 정량 데이터는 평균 ± SEM으로 표시된다. *, P<0.05; **, P<0.01.
[0034] 도 12a-12d. 범-DHHC 억제제인 2-BP는 인플라마좀 활성화의 LPS 프라이밍 단계 중 사이토카인 mRNA 발현을 감소시킨다. 골수-유래 대식세포 (BMDM)는 100 ng/mL 지질다당류 (LPS)로 처리되었으며, 이는 인플라마좀 활성화를 위해 BMDM에 프라이밍할 수 있다. 팔미토일트랜스퍼라제 (DHHC), 2-브로모팔미테이트 (2-BP)의 모든 DHHC 패밀리를 억제하는 소분자를 LPS와 함께 10 μM 또는 25 μM로 추가하였니다. 세포를 LPS 및 2-BP로 6시간 동안 배양한 다음, 멱 가지 전-염증 사이토카인: (a) IL-1 베타, (b) IL-6, (c) IL-12 베타 및 (d) IL-18의 mRNA 수준을 정량적 역전사 PCR (qRT-PCR)에 의해 측정하였다. 2-BP는 농도 의존적 방식으로 이들 모든 사이토카인의 mRNA 수준을 감소시킬 수 있으며, 이는 DHHC를 억제하면 인플라마좀 활성화의 프라이밍 단계를 감소시킬 수 있음을 시사한다.
[0035] 도 13. 2-BP는 NLRP3-매개 인플라마좀 활성화에 영향을 미친다. 복막 대식세포를 먼저 DMEM 배지 (혈청 없음)에서 4시간 동안 LPS (200 ng/mL)로 프라이밍한 다음, 2-BP (25μM) 및 ATP (5 mM) 또는 니제리신 (10 μM)을 세포 배양물에 첨가하고 1 시간 동안 인큐베이션하였다. ATP와 니제리신은 NLRP3 인플라마솜을 활성화하는 데 일반적으로 사용되는 두 가지 시약이다. 그런 다음 배지로 분비되는 IL-1 베타 수준을 측정하여 NLRP3 인플라마솜의 활성화를 모니터링하였다.
[0036] 도 14a-14b. DHHC7 녹아웃은 인플라마좀 활성화 동안 골수-유래 대식세포 (BMDM)에서 IL-1b 및 IL-18 분비를 감소시킨다. DHHC7 WT 및 녹아웃 BMDM을 밤새 DEME 배지에서 LPS (10 ng/mL)로 프라이밍하였다. 다음날 배지를 LPS (10 ng/mL) 및 ATP (5 mM)가 포함된 DMEM 또는 LPS (10 ng/mL) 및 니제리신 (10 μM)이 포함된 DMEM으로 변경하고, NLRP3 인플라마좀을 활성화하기 위해 1시간 동안 배양하였다. 그런 다음 배지를 수집하고 분비된 (a) IL-1 베타 및 (b) IL-18을 ELISA 키트를 사용하여 측정하였다. 결과는 DHHC7 녹아웃이 NLRP3 인플라마좀 활성을 유의하게 감소시킬 수 있음을 보여주었다.
[0037] 도 15. APT2 녹아웃은 인플라마좀 활성화 동안 BMDM 내 IL-1b 분비에 약간의 영향만 미친다. APT2 WT 및 녹아웃 BMDM을 4시간 동안 DEME 배지에서 LPS (200 ng/mL)로 프라이밍시켰다. 그런 다음 배지를 LPS (200 ng/mL) 및 ATP (5 mM)가 포함된 DMEM 또는 LPS (10 ng/mL) 및 니제리신 (10 μM)이 포함된 DMEM으로 변경하고, 1시간 동안 배양하여 NLRP3 인플라마좀을 활성화하였다. 그런 다음 배지를 수집하고 ELISA 키트를 사용하여 분비된 IL-1 베타를 측정하였다. 결과는, 비록 DHHC7 녹아웃에 비해 상당히 덜하였지만, APT2 녹아웃이 NLRP3 인플라마좀 활성을 감소시킬 수 있음을 보여주었다.
[0038] 도 16. DHHC7 녹아웃은 마우스에서 인플라마좀 활성화를 감소시킨다: LPS-유도 내독성 쇼크. 성체 (> 8주령) B6.129P2 (FVB) DHHC7 WT 또는 녹아웃 마우스에 약 100 μL의 멸균 PBS 완충액 내 LPS (35 mg/kg)를 복강 내 주사하였다. 12시간 후, 마우스를 안락사시키고 혈청 내 IL-1베타 수준의 분석을 위해 혈액을 수집하였다. DHHC7 녹아웃은 혈청으로 분비되는 IL-1베타의 양을 유의하게 감소시켰으며, 이는 DHHC7 녹아웃이 마우스에서 인플라마좀 활성화를 감소시켰음을 시사한다.
[0039] 도 17a-17b. 루푸스 신증 마우스 모델: APT2 억제제 ML349는 마우스 소변 내 단백질 농도를 감소시킨다. (a) 소변 내 단백질 농도 (모든 데이터 포인트), (b) 소변 내 단백질 농도 (평균, 오차 막대 포함). 25-주 NZB/W F1 암컷 마우스에 비히클 용액 (DMSO+PBS) 또는 APT2 억제제 ML349 25 mg/Kg을 8주 동안 주당 3회 IP 주사를 통해 투여하였다. 4주간의 처리 후, 쥐의 소변을 채취하고 소변 내 단백질 농도를 측정하여 단백뇨 분석을 통해 매주 루푸스 발병률을 평가하였다. 데이터는 APT2 억제제 ML349가 소변의 단백질 농도를 감소시킬 수 있음을 보여주었다.
상세한 설명
[0040] 본 발명의 발명자들은 몇몇 전염증성 전사 인자가, 그의 전염증 효과에 중요한, 팔미토일화/탈팔미토일화 주기를 겪는다는 것을 발견하였다. 본 발명자들은 또한 전염증성 전사 인자의 팔미토일화/탈팔미토일화 주기를 방해하는 것이 염증성 장애를 치료하는 데 유익하다는 것을 발견하였다.
치료 방법
[0041] 일부 구체예에서, 상기 방법은 염증성 장애를 앓고 있는 환자에게 하나 이상의 전-염증성 전사 인자의 S-팔미토일화를 조절하는 효소의 억제제의 유효량을 투여하는 것을 포함한다.
[0042] 본원에 사용된 "염증성 장애"라는 어구는 예컨대 비정상적이거나 원치 않는 염증과 관련되거나, 또는 이에 의해 야기되는 장애를 지칭한다. 일부 구체예에서, 염증성 장애는 염증성 장 질환 (IBD)(예를 들어, 크론병, 궤양성 대장염), 류마티스 관절염, 혈관염, 폐 질환 (예를 들어, 만성 폐쇄성 폐 질환 (COPD) 및 폐 간질 질환 (예를 들어, 특발성 폐 섬유증 (IPF)), 건선, 통풍, 알레르기성 기도 질환 (예를 들어, 천식, 비염), 또는 내독성 쇼크 (예를 들어, 그람-음성 박테리아에 의한 혈류 감염으로부터의 것, LPS-유도 내독성 쇼크) 중에서 선택된다. 일부 구체예에서, 염증성 장애는 자가면역 장애이다. 일부 구체예에서, 자가면역 장애는 염증성 장 질환, 다발성 경화증, 류마티스 관절염, 루푸스, 이식편대숙주병, 제1형 당뇨병 또는 건선 중에서 선택된다.
[0043] 장애를 "치료"한다는 것은 장애의 발병이 억제되거나 지연되고, 증상의 발생 또는 빈도가 억제되거나 감소되고, 장애의 진행이 느려지고 및/또는 장애의 증상이 개선된다는 것을 의미한다.
[0044] 본원에 사용된 용어 "전염증성"은 염증-촉진 효과를 지칭한다. 전염증성 전사 인자는 예를 들어 전-염증성 사이토카인 (예를 들어, 인터루킨 (IL) 사이토카인, 예컨대 IL-1 베타, IL-6, IL-12, IL-17 또는 IL-18) 또는 ROR-γt와 같은 전-염증성 전사 인자과 같이 전염증성 분자의 전사를 지시하는 전사 인자일 수 있다. 일부 구체예에서, 전염증성 전사 인자는 전사 신호 변환자 및 활성화 인자 3 (Signal Transducer and Activator of Transcription 3, STAT3)이다. 일부 구체예에서, 전염증성 전사 인자는 마더스 어게인스트 디카펜터플레직 상동체 2 (SMAD2)이다. 일부 구체예에서, STAT3 및/또는 SMAD2는 IL-1 베타, IL-6, IL-12 베타, IL-17 또는 IL-18과 같은 전염증성 사이토카인의 전사를 양으로 조절하고, TH17 세포 분화 가속화를 유도한다. .
[0045] 일부 구체예에서, 전-염증성 전사 인자의 S-팔미토일화를 조절하는 효소는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제이다. 일부 구체예에서, 상기 효소는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 7 (ZDHHC7)(Genbank Gene IDs: 55625 (Homo sapiens), 102193 (Mus musculus)) 또는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 3 (ZDHHC3)(Genbank Gene IDs: 51304 (Homo sapiens), 69035 (Mus musculus))이다. 인간 ZDHHC7 아미노산 서열은 SEQ ID NO: 1에, 인간 ZDHHC7 뉴클레오타이드 서열은 SEQ ID NO: 7에 나타나 있다. 마우스 ZDHHC7 아미노산 서열은 SEQ ID NO: 2에, 마우스 ZDHHC7 뉴클레오타이드 서열은 SEQ ID NO: 8에 나타나 있다. 인간 ZDHHC3 아미노산 서열은 SEQ ID NO: 3에, 인간 ZDHHC3 뉴클레오타이드 서열은 SEQ ID NO: 9에 나타나 있다. 마우스 ZDHHC3 아미노산 서열은 SEQ ID NO: 4에, 마우스 ZDHHC3 뉴클레오타이드 서열은 SEQ ID NO: 10에 나타나 있다. 인간 LYPLA2 아미노산 서열은 SEQ ID NO: 5에, 인간 LYPLA2 뉴클레오타이드 서열은 SEQ ID NO: 11에 나타나 있다. 마우스 LYPLA2 아미노산 서열은 SEQ ID NO: 6에, 마우스 LYPLA2 뉴클레오타이드 서열은 SEQ ID NO: 12에 나타나 있다.
[0046] 일부 구체예에서, 상기 효소는 아실 단백질 티오에스테라제 2 (APT2)(Genbank Gene IDs: 11313 (Homo sapiens), 26394 (Mus musculus))라고도 하는, 전-염증성 전사 인자 리소포스포리파제 2 (LYPLA2)의 S-팔미토일화를 조절하는 것이다.
[0047] 일부 구체예에서, 본 발명의 억제제는 단독으로 또는 다른 약물과 조합하여 투여된다.
[0048] 일부 구체예에서, 본 발명의 억제제는 소분자 억제제이다. 본 명세서에서 용어 "소분자"는 일반적으로 분자량이 2000달톤 미만, 1500달톤 미만, 1000달톤 미만, 800달톤 미만 또는 600달톤 미만인 작은 유기 화학 화합물을 의미한다.
[0049] 일부 구체예에서, 소분자 억제제의 유효량은, 상기 소분자 억제제의 kg당, 0.2 mg/kg 내지 100 mg/kg이다. 다른 구체예에서, 소분자 억제제의 유효량은, 상기 소분자 억제제의 kg당, 약 0.2 mg/kg, 0.5 mg/kg, 1 mg/kg, 8 mg/kg, 10 mg/kg, 20 mg/kg, 30 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, 70 mg/kg, 80 mg/kg, 90 mg/kg, 100 mg/kg, 150 mg/kg, 175 mg/kg 또는 200 mg/kg이다. 본 명세서에 사용된 바, 용어 "약"은 주어진 값의 ±10%를 의미한다.
[0050] 한 구체예에서, 소분자 억제제는 투여 전에 약학적으로 허용되는 담체와 조합될 수 있다. 본 발명의 목적상, "약학적으로 허용되는 담체"는 임의의 표준 약학적 담체를 의미한다. 적합한 담체의 예는 당업계에 잘 알려져 있으며 인산염 완충 식염수 및 다양한 습윤제와 같은 임의의 표준 약학적 담체를 포함할 수 있지만 이에 제한되지는 않는다. 다른 담체로는 정제, 과립 및 캡슐 등등에 사용되는 첨가제를 들 수 있다. 전형적으로, 이러한 담체는 전분, 우유, 설탕, 특정 유형의 점토, 젤라틴, 스테아르산 또는 이들의 염, 마그네슘 또는 칼슘 스테아레이트, 활석, 식물성 지방 또는 오일, 검, 글리콜 또는 기타 공지된 부형제와 같은 부형제를 함유한다. 이러한 담체는 또한 향미 및 착색 첨가제 또는 기타 성분을 포함할 수 있다. 이러한 담체를 포함하는 조성물은 잘 알려진 통상적인 방법에 의해 제형화된다.
[0051] 소분자 억제제는 약학적으로 허용되는 담체와 혼합되어 임의의 통상ㅇ적 형태의 약학적 조제물을 이룰 수 있는데, 예컨대, 특히 정제, 캡슐 (예컨대, 경질 또는 연질 젤라틴 캡슐), 환제, 샤쉐이, 분말, 과립 등등과 같은 고체 형태; 용액, 현탁액과 같은 액체 형태; 또는 미분화된 분말, 스프레이, 에어로졸 등등을 포함한다.
[0052] 일부 구체예에서, 본 발명의 소분자 억제제는 경구, 구비강 (oronasal) 또는 비경구 경로와 같은 여러 투여 경로에 의해 투여될 수 있다.
[0053] "경구 (oral)" 또는 "경구 (peroral)" 투여는 입을 통해 또는 입의 경로에 의해 대상체의 체내로 물질을 도입하는 것을 말하며, 구강 점막 (예를 들어, 설하 또는 협측 흡수) 또는 양자 모두를 통한 삼킴 또는 수송을 수반한다.
[0054] "구비강" 투여는, 예를 들어 코에 하나 이상의 액적을 배치함으로써 발생할 수 있는 바와 같이, 코 및 입을 통해 또는 이의 경로에 의해 대상체의 체내로 물질을 도입하는 것을 지칭한다. 비구강 투여는 경구 및 비강 투여와 연관된 수송 과정을 수반한다.
[0055] "비경구 투여"는 소화관을 포함하지 않는 경로를 통해 또는 그 경로에 의해 대상체의 체내로 물질을 도입하는 것을 지칭한다. 비경구 투여는 피하 투여, 근육내 투여, 경피 투여, 피내 투여, 복강내 투여, 안내 투여 및 정맥내 투여를 포함한다.
[0056] 일부 구체예에서, 상기 효소는 LYPLA2이고, 상기 소분자 억제제는 하기 화학식을 갖는 ML349이다:
Figure pct00002
[0057] 일부 구체예에서, 상기 효소는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제이고, 상기 소분자 억제제는 하기 화학식을 갖는 2-브로모팔미트산 (2-BP)이다:
Figure pct00003
[0058] 일부 구체예에서, 상기 효소는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제이고, 상기 소분자 억제제는 하기 화학식을 갖는 세룰레닌이다:
Figure pct00004
[0059] 일부 구체예에서, 상기 효소는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제이고, 상기 소분자 억제제는 하기 화학식을 갖는 투니카마이신이다:
Figure pct00005
[0001] 일부 구체예에서, 상기 효소의 억제제는 핵산 억제제이다. "핵산 억제제"는 표적 유전자의 발현 또는 활성을 감소시키거나 방지할 수 있는 핵산이다. 예를 들어, 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 유전자의 발현의 억제제는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 유전자 생성물의 전사 및/또는 번역을 감소시키거나 제거하여, 따라서 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 유전자 단백질 발현을 감소시킬 수 있다. 예를 들어, 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 유전자의 발현의 억제제는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 유전자 생성물의 전사 및/또는 번역을 감소시키거나 제거하여, 따라서 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 유전자 단백질 발현을 감소시킬 수 있다.
[0060] 일부 구체예에서, 상기 핵산 억제제는 안티센스 RNA, 작은 간섭 RNA, 마이크로RNA, 인공 마이크로RNA, 및 리보자임으로 이루어진 군으로부터 선택된다.
[0061] 일부 구체예에서, 상기 효소의 억제제는 게놈 편집 시스템이다.
[0062] 일부 구체예에서, 게놈 편집 시스템은 CRISPR/Cas 시스템, Cre/Lox 시스템, TALEN 시스템, ZFN 시스템 및 상동성 재조합으로 이루어진 군으로부터 선택된다.
[0063] 일부 구체예에서, CRISPR-매개 게놈 편집은 Cas9 뉴클레아제를 인코딩하는 제1 핵산, 가이드 RNA (gRNA)를 포함하는 제2 핵산을 환자에게 도입하는 것을 포함하고, 여기서 상기 gRNA는 상기 효소를 인코딩하는 유전자에 특이적이다.
실시예
실시예 1: 재료 및 방법
Zdhhc7-녹아웃 마우스
[0064] 본 연구 프로젝트에 사용된 마우스 종인 B6.129P2(FVB)-Zdhhc7tml.2Lusc/Mmmh, RRID:MMRRC_043511-MU는 NIH-지원하는 종 저장소인 University of Missouri의 Mutant Mouse Resource and Research Center (MMRRC)에서 입수하였으며, B. Fuscher (Pennsylvania State University)가 MMRRC에 기증하였다. 유전자형 식별은 MMRRC 프로토콜에 따라 수행되었다. 야생형 대립유전자에 대한 프라이머는 다음과 같았다: 정방향: TGAGCCAGGATGGATTTCAGACA (SEQ ID NO: 13) 및 역방향: TGCCCTCGGACGCAGGAGATGAA (SEQ ID NO: 14). 돌연변이 유형 대립유전자에 대한 프라이머는 다음과 같았다: 정방향: TCCCCTGATGTATGCGAATGTCC (SEQ ID NO: 15) 및 역방향: AACAGGTGCCTTTTGAATGTCAG (SEQ ID NO: 16).
DSS-유발 마우스 대장염 모델
[0065] 마우스 프로토콜 2019-0009는 Cornell University의 Institutional Animal Care and Use Committee (IACUC)의 승인을 받았다. 모든 동물은 IACUC의 규정에 따라 특정 병원체가 없는 조건에서 수용되었다. 마우스 (6-8주령)를 표시된 바와 같이 여러 그룹 (그룹당 8마리의 마우스, 혼성)으로 무작위화하였다. 식수에 3.0% DSS (MP Biomedicals)를 임의로 처리하여 대장염을 유발시켰다. ML349 용액을 이틀에 한 번씩 표시된 용량으로 마우스에 복강 내 주사하였다. 모든 마우스를 안락사시키고 비장을 분리하여 T 세포를 검출하였다. 맹장에서 항문까지의 거리를 측정하였다. 결장은 병리학적 검사를 위해 4% 파라포름알데히드로 고정되었다. 연구는 맹검이 아니었다.
시약 및 항체 일반
[0066] 하기 시약 및 항체를 상업적 공급원으로부터 구입하였다: 억제제 칵테일 (트리코스타틴 A (TSA, T8552, Sigma), 프로테아제 억제제 칵테일 (P8340, Sigma), 포스파타제 억제제 칵테일 (P0044, Sigma)), 페드라티닙 (S2736, Selleckchem), 범용 뉴클레아제 (88700, Thermo Fisher), Bradford 어세이 (23200, Thermo Fisher), 디티오트레이톨 (DTT; DTT100, Goldbio), 효소-링크화학형광 (ECL) 플러스 (32132, Thermo Fisher), SYBR Green PCR Master Mix (4472908, Applied Biosystems), 스트렙타비딘 아가로스 (20359, Thermo Fisher), Protein A/G PLUS-Agarose (sc-2003, Santa Cruz Biotechnology), 항-플래그 아가로스 겔 (A2220, Sigma) 및 항-HA 친화성 겔 (E6779, Sigma). 항체는 다음과 같았다: STAT3 (9139, CST), 포스포-STAT3 (Tyr705)(ab76315, Abeam), β-액틴 (C4) HRP (SC-47778, Santa Cruz), Na/K-ATPase (SC-21712, Santa Cruz), 히스통 H3 (4499S, CST), 플래그 HRP (A8592, Millipore), HA-프로브 (Y-11) (SC805, Santa Cruz), HA-프로브 (F-7) (SC7392, Santa Cruz), DHHC7 (ab138210, Abcam), DHHC7 (R12-3691, Assay Biotechnology), Alexa Fluor 350 고트 항-래빗 IgG (A-11046, Invitrogen), Alexa Fluor 594 고트 항-마우스 IgG (8890S, CST), 마우스 CD4 PerCP-Cy5.5 (560767, BD Pharmingen), 마우스 IL-17A PE (560767, BD Pharmingen), 항-마우스 IgG HRP (7076S, CST) 및 항-래빗 IgG HRP (7074S, CST).
클로닝 및 돌연변이화
[0067] APT2 및 DHHCl-23 뮤린 플라스미드는 M. Fukata에 의해 제공되었다. DHHC3/7/19 인간 플라스미드는 GenScript에서 얻었다. 여러 태그를 가진 STAT3 발현 벡터는 Addgene에서 얻었다. 플라스미드의 점 돌연변이는 QuikChange 위치-지정 돌연변이화에 의해 생성되었다.
세포 배양 및 형질감염
[0068] 인간 HEK293T 세포 (ATCC로부터 입수)를 10% 소 혈청 (CS, 12133C, Sigma) 및 추가적인 5% 소 태아 혈청 (FBS, 26140079, Gibco)을 포함하는 DMEM 배지 (11965-092, Gibco)에서 성장시켜 세포 성장을 개선하였다. ZDHHC7-녹아웃 HEK293T 세포는 이전에 설명한 대로 생성되었다. 간단히, 가이드 RNA (gRNA)의 설계는 잠재적인 오프-타겟 효과를 최소화하기 위해 CRISPR Design Tool (MIT)를 사용하여 수행되었다. 3쌍의 gRNA 서열 (#1, 5'-caccgGAGGATGATGCTCGACGTCC-3' (SEQ ID NO: 17), 5'-aaacGGACGTCGAGCATCATCCTCc-3' (SEQ ID NO: 18); #2, 5'-caccgCGTCGAGCATCATCCTCTCC-3' (SEQ ID NO: 19), 5'-aaacGGAGAGGATGATGCTCGACGc-3' (SEQ ID NO: 20); #3, 5'-caccgCGGGTCTGGTTCATCCGTGA-3' (SEQ ID NO: 21), 5'-aaacTCACGGATGAACCAGACCCGc-3' (SEQ ID NO: 22))을 lentiCRISPR v2 벡터 (49535, Addgene)에 클로닝하여 ZDHHC7-표적 벡터를 생성하였다. 그런 다음 표적 벡터를 FuGene 6 (E2691, Promega)을 사용하여 HEK293T 세포에 형질감염시켰다. 빈 lentiCRISPR v2 벡터를 대조군으로 사용하였다. 24시간 동안 형질감염시킨 후 퓨로마이신 (2 ㎍ ml-1; P-600-100, GoldBio)을 배양 배지에 첨가하고, 세포를, 제한 희석 방법을 사용하여 96-웰 플레이트의 각 웰에 단일 세포로 접종하였다. ZDHHC7의 녹아웃은 웨스턴 블롯에 의해 확인되었고, 단일클론 ZDHHC7 녹아웃 세포주의 3개의 독립적인 균주가 추가 실험을 위해 선택되었다.
[0069] 비장세포는 고전적인 방법에 의해 마우스로부터 단리되었다. 간단히, 절제된 비장을 작은 조각으로 슬라이스하고 50 ml 원뿔형 튜브에 부착된 스트레이너 (352350, Thermo Fisher)에 놓았다. 슬라이스된 비장은 주사기의 플런저 끝을 사용하여 스트레이너를 통해 눌러졌고 세포는 과량의 4℃ PBS로 스트레이너를 통해 세척되었다. 세포 현탁액을 4℃에서 5분 동안 500 g에서 원심분리하였다. 세포 펠렛을 실온에서 5분 동안 2 ml의 적혈구 용해 완충액 (R7757, Sigma)에 현탁시키고, 30 ml PBS로 희석하였다. 세포를 실온에서 5분 동안 500 g에서 원심분리하였다. 세포 펠렛을 20 ml의 37℃ DMEM 배지에 현탁시키고, 10 ml의 Percoll 밀도 구배 배지 (17089102, VWR)와 잘 혼합하고, 실온에서 5분 동안 2,500 g에서 원심분리하였다. 수집된 세포를 ml당 5x106 개의 세포로 보충된 37℃ RPMI 1640 배지 (12633012, Gibco)에 접종하였다. 비장세포는 TH17-편극화 조건에서 배양되었다: 3 ng ml-1 TGF-β (100-21, PeproTech), 40 ng ml-1 IL-6 (200-06, PeproTech), 30 ng ml-1 IL-23 (200-23, PeproTech), 20 ng ml-1 종양 괴사 인자 (TNF) (300-01A, PeproTech) 및 10 ng ml-1 IL-1β (200-01B, PeproTech).
[0070] HEK293T 세포의 경우, FuGene 6 (E2691, Promega) 또는 폴리에틸렌이민 (PEI)(24765, Polysciences)을 사용하여 일시적 형질감염을 수행하였다. 비장 세포의 경우 제조업체의 프로토콜에 따라 권장 버퍼 (1652677, Bio-Rad)로, Gene Pulser Xcell 시스템을 사용하여 일시적 형질감염을 수행하였다. LYPLA2 녹다운은 siRNA (136366, Thermo Fisher)로 수행되었다.
클릭 화학 및 겔 내 형광 검출
[0071] 세포를 50 μM 팔미트산 유사체 Alkyne 14 (Alkl4)로 5시간 동안 처리한 후, 수집하여 1% NP-40 용해 완충액 (25 mM Tris-HCl pH 8.0, 150 mM NaCl, 10% 글리세롤, 1% Nonidet P-40)에서 프로테아제 억제제 칵테일로 용해시켰다. 4℃에서 20분 동안 16,000 g에서 원심분리한 후 상청액을 수집하였다. 단백질 농도는 Bradford 어세이 (23200, Thermo Fisher)에 의해 결정되었다. 표적 단백질을 항-플래그 아가로스 비드로 정제하고 비드를 50 μl의 IP 세척 완충액에 현탁시켰다. 클릭 화학 시약을 다음 순서로 비드에 첨가하였다: 1 μL의 4 mM TAMRA 아지드 (47130, Lumiprobe), 1.2 μl의 10 mM 트리스[(1-벤질-1H-1,2,3-트리아졸-4-일)메틸]아민, (TBTA) (T2993, Tcichemicals), 1 μl의 40 mM CuSO4, 1 μl의 40 mM 트리스(2-카르복시에틸)포스핀 HCl (TCEP 염산염) (580560, Millipore). 반응 혼합물을 완전히 혼합하고 실온의 암실에서 30분 동안 인큐베이션하였다. 그 다음, 20 μl의 6X-SDS 로딩 완충액을 첨가하고 생성된 혼합물을 95℃에서 10분 동안 가열하였다. 혼합물의 절반을 또한 히드록실아민 (438227, Sigma)(pH 7.4, 최종 농도 500 μM)으로 처리하고 95℃에서 추가로 5분 동안 가열하여 S-팔미토일화를 제거하였다. 그런 다음 샘플을 SDS-PAGE로 분석하였다. STAT3 수준이 높은 과발현된 샘플의 경우, 4℃에서 2-8시간 동안 흔들며 겔을 탈염 완충제 (50% CH3OH, 40% 물 및 10% 아세트산)로 인큐베이션한 후 물에서 인큐베이션하였고, 이것이 백그라운드를 낮추는 데 도움이 되었다. 그렇지 않으면, 겔을 물로 간단히 세척하였다. Typhoon 7000 Variable Mode Imager (GE Healthcare Life Sciences)를 사용하여 로다민 형광 신호를 기록하기 위해 겔을 스캔하였다. 스캐닝 후, 단백질 로딩을 확인하기 위해 겔을 쿠마시 브릴리언트 블루 (Coomassie Brilliant Blue, B7920, Sigma)로 염색하였다.
아실-비오틴 교환
[0072] 아실-비오틴 교환 (ABE) 분석을 다음과 같이 수행하였다: 샘플을 1 ml 용해 완충액 (100 mM Tris-HCl pH 7.2, 5 mM EDTA, 150 mM NaCl, 2.5% SDS, 억제제 칵테일)에 50 mM N-에틸말레이미드 (NEM)(E3876, Sigma) 및 50 U ml-1 뉴클레아제 (88700, Thermo Fisher)와 함께 현탁하였다. 샘플을 실온 (RT)에서 2시간 동안 부드럽게 혼합하면서 가용화하고 16,000 g에서 20분 동안 원심분리하였다. 상청액의 단백질 농도는 Bradford 분석을 사용하여 결정되었다. 각 샘플에 대한 단백질 (2 ㎍)을 클로로포름/메탄올/물 (v/v 1:4:3)로 침전시키고, 잠시 에어-드라이하고 실온에서 부드럽게 혼합하면서 5 mM 비오틴-HPDP (16459, Cayman Chemical)과 함께1 mL의 용해 완충액에서 용해시켰다. 그런 다음 샘플을 두 부분으로 균등하게 나누고 각각 0.5 ml의 1M 하이드록실아민 또는 음성 대조군 (1M NaCl)과 함께 실온에서 3시간 동안 인큐베이션하였다. 샘플을 다시 침전시키고 200 μl의 재현탁 완충액 (100 mM Tris-HCl pH 7.2, 2% SDS, 8M 요소, 5mM EDTA)에 용해시켰다. 각 샘플에 대해 20 μl를 로딩 대조군으로 사용하고 180 μl를 PBS로 1:10 희석하고 4℃에서 밤새 진탕하면서 20 μl의 스트렙타비딘 비드와 함께 인큐베이션하였다. 비드를 1% SDS를 함유하는 PBS로 3회 세척하였다. 비드 및 로딩 대조군을 SDS 로딩 완충액과 혼합하고 95℃에서 10분 동안 가열하였다. 그런 다음 샘플을 SDS-PAGE로 분석하고 웨스턴 블롯 분석을 수행하였다.
웨스턴 블롯
[0073] 세포를 1% NP40 용해 완충액으로 용해시키고 단백질을 표준 프로토콜에 따라 블롯팅하였다. 신호는 Typhoon 스캐너에서 ECL plus (32132, Thermo Fisher)의 화학 발광을 사용하여 감지되었다.
세포내 분획화
[0074] 세포를 수집하고, 프로테아제 억제제 칵테일을 함유하는 세포내 분획 완충액 (250 mM 수크로스, 20 mM HEPES, pH 7.4, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1mM EGTA 및 1 mM DTT)에 현탁시켰다. 세포를 얼음 위에서 25-게이지 주사기 바늘로 균질화하였다. 용해물을 1,000 g에서 5분 동안 원심분리하고; 펠렛은 핵 분획으로 지정하였다. 후핵 (postnuclear) 상청액을 6,000 g에서 5분간 원심분리하여 미토콘드리아 분획을 제거하였다. 6,000 g 상청액을 2시간 동안 20,000 g에서 원심분리하고; 펠렛을 막 분획으로 지정하였다. 20,000 g 상청액을 세포질 분획으로 지정하였다. 모든 분획을 4% SDS 용해 완충액 (4% SDS, 50 mM 트리에탄올아민 pH 7.4 및 150 mM NaCl)에 용해시켰다. 그런 다음 여러 분획의 균등 분율을 웨스턴 블롯 분석에 적용하였다.
면역형광
[0075] 세포를 3-5mm 유리 바닥 접시 (MatTek)에 접종하고 30분 동안 4% 파라포름알데히드 (PBS 중 v/v)로 고정하였다. 고정된 세포를 PBS로 2회 세척하고 투과화하고 0.1% 사포닌/5% BSA/PBS로 30분 동안 블로킹하였다. 투과된 세포를 1차 항체로 암실에서 4℃에서 밤새 인큐베이션한 다음, 2차 항체로 실온의 암실에서 1시간 동안 인큐베이션하였다. 샘플을 Fluoromount-G (0100-01, SouthemBiotech) 또는 DAPI Fluoromount-G (0100-20, SouthemBiotech)에 장착하고 도립 공초점 현미경 (FSM880, Zeiss)을 사용하여 관찰하였다.
qPCR
[0076] 유전자 발현 분석을 위해 제조사의 표준 프로토콜에 따라 SYBR Green PCR Master Mix를 사용하여 qPCR을 수행하였다.
유세포 분석
[0077] FACS 분석을 위해, 샘플당 1x106 개 세포를 사용하여 유세포 분석을 수행하였다. TH17 세포는 사이토카인 칵테일로 자극되었고: 3 ng ml-1 TGF-β (100-21, PeproTech), 40 ng ml-1 IL-6 (200-06, PeproTech), 30 ng ml-1 IL-23 (200-23, PeproTech), 20 ng ml-1 TNF (300-01A, PeproTech) 및 10 ng ml-1 IL-1β (200-01B, PeproTech), 그 후 Cy5.5-CD4 (560767, BD Pharmingen)로 표지되었다. 투과화 및 고정 후, 세포를 PE-IF-17 (560767, BD Pharmingen)로 표지하였다. 세포는 Attune Flow Cytometer (Thermo Fisher)에 의해 검출되었고 FCS Express 6 소프트웨어(De Novo Software)로 분석되었다.
통계 분석
[0078] 정량적 분석은 SPSS 17.0을 사용하여 수행되었으며 데이터는 평균 ± s.e.m으로 표현되었다. 그룹 간의 비교는 Student's t-test를 사용하여 수행되었고 다른 데이터는 일원 분산 분석 (ANOVA)을 사용하여 분석되었다.
실시예 2
STAT3는 DHHC7에 의해 팔미토일화된다.
[0079] 원형질막으로의 STAT3 동원은 그의 인산화에 필수적이다. 본 발명자들은 먼저 S-팔미토일화가 STAT3의 막 결합에 기여하는지 여부를 조사하였다.
[0080] HEK293T 세포에서 마우스 DHHC의 존재 하에 STAT3 팔미토일화를 가시화하기 위해, 본 발명자들은, 클릭 화학을 통해 형광 염료 TAMRA 아지드와 접합될 수 있는 대사 표지로서 알킨-태그된 팔미트산 유사체 Alk14를 사용하였다. DHHC7 (Zdhhc7로 인코딩됨) 및 DHHC3 (Zdhhc3으로 인코딩됨)은 STAT3의 팔미토일화 수준을 증가시켰다. 정량화에 따르면 STAT3 팔미토일화가 DHHC7 발현 시 5.4배 증가하였고; DHHC3의 효과는 더 약했다. 팔미토일화는 시스테인 또는 리신 잔기 (각각 황 또는 질소에서)에서 발생할 수 있지만 S-팔미토일화만 히드록실아민에 민감하다. 히드록실아민 처리는 STAT3에서 팔미토일화 신호의 90% 이상을 제거했으며, 이는 DHHC7에 의한 STAT3의 팔미토일화가 주로 시스테인에서 발생했음을 시사한다 (도 1a).
[0081] DHHC7이 내인성 STAT3 팔미토일트랜스퍼라제임을 확인하기 위해, 본 발명자들은 DHHC7-녹아웃 HEK293T 세포 및 마우스 비장세포를 생성하였다. DHHC7 녹아웃 세포에서 STAT3의 S-팔미토일화는 대조군 세포에 비해 유의하게 감소되었다. 야생형 DHHC7의 재발현 - 보존된 모티프에 시스테인에서 세린으로의 치환을 포함하는 촉매적으로 비활성인 DHHS7 돌연변이의 재발현은 아님 - 은 STAT3 팔미토일화를 유의하게 증가시켰다. 본 발명자들은 S-팔미토일화를 검출하기 위해 일반적으로 사용되는 또 다른 방법인 아실-비오틴 교환 검정을 사용하여 DHHC7-촉진된 STAT3 팔미토일화를 추가로 확인하였다.
[0082] 인간 DHHC19가 STAT3에 대한 팔미토일트랜스퍼라제로서 작용하는 것으로 보고된 것을 감안할 때, 본 발명자들은 인간 및 마우스 DHHC 사이의 서열 차이가 발견상 차이를 설명할 수 있는지 여부를 고려하였다. 본 발명자들은 인간 DHHC3, DHHC7 및 DHHC19를 시험하였고, 인간 DHHC7이 가장 효율적인 STAT3 팔미토일트랜스퍼라제임을 발견하였다.
[0083] STAT 패밀리에는 7개의 구성원이 있으며, 그 중 STAT1이 STAT3과 가장 유사하다. 아실-비오틴 교환 검정을 사용하여, 본 발명자들은 STAT1이 또한 팔미토일화됨을 보였으나; 그의 팔미토일화 수준은 DHHC7의 존재하에서 증가하지 않았다.
팔미토일화는 STAT3를 막으로 표적화한다.
[0084] STAT3의 팔미토일화 부위를 맵핑하기 위해, 본 발명자들은 STAT3의 14개 시스테인 잔기 각각을 세린으로 돌연변이시키고 돌연변이체의 팔미토일화 상태를 조사하였다. STAT3의 팔미토일화 신호는 Cysl08이 돌연변이된 경우에만 현저한 감소를 나타냈다. 특히, STAT3(C108S)와 DHHC7 사이의 상호작용도 야생형 으을3d 수반한 경우에 비해 감소하였다. DHHC7 또는 DHHC3의 과발현 어느 것도 STAT3(C108S)의 팔미토일화를 증가시킬 수 없었다.
[0085] S-팔미토일화는 단백질을 막으로 표적화할 수 있고, STAT3은 JAK2와 상호작용하기 위해 원형질막으로 동원될 필요가 있기 때문에, 본 발명자들은 다음으로 S-팔미토일화가 STAT3 막 동원에 영향을 미치는지 여부를 조사하였다. 야생형 STAT3는 원형질막에, 내막에 및 핵에 위치하였다. HEK293T 세포에서 DHHC7의 녹아웃은 STAT3의 막 위치화를 감소시켰지만 그의 핵 위치화를 증가시켰다 (도 1b). 이와 일치하여, STAT3(C108S)는 핵에서 두드러지게 발견되었으며, 이는 팔미토일화가 STAT3의 막 위치화를 촉진함을 시사한다. 또한, DHHC7-녹아웃 HEK293T 세포에서 DHHC7의 재발현은 야생형 STAT3의 막 동원을 유도했지만 STAT3(C108S)의 막 동원은 유도하지 않았다 (도 1c). HEK293T 세포와 마우스 비장세포 모두에서, DHHC7은 STAT3의 팔미토일화를 유도하고 막에서 변형된 단백질의 양을 증가시켰지만 핵 분획에서는 그러하지 않았다 (도 1d). 내인성 STAT3는 DHHC7-녹아웃 세포에서보다 야생형에서 JAK2와 더 큰 정도로 공동 위치화되었다 (도 1b). 종합적으로, 상기 결과는 DHHC7-촉매된 팔미토일화가 STAT3의 막 위치화 및 그의 JAK2와의 상호작용을 촉진함을 시사한다.
DHHC7은 STAT3 활성화를 촉진한다.
[0086] STAT3의 전사 활성은 Y705에서의 인산화에 의존한다. 다음으로, 본 발명자들은 팔미토일화가 STAT3 인산화를 촉진할 수 있는지 여부를 조사하였다. 팔미토일화 스크리닝과 일치하게, STAT3 인산화는 DHHC7 또는 DHHC3의 발현에 의해 현저하게 (그리고 선택적으로) 증가되었으며, DHHC7이 더 효과적이었다. 내인성 STAT3 인산화는 HEK293T 세포와 마우스 비장세포 모두에서 DHHC7 발현에 의해 유사하게 조절되었다. HEK293T 세포에서 DHHC7 녹아웃은 내인성 야생형 STAT3의 인산화를 감소시켰지만, 전위적으로 발현된 돌연변이 STAT3(C108S)의 인산화를 감소시키지 않았다. 따라서 본 발명자들은 DHHC7이 STAT3 인산화를 조절한다고 결론지었다.
[0087] 다음으로, 본 발명자들은 DHHC7을 야생형 STAT3, STAT3(C108S) 및 STAT3(Y705F)와 공동 발현시켰다. STAT3(C108S)의 인산화는 야생형 STAT3에 비해 감소된 반면, STAT3의 팔미토일화 상태는 Y705 인산화 부위의 돌연변이에 의해 영향을 받지 않았다 (도 2a). 따라서 STAT3 인산화는 팔미토일화에 의해 촉진되지만 인산화는 DHHC7에 의한 팔미토일화에 영향을 미치지 않는다.
[0088] 세포내 분획화는 DHHC7이 STAT3의 막 동원을 증가시켰을 뿐만 아니라 막 및 핵에 위치하는 p-STAT3 신호를 증가시킴을 보여주었다. 특히, p-STAT3 대 STAT3의 비는 핵 분획에서만 DHHC7에 의해 증가하였다. STAT3(C108S)의 막 동원 및 인산화는 야생형 STAT3에 비해 감소하였다 (도 2b). 유사하게, 면역형광 이미징은 DHHC7-발현 세포에서 야생형 STAT3가 원형질막 및 내막에 더 많이 위치하며, 주로 핵에 위치하는 STAT3(C108S)에 비해 더 높은 인산화 수준을 가짐을 보여주었다 (도 2c) 이러한 데이터는 STAT3의 팔미토일화가, JAK2 키나아제가 위치하는 막으로의 그의 동원을 촉진함으로써 그의 인산화를 촉진한다는 것을 추가로 뒷받침한다.
APT2는 p-STAT3를 탈팔미토일화한다.
[0089] APT는 탈팔미토일화에 의해 표적 단백질의 막 위치화를 조절하는 데 관여한다. APT1과 APT2는 양자 모두 Cys2에서 팔미토일화될 수 있으며, 이는 그들의 막 위치화와 막에서 기질로의 접근을 촉진한다. APT1은 주로 미토콘드리아에 위치함이 최근 밝혀졌다. 따라서 본 발명자들은 STAT3가 APT2의 기질인지 여부를 테스트하는 데 초점을 맞췄다. HEK293T 세포에서 Haemagglutinin (HA)-태그된 STAT3 및 플래그-태그된 APT2가 서로 결합하는 것으로 밝혀졌다. 야생형 APT2는 돌연변이 APT2(C2S)가 상호작용하는 것보다 더 강하게 STAT3와 상호작용하였다. APT2의 발현은 STAT3 팔미토일화 신호를 감소시켰다 (도 2d). APT2의 C2S 돌연변이체 또는 촉매적으로 불활성인 S122A 돌연변이체는 STAT3의 팔미토일화 신호를 감소시키는 데 실패하였다 (도 2d). APT2 녹다운 및 ML349에 의한 APT2의 약리학적 억제는 또한 STAT3 팔미토일화를 증가시켰다 (도 2f). 이러한 결과는 APT2가 STAT3를 탈팔미토일화할 수 있음을 나타낸다.
[0090] 다음으로, 본 발명자들은 APT2에 의한 탈팔미토일화가 STAT3 인산화 및 전사 활성을 조절하는지 여부를 평가하였다. DHHC7-촉매된 팔미토일화가 STAT3 활성을 촉진한다는 점을 감안할 때, 본 발명자들은 APT2 녹다운 시 STAT3 활성이 증가할 것으로 예상하였다. 그러나, APT2 녹다운은 STAT3의 전사 활성과 이의 핵 전위를 모두 억제하였다 (도 2g). 또한, 야생형 DHHC7 및 APT2의 동시 발현은 그들의 돌연변이체 카운터파트보다 더 크게 다운스트림 유전자의 발현을 촉진시켰다. STAT3의 이량체화는 그의 전사 활성에 중요한 것으로 보고되며, 다양한 번역 후 변형에 의해 조절되지만; 그러나 그것은 팔미토일화에 의해 영향을 받지 않았다.
[0091] 팔미토일화 및 탈팔미토일화 양자 모두가 STAT3 신호전달을 촉진한다는 발견을 설명하기 위해, 본 발명자들은 STAT3의 탈팔미토일화가 주로 p-STAT3에서 발생한다고 제시하며 - 이는 p-STAT3를 막으로부터 방출하여 그의 핵 전위를 촉진하는데 기여한다고 제시한다. 이 가설을 시험하기 위해, 본 발명자들은 HA-태그된 인산화 부위 돌연변이체 STAT3(Y705F)를 생성하고 STAT3-APT2 상호작용 실험을 반복하였다. 야생형 STAT3와 비교하여, STAT3(Y705F)와 APT2 사이의 결합이 감소하였다. 물리적 상호작용 연구의 결과와 일치하게, APT2에 의한 STAT3(Y705F)의 탈팔미토일화는 훨씬 덜 효율적이었다 (도 2e). 페드라티닙으로 JAK2를 억제하면 STAT3의 인산화가 예상대로 감소하였으나; 막-위치화된 STAT3의 수준은 증가된 반면 핵 STAT3의 수준은 감소하였다 (도 2h). 종합적으로, 상기 데이터는 APT2가, STAT3보다 p-STAT3의 탈팔미토일화 및 핵 전위를 우선적으로 촉진한다는 가설을 뒷받침한다.
실시예 3
STAT3 팔미토일화 주기는 T H 17을 촉진한다.
[0092] STAT3는 TH17 세포 분화에 중요하기 때문에, 본 발명자들은 STAT3의 팔미토일화-탈팔미토일화 주기가 마우스 비장 세포로부터 TH17 세포의 생성을 촉진하는지 여부를 평가하였다. TH17 분화 조건하에서, STAT3가 불활성 DHHS7 보다 야생형 DHHC7과 동시 발현될 때, STAT3 인산화 및 전사 활성이 더 크게 촉진되었다 (도 3a). 이러한 결과는 유세포 분석을 사용한 TH17 세포의 정량화에 의해 추가로 확인되었다 (도 3b). ML349에 의한 APT2의 억제는 STAT3 표적 유전자 (RORCCCND1)의 발현 및 TH17 세포의 분화를 유의하게 감소시켰다 (도 3c). Zdhhc7 녹아웃도 TH17 세포 분화 (도 3d) 및 STAT3 인산화 (도 3e)를 감소시켰다. 따라서 팔미토일화-탈팔미토일화 주기는 STAT3 신호전달 및 TH17 분화에 중요한 것이다.
DHHC7 및 APT2는 IBD 환자에서 상향 조절된다.
[0093] 활성화된 STAT3는 다양한 자가면역 질환의 불량한 예후를 시사하고, TH17 세포의 수준은 장 염증의 경과와 중증도에 영향을 미치는 핵심 요소이다. ZDHHC7LYPLA2 - 팔미토일화-탈팔미토일화 주기를 촉진하는 유전자이다 - 의 발현 수준이 인간의 장 염증과 관련이 있는지 확인하기 위해, 26명의 건강한 참가자, 24명의 크론병 환자 및 10명의 궤양성 대장염 환자의 말초혈액 단핵세포 (PBMC)를 추출하여 분석하였다. ZDHHC7LYPLA2 mRNA는 IBD 환자, 특히 궤양성 대장염 환자에서 상향조절되었다 (도 4a). STAT3의 다운스트림 표적 유전자 - RORCIL17A - 역시 높게 발현되었다. 또한, 더 활동적인 IBD를 가진 개체의 세포는 ZDHHC7, LYPLA2, RORCIL17A의 더 높은 발현 수준을 나타낸다 (도 4b). STAT3 표적 유전자 (RORCIL17A)의 발현과 ZDHHC7 및 LYPLA2의 발현 사이에는 상당한 상관관계가 있었다 (도 4c). 또한, p-STAT3 수준은 PBMC의 ZDHHC7LYPLA2 mRNA의 수준과 상관관계가 있었다 (도 4d). 특히, ZDHHC7 mRNA 수준은 IBD 환자에서만 STAT3 표적 유전자의 수준과 상관관계가 있었던 반면 - p-STAT3의 수준과도 상관관계가 있었음 - LYPLA2 및 STAT3 표적 유전자의 mRNA 수준은 건강한 참가자와 IBD 환자 모두에서 우수한 상관관계를 보였다 (도 4c 및 도 4d). 이러한 결과는 LYPLA2의 발현 변화가 IBD와 더 관련이 있을 수 있음을 시사한다. ZDHHC7의 발현은 STAT3 표적 유전자의 발현과 덜 상관관계가 있었는데 - 아마도 위의 데이터에서 알 수 있듯이 DHHC3이 STAT3도 조절할 수 있었기 때문일 것이다. 이 가설과 일치하게, ZDHHC3 발현 수준은 건강한 참가자에 비해 IBD 환자에서도 증가하였다.
APT2 또는 DHHC7 표적화는 마우스의 대장염을 감소시킨다.
[0094] 본 발명자들은 ML349에 의한 APT2의 약리학적 억제가 IBD에 대한 실험 모델인 마우스에서 덱스트란 설페이트 소듐 (DSS)-유도된 대장염을 감소시킬 수 있는지 여부를 시험하였다. ML349 (50 mg kg-1)는 마우스에 용인된다. DSS-유도된 대장염 마우스 모델에서, ML349로 전처리한 후 DSS로 처리하면 체중 감소가 유의하게 감소하고 생존율이 증가하는데 - 이는, ML349 처리가 DSS-유도 대장염을 효과적으로 예방할 수 있음을 나타낸다. DSS 처리 후 ML349 처리는 또한 마우스에서 체중 감소 및 결장 단축을 유의하게 약화시켰는데 (도 4e), 이는 ML349가 DSS-유도된 대장염을 완화할 수 있음을 나타낸다. 또한, 시험관내 결과 (도 3)와 일치하게, ML349는 마우스 비장세포의 TH17 세포 수준을 유의하게 감소시켰다 (도 4f).
[0095] 이러한 발견에 대한 추가 지원을 제공하기 위해, 본 발명자들은 또한 대장염 모델에서 Zdhhc7-녹아웃 마우스를 사용하였다. 기계론적 모델 (도 4i)에 기초하여, 본 발명자들은 Zdhhc7의 녹아웃 또한 DSS-유도된 대장염을 감소시켜야 한다고 예측하였다. 실제로, 본 발명자들은 Zdhhc7 녹아웃이 TH17 세포 분화를 감소시키고 DSS-유도된 대장염으로부터 마우스를 보호한다는 것을 발견하였다 (도 4g 및 4h). 따라서, 본 발명자들은 STAT3 팔미토일화-탈팔미토일화 주기가 TH17-관련 면역 장애에 대한 유망한 치료 표적이 될 수 있다고 제안한다.
[0096] 전사인자 STAT3는 원형질막으로 동원되어 특이적 자극 하에 JAK2에 의해 인산화되는 것으로 알려져 있다. 그런 다음 p-STAT3는 핵으로 이동하여 표적 유전자의 발현을 촉진한다. 그러나 STAT3가 막으로 동원되는 메커니즘에 대해서는 알려진 바가 거의 없다. 여기서는, 본 발명자들이 STAT3의 Cysl08이 DHHC7에 의해 팔미토일화되고 (DHHC3에 의해서는 더 적은 정도로), 이것이 JAK2에 의한 막 동원 및 인산화를 촉진한다는 것을 보여주었다. 팔미토일화가 막 분포 및 신호 출력에 중요한 것으로 잘 알려져 있지만, 팔미토일화와 탈팔미토일화가 신호 전달을 촉진하기 위해 균형을 이루는 방법은 근본적인 해결되지 않은 질문이었다. 팔미토일화는 STAT3를 세포막에 고정하지만, 핵 전위를 위해서는, 이는 탈팔미토일화되어야 한다. 본 발명자들은, APT2가, 인산화되지 않은 STAT3에 비해 p-STAT3를 선택적으로 탈팔미토일화함으로써 p-STAT3의 핵 전위에 기여함을 보여주었다. 이러한 결과는, 팔미토일화-탈팔미토일화 주기가, 무익한 주기라기 보다는 STAT3 활성화를 유도하는 그러한 모델을 제안한다 (도 4i). 이 주기 없이는, STAT3가 동종이량체를 형성하고 핵으로 전위될 수 있다 하여도, 대부분의 STAT3는 비활성 비인산화 상태로 존재한다 (도 4i).
[0097] STAT3의 지속적 (constitutive) 활성화는 면역 장애가 있는 환자에서 TH17 분화에 기여하고, 이는 불량한 임상 결과를 초래한다. STAT3는 IBD의 마우스 모델에서 TH17 세포 분화를 억제하고 대장염을 약화시키는 효과적인 표적인 것으로 입증되었다. 본 연구는 STAT3의 팔미토일화-탈팔미토일화 주기가 TH17 세포 분화에 영향을 미치고, DHHC7과 APT2 양자 모두가 대장염 치료를 위한 새로운 치료 표적이 될 수 있음을 시사한다. TH17 세포는 IBD, 고-IgE 증후군 및 관절염과 같은 다양한 면역 장애의 경과 및 중증도에 영향을 미치는 핵심 요소이기 때문에, STAT3의 팔미토일화-탈팔미토일화 주기는 다른 많은 자가면역 장애의 치료를 위한 잠재적인 치료 표적이 될 수 있다.
[0098] 번역후 변형은 인산화 및 유비퀴틴화의 잘 알려진 신호전달 기능에 의해 입증된 바와 같이 세포 신호전달을 매개하는데 특히 적합하다. 단백질 S-팔미토일화는 수십 년 전에 번역후 변형으로 발견되었지만, 인간에서 거의 3,000개에 달하는 단백질이 이 변형을 겪는 것으로 알려져 있음에도 불구하고, 이것이 세포 신호 전달에 어떻게 기여하는지에 대해서는 거의 이해되어 있지 않다. 본 연구는 팔미토일화-탈팔미토일화 주기가 세포 신호 전달을 촉진하기 위해 특정 방향으로, 이 경우에 주기의 방향은 인산화된 기질에 대한 APT2의 특이성에 의해 보장되는, 특정 방향으로 진행될 수 있음을 입증한다. 이 예시는 수많은 다른 세포 신호 전달 과정에서 S-팔미토일화의 신호 전달 기능을 이해하기 위한 중요한 통찰력을 제공할 수 있다.
실시예 4
SMADs는 DHHC7에 의해 팔미토일화된다.
[0099] R-Smads 패밀리에는 SMAD1, SMAD2, SMAD3, SMAD5 및 SMAD8/9를 포함하는 6개의 구성원이 있으며, 이들은 TGFβR의 직접적인 신호 전달 및 T 세포의 분화에 중요한 역할을 하며, SMAD2가 가장 SMAD3와 유사하다. 이전 연구에 따르면 비활성 R-Smads를 인산화하는 열쇠는 SMAD를 TGFβR 및 ERK가 있는 원형질막 및 세포질로 동원하는 것으로 밝혀졌다. 본 발명자들은, S-팔미토일화에 의한 STAT3의 조절과 유사하게, S-팔미토일화가 R-SMADs 막 결합에서 어떠한 역할을 하는지가 의문이었다. 지금까지, 단백질 S-팔미토일화에 대한 데이터베이스인 SwissPalm을 기반으로는, 어떠한 SMAD2 및 SMAD3의 S-팔미토일화가 보고되지 않았다.
[00100] 본 발명자들은 SMAD2/3 팔미토일화를 검출하기 위해, 알킨-태그된 팔미트산 유사체인 대사성 Alk14를 이용하는 대사성 표지 후 클릭 화학을 통한 TAMRA-아지드 접합 및 겔 내 형광을 사용하였다. 본 발명자들은 SMAD2가 A1k14에 의해 표지될 수 있고, 상기 표지가 DHHC7 (유전자명 Zdhhc7) 발현에 의해 상당히 증가될 수 있음을 발견하였다 (도 5a-5b). 팔미토일화 신호의 정량화는 SMAD2 팔미토일화가 DHHC7에 의해 6배 증가되었음을 보여주었다 (도 5b). DHHC3은 또한 SMAD2 팔미토일화를 증가시켰지만 그 변화는 유의하지 않았다 (도 5b). 대조적으로, SMAD3 및 SMAD4는 본질적으로 검출할 수 없는 Alkl4 표지를 가졌으며, DHHC7 과발현의 존재하에서도 표지는 매우 약하게 유지되었다 (도 5c, 5d 및 5f). 아실-비오틴 교환 (ABE) 분석이 또한 다른 마우스 DHHC를 발현하는 HEK 293T 세포에서 SMAD2의 팔미토일화 신호를 시각화하는 데 사용되었다. A1k14 표지 데이터와 일치하게, DHHC7만이 SMAD2 팔미토일화를 유의하게 촉진시켰다 (도 5e). DHHC7이 내인성 SMAD2 팔미토일트랜스퍼라제인지 여부를 추가로 확인하기 위해, HEK 293T 세포에서 DHHC7을 녹아웃시켰다. SMAD2의 S-팔미토일화는, ABE 검정에 기초하여 DHHC7 녹아웃에 의해 유의하게 감소되었다 (도 5g).
Cys41 및 Cys81 팔미토일화는 SMAD2의 막 동원을 촉진한다.
[00101] SMAD2 S-팔미토일화 부위를 확인하기 위해, SMAD2의 15개 시스테인 잔기 각각을 세린으로 돌연변이시키고, 각 돌연변이체의 S-팔미토일화 상태를 A1k14 표지에 의해 결정하였다. 본 발명자들은 Cys41 및 Cys81 돌연변이체가 SMAD2 S-팔미토일화 신호를 유의하게 감소시키고 Cys41/81 이중 돌연변이체가 팔미토일화 신호를 거의 갖지 않는다는 것을 발견하였다 (도 6a-6b). DHHC7 녹아웃은 SMAD2 Cys41/81Ser 돌연변이체의 S-팔미토일화를 감소시키지 않았으며 (도 6c), 이는 DHHC7-촉매화된 SMAD2 팔미토일화가 주로 이들 2개의 Cys 잔기에서 발생함을 시사한다.
[00102] S-팔미토일화는 단백질을 세포막으로 표적화할 수 있는 반면, SMAD2는 각각 TGFβR 및 ERK와 상호작용하기 위해 원형질막 및 세포질로 동원될 필요가 있다. 본 발명자들은 SMAD2 위치화에 대한 S-팔미토일화의 효과를 연구하였다. 본 발명자들은 WT SMAD2가 원형질막, 세포질 (세포질 내의 막 소기관으로 예상) 및 핵에 위치하는 반면, SMAD2의 C41/81S 돌연변이체는 주로 핵에 위치한다는 것을 발견하였다 (도 6d-6e). 더욱이, DHHC7은 막 및 세포질에서 SMAD2의 S-팔미토일화를 증가시켰지만, 핵 분획에서는 그렇지 않았으며 (도 6f), 이는 팔미토일화가 SMAD2의 막 및 세포질 위치화를 촉진한다는 것을 추가로 뒷받침한다. HEK293T 세포에서 DHHC7 녹아웃은 또한 SMAD2의 막 위치화를 감소시키고 핵 위치화를 증가시켰다.
S-팔미토일화는 SMAD2 C-말단 인산화에 영향을 미치지 않는다.
[00103] SMAD2 및 SMAD3의 전사 활성은 C-말단에서의 인산화에 의해 활성화된다 (SMAD2의 경우 Ser465/Ser467 및 SMAD3의 경우 Ser423/Ser425). 상기, 실시예 2에서, 본 발명자들은 DHHC7-유도된 S-팔미토일화가 다른 전사 인자인 STAT3의 인산화를 촉진하고 그의 전사 활성을 촉진할 수 있음을 입증한다. 따라서, 본 발명자들은 SMAD2의 팔미토일화가 SMAD2의 C-말단 Ser465/Ser467 인산화를 촉진하고 그의 전사 활성을 활성화시키는 팔미토일화와 유사한 효과를 가질 수 있다는 가설을 세웠다. 본 발명자들은 HEK-293T 세포에서 HA-태그된 DHHC 단백질 및 플래그-태그된 SMAD2를 공동-발현하는 것이 SMAD2 C-말단 Ser465/Ser467 인산화 (p-SMAD2(C2))를 증가시킬 것인지 여부를 조사하였다. 놀랍게도, DHHC7은 p-SMAD2(C2) 수준을 촉진하지 않았다 (도 7a). 뿐만 아니라, SMAD2 WT 및 S-팔미토일화-결핍 C41/81S 돌연변이체 양자 모두 DHHC7 발현 및 TGFβ 처리 하에 유사한 수준의 p-SMAD2(C2)를 가졌다 (도 7b-7c). 따라서 SMAD2의 DHHC7-유도 S-팔미토일화는 p-SMAD2(C2) 수준에 영향을 미치지 않는다.
SMAD2 S-팔미토일화는 APT2에 의해 제거된다.
[00104] S-팔미토일화는 아실 단백질 티오에스테라제 (APT1, APT2 및 ABHD 패밀리 구성원)에 의해 제거될 수 있다. APT2 (LYPLA2, Lysophospholipase 2)는 STAT3의 막 위치화 조절에 관여하며 탈팔미토일화 기질로서 인산화되지 않은 STAT3보다 p-STAT3를 선호한다. 본 발명자들은 어떤 아실 단백질 티오에스테라제가 SMAD2 S-팔미토일화를 조절하는지 조사하였다. 플래그-태그된 SMAD2를 발현하는 HEK-293T 세포를 팔모스타틴 B (범-데팔미토일라제 억제제), ML348 (APT1-특이적 억제제) 또는 ML349 (APT2-특이적 억제제)로 처리하였다. 본 발명자들은 ML349 및 팔모스타틴 B 양자 모두가 S-팔미토일화 신호를 유의하게 향상시켰지만 ML348은 아님을 발견하였고, 이는 APT2가 SMAD2를 탈팔미토일화할 수 있음을 시사한다 (도 7d). 이 결과를 더 확인하기 위해, 본 발명자들은 APT2의 촉매적으로 사멸한 돌연변이체인 Ser122Ala(S122A)를 사용하고 S122A 돌연변이체 APT2가 SMAD2의 S-팔미토일화 신호를 감소시키는 데 실패함을 발견하였다 (도 7e-7f). 이러한 데이터는 APT2가 SMAD2를 탈팔미토일화할 수 있음을 시사하였다.
[00105] 후속적으로, 본 발명자들은 STAT3의 경우와 유사하게 APT2가 p-SMAD2 또는 인산화되지 않은 SMAD2를 선호하는지 여부를 평가하였다. 본 발명자들은 먼저 카르복시 말단 절단된 SMAD2 (ΔC SMAD2, Glu425에서 Ser467까지 잘라냄)를 사용하고 WT SMAD2와 비교하여 ΔC SMAD2가 APT2의 탈팔미토일화 효과에 대해 크게 내성이 있음을 발견하였다 (도 7e). 이는 APT2에 의한 탈팔미토일화가 SMAD2의 C-말단에 의존함을 시사한다. 그러나, p-STAT3에 대한 선호도와 달리, Ser465, Ser467 또는 양자 모두를 돌연변이시키는 것이 APT2에 의한 탈팔미토일화에 영향을 미치지 않았기 때문에, APT2는 인산화되지 않은 SMAD2보다 p-SMAD2(C2)에 대한 선호도를 나타내지는 않았다 (도 7f). 더욱이, APT2는 Ser465/Ser467에서 SMAD2의 인산화에 유의한 영향을 미치지 않았다 (도 7g). 따라서 DHHC7과 APT2는 SMAD2의 S-팔미토일화를 조절하지만, 이들은 C-말단 세린에서 SMAD2 인산화에 영향을 미치지 않는다.
DHHC7-유도 S-팔미토일화는 링커 영역에서 SMAD2 인산화를 촉진한다.
[00106] DHHC7-유도된 S-팔미토일화가 SMAD2의 전사 기능을 촉진하는지 여부를 알아내기 위해, 본 발명자들은 실시간 PCR에 의해 다운스트림 유전자 발현을 평가하였다. 본 발명자들은 WT DHHC7 및 SMAD2의 공동-발현이, 불활성 돌연변이체 DHHC7 및 SMAD2의 공동-발현, 또는 WT DHHC7 및 S-팔미토일화 결핍 SMAD2 C41/81S 돌연변이체의 공동-발현보다 더 높은 RORC 발현을 유도한다는 것을 발견하였다 (도 8a). 이러한 결과는, SMAD2에 대한 유사한 C-말단 인산화 수준에도 불구하고 DHHC7-촉매된 SMAD2 S-팔미토일화가 전사 활성에 영향을 미친다는 것을 강력하게 뒷받침한다.
[00107] SMAD2 및 SMAD3은 아미노-말단 (N-말단) Mad 상동성-1 (MH1) 도메인, 링커 영역 및 C-말단 MH2 도메인으로 구성된다. 링커 영역 (SMAD2의 경우 Ser245/250/255 및 SMAD3의 경우 Ser204/208/213)에서의 인산화도 R-SMAD의 전사 활성에 중요하다. 본 발명자들은 링커 영역에서 SMAD2의 인산화 (p-SMAD2(L3))가 팔미토일화에 의해 조절될 수 있는지 여부를 조사하였다. 흥미롭게도, C-말단 인산화와 달리, SMAD2의 링커 영역 인산화는, SMAD2 C41/81S 돌연변이체 또는 APT2-유도 탈팔미토일화가 p-SMAD2(L3)를 감소시켰기 때문에, DHHC7에 의해 유의하게 증가되었다 (도 8b). SMAD3은 SMAD2와 매우 유사하고 동일한 링커 영역 도메인을 갖지만, 이는 팔미토일화되지 않고 (도 5c) 이의 링커 영역 인산화는 DHHC7에 의해 영향을 받지 않는다 (도 8c).
[00108] 세포내 분획화는 DHHC7 녹아웃이 세포질 및 핵에 위치하는 p-SMAD2(L3) 뿐만 아니라 SMAD2의 세포질 위치화를 감소시킴을 보여주었다 (도 8d). 흥미롭게도, SMAD2에 대한 p-SMAD2(L3)의 비율은 세포질 분획보다 핵 분획에서 훨씬 더 감소하였다 (도 8d). 유사하게, 면역형광은 DHHC7-발현 세포에서 SMAD2가 DHHC7 녹아웃 세포보다 더 많은 세포질 위치화 및 더 높은 인산화 수준을 가짐을 보여주었다 (도 8e). 모든 데이터는 DHHC7-촉매된 SMAD2 팔미토일화가 링커 영역에서 SMAD2 인산화를 촉진함을 시사하였다.
S-팔미토일화는 SMAD2의 STAT3 및 SMAD4와의 결합을 촉진한다.
[00109] 다음으로, 본 발명자들은 DHHC7이 SMAD2의 기능을 어떻게 촉진하는지 조사하였다. SMAD4의 결합이 SMAD2의 전사 활성에 중요하기 때문에, 본 발명자들은 단백질 풀다운 분석을 수행하였고, SMAD2와 SMAD4 사이의 상호작용이 DHHC7-유도된 S-팔미토일화에 의해 증가되고 (도 9a), SMAD2와 SMAD4의 결합이 촉매 불활성 DHHC7 또는 SMAD2 Cys41/81Ser 돌연변이체에 의해 감소된다는 것을 발견하였다 (도 9b).
[00110] ERK에 의해 인산화된 링커 영역 Ser255 인산화 SMAD2는 RORγt 및 IL-17A를 발현하는데 있어서 STAT3 공동-활성화제로서 작용한다. 본 발명자들은 팔미토일화가 SMAD2-STAT3 결합을 촉진할 수 있는지 여부를 조사하였다. DHHC7은 SMAD2/STAT3 복합체의 형성을 유도한 반면, 촉매적 불활성 DHHC7 또는 SMAD2 Cys41/81Ser 돌연변이체는 복합체 형성을 감소시켰다 (도 9c-9d). 유사하게, 면역형광은 DHHC7-발현 세포에서 SMAD2가 DHHC7 녹아웃 세포보다 STAT3와 더 많은 세포질 및 핵 공동위치화를 가짐을 보여주었으며, 이는 DHHC7이 SMAD2와 STAT3 사이의 상호작용을 촉진함을 시사하였다 (도 9e). SMAD2의 링커 영역에는 3개의 인산화 부위가 있으므로 (Ser245/250/255), 본 발명자들은 돌연변이 유발에 의하여 SMAD2/STAT3 복합체 형성을 위한 핵심 부위가 어느 부위인지 확인하였다. 본 발명자들은 SMAD2의 Ser255Ala 돌연변이체가 STAT3와의 친화도를 유의하게 감소시키는 것을 발견하였다 (도 9f). 본 발명자들은 최종적으로 실시간 PCR에 의해 RORC 발현을 평가하였고, WT SMAD2가 STAT3와 관련된 Cys41/81Ser 돌연변이 SMAD2와 비교하여 RORC 발현을 촉진한다는 것을 발견하였다 (도 9g). 이러한 데이터는 SMAD2의 S-팔미토일화가 SMAD2 링커 영역 인산화를 촉진함으로써 SMAD4 및 STAT3와의 결합을 촉진한다는 것에 대한 추가적인 지원을 제공하였다.
SMAD2의 S-팔미토일화 주기는 T H 17 세포 분화를 촉진한다.
[00111] SMAD2 및 그의 STAT3와의 결합이 나이브 T 세포를 TH17 세포로 분화시키는 데 핵심 역할을 한다는 점을 감안할 때, 본 발명자들은 SMAD2 S-팔미토일화가 마우스 비장세포에서 TH17 세포의 생산을 조절할 수 있는지 조사하였다. 상기 실시예 3의 데이터는 STAT3의 팔미토일화-탈팔미토일화 주기가 STAT3 활성 및 TH17 세포 분화에 중요함을 보여준다. 따라서 본 발명자들은 유사한 팔미토일화-탈팔미토일화 주기가 또한 SMAD2 활성을 조절하고 TH17 분화에 기여하는지가 의문이었다. WT SMAD2와 비교하여, 비장세포의 C41/81S SMAD2는 감소된 p-SMAD2(L3)를 나타냈다 (도 10a). Zdhhc7 녹아웃은 WT 및 C41/81S SMAD2 양자 모두에 대해 p-SMAD2(L3)를 감소시켰다 (도 10a). Zdhhc7 녹아웃이 또한 p-SMAD2(L3) C41/81S를 감소시켰다는 사실은 DHHC7이 링커 영역에서 SMAD2 인산화에 기여할 수 있는 다른 기질을 가질 수 있음을 시사한다. p-SMAD2(L3) 수준과 일치하게, TH17 세포 분화 수준은 C41/81S 돌연변이체 또는 Zdhhc7 녹아웃에 의해 억제되었다 (도 10b). Zdhhc7 녹아웃은, SMAD2 C41/81S 돌연변이체에 약한 영향을 미쳤는데, 이것은 DHHC7이 이전에 보여준 바와 같이 TH17 분화의 또 다른 중요한 인자인 STAT3도 조절하기 때문일 수 있다. APT2 녹아웃은 WT APT2와 비교하여 비장세포에서 p-SMAD2(L3)를 약간 증가시켰지만 그 차이는 통계적으로 유의하지 않았다 (도 10c). 흥미롭게도, p-SMAD2(L3) 수준과 달리, APT2 녹아웃은 WT 또는 C41/81S 돌연변이 SMAD2를 과발현하는 비장세포에서 TH17 세포 분화를 억제하였다 (도 10d). 다음으로 본 발명자들은 SMAD2/STAT3 복합체의 형성을 평가하였다. Zdhhc7 녹아웃은 SMAD2와 STAT3 사이의 결합을 감소시켰다 (도 10e). 팔미토일화-탈팔미토일화 주기가 중요하다는 아이디어와 일관되게, APT2 녹아웃은 또한 SMAD2-STAT3 결합을 감소시켰으며, 이는 TH17 분화 결과와도 일치하는 것이다 (도 10f). 상기 데이터는 DHHC7 및 APT2에 의해 촉매되는 팔미토일화-탈팔미토일화 주기가 SMAD2-STAT3 결합 및 TH17 분화 촉진에 중요한 역할을 한다는 것을 시사한다.
SMAD2 S-팔미토일화의 억제는 다발성 경화증 마우스 모델에서 Th17 세포 분화 및 염증을 약화시킨다.
[00112] TH17의 전염증성 역할은 다발성 경화증의 발병기전에 기여하는 것으로 잘 알려져 있다. SMAD2의 팔미토일화-탈팔미토일화 주기를 표적으로 하는 것이 TH17를 촉진하고 및 염증을 악화시킬 것인지를 시험하기 위해, 본 발명자들은 Myelin Oligodendrocyte Glycoprotein (MOG35-55) 유도된 Experimental Autoimmune Encephalomyelitis (EAE) 마우스 (MS에 대한 고전적 실험 모델)에서 DHHC7 및 APT2 녹아웃의 효과를 연구하였다. EAE를 유도하기 위해 MOG35-55 및 백일해 독소를 투여한 후, 체중은 WT, DHHC7 녹아웃 또는 APT2 녹아웃 마우스에서 유의한 감소를 나타내지 않았다 (도 11a). 후속적으로, 본 발명자들은 마우스의 임상 증상을 스코어링하였고, DHHC7 및 APT2 녹아웃 마우스 양자 모두가 WT 마우스에 비해 더 낮은 임상 스코어를 갖는다는 것을 발견하였다 (도 11b). 더욱이, 시험관내 데이터 (도 9c-9d)와 일치하게, DHHC7 및 APT2 녹아웃 양자 모두 각각 마우스 비장에서 TH17 분화를 감소시켰다 (도 11c).
[00113] TGFβ 수용체의 직접 기질로서, 조절된 SMAD (R-SMAD)는 핵-세포질 이동을 경험하고 TGFβ 신호전달에서 중요한 역할을 한다. 많은 번역 후 변형이 이 과정에 포함된다. 예를 들어, COOH-말단 꼬리 인산화는 R-SMAD 활성화에 중요하고, 링커 영역 인산화는 기능적인 DNA-결합 전사 인자와의 복합체 형성에 필수적이다. SMAD2와 SMAD3은 많은 공통 기능을 공유하지만, SMAD2는 TH17을 촉진하는 반면 SMAD3은 Treg를 촉진하면서 T 세포 분화에 있어서 이들은 반대 역할을 한다. 세포가 어떻게 하나의 또는 다른 하나의 T 세포 분화 과정을 선호하도록 이 두 가지 유사한 R-SMAD들을 제어하는지는 아직 불분명하다. 본 발명에서, 본 발명자들은 SMAD3가 아닌 SMAD2가 팔미토일화될 수 있고, 팔미토일화-탈팔미토일화 주기는 핵-세포질 이동 및 Co-SMAD (SMAD4) 및 STAT3와의 결합을 촉진한다는 것을 발견하였다. 이 연구는 SMAD2 팔미토일화가 링커 영역에서 그의 인산화를 촉진하지만, TH17 분화에서 활성화되기 위해서는, 그것이 STAT3와 결합하고 APT2에 의해 탈팔미토일화되어 핵으로 전위되어야 한다는 것을 입증한다. 본 발명의 결과는 S-팔미토일화 주기가 나이브 T 세포를 Treg 세포보다는 TH17 세포로 분화시키고, 다발성 경화증 마우스 모델에서 염증을 촉진한다는 것을 보여주었다.
[00114] 팔미토일화의 세포내 역학은, 보존된 Asp-His-His-Cys 서열 모티프의 존재에 의해 정의되는, DHHC로 알려진, 23개의 팔미토일트랜스퍼라제 패밀리에 의해 조절된다. 대부분의 DHHC 효소는, 소포체 (ER), 골지체 및 원형질막을 포함하는 세포막에 위치한다. S-팔미토일화는 아실-단백질 티오에스테라제 (APT1, APT2 및 ABHD 패밀리 구성원)에 의해 제거된다. 모든 DHHC 및 APT의 스크리닝을 통해, 본 발명자들은 DHHC7 및 APT2가 각각 SMAD2 팔미토일화 및 탈팔미토일화를 촉매하고, TH17 세포 분화를 촉진한다는 것을 발견하였다. 그러나 DHHC7 및 APT2-촉매되는 SMAD2 팔미토일화-탈팔미토일화 주기가 SMAD2 인산화 및 생물학적 기능을 조절하는방법에 대한 기계적 세부 사항은 STAT3의 것과 다르다. DHHC7는 N-말단 (Cysl08)에서 STAT3을 팔미토일화하고 막 동원 및 C-말단 (Tyr705)에서의 인산화를 촉진한다. APT2는 인산화된 STAT3 (p-STAT3)에 대해 더 높은 친화력을 가지며, 이를 탈팔미토일화하여 핵으로의 전위를 가능케 한다. 본 발명에서, 본 발명자들은 DHHC7이 SMAD2를 팔미토일화하지만, C-말단에서 SMAD2의 TGFbR-매개 인산화를 촉진하지는 않는다는 것을 발견하였다. 대신, 팔미토일화는 ERK에 의해 촉매되는 링커 영역에서의 SMAD2 인산화를 촉진한다. SMAD2 탈팔미토일화의 경우, APT2는, 인산화된 STAT3에 대한 그의 선호와는 달리, C-말단 인산화된 SMAD2 (Ser465/Ser467)에 대한 어떠한 선호도가 없다. 본 발명자들은, SMAD2의 파트너로서, STAT3가 링커 인산화된 SMAD2와 우선적으로 결합하고 핵으로 전위되어 RORCIL17A 유전자를 촉진한다는 것을 발견하였다. SMAD2-STAT3 복합체의 핵 전위는 APT2-촉매화되는 탈팔미토일화에 의해 촉진된다. 본 발명자들은 Ser255에서의 인산화가 SMAD2와 STAT3 사이의 결합을 촉진하는 주요 인산화 부위임을 확인하였다. 이것은, SMAD2-STAT3 복합체를 활성화하여 TH17 분화를 촉진하기 위하여, DHHC7과 APT2에 의해 조절되는 팔미토일화-탈팔미토일화 주기를 나타낸다.
[00115] SMAD2 및 SMAD3은 매우 상동성이고 동일한 업스트림 신호전달 경로 및 심지어 많은 다운스트림 신호전달 결과를 공유하지만, 이들은 T 세포 분화 과정에서 각각 TH17 및 Treg 세포를 반대로 촉진한다. 이전의 보고는 TH17 분화를 촉진하는 데 있어 SMAD2 링커 인산화의 중요한 역할을 설명했지만, 나이브 T 세포가 어떻게 인산화되지 않은 SMAD3 대신 p-SMAD2(L3)와 STAT3의 상호작용을 제어하는지는 해결되지 않은 질문이다. 본 연구는, 상기 데이터가 SMAD3가 아닌 SMAD2가 DHHC7에 의해 팔미토일화됨을 시사했기 때문에, DHHC7-촉매되는 S-팔미토일화가 TH17를 촉진하는 반면 Treg를 억제하는 메커니즘이 될 수 있음을 제시한다. 본 발명자들은, 보다 활성인 DHHC7을 갖는 나이브 T 세포에서 SMAD2가 링커 영역 상에서 팔미토일화 및 인산화될 것이고, STAT3에 결합하고 TH17 경로를 촉진할 것이라고 가정한다. 대조적으로, DHHC7이 없을 때, SMAD3는 STAT3와 복합체가 될 것이고 따라서 Treg 분화가 선호될 것이다.
[00116] TGFβ-유도된 SMAD2는 IL-17의 발현을 특징으로 하는 전염증성 TH17 세포에서 중요한 전사 인자로서 작용한다. TH17 세포는 다발성 경화증 (MS) 환자에서 풍부하고, 재발 중에 더 증가한다. 따라서, TH17 축의 세포는 다발성 경화증 치료제의 주요 표적을 나타낸다. 흥미롭게도, 건강한 대조군과 비교하여, MS 환자의 순환 CD4+ T 세포에서 SMAD2, SMAD3 및 SMAD4에 대해 차등적 유전자 발현은 관찰되지 않았다. 이는 SMAD2의 번역 후 조절이 MS의 발병기전에 매우 중요할 수 있음을 시사하였다. S-팔미토일화가 TH17 분화에서 SMAD2의 역할을 촉진한다는 발견 후, 본 발명자들은 DHHC7 또는 APT2를 표적화함으로써 SMAD2-STAT3 결합을 교란시키는 것이 MS에 대한 EAE 모델에서 TH17 세포 분화를 억제하고 마우스를 보호한다는 것을 추가로 입증하였다. 이러한 결과는 SMAD2/STAT3의 S-팔미토일화를 표적화하는 것이 유망한 MS 치료 전략임을 시사한다. TH17 세포가 다양한 자가면역 질환 (IBD, 관절염, I형 당뇨병 등) 및 암, 이식편대숙주병 및 감염성 질환에서 중요한 역할을 한다는 점을 감안할 때, DHHC7-APT2 조절 팔미토일화 주기는 다양한 질환에 대한 새로운 통찰력과 치료 전략을 제공할 것으로 기대된다.
실시예 5
범-DHHC 억제제인 2-BP는 인플라마좀 활성화의 LPS 프라이밍 단계 동안 사이토카인 mRNA 발현을 감소시킨다.
[00117] 골수-유래 대식세포 (BMDM)는, 인플라마좀 활성화를 위해 BMDM을 프라이밍할 수 있는, 100 ng/mL 지질다당류 (LPS)로 처리되었다. 모든 DHHC 계열의 팔미토일트랜스퍼라제 (DHHC)를 억제하는 소분자인, 2-브로모팔미테이트 (2-BP)를 LPS와 함께 10 μM 또는 25 μM로 첨가하였다. 세포를 6시간 동안 LPS 및 2-BP로 배양한 다음 몇 가지 전-염증성 사이토카인: IL-1 베타 (도 12a), IL-6 (도 12b), IL-12 베타 (도 12c) 및 IL-18 (도 12d)의 mRNA 수준을 정량적 역전사 PCR (qRT-PCR)로 측정하였다. 2-BP는 농도 의존적 방식으로 이들 모든 사이토카인의 mRNA 수준을 감소시킬 수 있으며, 이는 DHHC를 억제하면 인플라마좀 활성화의 프라이밍 단계를 감소시킬 수 있음을 시사한다.
2-BP는 NLRP3-매개 인플라마좀 활성화에 영향을 미친다.
[00118] 복막 대식세포를 먼저 DMEM 배지 (혈청 없음) 내 LPS (200 ng/mL)로 4시간 동안 프라이밍한 다음, 2-BP (25 μM)과 ATP (5 mM) 또는 니제리신 (10 μM)을 세포 배양물에 첨가하고 l시간 동안 배양하였다. ATP와 니제리신은 NLRP3 인플라마솜을 활성화하는 데 일반적으로 사용되는 두 가지 시약이다. 이어서, 배지로 분비되는 IL-1 베타의 수준을 측정함으로써 NLRP3 인플라마좀의 활성화를 모니터링하였다 (도 13). 데이터는 2-BP로 DHHC를 억제하면 NLRP3 인플라마좀 활성화를 감소시킬 수 있음을 뒷받침한다.
DHHC7 녹아웃은 인플라마좀 활성화 동안 골수-유래 대식세포 (BMDM)에서 lL-1b 및 1L-18 분비를 감소시킨다.
[00119] DHHC7 WT 및 녹아웃 BMDM을 DEME 배지 내 LPS (10 ng/mL)로 밤새 프라이밍하였다. 다음날, 배지를 LPS (10 ng/mL) 및 ATP (5 mM)가 포함된 DMEM 또는 LPS (10 ng/mL) 및 니제리신 (10 μM)이 포함된 DMEM으로 변경하고 NLRP3 인플라마좀을 활성화하기 위해 1시간 동안 반응시켰다. 그런 다음 배지를 수집하고 분비된 IL-1 베타 (도 14a) 및 IL-18 (도 14b)을 ELISA 키트를 사용하여 측정하였다. 결과는 DHHC7 녹아웃이 NLRP3 인플라마좀 활성을 유의하게 감소시킬 수 있음을 보여주었다.
APT2 녹아웃은 인플라마좀 활성화 동안 BMDM의 IL-1b 분비에 약간의 영향을 미친다.
[00120] APT2 WT 및 녹아웃 BMDM을 4시간 동안 DEME 배지 내 LPS (200 ng/mL)로 프라이밍하였니다. 그런 다음 배지를 LPS (200 ng/mL) 및 ATP (5 mM)가 포함된 DMEM 또는 LPS (10 ng/mL) 및 니제리신 (10 μM)이 포함된 DMEM으로 변경하고 1시간 동안 배양하여 NLRP3 인플라마좀을 활성화하였다. 그런 다음 배지를 수집하고 ELISA 키트를 사용하여 분비된 IL-1 베타를 측정하였다. 결과는 APT2 녹아웃이 NLRP3 인플라마좀 활성 또한 감소시킬 수 있음을 보여주었지만, 이는 DHHC7 녹아웃과 비교하여 상당히 덜하였다 (도 15).
DHHC7 녹아웃은 마우스에서 인플라마좀 활성화를 감소시킨다: LPS-유도 내독성 쇼크.
[00121] 성체 (> 8주령) B6.129P2(FVB) DHHC7 WT 또는 녹아웃 마우스에 약 100 μl의 멸균 PBS 완충액 중 LPS (35 mg/kg)를 복강내 주사하였다. 12시간 후, 마우스를 안락사시키고, 혈청 내 IL-1베타 수준의 분석을 위해 혈액을 수집하였다. DHHC7 녹아웃은 혈청으로 분비되는 IL-1베타의 양을 유의하게 감소시켰으며, 이는 DHHC7 녹아웃이 마우스에서 인플라마좀 활성화를 감소시켰음을 시사한다 (도 16).
루푸스 신증 마우스 모델: APT2 억제제 ML349는 마우스 소변 내 단백질 농도를 감소시킨다.
[00122] 25주 NZB/W F1 암컷 마우스에 비히클 용액 (DMSO+PBS) 또는 APT2 억제제 ML349를 25 mg/Kg으로 8주 동안 주당 3회 IP 주사를 통해 투여하였다. 4주간의 처리 후, 소변을 채취하고 소변 내 단백질 농도를 측정하여, 단백뇨 분석을 통해 매주 마우스의 루푸스 발병률을 평가하였다. 데이터는 APT2 억제제 ML349가 소변에서 단백질 농도를 감소시킬 수 있음을 보여주었다 (도 17a-17b). 본 발명자들이 이 실험을 한 것은 처음이었고, 실험이 시작된 후, 본 발명자들은 25주에 질환 표현형이 이미 매우 심각하다는 것을 알아차렸다. ML349 치료가 더 일찍 시작된다면 그 효과는 더욱 분명하고 유의미해질 것으로 기대된다.
SEQUENCE LISTING <110> Cornell University <120> TARGETING THE PALMOTYLATION/DEPALMOTYLATION CYCLE TO TREAT INFLAMMATORY DISEASES <130> 38342WO (9346-02-PC) <150> 63/014,735 <151> 2020-04-24 <160> 22 <170> PatentIn version 3.5 <210> 1 <211> 308 <212> PRT <213> Homo sapiens <400> 1 Met Gln Pro Ser Gly His Arg Leu Arg Asp Val Glu His His Pro Leu 1 5 10 15 Leu Ala Glu Asn Asp Asn Tyr Asp Ser Ser Ser Ser Ser Ser Ser Glu 20 25 30 Ala Asp Val Ala Asp Arg Val Trp Phe Ile Arg Asp Gly Cys Gly Met 35 40 45 Ile Cys Ala Val Met Thr Trp Leu Leu Val Ala Tyr Ala Asp Phe Val 50 55 60 Val Thr Phe Val Met Leu Leu Pro Ser Lys Asp Phe Trp Tyr Ser Val 65 70 75 80 Val Asn Gly Val Ile Phe Asn Cys Leu Ala Val Leu Ala Leu Ser Ser 85 90 95 His Leu Arg Thr Met Leu Thr Asp Pro Gly Ala Val Pro Lys Gly Asn 100 105 110 Ala Thr Lys Glu Tyr Met Glu Ser Leu Gln Leu Lys Pro Gly Glu Val 115 120 125 Ile Tyr Lys Cys Pro Lys Cys Cys Cys Ile Lys Pro Glu Arg Ala His 130 135 140 His Cys Ser Ile Cys Lys Arg Cys Ile Arg Lys Met Asp His His Cys 145 150 155 160 Pro Trp Val Asn Asn Cys Val Gly Glu Lys Asn Gln Arg Phe Phe Val 165 170 175 Leu Phe Thr Met Tyr Ile Ala Leu Ser Ser Val His Ala Leu Ile Leu 180 185 190 Cys Gly Phe Gln Phe Ile Ser Cys Val Arg Gly Gln Trp Thr Glu Cys 195 200 205 Ser Asp Phe Ser Pro Pro Ile Thr Val Ile Leu Leu Ile Phe Leu Cys 210 215 220 Leu Glu Gly Leu Leu Phe Phe Thr Phe Thr Ala Val Met Phe Gly Thr 225 230 235 240 Gln Ile His Ser Ile Cys Asn Asp Glu Thr Glu Ile Glu Arg Leu Lys 245 250 255 Ser Glu Lys Pro Thr Trp Glu Arg Arg Leu Arg Trp Glu Gly Met Lys 260 265 270 Ser Val Phe Gly Gly Pro Pro Ser Leu Leu Trp Met Asn Pro Phe Val 275 280 285 Gly Phe Arg Phe Arg Arg Leu Pro Thr Arg Pro Arg Lys Gly Gly Pro 290 295 300 Glu Phe Ser Val 305 <210> 2 <211> 308 <212> PRT <213> Mus musculus <400> 2 Met Gln Pro Ser Gly His Arg Leu Arg Asp Ile Glu His His Pro Leu 1 5 10 15 Leu Thr Asp Asn Asp Asn Tyr Asp Ser Ala Ser Ser Ser Ser Ser Glu 20 25 30 Thr Asp Met Ala Asp Arg Val Trp Phe Ile Arg Asp Gly Cys Gly Met 35 40 45 Val Cys Ala Val Met Thr Trp Leu Leu Val Val Tyr Ala Asp Phe Val 50 55 60 Val Thr Phe Val Met Leu Leu Pro Ser Lys Asp Phe Trp Tyr Ser Val 65 70 75 80 Val Asn Gly Val Leu Phe Asn Cys Leu Ala Val Leu Ala Leu Ser Ser 85 90 95 His Leu Arg Thr Met Leu Thr Asp Pro Gly Ala Val Pro Lys Gly Asn 100 105 110 Ala Thr Lys Glu Tyr Met Glu Ser Leu Gln Leu Lys Pro Gly Glu Val 115 120 125 Ile Tyr Lys Cys Pro Lys Cys Cys Cys Ile Lys Pro Glu Arg Ala His 130 135 140 His Cys Ser Ile Cys Lys Arg Cys Ile Arg Lys Met Asp His His Cys 145 150 155 160 Pro Trp Val Asn Asn Cys Val Gly Glu Lys Asn Gln Arg Phe Phe Val 165 170 175 Leu Phe Thr Met Tyr Ile Ala Leu Ser Ser Val His Ala Leu Ile Leu 180 185 190 Cys Gly Leu Gln Phe Ile Ser Cys Val Arg Gly Gln Trp Thr Glu Cys 195 200 205 Ser Asp Phe Ser Pro Pro Ile Thr Val Ile Leu Leu Val Phe Leu Cys 210 215 220 Leu Glu Gly Leu Leu Phe Phe Thr Phe Thr Ala Val Met Phe Gly Thr 225 230 235 240 Gln Ile His Ser Ile Cys Asn Asp Glu Thr Glu Ile Glu Arg Leu Lys 245 250 255 Ser Glu Lys Pro Thr Trp Glu Arg Arg Leu Arg Trp Glu Gly Met Lys 260 265 270 Ser Val Phe Gly Gly Pro Pro Ser Leu Leu Trp Met Asn Pro Phe Val 275 280 285 Gly Phe Arg Leu Arg Arg Leu Gln Met Arg Thr Arg Lys Gly Gly Pro 290 295 300 Glu Phe Ser Val 305 <210> 3 <211> 299 <212> PRT <213> Homo sapiens <400> 3 Met Met Leu Ile Pro Thr His His Phe Arg Asn Ile Glu Arg Lys Pro 1 5 10 15 Glu Tyr Leu Gln Pro Glu Lys Cys Val Pro Pro Pro Tyr Pro Gly Pro 20 25 30 Val Gly Thr Met Trp Phe Ile Arg Asp Gly Cys Gly Ile Ala Cys Ala 35 40 45 Ile Val Thr Trp Phe Leu Val Leu Tyr Ala Glu Phe Val Val Leu Phe 50 55 60 Val Met Leu Ile Pro Ser Arg Asp Tyr Val Tyr Ser Ile Ile Asn Gly 65 70 75 80 Ile Val Phe Asn Leu Leu Ala Phe Leu Ala Leu Ala Ser His Cys Arg 85 90 95 Ala Met Leu Thr Asp Pro Gly Ala Val Pro Lys Gly Asn Ala Thr Lys 100 105 110 Glu Phe Ile Glu Ser Leu Gln Leu Lys Pro Gly Gln Val Val Tyr Lys 115 120 125 Cys Pro Lys Cys Cys Ser Ile Lys Pro Asp Arg Ala His His Cys Ser 130 135 140 Val Cys Lys Arg Cys Ile Arg Lys Met Asp His His Cys Pro Trp Val 145 150 155 160 Asn Asn Cys Val Gly Glu Asn Asn Gln Lys Tyr Phe Val Leu Phe Thr 165 170 175 Met Tyr Ile Ala Leu Ile Ser Leu His Ala Leu Ile Met Val Gly Phe 180 185 190 His Phe Leu His Cys Phe Glu Glu Asp Trp Thr Lys Cys Ser Ser Phe 195 200 205 Ser Pro Pro Thr Thr Val Ile Leu Leu Ile Leu Leu Cys Phe Glu Gly 210 215 220 Leu Leu Phe Leu Ile Phe Thr Ser Val Met Phe Gly Thr Gln Val His 225 230 235 240 Ser Ile Cys Thr Asp Glu Thr Gly Ile Glu Gln Leu Lys Lys Glu Glu 245 250 255 Arg Arg Trp Ala Lys Lys Thr Lys Trp Met Asn Met Lys Ala Val Phe 260 265 270 Gly His Pro Phe Ser Leu Gly Trp Ala Ser Pro Phe Ala Thr Pro Asp 275 280 285 Gln Gly Lys Ala Asp Pro Tyr Gln Tyr Val Val 290 295 <210> 4 <211> 299 <212> PRT <213> Mus musculus <400> 4 Met Met Leu Ile Pro Thr His His Phe Arg Asp Ile Glu Arg Lys Pro 1 5 10 15 Glu Tyr Leu Gln Pro Glu Lys Cys Ala Pro Pro Pro Phe Pro Gly Pro 20 25 30 Ala Gly Ala Met Trp Phe Ile Arg Asp Gly Cys Gly Ile Ala Cys Ala 35 40 45 Ile Val Thr Trp Phe Leu Val Leu Tyr Ala Glu Phe Val Val Leu Phe 50 55 60 Val Met Leu Val Pro Ser Arg Asp Tyr Ala Tyr Ser Ile Ile Asn Gly 65 70 75 80 Ile Val Phe Asn Leu Leu Ala Phe Leu Ala Leu Ala Ser His Cys Arg 85 90 95 Ala Met Leu Thr Asp Pro Gly Ala Val Pro Lys Gly Asn Ala Thr Lys 100 105 110 Glu Phe Ile Glu Ser Leu Gln Leu Lys Pro Gly Gln Val Val Tyr Lys 115 120 125 Cys Pro Lys Cys Cys Ser Ile Lys Pro Asp Arg Ala His His Cys Ser 130 135 140 Val Cys Lys Arg Cys Ile Arg Lys Met Asp His His Cys Pro Trp Val 145 150 155 160 Asn Asn Cys Val Gly Glu Asn Asn Gln Lys Tyr Phe Val Leu Phe Thr 165 170 175 Met Tyr Ile Ala Leu Ile Ser Leu His Ala Leu Ile Met Val Gly Phe 180 185 190 His Phe Leu His Cys Phe Glu Glu Asp Trp Thr Lys Cys Ser Ser Phe 195 200 205 Ser Pro Pro Thr Thr Val Ile Leu Leu Ile Leu Leu Cys Phe Glu Ala 210 215 220 Leu Leu Phe Leu Ile Phe Thr Ser Val Met Phe Gly Thr Gln Val His 225 230 235 240 Ser Ile Cys Thr Asp Glu Thr Gly Ile Glu Gln Leu Lys Lys Glu Glu 245 250 255 Arg Arg Trp Ala Lys Lys Thr Lys Trp Met Asn Met Lys Ala Val Phe 260 265 270 Gly His Pro Phe Ser Leu Gly Trp Ala Ser Pro Phe Ala Thr Pro Asp 275 280 285 Gln Gly Lys Ala Asp Pro Tyr Gln Tyr Val Val 290 295 <210> 5 <211> 231 <212> PRT <213> Homo sapiens <400> 5 Met Cys Gly Asn Thr Met Ser Val Pro Leu Leu Thr Asp Ala Ala Thr 1 5 10 15 Val Ser Gly Ala Glu Arg Glu Thr Ala Ala Val Ile Phe Leu His Gly 20 25 30 Leu Gly Asp Thr Gly His Ser Trp Ala Asp Ala Leu Ser Thr Ile Arg 35 40 45 Leu Pro His Val Lys Tyr Ile Cys Pro His Ala Pro Arg Ile Pro Val 50 55 60 Thr Leu Asn Met Lys Met Val Met Pro Ser Trp Phe Asp Leu Met Gly 65 70 75 80 Leu Ser Pro Asp Ala Pro Glu Asp Glu Ala Gly Ile Lys Lys Ala Ala 85 90 95 Glu Asn Ile Lys Ala Leu Ile Glu His Glu Met Lys Asn Gly Ile Pro 100 105 110 Ala Asn Arg Ile Val Leu Gly Gly Phe Ser Gln Gly Gly Ala Leu Ser 115 120 125 Leu Tyr Thr Ala Leu Thr Cys Pro His Pro Leu Ala Gly Ile Val Ala 130 135 140 Leu Ser Cys Trp Leu Pro Leu His Arg Ala Phe Pro Gln Ala Ala Asn 145 150 155 160 Gly Ser Ala Lys Asp Leu Ala Ile Leu Gln Cys His Gly Glu Leu Asp 165 170 175 Pro Met Val Pro Val Arg Phe Gly Ala Leu Thr Ala Glu Lys Leu Arg 180 185 190 Ser Val Val Thr Pro Ala Arg Val Gln Phe Lys Thr Tyr Pro Gly Val 195 200 205 Met His Ser Ser Cys Pro Gln Glu Met Ala Ala Val Lys Glu Phe Leu 210 215 220 Glu Lys Leu Leu Pro Pro Val 225 230 <210> 6 <211> 231 <212> PRT <213> Mus musculus <400> 6 Met Cys Gly Asn Thr Met Ser Val Pro Leu Leu Thr Asp Ala Ala Thr 1 5 10 15 Val Ser Gly Ala Glu Arg Glu Thr Ala Ala Val Ile Phe Leu His Gly 20 25 30 Leu Gly Asp Thr Gly His Ser Trp Ala Asp Ala Leu Ser Thr Ile Arg 35 40 45 Leu Pro His Val Lys Tyr Ile Cys Pro His Ala Pro Arg Ile Pro Val 50 55 60 Thr Leu Asn Met Lys Met Val Met Pro Ser Trp Phe Asp Leu Met Gly 65 70 75 80 Leu Ser Pro Asp Ala Pro Glu Asp Glu Ala Gly Ile Lys Lys Ala Ala 85 90 95 Glu Asn Ile Lys Ala Leu Ile Glu His Glu Met Lys Asn Gly Ile Pro 100 105 110 Ala Asn Arg Ile Val Leu Gly Gly Phe Ser Gln Gly Gly Ala Leu Ser 115 120 125 Leu Tyr Thr Ala Leu Thr Cys Pro His Pro Leu Ala Gly Ile Val Ala 130 135 140 Leu Ser Cys Trp Leu Pro Leu His Arg Asn Phe Pro Gln Ala Ala Asn 145 150 155 160 Gly Ser Ala Lys Asp Leu Ala Ile Leu Gln Cys His Gly Glu Leu Asp 165 170 175 Pro Met Val Pro Val Arg Phe Gly Ala Leu Thr Ala Glu Lys Leu Arg 180 185 190 Thr Val Val Thr Pro Ala Arg Val Gln Phe Lys Thr Tyr Pro Gly Val 195 200 205 Met His Ser Ser Cys Pro Gln Glu Met Ala Ala Val Lys Glu Phe Leu 210 215 220 Glu Lys Leu Leu Pro Pro Val 225 230 <210> 7 <211> 3448 <212> DNA <213> Homo sapiens <400> 7 acttccggcg ctcgcaccgc cccgctctcc agccaaggct ccgggctgag gcatttgctt 60 ggctgcagcc tccttccgac ctgcccggcg ggacccaggg gaccaagccg agccgagccg 120 cggggcccgc tccagcccgg ccatgagcgc ggccgcatga tgcgtccctg cctcggccgc 180 tgcagtcgcc gccgccgccg ccgcaggccg ggaggagccg cagcgccggg cgaccccgcc 240 cgggcctcgg atccgatcac ataggacagt atgcacctta agatcctgaa gaaacggcac 300 aaaatgttca agtgatgttt agaaataact tgtgagggtg cgtcagggaa atcatgcagc 360 catcaggaca caggctccgg gacgtcgagc atcatcctct cctggctgaa aatgacaact 420 atgactcttc atcgtcctcc tcctccgagg ctgacgtggc tgaccgggtc tggttcatcc 480 gtgacggctg cggcatgatc tgtgctgtca tgacgtggct tctggtcgcc tatgcagact 540 tcgtggtgac tttcgtcatg ctgctgcctt ccaaagactt ctggtactct gtggtcaacg 600 gggtcatctt taactgcttg gccgtgcttg ccctgtcatc ccacctgaga accatgctca 660 ccgaccctgg ggcagtaccc aaaggaaacg ctacgaaaga atacatggag agcttgcagc 720 tgaagcccgg ggaagtcatc tacaagtgcc ccaagtgctg ctgtattaaa cccgagcgcg 780 cccaccactg cagtatttgc aaaagatgta ttcggaaaat ggatcatcac tgcccgtggg 840 tgaacaattg tgtaggagaa aagaatcaaa gattttttgt gctcttcact atgtatatag 900 ctctgtcttc agtccatgct ctgatccttt gtggatttca gttcatctcc tgtgtccgag 960 ggcagtggac tgaatgcagt gatttttcac ctccgataac tgtaatcctg ttgatcttcc 1020 tgtgccttga gggtcttctg tttttcactt tcactgcagt tatgtttggc acccaaatcc 1080 actccatatg caacgacgag acggagatcg agcgattgaa aagtgagaag cccacatggg 1140 agcggaggct gcgatgggaa gggatgaagt ccgtctttgg ggggcccccc tcactcctct 1200 ggatgaatcc ctttgtgggc ttccgattta ggcgactgcc cacgagaccc agaaaaggtg 1260 gcccggagtt ctcagtgtga ggcgtggctc atcagactga aacttgctca cagacttcca 1320 gttatttatt tggggtctga aggatatcaa cagctcatct gtgaccaaca gggcaactgg 1380 aacctacaca aaccaattgc ttgcagcaag cagagtttta tatatttata gtcacagatg 1440 gcagaggaag aggctctcag tccccacctg tacaacaacg gaaaggtgtg tggccacacg 1500 aagaagccaa acgccgtggc ctcctgcaga gctggggctt ctgtggagaa tacttcgggt 1560 tattacatgg gttattcaaa tcctgggtcc tgagctgctg tttccaatca tgaagaaaaa 1620 cagtgaatcc agtgaacagg gattctccaa gcagtcattt cagggggctc ctgctgaccc 1680 cgccactcag cagtgcactc cccggatcac agcagggcgt ttacatagaa agacgttttg 1740 gtctcgatta gctccgatgc tttgcactga agttgcaaaa gatctgtgca ctgaacagtg 1800 aaggtggctt ccggcacact ccccgctgcc ccggaagaga catcctttga ccctctcagc 1860 aagtctgtgt gtgtgcgtgt ctgtgcgtgt gcgcgcgtgt gtgcatgtgt gtcaaaattg 1920 ccagtgttgt ttaggcaatg taacatttac cggctgtgta cagcaaacaa gctatttttt 1980 agaaaccgac gtttcaggga agaggggaga gagccgcggg gtcctgcccg tggttactat 2040 gaatgtattg ctgttggagg acatctcgat ccaaagaaca gccgttcctg tgcggccctt 2100 cgttgccctc ctgctttcat tttttaaaga aatcttgagt gcttgagggc cttggaactg 2160 attttttttt tttgttccag ccaaattagc agtgtataaa tggcacctag gtaagagcag 2220 agctgcggct cggtgacttg atacttgggg cagcccgatg ctgtgtgtgg ggcaggggag 2280 gcatccttac tggagaggca gggcccagcc attgggcacc tctgggaagg ggaggggacc 2340 atgaggcagc cagcccctgg caggggcgac tgtgccaccg caggcagcgc tccagtcggg 2400 aatggccagg atggcgccct cttgttggag tttttggtta gcttttacgt tttcttctcc 2460 acccacggca caggtgataa aataggatcc ttggtgcgga gcttaaaatt atgccagaaa 2520 gccaacagct cccctcgtgg ggccttgcct taaacttgcc tggtttgtac attttttgcc 2580 ggacgcatca agaagcaatc tgtgacaaag tctgagggtc ttcctttatg cttgccctcc 2640 acactaagag aagttggcgt ctccctcctg ggaattgttt tgcctttctg ttcatctgtg 2700 aactgttttt tgtttttaat tactctgtac cccatccgaa tcagggcttc taccactgct 2760 gatgcaaaac cacaaaggga cctacctgag ccaccgtcct agccaagcga gcaaacctgc 2820 agggggtttg gaagtggact tggtcaccgc agaagcgtgt gcgccgttgg gggaagagct 2880 gcgtcacagc cagagggaca aagtgtgggt gatcctggag acgccagttt ccgagattgt 2940 tctgcatatt catttgcaca ttgttgtctg ggttggacat gcgtgtgggc ttcagtgtga 3000 ggcttttaat atgtatatcc tgttatcaat aaaacaatta tccaagtggt tgaatcctgt 3060 gagacttggc aagtgtgtgc aaatcaagta tacttgactt ttcaacctct tctttcaatg 3120 taacttttat atgaaataaa gtaatcaatt aacagttctc aaatggcttc caaagcgccc 3180 gttcttcctg gatggtggtg ttttcagggg gtgcctttcc gtgcttcgtg ggcccagccc 3240 caggctgtta aggtcactcc caaacagttt ccagaaactc taaatgcttt tgtgcccatg 3300 acaagtgacc tgggcactca agcgcgactc acaaatgttg cccagtgagt actgttgctt 3360 gttgaatgtt taattcgact cccatcgttt tacttagtcc tttttttagt gcacgttgaa 3420 ataaaaacaa tgtttcaaaa tctccaca 3448 <210> 8 <211> 2671 <212> DNA <213> Mus musculus <400> 8 cagcctggga cagagcaagt cccaagtaaa gaacaggtta ggtccaggcc tggtggtaca 60 cacctttaat ctgggccaca ccttctgctg gagccctgca taagaaccgt ggaggaagca 120 aggcttctcc tccgcctgct tgcacttact tgccagcaca tctgttggaa gctacttctt 180 caggaacccg gctcatacag aagagcattg agacacccag cctcacggga ctgagctgct 240 aaccagattc ttggagttcc cgtttgcatc tgcccgttgt tagggtgttt cagggaatca 300 tgcagccgtc gggacacagg ctccgggaca tcgagcacca tcctctcctg actgacaatg 360 acaattacga ctcagcatcc tcttcgtcct ccgagactga catggcagac agggtgtggt 420 tcatccgaga tggctgtggc atggtctgtg ctgtcatgac gtggcttctc gtcgtctatg 480 cagacttcgt ggtgaccttt gtcatgctgc tgccttccaa agacttctgg tactccgtgg 540 tgaacggagt cctcttcaac tgcttggcgg tgctcgcgct gtcctcccac ctgagaacca 600 tgctcactga cccgggtgct gtccccaaag gcaacgccac gaaggagtac atggagagct 660 tgcagctgaa gccaggcgag gtgatctaca agtgccccaa gtgttgctgc atcaagccgg 720 aacgtgccca ccactgcagt atttgcaaga gatgcattcg aaagatggac catcactgcc 780 cgtgggtgaa caactgcgtc ggggagaaga atcagaggtt cttcgtgctt ttcaccatgt 840 acatagctct gtcttcggtt catgctctga ttctctgtgg gcttcagttc atctcctgcg 900 tccgagggca gtggacagag tgcagcgact tctctcctcc cataactgta atcctgttgg 960 tcttcctgtg ccttgagggc ctcctgttct tcaccttcac cgcagtcatg ttcggcaccc 1020 agatccactc gatatgcaat gatgaaacag agatcgagag gctgaagagc gagaagccca 1080 cgtgggagcg caggctgcgg tgggaaggaa tgaagtctgt cttcgggggc cctccctccc 1140 tcctctggat gaaccccttc gttggcttcc gactcaggcg gctgcagatg aggaccagga 1200 aaggaggccc cgagttctct gtctgagcct tcagggtggg aatgtctgca gacatccgtg 1260 ctcagtggcc tgcgtgcaca gcagccttgt gggcagatgg agcgggccag ctgacggggc 1320 catgagcggc ttcatggacc acaggccaca ggcacttgtc atttctcttg tgtactgcca 1380 ggagaagcat gcagtcccgg gaggccatcg tctcaccatc ctgacccttg ggatgtcgcg 1440 tgggcaccca cgggtggagt tgcttctcag tcatgaagaa agccagcaca gcagcgctgg 1500 gagtcctgct ggcccatccc cagcgcaccc ccttacccga aagaaggggt tccacagaga 1560 ctctgccttg gaggcctctg acacccagca ctgaacagtg aaagcagctt ccagaacact 1620 ccctgctgcc ccggaacggg catcctttga cccttccagc aagtctgtgt gtgctcatcc 1680 ttgtgtgtct gtgtggtgtg tgtgtgtgtg tgtgtgtgag catgtgtcag agtcagcagt 1740 gtcgttgagg cacgtatgtg gtagacaagc tgtctttcag actccagtgt ttcagggaag 1800 tgggacgcac tgctggccct tgctggccta ctatgaatgt atcctacagt gtccagatcc 1860 aaagaacagg catgcctgtg catgggcccg gcctcctgct tttatttcac tgaaaattta 1920 gtgtttgagg gcgtggagct gaggttttgt tgttccagcc aaactgcaac tgcaacagtc 1980 tctcaacagg gagagtggta gcccatgctg aggcccagcg ctttggggca ggggccatga 2040 ggagctcagc gtgagaagcc acctagggcc ccttggggca ggtgctgcag ggtgagacag 2100 cctggtgcct gagctgtcag agtggtgata tgtgactatt tctctaccca tggcaccgca 2160 gtcagtggag ccttggtgcg ggcttagaat cccgtcagta cacaaacagc tcccctcagg 2220 ggatttgcct taaccgctgg ttgttgcttt gctgctgggt gagagcagtc tgacagagtc 2280 tggggacttc ctgagagtct tctcccatgc agacaccagt gtttcccttc tgggaccagc 2340 tgcctttctg tccctgggac accatgactg ttctttcggt gtcagttgct tgtgccctgc 2400 cctcatctgg gctcctgtgc tactgaggtg acccccaggg acctgagccg agccctcatg 2460 cagcgagcaa tctctggggc ccaagtccct gcagagggac atcgaggcct cagattgtct 2520 ctgcgttcct ttgcacacgt gtctgggcat gtaggctctg gcggtctcac cctccagtgt 2580 ggagtctgtg cggtgaaccc aagctgagta tacttgactt ttcaattcct cagtgtgatt 2640 ttatatgaaa taaagtaacc cgtccacagt t 2671 <210> 9 <211> 12594 <212> DNA <213> Homo sapiens <400> 9 aacctgcgcg gcggccgctc ctgcagccgc ggccgccgcc actgccggga gagctcgatg 60 ggcttctcct gcgcgccgcc cggtgtctgg ccgagtccag agagccgcgg cgcctcgttc 120 cgaggagcca tcgccgaagc ccgaggccgg gtcccgggtt ggggactgca ggggaaggca 180 gcggcggcgg cggcgggagc cccaccgggg tctgggactg gggaactgcc tccggcttca 240 cgatgccagt atggacagaa tagcttatga tgcttatccc cacccaccac ttccgaaaca 300 ttgagcggaa accagaatac ctccagccag agaagtgtgt cccacccccc taccctggtc 360 ctgtgggaac catgtggttt atccgtgacg gctgtggcat cgcctgtgcc atcgttacct 420 ggtttctggt cctctatgcg gagttcgtgg tcctctttgt catgctgatt ccatctcgag 480 actacgtgta tagcatcatc aacggaattg tgttcaacct gctggccttc ttggccctgg 540 cctcccactg ccgggccatg ctgacggacc ccggggcagt gcccaaagga aatgccacta 600 aagaattcat cgagagttta cagttgaagc ctgggcaggt ggtgtacaag tgccccaaat 660 gctgcagcat caagcccgac cgagcccacc actgcagtgt ttgtaagcgg tgcattcgga 720 agatggacca ccactgtccc tgggtcaaca actgtgtagg cgagaacaac cagaagtact 780 tcgtcctgtt tacaatgtac atagctctca tttccttgca cgccctcatc atggtgggat 840 tccacttcct gcattgcttt gaagaagatt ggacaaagtg cagctccttc tctccaccca 900 ccacagtgat tctccttatc ctgctgtgct ttgagggcct gctcttcctc attttcacat 960 cagtgatgtt tgggacccag gtgcactcca tctgcacaga tgagacggga atagaacaat 1020 tgaaaaagga agagagaaga tgggctaaaa aaacaaaatg gatgaacatg aaagccgttt 1080 ttggccaccc cttctctcta ggctgggcca gcccctttgc cacgccagac caagggaagg 1140 cagacccgta ccagtatgtg gtctgaagga ccccgaccgg catggccact cagacacaag 1200 tccacaccac agcactaccg tcccatccgt tctcatgaat gtttaaatcg aaaaagcaaa 1260 acaactactc ttaaaacttt ttttatgtct caagtaaaat ggctgagcat tgcagagaaa 1320 aaaaaaagtc cccacatttt attttttaaa aaccatcctt tcgatttctt ttggtgaccg 1380 aagctgctct cttttccttt taaaatcact tctctggcct ctggtttctc tctgctgtct 1440 gtctggcatg actaatgtag agggcgctgt ctcgcgctgt gcccattcta ctaactgagt 1500 gagacatgac gctgtgcgtg gatggaatag tctggacacc tggtggggga tgcatgggaa 1560 agccaggagg gccctgacct cccactgccc aggaggcagt ggcgggctcc ccgatgggac 1620 ataaaacctc accgaagatg gatgcttacc ccttgaggcc tgagaagggc aggatcagaa 1680 gggaccttgg cacagcgacc tcatccccca agtggacacg gtttgcctgc taactcgcaa 1740 agcaattgcc tgccttgtac tttatgggct tggggtgtgt agaatgattt tgcgggggag 1800 tggggagaaa gatgaaagag gtcttatttg tattctgaat cagcaattat attccctgtg 1860 attatttgga agagtgtgta ggaaagacgt ttttccagtt caaaatgcct tatacaatca 1920 agaggaaaaa aaattacaca atttcaggca agctacgttt tcctttgttt catctgcttc 1980 ctctctcacc accccatctc cctctcttcc ccagcaagat gtcaattaag cagtgtgaat 2040 tctgactgca ataggcacca gtgcccaaca catacagccc caccatcatc cccttctcat 2100 tttataaacc tcaaagtgga ttcactttct gatagttaac ccccataaat gtgcacgtac 2160 ctgtgtctta tctatatttt aacctgggag actgttgtcc tggcatggag atgaccatga 2220 tgctggggtt acctcacagt ccccaccctt tcaaagttga catatggcca tcccattggc 2280 cagaatccac agacacacct aagcctgtgg cactgggaca gaatagattt tccatttgag 2340 aggcacttcc tgtgtcagtc ttgtttgaag gaggtggtga tggtggatag aggtgaagga 2400 ggtagggagt gccctccaag tgcaaaaata acaaatatga ttattgacca tcggggaatt 2460 ctcacacatt gatttgtttt ttaagcaatt gccagaaacc ccctttttta gcttttgctt 2520 ggggtggggg taggagttaa ggtttattca atcctgtcct gggtagggcg aaagttaatc 2580 tagccatgtg atttttcaga aaagtaagtg gaacatgctg ccacttttca attctgtcag 2640 tgcttccaca tggaaacaaa atgcaataaa atttttccaa aacctgttct gatttagctc 2700 tctcttgagg tgttaccctt agtgggaggc cgactatcca caatctactt gagttttctc 2760 tggttgggtg tttgtttcat tgctctgtct cttgaatgag gatactttat tttttttgtt 2820 ttaaaatgca tttatggtcc ctctcttgaa ccagcttgcc ccaccaggcc tctttccttt 2880 gctttctgca gcctgaatca attcctttgt gctgatgggc tctcctaaga gctttcctga 2940 gtcagttaac tttacctcgt gtctacggtg ctattcatgc gatacgggcg aggctgagat 3000 gctaagatta aaaagaaaag aatgctgttt tagatcaagt tgatagcatt tgttttccat 3060 atgctttttt aaaatttttt cataacatac agctcagtta ggtgtatgaa agaagtgtta 3120 ttgtattaaa taactagagc agggctacag ctctggccct cccctagggg gaagagattg 3180 gtaatactcc atcttccagg gcatttttta aagtgagcca ggttagctct tttcccctgg 3240 catttctcag gaatgcagta gatagtgctg aagatgcact gacttttttt tagtcctaaa 3300 aatagaaact cctcctttaa agctgtgcat actatgctta tctttccaat agagtggggt 3360 tccttcagat atcctatagg attctgcctc tggttttgta taggccttgg ctagaaagag 3420 tcaatgtttc tgagctctca aaccagttgc tctcagaaga taggaatacc ccaaggttcc 3480 tggcattttt cctatttcat ttttgttcag actgatattt tgccaagagc acaatgactg 3540 aggaatgtag ccatcatttg cagggtagtg attggttccc agcctggctt ccacacagga 3600 caggaaggga aagcatccct gagctctcct cagtatttcc ggatgtaatg aaagaggaca 3660 tctttctaca caaagtcagc cccaactttt ggcttggtca caggagttct gatagtactg 3720 tttggtgcac tcatgggaaa ttgaaccagt cgtagccaca gtctttcaga gcctgggctc 3780 tggggagtgg aagtgaaaaa taaagatgtg gcttgttgga ttgtgatccc cagcttgctt 3840 tccttctgtc aactctgtca ggtttgtgtt catagcaact agactgaata tgcaaaaggc 3900 ttagatccaa gcaaatctat aatctatgca tatttgcatg ggcttggtaa tatcatgtac 3960 acaaaacaca tttgggtaga agtgcatgtg ctaaatctcc ttttagtccc accattttgt 4020 cttcttcata ctgtacttcc tcttttttgt ttgagacaag gtcttgctct gtcacccagg 4080 ctggaatgca gtggcacaat tagagctcac tgcagccttg aactcctggg ctcaagtgat 4140 tcttgtgcct tggcctcctg aatatccagg gctacaggca cgtactacca tgcctggcta 4200 atttttttgt tttttaatag agtcagggtc tcactgtgtt gccctagcta gtctcaaatg 4260 cccggcctcc agcaattttc ctgccttagc ctcccaaagt cctgggatta caggcgtgag 4320 ccactgggcc cagccctgta cttcttgaaa aagccccaag tattagcttt tgctcatctg 4380 gctaggccac ttaaatagtt agaatccacc gtcccctaat gcagaaaccg tttaggtgag 4440 gtaaattaac aaacatttta agccgggcgc ggacacttct cactgtggac atccctcacg 4500 cctgtaatcc cagcactttg ggaggccgag gcgggcagat cacgaggtca agagatcgag 4560 atcatcctgg ctaacacggt gaaaccctgt ctctactaaa aatataaaaa aattagctgg 4620 gcgtggtggc aggcgtctgt agtcccagct acttgggagg ctgaggcagg agaatggcgt 4680 gaacccggga agtggagctt gcagtgagcc aagatcgcac cactgcactc cagcctgggc 4740 gacagagtga gactccgtct caaaaaaaaa aaacaaacat tttaaacatg tatgtgaggt 4800 tggcattaca cagaaactcc tctccgggtg ggctgggatg ggctttctca gccaggctaa 4860 tgggttttaa atttctctct tttcaagact tgcagtgcat cagcttaaag ggtgagccag 4920 ccagtagagg ggaaggcgcc ccacctagaa ggtgccctta gatatcaaag aaatgtgaaa 4980 agagaaagat tttgctagaa tcctcctcaa aggtgttctt gaggttgcca gaccagcaac 5040 gtcaacatca gcatcacctg agaacttgtt agaaatgcac attctcggtc cccaccccag 5100 gctaccgaac cagaaaccga gcggggccca gcagcccgtg tcttaacagc cctccaggtg 5160 attctgacta tcaagtttga gaatccagtt ggggctagca ggagtccccc ctcaggtggt 5220 ccctgatgcc tgctggtgat atgggtcttg tgtgctgctg ggctcagcat agtgcagttg 5280 gggtgtgctg attgtgagac aggcacgtgt tccctccgcg gagaagccac tgagactgcc 5340 ttccctcata agctgcggcc tccccaacaa acaactgcca agacatcaaa gaaagtctgt 5400 atgaagcaga tccaaattat tagcctgccc accactcctt gtgcatctca tcagtggaac 5460 ccatctctag accaagggcc ctttgggtga agaagcagcc cggaagggaa agagaaaaga 5520 gtagaaccaa gggacctcca gatgggagcg gcggccggtg agtagtctag agccaggggc 5580 attgtagcag cctggataca tgacctgaac acgtcttgac ctttgctttc tacgtgtggg 5640 tttcaacacc catgtggctt tttcttgtat tctttaaata tgtatctggc ttaggatcac 5700 ctcatagaag agaaagaatt cacagtgaag cagaaacaag ccactgacca gcgtactccc 5760 aacctgaacc ttctttttct caccctctcc ctcaagtaaa catcttgctg acttgagcag 5820 tgtgattgcc gtagcaaagc agagtggccc ccagggatcc cgctctgttg ggcccacagg 5880 aggagccgat gaagctgatc caaggagtga ggacaagcgc tgcagaggga cgttcgctaa 5940 aagccttcta ggggccgcac atgctctaac acggacataa ggatgccctg aatttctgca 6000 gctgaggcca tatagtctgg tgaccaagta tttgggtcct ggcttcagtc tttggttgaa 6060 atgtctgctt ggctacttat taccgcacct actaccaaaa tatgaccttg agcagtaact 6120 tctttaagcc tcagtttttt catctgaaaa cgggaatgat aatctaaatc acaaagttaa 6180 tggaaggatt aaatgagggt gatgaatagg aatgtatagc gtctggccct ggtatggctt 6240 tataaatgtt agctgtgttg gagctgtgct tttcaaacca ttggtcacag ccattcatgg 6300 tttgcaacca gcatgttttt caagaaaaat gtttaatgca ttacatattg caggataagt 6360 attgttttat gaagcttagg gagttgtgtg tatatgtgtt ctggaatgca acagaaaaat 6420 gtttcctctt gtgggttaca atatagaggt atgaaatctc tgatgaggag agacagtgtt 6480 atctggcccg ctatgaagag acacatttgc ataggctgct ccctgaggct ctggctttct 6540 acatctgatg atacagggag cagggaacag cctgttctcg ttctgtgggg ctcagctgag 6600 tctgttctgc acagactctt ccttcctcgg gagccttagt cctaatacat tcattttgga 6660 gtgttggtga gtttgttcac agatcacagc tcatgtgtca cccagactga cctgggccaa 6720 aaggcccatc acacaccctg caagagcttc tggtgtcgac tatgaccccc ttaccaggca 6780 tcaaccattt ttgttcgttc tcttgagcct gaagctacta ttactgctcc tctgcaaacc 6840 tcaagcttaa gaactttgcc tgcaggatcc ctttaaatcc acacaaaact caaaattgag 6900 tcctaccagg aaaaagcagc cctcagccca tttttataca tcggatttgt ttgcaatatt 6960 ttctttctag actcaaaagt caacactccc tgaaagtttg tcgactttac tgctgaagac 7020 ctctggtaga caggccaggc tctgtctgga atactttatg aggttggtga ggaggttgag 7080 tataatccaa gagtgcctat ctgggagcat gccacatgaa tggcaaataa tcatcctgtg 7140 ggctcttggc ttcattcccc ttctctctga ctgagctcag cctgggcaca gtggtgattt 7200 gcagtagaac tggaaacctg ttgggcagaa aaaaagacac tagttctggt tccagttctg 7260 atacataaca agctagatga gccttggcca ccgtcatggc ctcttggaac ttctgtttct 7320 tccccatctg ccaatcatca atactcatac ccacctcctc acaaggaggc cataaaaacc 7380 tatggtcatg gctttgagtc caagtcagtg tggatgcagc cagtctgtca tttttgggtg 7440 tttcctctgt agccgggtct gccatatggt gatgtcccag ctctcgtgct atgaagttaa 7500 agcctctttc tcaacaggct gcagatgatc acccaggaag agaatgcaga atgcccaaag 7560 caaaccatct cagctggtca ctgcttctgt gccaagaagg gaggcctggc gaggggccag 7620 tcaggaagca gcatggcatc acatgctcat gacccacatg aaggtccctt tagacttgtg 7680 tcaacaagat ccattttctg aaacaactat ttttgttctg attataaaag taacattggc 7740 tcattggtaa aacttggatt gtgtgagaag tctacagaaa taaatacaaa tcctctagaa 7800 ttccatcccc aaaagtaacc actcagacaa atgttctaat gtcatgtaaa accatattaa 7860 accatctttt ctagctgcat agtgttatag aatcatttgc ttaaccatca ttattgggca 7920 tttctcattt ccagctttgc attattataa ttcagtgttc aagtttgtat tgcataaatc 7980 tttgtctcag attattgatt atttttaaac tttttgtgaa atcagactta caaaaatgtg 8040 acaaaaacag tacaaagagt tcccatgtac ctttcagtca gtctcaccaa aggtaaacat 8100 tttatacaac cataatacaa atataaaacc ctggacattg gcaacaccat acccttaact 8160 aatgtatgta ccttattcac atttctccag ttgtcccatt aacacccttt tctgttccag 8220 gatcccacac tgcatcattt gcgatgtctc cttagtctcc tccagtttgt gacagttcct 8280 cagtcttcct ttgtctttca tgaccttgac cctttttaaa aatcgaggtg aaattcctgt 8340 aacacaaaat tagccatttt aaagtgtaca tttaatgcat tcacaatgtt ttgtaaccac 8400 caggtctgtc tggttccaaa atcttttcat caatctttga cccttttgaa gattgtaggg 8460 caggtattct gtaggctgtc cttcagattg tgtttttgat gtttttctca tgattagatt 8520 gaggttaggc atttggggca ggagcactgc tgaagcaatg tgtcctcgtt gcaccgtatc 8580 aggaggcata tggtgttgat acgtttcatt attgtgatgt taactttgat cattgggtga 8640 aggtggtacg tgcaatgttt cttccctgct attaaggtac tgtttttccc tttgtaattg 8700 ataagtatct tatgaggata tacttttgag atccaatttt tttaacttag aatttattca 8760 aaagtcaaga atcttaaatc tctgaaatgg cgtgggaaga aaaagtgcta gatacacaga 8820 gatctttctt gagtcatgtg aaggagcagt gcccaagccc agcaaaccca cagcaaattc 8880 ccttggcttc cagaagagat ggagaaagca gtgcccccag tggagggtca aaggcctctg 8940 tgcagggtgt tgtgggcctg gagagctggc ctggccatgt ctttacctcc tctgggcatc 9000 tccccacccc aacacccttt ctgtggcctg gtggctgagt tgcagccgac acccagaggc 9060 aggtgagttg acagcttgga agaggctgca gggtggatct gctgcatgag caggcctgag 9120 cccagcctta cctccccaca gtggtcctgt gtgccctccg gctgcctaat gcatgttggc 9180 acttgctgta cgagcacccg cttcttcacc tcgcatgctg tttgtgtcct gcactccttc 9240 cttaacccca tcgtccttct gctgtgtttg cagcccctat ctaccctggt gggagtggcc 9300 aaaaatattt aggaggggat caccagtttg tagtggcctc agaggatgtg tggtccccct 9360 tatgcctcag ccactcatca gcctagcccc tgcccatcat ctggcattgc acttgtggaa 9420 ggaaagaagg ggagggctgg gtggtgggtg gagaacacgt cagtccacca ggcgggccct 9480 gcttgctgtg ttcctccacg ctgctgtcca cccacacccc agcagtcctc tgagggacct 9540 cccgggggtg acctgggcca caacagactg cccactcaga ccccatctta cccatgccgt 9600 ggacaccccg cccccccccc cgccactgct atgctatagc tgggggtgtc tatgtgagct 9660 gtacagccca gcaccacgct gacgatgttc ttcatcccct tctccctgca gggcatcgag 9720 cgcctcaaac gaaagaacca gcccagggag cacatgggga gctggcagtc agtaaaggag 9780 acctttggtg gggacttctc cctgaactgg ttcaacccct tctccagacc gtgtcagcca 9840 gagatcccca gtgacaaaga catggtgcgg caggtgacat cgctgtcaga caccgaaaca 9900 atggaggatc catcagagga gacaaaggac gaggactctg tggaggtgac agatgaatag 9960 atgctgctgt ggggagagaa gcaaacacta aaaagtgctg tcaaccttca tcctggggtt 10020 ttggctaaag gggcttatgg gcatggtgcg ctcccagcac ccccagtgct tcccttagcc 10080 actcgcttgg ccttgccatt tcccctcctt cttctctcca tgttgggcca ggtctggggg 10140 tcgggagtag gctggggaca tcagaggagg atgggggctt tctcagagtt catctaagaa 10200 gagtctgcac tgagacggct catcaagaac cgttctccaa gactgggtgg ctttcacatt 10260 ctccgcccag caaagggagc ttttgaacag ggcatcccag gggcagaaaa gagcttgcct 10320 ttggctttcc ccaggatttc tgtcttctct tgggaaggct gggcccctgg ctcctggctt 10380 tgagaagtaa ggttgtgaca gaaggaccgg gcagggcttg ccttggggac ctgggttggg 10440 acactgacat caggggagac tagcctggaa agactgcaga gctgccagct actccctgga 10500 aagggcttcc ccatgctgcc tgccgaaatt aggaggtaga ggtggctgcc acatctacct 10560 gcaagggcca ggcatggttc aaagaggacc ctgcattaag ctctacacac acatgtgcag 10620 gacatgtcca gcatggacag agccagagtt aagacagtag caccgaaaat gagcccccat 10680 tccacagaca ctggagtctt cactgagcga gacagctggg agctgtcctg cctgtggcta 10740 catatctagc cattcacaga tgtggatatg ggaaggacct ctttggagct actggggact 10800 ccctaaccac tcgcatgaga acttaattga atgttacctc ttggagggag tctaataaca 10860 catgtaggta gaactgacca taaaccctgc ctgtgtgttt gaaaaggcca gttctcccaa 10920 attggtgccc atcttgtctc tgaaaagatg ggtgatggcc agggtctgct gattgatgaa 10980 tcagatgaat caggaagata gacaaacaca cacacacaca cacacacccc accaggatga 11040 gtctgccctc tattcacccc atttgaagcc tgtggtgtct gtgaccactg ctgaaggtct 11100 gagcagcgtt ctggtgctcc taaaccccat tccagtggtt gctgaagcag catcttctgc 11160 acaaagccca acagaagggt tcttatcccc gtttggtata agaagtggat tcaccaccca 11220 ctccctccac gtgcctttgt tcctctcttt ggcccatttc cccagcgtct actggcgtca 11280 ggattggcag gagcacaggc actcagcaga gcatgcccct gcaagacctc agtgttaggg 11340 ccccccttcc agctccaggc aaaagggcat gagtcctggc cccaaggggc ctgtggctgc 11400 agttcagagg agaagaaggt cagtgtttgg aggtgcagcc tcaggatgct gagaaaggaa 11460 actggcgacc gtgagaaaga aaagagccaa gcagcatcct ggttcttgga cagcatcttt 11520 ggacactctg tgaagggcaa cgatcctgcc agagaccgtc tctctacaac tgatgaccca 11580 ctagggcctg gggttaattg ctcaaagggc ccagtgttca caaagccacc tctgccctaa 11640 cccttgccag agctctccaa ctatgaccca cgagaggggt gatggtggga ttctaacatc 11700 aacagagcaa ccagaaagac attgggcctc ccacactcag gctgcaggcc cactttcttg 11760 gtccttatca gctttaatat ttattaatga cgacatagga gcccgagtca gctgtaaagg 11820 ccattaactt gcaatctgga caggaagttg acgctcacca ctttgggtaa gagctgctct 11880 gactgtaggg ccccctattt gttgtcctaa cccagaagca gctctgggct gccaggatgg 11940 tggatggaat accagagagt tcacactagg gaggaagcaa tgcctgcccc ctggagtctc 12000 ctagggggca gcagttagaa taagggaaga ggatttgctg gtcactgttt gctgacatgg 12060 gtttccatgg tgagttcagg cctgaggaca gcagtgtctg caaaaccaca tggcccttga 12120 gaaatgtcct tgcacattgg gcttcaaact cctcttctag ggaatccatc ttggcctgaa 12180 agcagaggta caacaccagc cccaaaggca attctgtttt cagattggtt gctctggaaa 12240 ggaaggctgg ggtgaggggg cattttactt gcacagaggc tgaccctgcc tcccctcttc 12300 actgacccca tctccaaggt agacctcagc catgtcagtc cctgttctgg gaggtgctgg 12360 gctgggccac agccagggtt atgtaggtaa ttaacctgtc caaccctgag cctcgcctcc 12420 ccacaccagc aacacagtgg tctctctgtg gtgaccattc acagcataac attctgctta 12480 gcctcagact gaaagcattg caactgatgt caaaaccaga tgagatctta cagggagaga 12540 gattgggtgc aatttgcctc tttctttgaa taaaaagctc tttgctcacc ctca 12594 <210> 10 <211> 5424 <212> DNA <213> Mus musculus <400> 10 agcccgcgcg gtggccgctc ccgcagccgc ggctgccgcc accgcctgga gctccatggg 60 cttctccttc gcaccgcccc gtgtgaggcc gagtccggca agccgtggcg ccgggtgccc 120 gtgccatcgc ggacgctggc ggctgggccc cggggcagca gcaggcggcg cgggactgct 180 agctgcctcc agattgacga tgccagtatg gacagaatag cttatgatgc ttatccccac 240 ccatcacttc cgagacattg agcggaaacc agagtacctc cagccagaga agtgtgcccc 300 acctcccttc cctggtcctg cgggagccat gtggtttatc cgagatggct gtggcattgc 360 ttgtgccatt gtcacctggt ttctggtcct ctatgcggag tttgtagtcc tctttgtcat 420 gctggttcca tcccgagact acgcgtacag catcatcaac ggaattgtgt tcaacctgct 480 ggccttcttg gccctggcct cccactgccg ggccatgctg acggaccccg gggcagtgcc 540 caaaggaaat gccactaaag agttcatcga gagccttcag ctgaagcctg ggcaggtggt 600 gtacaagtgt cccaagtgct gcagcatcaa gcccgaccgg gcacaccact gcagtgtttg 660 taagcggtgc attcgcaaga tggatcacca ctgtccttgg gtcaacaact gtgtcggcga 720 gaacaaccag aagtactttg tcctattcac aatgtacata gctctcattt ccttgcacgc 780 cctcatcatg gtgggattcc acttcctgca ttgctttgaa gaagactgga caaagtgcag 840 ctccttctcg ccgcccacca cagtcatcct gctcatcctg ctgtgctttg aggccctgct 900 cttcctcatt ttcacatcag tgatgtttgg gacccaagta cactccatct gcacagatga 960 gacgggtatt gaacgcctcc aacgaacaaa acagcccagg gagcagtcgg gcagctggaa 1020 gtcggtccag gaggcttttg gtgggaactt ttccctgaac tggttcaacc ctttcaccag 1080 accttgtcaa ccagagacac ccattgataa gggcttggta cgtcaagtgt catctctgtc 1140 agacgtggac aacatggaaa cagctgagag ccaattggag gcgacaaaag acagggactc 1200 tgtggaggtg ctggatgaat agaagtcatg gaggataaga caccaacagt ggctgctacc 1260 ctgatgagtg ttaccaactc tgtcacccca cacttttttt tccattagga ttggggtcgg 1320 gggataggaa gggcaataga gggtacagga gagtagggac tttctctgag ttcctcttaa 1380 caggatgtgc caaaagtgat ccagcaaagg aaatggtgac caggatgtcg gggtggggga 1440 tccacttctg cttcttgagg gctgtcttgg ggaggctggg gatcttgggg aaggaatgct 1500 ctaacatcaa ggaagaccag cctggaaggc taaagagact ccagccattt ccaggaaagg 1560 gattccttgg ctggctgact cgaaatcaac aaaggagggt atgctgagcc tgcggtcagg 1620 gcttgggctt ggttgaaaga gcaccctaca tgcatgcatg catacacacg tacagagtct 1680 acccaaatgg aaatgagcct gagtcatgac agtatcgcca tcctatagat acgagactct 1740 tccctgagac aacaaggcag tcagcctttc tatagccaca agcatgcatc ctagaagagc 1800 taggtgaaga catatattga actcctggaa aaagtctgta agacatgggg acaggtgcaa 1860 ccagaaatgg cctcctttgc attttagagc agcgcccaaa atggtgcctc acagaaaact 1920 gcattgctag tcctaatgac atgccttatt cccaacattt agagctggca actaaacctc 1980 tgttgctttg aggagaacct ggtccacatg gttctggcta catagggaaa ccctgtctta 2040 aaaacaatga agaactgcat ggtggccagg acatgcagac tgttaagcca ggaagacccc 2100 aggcactgct ctcccaggat gagcttggac ctagtctgtc cactggagct tgaggtatct 2160 ggctgttact gatagtctgg gcaggctcct gcactcccca gtccattgca gtggtggctg 2220 aagcggcagc ttctgcagtc taaccagtta gatagtctca agaaacacac ccagctcaac 2280 tcaccccttg aaccattccc cagcgtggct gccactgacc ctggcagagg attgtatcac 2340 agctcctcta gctctgcaaa agggcaggag tcctgggcca gtggaacctg tgacctccat 2400 gacacgagtc aatcgaggta ctgtctcagg accctgagaa aggaaagctg tggggagcca 2460 agtggtggtc tgattcttgg gcagcatcct aggtagtgcc acagtgtcag caggacttca 2520 gcattagcag atgtggccta ctccacccca ctgcaagtgc acttcctcca agcaggtctg 2580 ctttaacatt tatcagcaat aacatgagga acccaagttg tccctaatct tggcactatg 2640 tggaaagacc tgtagggcct ccaaccccaa acagacctgg acggcccagg tgctggacca 2700 taaccagaga ttccatacca gggagaaatc agagctagtg actaggtccc caaggagcag 2760 cagttaaatt aaggaaggag ctttggagtc aggatttgtt aactgaatgt cctgtacatt 2820 gaggctaaaa ccagtcttgc ttggggacag cttgacctgc agcagagata cctcccagcc 2880 cacagccatt tgtttccaga gtgcttttcc tggaaaggtt gaagtgtgca ttttgctccc 2940 agttttaggt cctccatact cctcagctaa cccattacca tgtcaggcct cagccatatt 3000 tcttctgtgt actggacagc caggatcatg taggtagtag tctgtccagc cctgggcctt 3060 gtgccttcac accagaaccc aatggccttc tctctatggc aactcctgag attctactca 3120 gcactgcagc tgataagagg aggcccagtg tttctgggcc agaggctgct tgcacacctg 3180 cctcttgctt tgaataatag ttctttggtc tacctctgtg gctagaggcg ccaatttttt 3240 agcaggagat cctagcccaa agccttggac aacgtccttc ctctcaggtc tagtgtgtaa 3300 aacaagtgtc acaaacacta actgatcctc catggcccca gcatagacag aggttattct 3360 acaagcatgt accagacatc tgcacgccac agaggtgggc atctgggcaa aaaggagtca 3420 ggacttgggg ttttctggtt tcaagaatga aggaaagatg acaggtttta aattaacttg 3480 acacaagctg aaggtatttg agaagaggga atctcaattg agaaaatgcc tctgtaagat 3540 tggcctttac acaaatgtgt agtgcatttt cttgattgat gtaggagggc caggcccatt 3600 gtcagttatg ccacccctgg atggaagaaa aaaacatgac gggcaagtta tgaggagcaa 3660 gccagtaagc agcactcctc tgtgacctct gcattagccc atgcctctag ggtcctgccc 3720 taacttccct cagatgcaat taaccctttc ctccccaggt tgctttaggt cgtagtgttt 3780 tatcacagca acagaaaccc taaggcaaga atggccttta aatacacaaa atacccctta 3840 ttcagtgtgt actgagtatc tctggaacac atgtccactt agaattacag cccttgagag 3900 aggttgacca tcacgaagag gacccagacc aagaaggcca acctggatcc atgaaattca 3960 gaggcaatga ggttaaatta agcagcatgc tggcataaaa gaaaatttaa ctccagacca 4020 cttagccatc ttaaagttgc cagagtttaa ttcaaagcat agtggtatgt gagcagatac 4080 cttaacagca gagcaaagca cagactcccg agaacagggc aggatacgtt gcttcttcag 4140 atgttgtcac tggccataga ctcttactta aaaaaagggt ctacctccca tggctcatcc 4200 agagcaagag ggcctcacgc cagcgtgggg cctgcttcta agaggacaga gccttgggat 4260 aagagggtgt agtgcctgac ccaggaccag ctccaagatg ctttctataa gacttccagc 4320 acagcctcca ggcacccctg gacttgatag aatccatggt ctagatggaa gatgcctcca 4380 gcccttctat atctgggctc tgtacatggt tctgaatcca gatgacggtg gcactgtctt 4440 ctgaggccac aattcctaaa tatgtatttg aaatgtttgc ctgtgacatg tgcccaggtt 4500 ctctggctcc ctggagctac tgcctgtggt gacatcggcc tttgagctct gtcttgctgg 4560 gctggctctt gaatgtgcct tcacacgcat aatcaaattt aaccatccct gacctgaaag 4620 ctaaatgcaa tttagaaaat gttaacatgc ttagccaagg ctcagagcca atcagggctc 4680 ctgcctccat ctccatggta tcaaatgtgc tacttgctga tgagaacgac cttctcggca 4740 tgaacctctt tcacttgtct ggaaataaac ttgacaatga atttctgggg tccagctttc 4800 actggggtgc attccatttg gaaagtgatg gtctttccag gtggcactgt cctagaaaat 4860 tcaaaggcac acagtcagcc aaaagtgcca cagagagaaa atcgcattgc atgaggaacc 4920 aggcaggcat ccggttccag tacagatctt gggaaatccc tgtgctgcag agccactgaa 4980 gcaggcctcc acctggaggg tggccacttg tctcagctgt aagacaagat ggcctgctgg 5040 aatggctgtt ttccagctat gccagtcaca aaccctcctg agagccctca ggaacaaatt 5100 ttatgatgaa tctacaagaa agtgttgtct aatcctagta ttcaagatgg caatacatga 5160 gagtatgtta ggctctgagg ccctgcccca atactactga actgaatgta gttttgttgt 5220 tgttgtttgt ttattttggg gtttgtttgg tttggtttga gttttttttt ttttttttgg 5280 agggggggga tgtttcaaga cagggtcttt ctgggtagcc ccagctgtcc tagaactcac 5340 tctgtagacc aggctggcct tgaactcaca acggttcacc tgcctctgcc tccaaagtgc 5400 tgagattaaa agtgtgcacc acca 5424 <210> 11 <211> 1635 <212> DNA <213> Homo sapiens <400> 11 gggactcgaa cggaagttcc ggcgggggcg gccgaggggg aagagtgtgt ctgcgggaga 60 aagaggagaa tcgcccaagc ggcctcggaa gtcccaggga gtggaggccc ccgccgtgga 120 gccgtgtggt gtatgtgtgg taacaccatg tctgtgcccc tgctcaccga tgctgccacc 180 gtgtctggag ctgagcggga aacggccgcg gttatttttt tacatggact tggagacaca 240 gggcacagct gggctgacgc cctctccacc atccggctcc ctcacgtcaa gtacatctgt 300 ccccatgcgc ctaggatccc tgtgaccctc aacatgaaga tggtgatgcc ctcctggttt 360 gacctgatgg ggctgagtcc agatgcccca gaggacgagg ctggcatcaa gaaggcagca 420 gagaacatca aggccttgat tgagcatgaa atgaagaacg ggatccctgc caatcgaatc 480 gtcctgggag gcttttcaca gggcggggcc ctgtccctct acacggccct cacctgcccc 540 caccctctgg ctggcatcgt ggcgttgagc tgctggctgc ctctgcaccg ggccttcccc 600 caggcagcta atggcagtgc caaggacctg gccatactcc agtgccatgg ggagctggac 660 cccatggtgc ccgtacggtt tggggccctg acggctgaga agctccggtc tgttgtcaca 720 cctgccaggg tccagttcaa gacatacccg ggtgtcatgc acagctcctg tcctcaggag 780 atggcagctg tgaaggaatt tcttgagaag ctgctgcctc ctgtctaact agtcgctggc 840 cccagtgcag taccccagct catgggggac tcagcaagca agcgtggcac catcttggat 900 ctgagccggt cgagcccctg tccccaccct tcctgacctg tccttttccc acaggcctct 960 gggggcaggt ggcaaggcct ggccgggcct tccttcctgg ccttagccac ctggctctgt 1020 ctgcagcagg ggcaggctgc tttcttatcc atttccctgg aggcgggccc ccctggcagc 1080 agtattggag gggctacagg cagctggaga aaggggccca gccgctgacc cactcactca 1140 ggacctcact cactagcccc gctttgggcc ccctcctgtg acctcagggt ttggcccatg 1200 gggccccccc aggcccctgc cccaactgat tctgcccaga taatcgtgtc tcctgcctcc 1260 actcagctgc ttctcagtca tgaatgtggc catggccccg gggtcccctt gctgctgtgg 1320 gctccctgtc cctgggcagg agtgctggtg aggaggtgga gccttttgag gggggccttc 1380 cctcagctgt ttccccacac tggggggctg ggccctgcct ccccgttacc ctccttccct 1440 gcaggcctgg agcctgtagg gctggactga ggttcaggtc tccccccagc tgtctcaccc 1500 ccactttgtc cccactctag agcagggagg cagtggggga ggagttgtgt ctcgtcttct 1560 gtctccatgt ggtttttggg tgtttttctt gttgtgtcct ggattccgat aaaattaaag 1620 aaattgcttc ctcaa 1635 <210> 12 <211> 1593 <212> DNA <213> Mus musculus <400> 12 cgagggggaa gagtgtgtgc ctgtgcggga gaaaggggag aatcgcccga acggtctcgg 60 aagccactgg gagtgaggcc cagcctgcag gaagccctgc agtgtatgtg tggtaacacc 120 atgtctgtgc ccctgctcac cgacgcagcc accgtgtctg gagctgagcg ggaaacggcc 180 gcggttattt ttttacatgg acttggagac acagggcaca gctgggctga cgccctctcc 240 accatccggc ttcctcatgt caagtacatc tgtccccatg cgcccaggat ccctgtgaca 300 ctcaacatga agatggtgat gccctcctgg tttgacctga tggggctgag tccggatgcc 360 ccagaggatg aagctggcat caagaaggcc gcagagaaca tcaaggcttt gattgaacat 420 gagatgaaga acgggattcc tgccaaccgg atcgtcctgg gtggcttctc gcagggtggg 480 gccctgtccc tctatacagc acttacctgc ccccaccctc tggctggcat tgtggcattg 540 agctgctggc tgcctctgca ccggaacttc ccccaagcag ccaatggcag tgccaaggac 600 ctggccatcc ttcagtgcca cggggagctg gaccccatgg tacctgttcg gtttggagcc 660 ctgacagctg agaagctccg gactgttgtc acacctgcca gggtccagtt taagacatac 720 ccaggtgtca tgcacagctc ctgtcctcag gagatggcag ctgtaaagga atttctggag 780 aaacttctgc ctccggtcta actagttgct ggctcccacc atggtccccc agctcatggg 840 ggacccagca agcaagcacc gcatcatctt ggatctgagc cggtcgagcc cctgtccctt 900 ctcttcccac cctatcctct tcccacaggc ctctggggca ggtcgccgag gctggccagg 960 ccttcttgct ggccttggcc atctggaagt cagcagcggg gtgggctgct ctcttatcct 1020 gcgtccccag aggcgggccc cagcagcagt attggagggg ctgtaggcgg cgggaggaag 1080 gggcccagct gctgacccgc tcactcagga cctcacccac tagccccgct ttgggccccc 1140 tcccgtgacc tcagggtttg gcccgtgggg ccctcgtggg cccctccccc catgactctg 1200 cccggataat cgtctctcct gcctcgctgc agccgcttct gtcacgaatg tgtccatggc 1260 ccggggccct tgctgctgtg ggctgcctgc tccaggacag gctggccagt gaggaggtag 1320 agtccctcgg ggcctcccct cagcccctcc ccgagagggg ctggaccctg cctccccatg 1380 gcccttcctt gcaggcctgg agcctgcagg gctggattga ggttcaaggg cccccccaac 1440 tccctgctgt ctcaccccca ctatgtcccc ccttagggcc agggaggtgg tgggggagga 1500 gttgtgtctt gtcttctgtc ttcatgtggt tttgggtgtt tttctcgttt tgtcctggat 1560 tccgataaaa ttaaaggaat tgcttcaact ctc 1593 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 13 tgagccagga tggatttcag aca 23 <210> 14 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 14 tgccctcgga cgcaggagat gaa 23 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 15 tcccctgatg tatgcgaatg tcc 23 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 16 aacaggtgcc ttttgaatgt cag 23 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 17 caccggagga tgatgctcga cgtcc 25 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 18 aaacggacgt cgagcatcat cctcc 25 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 19 caccgcgtcg agcatcatcc tctcc 25 <210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 20 aaacggagag gatgatgctc gacgc 25 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 21 caccgcgggt ctggttcatc cgtga 25 <210> 22 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 22 aaactcacgg atgaaccaga cccgc 25

Claims (14)

  1. 염증성 장애를 치료하는 방법으로서, 상기 장애를 앓고 있는 환자에게 전-염증성 전사 인자의 S-팔미토일화를 조절하는 효소의 억제제의 유효량을 투여하는 것을 포함하는, 방법.
  2. 제1항에 있어서, 상기 효소는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 7 (ZDHHC7) 또는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제 3 (ZDHHC3)인 것인, 방법.
  3. 제1항에 있어서, 상기 효소는 리소포스포리파제 2 (LYPLA2)인 것인, 방법.
  4. 제1항에 있어서, 상기 효소의 억제제는 핵산 억제제인 것인, 방법.
  5. 제4항에 있어서, 상기 핵산 억제제는 안티센스 RNA, 작은 간섭 RNA, 마이크로RNA, 인공 마이크로RNA 및 리보자임으로 이루어진 군에서 선택되는 것인, 방법.
  6. 제1항에 있어서, 상기 효소의 억제제는 게놈 편집 시스템인 것인, 방법.
  7. 제6항에 있어서, 상기 게놈 편집 시스템은 CRISPR/Cas 시스템, Cre/Lox 시스템, TALEN 시스템, ZFN 시스템 및 상동성 재조합으로 이루어진 군으로부터 선택되는 것인, 방법.
  8. 제7항에 있어서,
    CRISPR-매개 게놈 편집은 Cas9 뉴클레아제를 인코딩하는 제1 핵산, 가이드 RNA (gRNA)를 포함하는 제2 핵산을 환자에게 도입하는 것을 포함하고,
    상기 gRNA는 상기 효소를 인코딩하는 유전자에 특이적인 것인, 방법.
  9. 제1항에 있어서, 상기 효소의 억제제는 소분자 억제제인 것인, 방법.
  10. 제9항에 있어서, 상기 효소는 LYPLA2이고, 상기 억제제는 하기 화학식을 갖는 ML349인 것인, 방법:
    Figure pct00006
    .
  11. 제9항에 있어서, 상기 효소는 징크 핑거 DHHC-유형 팔미토일트랜스퍼라제이고, 상기 억제제는 2-브로모팔미트산, 세룰레닌 또는 투니카마이신 중에서 선택되는 것인, 방법.
  12. 제1항에 있어서, 상기 장애는 자가면역 장애인 것인, 방법.
  13. 제12항에 있어서, 상기 자가면역 장애는 염증성 장 질환, 다발성 경화증, 류마티스 관절염, 루푸스, 이식편대숙주병, I형 당뇨병, 통풍, 천식 및 건선으로 이루어진 군으로부터 선택되는 것인, 방법.
  14. 제1항에 있어서, 상기 장애는 내독성 쇼크인 것인, 방법.
KR1020227041059A 2020-04-24 2021-04-23 염증성 질환 치료를 위한 팔모틸화/탈팔모틸화 주기 표적화 KR20230049059A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063014735P 2020-04-24 2020-04-24
US63/014,735 2020-04-24
PCT/US2021/028811 WO2021216980A1 (en) 2020-04-24 2021-04-23 Targeting the palmotylation/depalmotylation cycle to treat inflammatory diseases

Publications (1)

Publication Number Publication Date
KR20230049059A true KR20230049059A (ko) 2023-04-12

Family

ID=78270203

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227041059A KR20230049059A (ko) 2020-04-24 2021-04-23 염증성 질환 치료를 위한 팔모틸화/탈팔모틸화 주기 표적화

Country Status (8)

Country Link
US (1) US20230159931A1 (ko)
EP (1) EP4138877A1 (ko)
JP (1) JP2023522963A (ko)
KR (1) KR20230049059A (ko)
CN (1) CN115916807A (ko)
AU (1) AU2021258269A1 (ko)
CA (1) CA3181166A1 (ko)
WO (1) WO2021216980A1 (ko)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3010922B1 (en) * 2013-06-19 2017-03-15 Galapagos NV Novel compounds and pharmaceutical compositions thereof for the treatment of inflammatory disorders

Also Published As

Publication number Publication date
WO2021216980A1 (en) 2021-10-28
AU2021258269A1 (en) 2022-11-10
EP4138877A1 (en) 2023-03-01
US20230159931A1 (en) 2023-05-25
CN115916807A (zh) 2023-04-04
JP2023522963A (ja) 2023-06-01
CA3181166A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
KR102301464B1 (ko) 종양 세포에 의한 면역 억제를 감소시키기 위한 방법 및 조성물
JP4659736B2 (ja) スクリーニング方法
KR20110015409A (ko) 염증성 장 질환에 대한 유전자 발현 마커
BR112016025627B1 (pt) Uso da combinação de snx10 e gbp1, método para diagnóstico de tuberculose em um indivíduo e dispositivo para uso nos mesmos
KR20110036608A (ko) 유방암 위험도 평가를 위한 유전적 변이
TW200817035A (en) Arthritis-associated B cell gene expression
AU2014296288A1 (en) Compositions and methods for modulating thermogenesis using PTH-related and EGF-related molecules
WO2021183218A1 (en) Compositions and methods for modulating the interaction between ss18-ssx fusion oncoprotein and nucleosomes
KR20200080309A (ko) 암 촉진 인자 발현 억제제, 그 유효 성분의 스크리닝 방법, 그 방법에 유용한 발현 카세트, 진단약, 및 진단 방법
JP2006508642A (ja) 脂肪の蓄積を減少させる方法と、関連疾患を治療するための方法
CN109477146B (zh) 炎症促进因子表达抑制剂、其有效成分的筛选方法、对该方法有用的表达盒、诊断药和诊断方法
US20070117138A1 (en) Splice variant cannabinoid receptor (cb1b)
EP3837361A1 (en) Ahr-ror-gamma t complex as a biomarker and therapeutic target for autoimmune disease and il-17a-associated disease
KR20230049059A (ko) 염증성 질환 치료를 위한 팔모틸화/탈팔모틸화 주기 표적화
JP6524351B2 (ja) 非アルコール性脂肪肝調節因子14−3−3タンパク質
WO2006118328A1 (ja) 脱顆粒抑制剤
US20210324478A1 (en) Compositions and methods for identification assessment, prevention, and treatment of ewing sarcoma using tp53 dependency biomarkers and modulators
US7776538B2 (en) Method for diagnosing methamphetamine dependence
US8895011B2 (en) Insulin-resistance-improving drug
US20220364184A1 (en) Compositions and methods for treatment of a poor prognosis subtype of colorectal cancer
US7879568B2 (en) Method for the diagnosis and prognosis of demyelinating diseases
KR20080076717A (ko) 퇴행성 신경질환의 진단을 위한 리포칼린 2의 신규한 용도
WO2005106473A1 (ja) 神経変性疾患治療薬のスクリーニング方法
Larios Chondrodysplasia Punctata II: A Case with Clinical Characteristics and No Mutation on the EBP Gene
US20040076986A1 (en) Novel atopic dermatitis-associated gene and proteins

Legal Events

Date Code Title Description
A201 Request for examination