KR20230039859A - 3차원 반도체 메모리 장치, 이를 포함하는 전자 시스템, 및 3차원 반도체 메모리 장치의 제조 방법 - Google Patents

3차원 반도체 메모리 장치, 이를 포함하는 전자 시스템, 및 3차원 반도체 메모리 장치의 제조 방법 Download PDF

Info

Publication number
KR20230039859A
KR20230039859A KR1020210122385A KR20210122385A KR20230039859A KR 20230039859 A KR20230039859 A KR 20230039859A KR 1020210122385 A KR1020210122385 A KR 1020210122385A KR 20210122385 A KR20210122385 A KR 20210122385A KR 20230039859 A KR20230039859 A KR 20230039859A
Authority
KR
South Korea
Prior art keywords
substrate
cell array
contact pad
contact
memory device
Prior art date
Application number
KR1020210122385A
Other languages
English (en)
Inventor
김지영
최무림
최준영
성정태
윤상희
전우용
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020210122385A priority Critical patent/KR20230039859A/ko
Priority to US17/828,170 priority patent/US20230084497A1/en
Priority to CN202211113052.0A priority patent/CN115811885A/zh
Publication of KR20230039859A publication Critical patent/KR20230039859A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/50Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80003Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/80006Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80896Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06506Wire or wire-like electrical connections between devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06527Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06565Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices having the same size and there being no auxiliary carrier between the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • H01L2225/06586Housing with external bump or bump-like connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1431Logic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/145Read-only memory [ROM]
    • H01L2924/1451EPROM
    • H01L2924/14511EEPROM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

제1 기판의 제1면 상에 주변 회로 구조체가 형성된다, 제2 기판의 제1면 상에 셀 어레이 구조체가 형성된다. 상기 제1 기판의 상기 제1면과 상기 제2 기판의 상기 제1 면이 마주보도록 상기 주변 회로 구조체 상에 셀 어레이 구조체를 부착하는 것을 포함한다. 상기 셀 어레이 구조체를 형성하는 것은 상기 제2 기판의 상기 제1면 상에 후면 비아 및 예비 콘택 패드를 형성하는 것 및 상기 후면 비아 및 상기 예비 콘택 패드의 상면들과 연결되는 하부 반도체층을 형성하는 것을 포함한다. 상기 하부 반도체층을 관통하여 상기 예비 콘택 패드를 노출하는 관통 홀을 형성한다. 상기 관통 홀의 형성 시, 상기 예비 콘택 패드는 그 상부가 제거되어 상기 하부 반도체층과 분리된 콘택 패드가 된다. 상기 하부 반도체층 상에 적층 구조체를 형성하고, 상기 적층 구조체 상에 제1 층간 절연막을 형성하고, 상기 제1 층간 절연막을 관통하여 상기 콘택 패드에 연결되는 관통 콘택 플러그를 형성한다.

Description

3차원 반도체 메모리 장치, 이를 포함하는 전자 시스템, 및 3차원 반도체 메모리 장치의 제조 방법{THREE-DIMENSIONAL SEMICONDUCTOR MEMORY DEVICE, ELECTRONIC SYSTEM INCLUDING THE SAME, AND METHOD FOR FORMING THE THREE-DIMENSIONAL SEMICONDUCTOR MEMORY DEVICE }
본 발명은 3차원 반도체 메모리 장치, 이의 제조 방법 및 이를 포함하는 전자 시스템에 관한 것으로, 보다 구체적으로 본딩 패드들을 통해 서로 결합된 주변 회로 구조체 및 셀 어레이 구조체를 포함하는 3차원 반도체 메모리 장치, 이의 제조 방법 및 이를 포함하는 전자 시스템에 관한 것이다.
데이터 저장을 필요로 하는 전자 시스템에서 고용량의 데이터를 저장할 수 있는 반도체 장치가 요구되고 있다. 데이터 저장 용량을 증가시키면서, 소비자가 요구하는 우수한 성능 및 저렴한 가격을 충족시키기 위해 반도체 장치의 집적도를 증가시키는 것이 요구되고 있다. 2차원 또는 평면적 반도체 장치의 경우, 집적도는 단위 메모리 셀이 점유하는 면적에 의해 주로 결정되기 때문에, 미세 패턴 형성 기술의 수준에 크게 영향을 받는다. 하지만, 패턴의 미세화를 위해서는 초고가의 장비들이 필요하기 때문에, 2차원 반도체 장치의 집적도는 증가하고는 있지만 여전히 제한적이다. 이에 따라, 3차원적으로 배열되는 메모리 셀들을 구비하는 3차원 반도체 메모리 장치들이 제안되고 있다.
본 발명의 일 기술적 과제는 전기적 특성 및 신뢰성이 개선된 3차원 반도체 메모리 장치 및 이의 제조 방법을 제공하는데 있다.
본 발명의 일 기술적 과제는 공정 단순화를 할 수 있는 3차원 반도체 메모리 장치 및 이의 제조 방법을 제공하는데 있다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 기술적 과제들을 해결하기 위하여 본 발명의 실시예에 따른 3차원 반도체 메모리 소자의 제조 방법은제1 기판의 제1면 상에 주변 회로 구조체를 형성하는 것; 제2 기판의 제1면 상에 셀 어레이 구조체를 형성하는 것; 및 상기 제1 기판의 상기 제1면과 상기 제2 기판의 상기 제1 면이 마주보도록 상기 주변 회로 구조체 상에 셀 어레이 구조체를 부착하는 것을 포함하고, 상기 셀 어레이 구조체를 형성하는 것은: 상기 제2 기판의 상기 제1면 상에 후면 비아 및 예비 콘택 패드를 형성하는 것; 상기 후면 비아 및 상기 예비 콘택 패드의 상면들과 연결되는 하부 반도체층을 형성하는 것; 상기 하부 반도체층을 관통하여 상기 예비 콘택 패드를 노출하는 관통 홀을 형성하는 것, 상기 관통 홀의 형성 시, 상기 예비 콘택 패드는 그 상부가 제거되어 상기 하부 반도체층과 분리된 콘택 패드가 되고; 상기 하부 반도체층 상에 적층 구조체를 형성하는 것; 상기 적층 구조체 상에 제1 층간 절연막을 형성하는 것; 및 상기 제1 층간 절연막을 관통하여 상기 콘택 패드에 연결되는 관통 콘택 플러그를 형성하는 것을 포함할 수 있다.
상술한 기술적 과제들을 해결하기 위하여 본 발명의 실시예에 따른 3차원 반도체 메모리 소자의 제조 방법은 제1 기판의 제1면 상에 주변 회로 구조체를 형성하는 것; 제2 기판의 제1면 상에 셀 어레이 구조체를 형성하는 것; 및 상기 제1 기판의 상기 제1면과 상기 제2 기판의 상기 제1 면이 마주보도록 상기 주변 회로 구조체 상에 셀 어레이 구조체를 부착하는 것을 포함하고, 상기 셀 어레이 구조체를 형성하는 것은: 상기 제2 기판의 상기 제1면 상에 후면 비아 및 콘택 패드를 형성하는 것; 상기 후면 비아 및 상기 콘택 패드 상에 하부 반도체층을 형성하는 것; 상기 하부 반도체층 상에 적층 구조체를 형성하는 것; 상기 적층 구조체 상에 제1 층간 절연막을 형성하는 것; 및 상기 제1 층간 절연막을 관통하여 상기 콘택 패드에 연결되는 관통 콘택 플러그를 형성하는 것을 포함하고, 상기 후면 비아와 상기 콘택 패드를 형성하는 것은: 상기 제2 기판 상에 제2 층간 절연막을 형성하는 것; 상기 제2 층간 절연막을 관통하는 제1 관통홀 및 제2 관통홀을 형성하는 것; 및 상기 제1 관통홀 및 상기 제2 관통홀을 도전 물질로 채우는 것을 포함할 수 있다.
상술한 기술적 과제들을 해결하기 위하여 본 발명의 실시예에 따른 3차원 반도체 메모리 소자는 제1 기판; 상기 제1 기판 상의 주변 회로 구조체; 및 상기 주변 회로 구조체 상에 제공되고 셀 어레이 영역 및 셀 어레이 콘택 영역을 포함하는 셀 어레이 구조체를 포함하되, 상기 셀 어레이 구조체는: 제2 기판; 상기 제2 기판의 제1 면과 상기 주변 회로 구조체 사이의 적층 구조체; 상기 셀 어레이 영역에서 상기 적층 구조체를 관통하는 수직 채널 구조체들; 상기 제2 기판을 사이에 두고 상기 적층 구조체와 이격되는 후면 도전 패턴; 상기 셀 어레이 콘택 영역에서 상기 제2 기판을 관통하여 상기 후면 도전 패턴과 연결되는 관통 콘택 플러그; 상기 제2 기판의 제2 면으로부터 돌출되는 후면 비아; 상기 후면 비아와 동일 레벨에 배치되고 상기 관통 콘택 플러그와 연결되는 콘택 패드를 포함할 수 있다.
상술한 기술적 과제들을 해결하기 위하여 본 발명의 실시예에 따른 3차원 반도체 메모리 소자는 제1 기판; 상기 제1 기판 상의 주변 회로 구조체; 및 상기 주변 회로 구조체 상에 제공되고 셀 어레이 영역 및 셀 어레이 콘택 영역을 포함하는 셀 어레이 구조체를 포함하되, 상기 셀 어레이 구조체는: 제2 기판; 상기 제2 기판의 제1 면과 상기 주변 회로 구조체 사이의 적층 구조체; 상기 셀 어레이 영역에서 상기 적층 구조체를 관통하는 수직 채널 구조체들; 상기 셀 어레이 콘택 영역에서 상기 제2 기판을 사이에 두고 상기 적층 구조체와 이격되는 후면 도전 패턴; 상기 셀 어레이 콘택 영역에서 상기 제2 기판을 관통는 관통 콘택 플러그; 상기 후면 도전 패턴과 상기 관통 콘택 플러그 사이에 배치되는 콘택 패드; 및 상기 후면 도전 패턴과 상기 관통 콘택 플러그를 연결하는 관통 비아를 포함하고, 상기 관통 비아의 하면과 상기 관통 콘택 플러그의 상면 사이의 계면은 상기 콘택 패드 내에 제공될 수 있다.
상술한 기술적 과제들을 해결하기 위하여 본 발명의 실시예에 따른 3차원 반도체 메모리 소자를 포함하는 전자 시스템은 제1 기판, 상기 제1 기판 상의 주변 회로 구조체, 및 상기 주변 회로 구조체 상에 제공되고 셀 어레이 영역 및 셀 어레이 콘택 영역을 포함하는 셀 어레이 구조체를 포함하는 3차원 반도체 메모리 장치; 및 입출력 패드를 통하여 상기 3차원 반도체 메모리 장치와 전기적으로 연결되며, 상기 3차원 반도체 메모리 장치를 제어하는 컨트롤러를 포함하되, 상기 셀 어레이 구조체는: 제2 기판; 상기 제2 기판의 제1 면과 상기 주변 회로 구조체 사이의 적층 구조체; 상기 셀 어레이 영역에서 상기 적층 구조체를 관통하는 수직 채널 구조체들; 상기 제2 기판을 사이에 두고 상기 적층 구조체와 이격되는 후면 도전 패턴; 상기 셀 어레이 콘택 영역에서 상기 제2 기판을 관통하여 상기 후면 도전 패턴과 연결되는 관통 콘택 플러그; 상기 제2 기판의 제2 면으로부터 돌출되는 후면 비아; 상기 후면 비아와 동일 레벨에 배치되고 상기 관통 콘택 플러그와 연결되는 콘택 패드를 포함할 수 있다.
본 발명의 실시예들에 따르면, 고 종횡비의 관통홀들의 형성시 발생될 수 있는 아킹 현상을 방지하기 위한 후면 비아와 식각 정지막으로 사용되는 콘택 패드가 동시에 형성될 수 있다. 이에 따라, 반도체 메모리 소자의 제조 공정 단순화가 가능할 수 있다. 또한, 후면 비아와 콘택 패드에 의하여 아킹 현상이 방지되어 반도체 메모리 소자의 전기적 특성 및 신뢰성을 개선할 수 있다.
도 1은 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치를 포함하는 전자 시스템을 개략적으로 나타내는 도면이다.
도 2는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치를 포함하는 전자 시스템을 개략적으로 나타내는 사시도이다.
도 3 및 도 4는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치를 포함하는 반도체 패키지를 설명하기 위한 단면도들로, 도 2를 Ⅰ-Ⅰ' 선 및 Ⅱ-Ⅱ' 선으로 자른 단면들에 각각 대응된다.
도 5는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치를 설명하기 위한 평면도이다.
도 6a 및 도 6b는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치를 설명하기 위한 단면도들로, 도 5를 Ⅰ-Ⅰ' 선 및 Ⅱ-Ⅱ' 선으로 자른 단면들에 각각 대응된다.
도 7a는 도 6a의 A 부분의 확대도이다.
도 7b, 도 7c 및 도 7d는 본 발명의 실시예들에 따른 도 6a의 B 부분의 확대도들이다.
도 8a, 도 14a 및 도 15a는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치의 제조 방법을 설명하기 위한 도면들, 도 5의 Ⅰ-Ⅰ' 선에 따른 단면도들이다.
도 8b, 도 14b, 및 도 15b는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치의 제조 방법을 설명하기 위한 도면들로, 도 5의 Ⅱ-Ⅱ' 선에 따른 단면도들이다.
도 9a 내지 도 13a는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치의 제조 방법을 설명하기 위한 도면들, 도 5의 Ⅲ-Ⅲ' 선에 따른 단면도들이다.
도 9b 내지 도 13b는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치의 제조 방법을 설명하기 위한 도면들로, 도 5의 Ⅳ-Ⅳ' 선에 따른 단면도들이다.
이하에서, 도면들을 참조하여 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치, 이의 제조 방법 및 이를 포함하는 전자 시스템에 대하여 상세히 설명한다.
도 1은 본 발명의 실시예에 따른 3차원 반도체 메모리 장치를 포함하는 전자 시스템을 개략적으로 나타내는 도면이다.
도 1을 참조하면, 본 발명의 실시예에 따른 전자 시스템(1000)은 3차원 반도체 메모리 장치(1100) 및 3차원 반도체 메모리 장치(1100)와 전기적으로 연결되는 컨트롤러(1200)를 포함할 수 있다. 전자 시스템(1000)은 하나 또는 복수의 3차원 반도체 메모리 장치(1100)를 포함하는 스토리지 장치(storage device) 또는 스토리지 장치를 포함하는 전자 장치(electronic device)일 수 있다. 예를 들어, 전자 시스템(1000)은 하나 또는 복수의 3차원 반도체 메모리 장치(1100)를 포함하는 SSD 장치(solid state drive device), USB(Universal Serial Bus), 컴퓨팅 시스템, 의료 장치 또는 통신 장치일 수 있다.
3차원 반도체 메모리 장치(1100)는 비휘발성 메모리 장치일 수 있으며, 예를 들어, 후술하는 바와 같은 3차원 낸드(NAND) 플래쉬 메모리 장치일 수 있다. 3차원 반도체 메모리 장치(1100)는 제1 영역(1100F) 및 제1 영역(1100F) 상의 제2 영역(1100S)을 포함할 수 있다. 다만, 도시된 바와 달리 제1 영역(1100F)은 제2 영역(1100S)의 옆에 배치될 수도 있다. 제1 영역(1100F)은 디코더 회로(1110), 페이지 버퍼(1120) 및 로직 회로(1130)를 포함하는 주변 회로 영역일 수 있다. 제2 영역(1100S)은 비트 라인들(BL), 공통 소스 라인(CSL), 워드 라인들(WL), 제1 라인들(LL1, LL2), 제2 라인들(UL1, UL2) 및 비트 라인들(BL)과 공통 소스 라인(CSL) 사이의 메모리 셀 스트링들(CSTR)을 포함하는 메모리 셀 영역일 수 있다.
제2 영역(1100S)에서, 각각의 메모리 셀 스트링들(CSTR)은 공통 소스 라인(CSL)에 인접하는 제1 트랜지스터들(LT1, LT2), 비트 라인들(BL)에 인접하는 제2 트랜지스터들(UT1, UT2) 및 제1 트랜지스터들(LT1, LT2)과 제2 트랜지스터들(UT1, UT2) 사이에 배치되는 복수의 메모리 셀 트랜지스터들(MCT)을 포함할 수 있다. 제1 트랜지스터들(LT1, LT2)의 개수와 제2 트랜지스터들(UT1, UT2)의 개수는 실시예들에 따라 다양하게 변형될 수 있다. 메모리 셀 스트링들(CSTR)은 공통 소스 라인(CSL)과 제1 영역(1100F) 사이에 위치할 수 있다.
예를 들어, 제2 트랜지스터들(UT1, UT2)은 스트링 선택 트랜지스터를 포함할 수 있고, 제1 트랜지스터들(LT1, LT2)은 접지 선택 트랜지스터를 포함할 수 있다. 제1 라인들(LL1, LL2)은 제1 트랜지스터들(LT1, LT2)의 게이트 전극들일 수 있다. 워드 라인들(WL)은 메모리 셀 트랜지스터들(MCT)의 게이트 전극들일 수 있고, 제2 라인들(UL1, UL2)은 제2 트랜지스터들(UT1, UT2)의 게이트 전극들일 수 있다.
예를 들어, 제1 트랜지스터들(LT1, LT2)은 직렬 연결된 제1 소거 제어 트랜지스터(LT1) 및 접지 선택 트랜지스터(LT2)를 포함할 수 있다. 예를 들어, 제2 트랜지스터들(UT1, UT2)은 직렬 연결된 스트링 선택 트랜지스터(UT1) 및 제2 소거 제어 트랜지스터(UT2)를 포함할 수 있다. 제1 소거 제어 트랜지스터(LT1) 및 제2 소거 제어 트랜지스터(UT2) 중 적어도 하나는 게이트 유도 누설 전류(Gate Induce Drain Leakage, GIDL) 현상을 이용하여 메모리 셀 트랜지스터들(MCT)에 저장된 데이터를 삭제하는 소거 동작에 이용될 수 있다.
공통 소스 라인(CSL), 제1 라인들(LL1, LL2), 워드 라인들(WL) 및 제2 라인들(UL1, UL2)은 제1 영역(1100F) 내에서 제2 영역(1100S)까지 연장되는 제1 연결 배선들(1115)을 통해 디코더 회로(1110)와 전기적으로 연결될 수 있다. 비트 라인들(BL)은 제1 영역(1100F) 내에서 제2 영역(1100S)까지 연장되는 제2 연결 배선들(1125)을 통해 페이지 버퍼(1120)와 전기적으로 연결될 수 있다.
제1 영역(1100F)에서, 디코더 회로(1110) 및 페이지 버퍼(1120)는 복수의 메모리 셀 트랜지스터들(MCT) 중 적어도 하나의 선택 메모리 셀 트랜지스터에 대한 제어 동작을 실행할 수 있다. 디코더 회로(1110) 및 페이지 버퍼(1120)는 로직 회로(1130)에 의해 제어될 수 있다. 3차원 반도체 메모리 장치(1100)는 로직 회로(1130)와 전기적으로 연결되는 입출력 패드(1101)를 통해, 컨트롤러(1200)와 통신할 수 있다. 입출력 패드(1101)는 제1 영역(1100F) 내에서 제2 영역(1100S)까지 연장되는 입출력 연결 배선(1135)을 통해 로직 회로(1130)와 전기적으로 연결될 수 있다.
컨트롤러(1200)는 프로세서(1210), NAND 컨트롤러(1220) 및 호스트 인터페이스(1230)를 포함할 수 있다. 실시예들에 따라, 전자 시스템(1000)은 복수의 3차원 반도체 메모리 장치들(1100)을 포함할 수 있으며, 이 경우, 컨트롤러(1200)는 복수의 3차원 반도체 메모리 장치들(1100)을 제어할 수 있다.
프로세서(1210)는 컨트롤러(1200)를 포함한 전자 시스템(1000) 전반의 동작을 제어할 수 있다. 프로세서(1210)는 소정의 펌웨어에 따라 동작할 수 있으며, NAND 컨트롤러(1220)를 제어하여 3차원 반도체 메모리 장치(1100)에 억세스할 수 있다. NAND 컨트롤러(1220)는 3차원 반도체 메모리 장치(1100)와의 통신을 처리하는 NAND 인터페이스(1221)를 포함할 수 있다. NAND 인터페이스(1221)를 통해, 3차원 반도체 메모리 장치(1100)를 제어하기 위한 제어 명령, 3차원 반도체 메모리 장치(1100)의 메모리 셀 트랜지스터들(MCT)에 기록하고자 하는 데이터, 3차원 반도체 메모리 장치(1100)의 메모리 셀 트랜지스터들(MCT)로부터 읽어오고자 하는 데이터 등이 전송될 수 있다. 호스트 인터페이스(1230)는 전자 시스템(1000)과 외부 호스트 사이의 통신 기능을 제공할 수 있다. 호스트 인터페이스(1230)를 통해 외부 호스트로부터 제어 명령을 수신하면, 프로세서(1210)는 제어 명령에 응답하여 3차원 반도체 메모리 장치(1100)를 제어할 수 있다.
도 2는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치를 포함하는 전자 시스템을 개략적으로 나타내는 사시도이다.
도 2를 참조하면, 본 발명의 실시예에 따른 전자 시스템(2000)은 메인 기판(2001)과, 메인 기판(2001)에 실장되는 컨트롤러(2002), 하나 이상의 반도체 패키지(2003) 및 DRAM(2004)을 포함할 수 있다. 반도체 패키지(2003) 및 DRAM(2004)은 메인 기판(2001)에 제공되는 배선 패턴들(2005)에 의해 컨트롤러(2002)와 서로 연결될 수 있다.
메인 기판(2001)은 외부 호스트와 결합되는 복수의 핀들을 포함하는 커넥터(2006)를 포함할 수 있다. 커넥터(2006)에서 복수의 핀들의 개수와 배치는, 전자 시스템(2000)과 외부 호스트 사이의 통신 인터페이스에 따라 달라질 수 있다. 전자 시스템(2000)은, 예를 들어, USB(Universal Serial Bus), PCI-Express(Peripheral Component Interconnect Express), SATA(Serial Advanced Technology Attachment), UFS(Universal Flash Storage)용 M-Phy 등의 인터페이스들 중 어느 하나에 따라 외부 호스트와 통신할 수 있다. 전자 시스템(2000)은, 예를 들어, 커넥터(2006)를 통해 외부 호스트로부터 공급받는 전원에 의해 동작할 수 있다. 전자 시스템(2000)은 외부 호스트로부터 공급받는 전원을 컨트롤러(2002) 및 반도체 패키지(2003)에 분배하는 PMIC(Power Management Integrated Circuit)를 더 포함할 수도 있다.
컨트롤러(2002)는 반도체 패키지(2003)에 데이터를 기록하거나, 반도체 패키지(2003)로부터 데이터를 읽어올 수 있으며, 전자 시스템(2000)의 동작 속도를 개선할 수 있다.
DRAM(2004)은 데이터 저장 공간인 반도체 패키지(2003)와 외부 호스트의 속도 차이를 완화하기 위한 버퍼 메모리일 수 있다. 전자 시스템(2000)에 포함되는 DRAM(2004)은 일종의 캐시 메모리로도 동작할 수 있으며, 반도체 패키지(2003)에 대한 제어 동작에서 임시로 데이터를 저장하기 위한 공간을 제공할 수도 있다. 전자 시스템(2000)에 DRAM(2004)이 포함되는 경우, 컨트롤러(2002)는 반도체 패키지(2003)를 제어하기 위한 NAND 컨트롤러 외에 DRAM(2004)을 제어하기 위한 DRAM 컨트롤러를 더 포함할 수 있다.
반도체 패키지(2003)는 서로 이격된 제1 및 제2 반도체 패키지들(2003a, 2003b)을 포함할 수 있다. 제1 및 제2 반도체 패키지들(2003a, 2003b)은 각각 복수의 반도체 칩들(2200)을 포함하는 반도체 패키지일 수 있다. 제1 및 제2 반도체 패키지들(2003a, 2003b) 각각은, 패키지 기판(2100), 패키지 기판(2100) 상의 반도체 칩들(2200), 반도체 칩들(2200) 각각의 하부면에 배치되는 접착층들(2300), 반도체 칩들(2200)과 패키지 기판(2100)을 전기적으로 연결하는 연결 구조체들(2400) 및 패키지 기판(2100) 상에서 반도체 칩들(2200) 및 연결 구조체들(2400)을 덮는 몰딩층(2500)을 포함할 수 있다.
패키지 기판(2100)은 패키지 상부 패드들(2130)을 포함하는 인쇄회로 기판일 수 있다. 각각의 반도체 칩들(2200)은 입출력 패드들(2210)을 포함할 수 있다. 입출력 패드들(2210) 각각은 도 1의 입출력 패드(1101)에 해당할 수 있다. 반도체 칩들(2200) 각각은 게이트 적층 구조체들(3210) 및 메모리 채널 구조체들(3220)을 포함할 수 있다. 반도체 칩들(2200) 각각은 후술하는 바와 같은 3차원 반도체 메모리 장치를 포함할 수 있다.
연결 구조체들(2400)은, 예를 들어, 입출력 패드들(2210)과 패키지 상부 패드들(2130)을 전기적으로 연결하는 본딩 와이어들일 수 있다. 따라서, 각각의 제1 및 제2 반도체 패키지들(2003a, 2003b)에서, 반도체 칩들(2200)은 본딩 와이어 방식으로 서로 전기적으로 연결될 수 있으며, 패키지 기판(2100)의 패키지 상부 패드들(2130)과 전기적으로 연결될 수 있다. 실시예들에 따라, 각각의 제1 및 제2 반도체 패키지들(2003a, 2003b)에서, 반도체 칩들(2200)은 본딩 와이어 방식의 연결 구조체들(2400) 대신에, 관통 전극(Through Silicon Via)에 의하여 서로 전기적으로 연결될 수도 있다.
도시된 바와 달리, 컨트롤러(2002)와 반도체 칩들(2200)은 하나의 패키지에 포함될 수도 있다. 메인 기판(2001)과 다른 별도의 인터포저 기판에 컨트롤러(2002)와 반도체 칩들(2200)이 실장되고, 인터포저 기판에 제공되는 배선에 의해 컨트롤러(2002)와 반도체 칩들(2200)이 서로 연결될 수도 있다.
도 3 및 도 4는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치를 포함하는 반도체 패키지를 설명하기 위한 단면도들로, 도 2를 Ⅰ-Ⅰ' 선 및 Ⅱ-Ⅱ' 선으로 자른 단면들에 각각 대응된다.
도 3 및 도 4를 참조하면, 반도체 패키지(2003)는 패키지 기판(2100) 및 패키지 기판(2100) 상의 복수의 반도체 칩들(2200) 및 패키지 기판(2100)과 반도체 칩들(2200)을 덮는 몰딩층(2500)을 포함할 수 있다.
패키지 기판(2100)은 패키지 기판 바디부(2120), 패키지 기판 바디부(2120)의 상면 상에 배치되거나 상면을 통해 노출되는 상부 패드들(2130), 패키지 기판 바디부(2120)의 하면 상에 배치되거나 하면을 통해 노출되는 하부 패드들(2125) 및 패키지 기판 바디부(2120) 내부에서 상부 패드들(2130)과 하부 패드들(2125)을 전기적으로 연결하는 내부 배선들(2135)을 포함할 수 있다. 상부 패드들(2130)은 연결 구조체들(2400)과 전기적으로 연결될 수 있다. 하부 패드들(2125)은 도전성 연결부들(2800)을 통해 도 2에 도시된 전자 시스템(2000)의 메인 기판(2001)의 배선 패턴들(2005)에 연결될 수 있다.
도 2 및 도 3을 참조하면, 반도체 칩들(2200)의 일 측벽들은 서로 정렬되지 않을 수 있고, 반도체 칩들(2200)의 다른 측벽들은 서로 정렬될 수 있다. 반도체 칩들(2200)은 본딩 와이어 형태의 연결 구조체들(2400)에 의해 서로 전기적으로 연결될 수 있다. 반도체 칩들(2200) 각각은 실질적으로 동일한 구성들을 포함할 수 있다.
반도체 칩들(2200) 각각은 반도체 기판(4010), 반도체 기판(4010) 상의 제1 구조체(4100) 및 제1 구조체(4100) 상의 제2 구조체(4200)를 포함할 수 있다. 제2 구조체(4200)는 웨이퍼 본딩 방식으로 제1 구조체(4100)와 결합될 수 있다.
제1 구조체(4100)는 주변 회로 배선들(4110) 및 제1 본딩 패드들(4150)을 포함할 수 있다. 제2 구조체(4200)는 공통 소스 라인(4205), 공통 소스 라인(4205)과 제1 구조체(4100) 사이의 게이트 적층 구조체(4210), 게이트 적층 구조체(4210)를 관통하는 메모리 채널 구조체들(4220)과 분리 구조체들(4230), 및 메모리 채널 구조체들(4220) 및 게이트 적층 구조체(4210)의 워드 라인들(도 1의 WL)과 각각 전기적으로 연결되는 제2 본딩 패드들(4250)을 포함할 수 있다. 예를 들어, 제2 본딩 패드들(4250)은, 메모리 채널 구조체들(4220)과 전기적으로 연결되는 비트 라인들(4240) 및 워드 라인들(도 1의 WL)과 전기적으로 연결되는 게이트 연결 배선들(4235)을 통하여, 각각 메모리 채널 구조체들(4220) 및 워드 라인들(도 1의 WL)과 전기적으로 연결될 수 있다. 제1 구조체(4100)의 제1 본딩 패드들(4150) 및 제2 구조체(4200)의 제2 본딩 패드들(4250)은 서로 접촉하면서 결합될 수 있다. 제1 본딩 패드들(4150) 및 제2 본딩 패드들(4250)의 결합되는 부분들은, 예를 들어, 구리(Cu)를 포함할 수 있다.
반도체 칩들(2200) 각각은, 입출력 패드(2210) 및 입출력 패드(2210) 하부의 입출력 연결 배선(4265)을 더 포함할 수 있다. 입출력 연결 배선(4265)은 제2 본딩 패드들(4250) 중 일부 및 주변 회로 배선들(4110) 중 일부와 전기적으로 연결될 수 있다.
도 5는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치를 설명하기 위한 평면도이다. 도 6a 및 도 6b는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치를 설명하기 위한 단면도들로, 도 5를 Ⅰ-Ⅰ' 선 및 Ⅱ-Ⅱ' 선으로 자른 단면들에 각각 대응된다. 도 7a는 도 6a의 A 부분의 확대도이다. 도 7b, 도 7c 및 도 7d는 본 발명의 실시예들에 따른 도 6a의 B 부분의 확대도들이다.
도 5, 도 6a 및 도 6b를 참조하면, 본 발명에 따른 3차원 반도체 메모리 장치는 제1 기판(10), 제1 기판(10) 상의 주변 회로 구조체(PS) 및 주변 회로 구조체(PS) 상의 셀 어레이 구조체(CS)를 포함할 수 있다. 제1 기판(10), 주변 회로 구조체(PS) 및 셀 어레이 구조체(CS)는 각각 도 3 및 도 4의 반도체 기판(4010), 반도체 기판(4010) 상의 제1 구조체(4100) 및 제1 구조체(4100) 상의 제2 구조체(4200)에 해당할 수 있다.
주변 회로 구조체(PS) 상에 셀 어레이 구조체(CS)를 결합시킴으로써, 본 발명에 따른 3차원 반도체 메모리 장치의 단위 면적당 셀 용량이 커질 수 있다. 또한, 주변 회로 구조체(PS) 및 셀 어레이 구조체(CS)를 각각 제조하여 서로 결합시키는 방법을 통해 각종 열처리 공정에 따른 주변 트랜지스터들(PTR)의 손상을 방지할 수 있어서, 본 발명에 따른 3차원 반도체 메모리 장치의 전기적 특성 및 신뢰성이 개선될 수 있다.
제1 기판(10)은, 예를 들어, 실리콘 기판, 실리콘-게르마늄 기판, 게르마늄 기판 또는 단결정(monocrystalline) 실리콘 기판에 성장된 단결정 에피택시얼층(epitaxial layer)일 수 있다. 제1 기판(10)은 제1 방향(D1) 및 제1 방향(D1)과 교차하는 제2 방향(D2)과 나란하고, 제3 방향(D3)과 직교하는 상면을 가질 수 있다. 제1 내지 제3 방향들(D1, D2, D3)은, 예를 들어, 서로 직교하는 방향들일 수 있다. 소자 분리막(11)이 제1 기판(10) 내에 제공될 수 있다. 소자 분리막(11)은 제1 기판(10)의 활성 영역을 정의할 수 있다.
제1 기판(10) 상에 주변 트랜지스터들(PTR), 주변 콘택 플러그들(31), 주변 콘택 플러그들(31)을 통해 주변 트랜지스터들(PTR)과 전기적으로 연결되는 주변 회로 배선들(33), 주변 회로 배선들(33)과 전기적으로 연결되는 제1 본딩 패드들(35) 및 이들을 둘러싸는 제1 층간 절연막(30)을 포함하는 주변 회로 구조체(PS)가 제공될 수 있다. 주변 트랜지스터들(PTR)은 제1 기판(10)의 활성 영역 상에 제공될 수 있다. 주변 회로 배선들(33)은 도 3 및 도 4의 주변 회로 배선들(4110)에 해당할 수 있고, 제1 본딩 패드들(35)은 도 3 및 도 4의 제1 본딩 패드들(4150)에 해당할 수 있다.
주변 콘택 플러그들(31)은, 예를 들어, 제3 방향(D3)으로 갈수록 제1 방향(D1) 또는 제2 방향(D2)으로의 폭이 증가할 수 있다. 주변 콘택 플러그들(31) 및 주변 회로 배선들(33)은 금속 등의 도전 물질을 포함할 수 있다.
주변 트랜지스터들(PTR)은, 예를 들어, 디코더 회로(도 1의 1110), 페이지 버퍼(도 1의 1120) 및 로직 회로(도 1의 1130) 등을 구성할 수 있다. 보다 구체적으로, 주변 트랜지스터들(PTR) 각각은 주변 게이트 절연막(21), 주변 게이트 전극(23), 주변 캐핑 패턴(25), 주변 게이트 스페이서(27) 및 주변 소스/드레인 영역들(29)을 포함할 수 있다. 주변 게이트 절연막(21)은 주변 게이트 전극(23)과 제1 기판(10) 사이에 제공될 수 있다. 주변 캐핑 패턴(25)은 주변 게이트 전극(23) 상에 제공될 수 있다. 주변 게이트 스페이서(27)는 주변 게이트 절연막(21), 주변 게이트 전극(23) 및 주변 캐핑 패턴(25)의 측벽들을 덮을 수 있다. 주변 소스/드레인 영역들(29)은 주변 게이트 전극(23) 양측에 인접하는 제1 기판(10) 내부에 제공될 수 있다. 주변 회로 배선들(33) 및 제1 본딩 패드들(35)이 주변 콘택 플러그들(31)을 통해 주변 트랜지스터들(PTR)과 전기적으로 연결될 수 있다. 주변 트랜지스터들(PTR) 각각은, 예를 들어, NMOS 트랜지스터 또는 PMOS 트랜지스터일 수 있다.
제1 층간 절연막(30)이 제1 기판(10) 상에 제공될 수 있다. 제1 층간 절연막(30)은 제1 기판(10) 상에서 주변 트랜지스터들(PTR), 주변 콘택 플러그들(31) 및 주변 회로 배선들(33)을 덮을 수 있다. 제1 층간 절연막(30)은 다층 구조를 갖는 복수의 절연막들을 포함할 수 있다. 예를 들어, 제1 층간 절연막(30)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물 및/또는 저유전 물질을 포함할 수 있다. 제1 층간 절연막(30)은 제1 본딩 패드들(35)의 상면을 덮지 않을 수 있다. 제1 층간 절연막(30)의 상면은 제1 본딩 패드들(35)의 상면들과 실질적으로 공면을 이룰 수 있다.
주변 회로 구조체(PS) 상에 제2 본딩 패드들(45), 비트 라인들(BL), 적층 구조체(ST) 및 하부 반도체층(195)을 포함하는 셀 어레이 구조체(CS)가 제공될 수 있다. 셀 어레이 구조체(CS)는 셀 어레이 영역(CAR) 및 셀 어레이 콘택 영역(EXR)을 포함할 수 있다. 셀 어레이 콘택 영역(EXR)은 셀 어레이 영역(CAR)으로부터 제1 방향(D1)(또는 제1 방향(D1)의 반대 방향)으로 연장될 수 있다.
제2 본딩 패드들(45), 비트 라인들(BL), 적층 구조체(ST) 및 하부 반도체층(195)은 각각 도 3 및 도 4의 제2 본딩 패드들(4250), 비트 라인들(4240), 게이트 적층 구조체(4210) 및 공통 소스 라인(4205)에 해당할 수 있다.
제1 층간 절연막(30) 상에 주변 회로 구조체(PS)의 제1 본딩 패드들(35)과 접촉하는 제2 본딩 패드들(45), 연결 콘택 플러그들(41), 연결 콘택 플러그들(41)을 통해 제2 본딩 패드들(45)과 전기적으로 연결되는 연결 회로 배선들(43) 및 이들을 둘러싸는 제2 층간 절연막(40)이 제공될 수 있다.
제2 층간 절연막(40)은 다층 구조를 갖는 복수의 절연막들을 포함할 수 있다. 예를 들어, 제2 층간 절연막(40)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물 및/또는 저유전 물질을 포함할 수 있다.
연결 콘택 플러그들(41)은, 예를 들어, 제3 방향(D3)으로 갈수록 제1 방향(D1) 또는 제2 방향(D2)으로의 폭이 감소할 수 있다. 연결 콘택 플러그들(41) 및 연결 회로 배선들(43)은 금속 등의 도전 물질을 포함할 수 있다.
제2 층간 절연막(40)은 제2 본딩 패드들(45)의 하면들을 덮지 않을 수 있다. 제2 층간 절연막(40)의 하면은 제2 본딩 패드들(45)의 하면들과 실질적으로 공면을 이룰 수 있다. 제2 본딩 패드들(45) 각각의 하면은 제1 본딩 패드들(35) 각각의 상면과 직접 접촉할 수 있다. 제1 및 제2 본딩 패드들(35, 45)은 구리(Cu), 텅스텐(W), 알루미늄(Al), 니켈(Ni) 또는 주석(Sn) 등의 금속을 포함할 수 있다. 바람직하게는, 제1 및 제2 본딩 패드들(35, 45)은 구리(Cu)를 포함할 수 있다. 제1 및 제2 본딩 패드들(35, 45)은 그 사이의 경계면 없이 일체의 형상을 이룰 수 있다. 제1 및 제2 본딩 패드들(35, 45)의 측벽들은 나란히 정렬되는 것으로 도시되었으나, 본 발명은 이에 제한되지 않으며, 평면적인 관점에서, 제1 및 제2 본딩 패드들(35, 45)의 측벽들은 서로 이격될 수도 있다.
제2 층간 절연막(40)의 상부에 연결 콘택 플러그들(41)과 접촉하는 비트 라인들(BL), 제1 내지 제3 도전 라인들(CL1, CL2, CL3)이 제공될 수 있다. 비트 라인들(BL), 제1 내지 제3 도전 라인들(CL1, CL2, CL3) 각각은, 예를 들어, 제2 방향(D2)으로 연장되며, 제1 방향(D1)으로 서로 이격될 수 있다. 비트 라인들(BL), 제1 내지 제3 도전 라인들(CL1, CL2, CL3)은 금속 등의 도전 물질을 포함할 수 있다.
제2 층간 절연막(40) 상에 제3 층간 절연막(50)이 제공될 수 있다. 제3 층간 절연막(50) 상에 제4 층간 절연막(60) 및 제4 층간 절연막(60)으로 둘러싸인 적층 구조체(ST)가 제공될 수 있다. 제3 및 제4 절연막들(50, 60)은 다층 구조를 갖는 복수의 절연막들을 포함할 수 있다. 예를 들어, 제3 및 제4 절연막들(50, 60)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물 및/또는 저유전 물질을 포함할 수 있다.
제3 층간 절연막(50) 내에 비트 라인 콘택 플러그들(BLCP)이 제공될 수 있다. 비트 라인 콘택 플러그들(BLCP)은 제3 방향(D3)으로 연장되며, 비트 라인들(BL) 및 후술하는 제1 수직 채널 구조체들(VS1)의 사이를 연결할 수 있다.
제3 층간 절연막(50) 및 제4 층간 절연막(60)을 관통하는 셀 콘택 플러그들(CCP), 및 소스 콘택 플러그(DCP), 및 관통 콘택 플러그(TCP)가 제공될 수 있다. 셀 콘택 플러그들(CCP)은 제3 방향(D3)으로 연장되며, 제1 도전 라인들(CL1) 및 후술하는 적층 구조체(ST)의 게이트 전극들(ELa, ELb)의 사이를 연결할 수 있다. 셀 콘택 플러그들(CCP) 각각은 후술하는 적층 구조체(ST)의 층간 절연막들(ILDa, ILDb) 중 어느 하나를 관통할 수 있다. 관통 콘택 플러그(TCP)는 제3 방향(D3)으로 연장되며, 제2 도전 라인(CL2)과 후술하는 후면 도전 패턴(197)의 사이를 연결할 수 있다. 소스 콘택 플러그(DCP)는 제3 방향(D3)으로 연장되며, 하부 반도체층(195)과 제3 도전 라인(CL3)의 사이를 연결할 수 있다.
비트 라인 콘택 플러그들(BLCP), 셀 콘택 플러그들(CCP) 및 관통 콘택 플러그(TCP)는 제1 방향(D1)으로 서로 이격될 수 있다. 비트 라인 콘택 플러그들(BLCP), 셀 콘택 플러그들(CCP), 소스 콘택 플러그(DCP) 및 관통 콘택 플러그(TCP)는 제3 방향(D3)으로 갈수록 제1 방향(D1) 및/또는 제2 방향(D2)으로의 폭이 감소할 수 있다. 비트 라인 콘택 플러그들(BLCP), 셀 콘택 플러그들(CCP), 소스 콘택 플러그(DCP) 및 관통 콘택 플러그(TCP)는 텅스텐과 같은 금속 물질을 포함할 수 있다.
제3 층간 절연막(50) 상에 적층 구조체(ST)가 제공될 수 있다. 적층 구조체(ST)는 제4 층간 절연막(60)으로 둘러싸일 수 있다. 적층 구조체(ST)의 하면(즉, 제3 층간 절연막(50)과 접촉하는 일 면)은 제4 층간 절연막(60)의 하면과 실질적으로 공면을 이룰 수 있다.
적층 구조체(ST)는 복수로 제공될 수 있다. 복수의 적층 구조체들(ST)은, 도 5에 따른 평면적 관점에서, 제1 방향(D1)으로 연장되며, 제2 방향(D2)으로 서로 이격될 수 있다. 이하에서, 설명의 편의를 위해 단수의 적층 구조체(ST)에 대하여 설명하나, 이하의 설명은 다른 적층 구조체들(ST)에 대하여 동일하게 적용될 수 있다.
적층 구조체(ST)는 제1 적층 구조체(ST1) 및 제2 적층 구조체(ST2)를 포함할 수 있다. 제1 적층 구조체(ST1)는 교대로 적층된 제1 층간 절연막들(ILDa) 및 제1 게이트 전극들(ELa)을 포함할 수 있고, 제2 적층 구조체(ST2)는 교대로 적층된 제2 층간 절연막들(ILDb) 및 제2 게이트 전극들(ELb)을 포함할 수 있다.
제2 적층 구조체(ST2)는 제1 적층 구조체(ST1)와 제1 기판(10) 사이에 제공될 수 있다. 보다 구체적으로, 제2 적층 구조체(ST2)는 제1 적층 구조체(ST1)의 제1 층간 절연막들(ILDa) 중 최하부의 것(bottommost one)의 하면 상에 제공될 수 있다. 제2 적층 구조체(ST2)의 제2 층간 절연막들(ILDb) 중 최상부의 것(topmost one)과 제1 적층 구조체(ST1)의 제1 층간 절연막들(ILDa) 중 최하부의 것은 서로 접촉할 수 있으나, 본 발명은 이에 제한되지 않으며 제2 적층 구조체(ST2)의 제2 게이트 전극들(ELb) 중 최상부의 것과 제1 적층 구조체(ST1)의 제1 게이트 전극들(ELa) 사이에는 단일층의 절연막이 제공될 수도 있다.
제1 및 제2 게이트 전극들(ELa, ELb)은, 예를 들어, 도핑된 반도체(ex, 도핑된 실리콘 등), 금속(ex, 텅스텐, 구리, 알루미늄 등), 도전성 금속질화물(ex, 질화티타늄, 질화탄탈늄 등) 또는 전이금속(ex, 티타늄, 탄탈늄 등) 등에서 선택된 적어도 하나를 포함할 수 있다. 제1 및 제2 층간 절연막들(ILDa, ILDb)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물 및/또는 저유전 물질을 포함할 수 있다. 예를 들어, 제1 및 제2 층간 절연막들(ILDa, ILDb)은 고밀도 플라즈마 산화물(HDP oxide) 또는 TEOS(TetraEthylOrthoSilicate)를 포함할 수 있다.
셀 어레이 콘택 영역(EXR) 상에서, 제1 및 제2 적층 구조체들(ST1, ST2) 각각은 후술하는 제1 수직 채널 구조체들(VS1) 중 최외각의 것(outer-most one)으로부터 멀어질수록 제3 방향(D3)으로의 두께가 감소할 수 있다. 다시 말하면, 제1 및 제2 적층 구조체들(ST1, ST2) 각각은 제1 방향(D1)을 따라 계단 구조를 가질 수 있다.
보다 구체적으로, 제1 적층 구조체(ST1)의 제1 게이트 전극들(ELa) 및 제2 적층 구조체(ST2)의 제2 게이트 전극들(ELb)은 제1 기판(10)으로부터 멀어질수록 제1 방향(D1)으로의 길이가 증가할 수 있다. 제1 및 제2 게이트 전극들(ELa, ELb)의 측벽들은, 도 5에 따른 평면적 관점에서, 제1 방향(D1)을 따라 일정 간격으로 이격될 수 있다. 제2 적층 구조체(ST2)의 제2 게이트 전극들(ELb) 중 최하부의 것은 제1 방향(D1)으로의 길이가 가장 작을 수 있고, 제1 적층 구조체(ST1)의 제1 게이트 전극들(ELa) 중 최상부의 것은 제1 방향(D1)으로의 길이가 가장 클 수 있다.
제1 및 제2 게이트 전극들(ELa, ELb)은 셀 어레이 콘택 영역(EXR)에서 패드부들(ELp)을 포함할 수 있다. 패드부들(ELp)은 수평적으로 그리고 수직적으로 서로 다른 위치에 배치될 수 있다. 패드부들(ELp)은 제1 방향(D1)을 따라 계단 구조를 이룰 수 있다. 상술한 셀 콘택 플러그들(CCP)은 제1 및 제2 층간 절연막들(ILDa, ILDb) 중 어느 하나를 관통하여 제1 및 제2 게이트 전극들(ELa, ELb)의 패드부들(ELp)과 접촉할 수 있다.
제1 및 제2 층간 절연막들(ILDa, ILDb)은 제1 및 제2 게이트 전극들(ELa, ELb)의 사이에 제공될 수 있고, 각각의 상부에 접하는 제1 및 제2 게이트 전극들(ELa, ELb) 중 하나와 측벽이 정렬될 수 있다. 즉, 제1 및 제2 게이트 전극들(ELa, ELb)과 마찬가지로, 제1 기판(10)으로부터 멀어질수록 제1 방향(D1)으로의 길이가 증가할 수 있다. 제2 층간 절연막들(ILDb) 중 최하부의 것은 다른 층간 절연막들보다 제3 방향(D3)으로의 두께가 클 수 있고, 제1 층간 절연막들(ILDa) 중 최상부의 것은 다른 층간 절연막들보다 제3 방향(D3)으로의 두께가 작을 수 있으나, 본 발명은 이에 제한되지 않는다.
셀 어레이 영역(CAR)에서, 적층 구조체(ST)를 제3 방향(D3)으로 관통하는 수직 채널 홀들(CH) 내에 제1 수직 채널 구조체들(VS1) 및 제2 수직 채널 구조체들(VS2)이 제공될 수 있다. 제1 수직 채널 구조체들(VS1)은 도 3 및 도 4의 메모리 채널 구조체들(4220)에 해당할 수 있다.
셀 어레이 콘택 영역(EXR)에서, 적층 구조체(ST)의 적어도 일부 및 제4 층간 절연막(60)을 제3 방향(D3)으로 관통하는 수직 채널 홀들(CH) 내에 제3 수직 채널 구조체들(VS3)이 제공될 수 있다.
수직 채널 홀들(CH)은 제1 수직 채널 홀들(CH1) 및 제1 수직 채널 홀들(CH1)과 연결되는 제2 수직 채널 홀들(CH2)을 포함할 수 있다. 제1 및 제2 수직 채널 홀들(CH1, CH2) 각각은 제1 기판(10)으로부터 멀어질수록 제1 방향(D1) 또는 제2 방향(D2)으로의 폭이 감소할 수 있다. 제1 및 제2 수직 채널 홀들(CH1, CH2)은 서로 연결되는 경계에서 서로 다른 직경을 가질 수 있다. 구체적으로, 제2 수직 채널 홀들(CH2) 각각의 상부 직경은 제1 수직 채널 홀들(CH1) 각각의 하부 직경보다 작을 수 있다. 제1 및 제2 수직 채널 홀들(CH1, CH2) 각각은 그 경계에서 단차를 가질 수 있다. 다만, 본 발명은 이에 제한되지 않으며, 도시된 바와 달리 두 군데 이상의 경계들에서 각각 단차를 갖는 3개 이상의 수직 채널 홀들(CH) 내에 제1 내지 제3 수직 채널 구조체들(VS1, VS2, VS3)이 제공될 수도 있고, 단차를 갖지 않고 평탄한 측벽을 갖는 수직 채널 홀들(CH) 내에 제1 내지 제3 수직 채널 구조체들(VS1, VS2, VS3)이 제공될 수도 있다.
도 6b 및 도 7a에 도시된 것과 같이, 제1 내지 제3 수직 채널 구조체들(VS1, VS2, VS3) 각각은 제3 층간 절연막(50)과 인접하는 도전 패드(PAD), 제1 및 제2 수직 채널 홀들(CH1, CH2) 각각의 내부 측벽을 컨포말하게 덮는 데이터 저장 패턴(DSP), 데이터 저장 패턴(DSP)의 측벽을 컨포말하게 덮는 수직 반도체 패턴(VSP), 및 수직 반도체 패턴(VSP)과 도전 패드(PAD)로 둘러싸인 제1 및 제2 수직 채널 홀들(CH1, CH2) 각각의 내부 공간을 채우는 매립 절연 패턴(VI)을 포함할 수 있다. 수직 반도체 패턴(VSP)은 데이터 저장 패턴(DSP)으로 둘러싸일 수 있다. 제1 내지 제3 수직 채널 구조체들(VS1, VS2, VS3) 각각의 하면은, 예를 들어, 원형, 타원형 또는 바(bar) 형상을 가질 수 있다.
수직 반도체 패턴(VSP)은 데이터 저장 패턴(DSP)과 매립 절연 패턴(VI) 사이 및 데이터 저장 패턴(DSP)과 도전 패드(PAD) 사이에 제공될 수 있다. 수직 반도체 패턴(VSP)은 상단이 닫힌 파이프 형태 또는 마카로니 형상을 가질 수 있다. 데이터 저장 패턴(DSP)은 상단이 오픈된(opened) 파이프 형태 또는 마카로니 형상을 가질 수 있다. 수직 반도체 패턴(VSP)은, 예를 들어, 불순물이 도핑된 반도체 물질, 불순물이 도핑되지 않은 상태의 진성 반도체(intrinsic semiconductor) 물질 또는 다결정(polycrystalline) 반도체 물질을 포함할 수 있다. 도전 패드(PAD)는, 예를 들어, 불순물이 도핑된 반도체 물질 또는 도전 물질을 포함할 수 있다.
도 5에 따른 평면적 관점에서, 제1 방향(D1)으로 연장되며 적층 구조체(ST)를 가로지르는 제1 트렌치(TR1) 및 제2 트렌치(TR2)가 제공될 수 있다. 제1 트렌치(TR1)는 셀 어레이 영역(CAR) 내에 제공될 수 있고, 제2 트렌치(TR2)는 셀 어레이 영역(CAR)으로부터 셀 어레이 콘택 영역(EXR)을 향해 연장될 수 있다. 제1 및 제2 트렌치들(TR1, TR2)은 제1 기판(10)으로부터 멀어질수록 제1 방향(D1) 또는 제2 방향(D2)으로의 폭이 감소할 수 있다.
제1 및 제2 트렌치들(TR1, TR2) 각각의 내부를 채우는 제1 분리 패턴(SP1) 및 제2 분리 패턴(SP2)이 제공될 수 있다. 제1 및 제2 분리 패턴들(SP1, SP2)은 도 3 및 도 4의 분리 구조체들(4230)에 해당할 수 있다. 제2 분리 패턴(SP2)의 제1 방향(D1)으로의 길이는 제1 분리 패턴(SP1)의 제1 방향(D1)으로의 길이보다 클 수 있다. 제1 및 제2 분리 패턴들(SP1, SP2)의 측벽들은 적층 구조체(ST)의 제1 및 제2 게이트 전극들(ELa, ELb), 제1 및 제2 층간 절연막들(ILDa, ILDb) 중 적어도 일부와 접촉할 수 있다. 제1 및 제2 분리 패턴들(SP1, SP2)은, 예를 들어, 실리콘 산화물과 같은 산화물을 포함할 수 있다.
제2 분리 패턴(SP2)의 하면은 제3 층간 절연막(50)의 하면(즉, 제2 층간 절연막(40)의 상면) 및 비트 라인들(BL), 제1 및 제2 도전 라인들(CL1, CL2)의 상면들과 실질적으로 공면을 이룰 수 있다. 제2 분리 패턴(SP2)의 상면은 제1 내지 제3 수직 채널 구조체들(VS1, VS2, VS3)의 상면들보다 높은 레벨에 위치할 수 있으나, 본 발명은 이에 제한되지 않는다.
적층 구조체(ST)가 복수로 제공되는 경우, 제2 방향(D2)을 따라 배열되는 적층 구조체들(ST) 사이에 제1 분리 패턴(SP1) 또는 제2 분리 패턴(SP2)이 제공될 수 있다. 다시 말하면, 적층 구조체들(ST)은 제1 분리 패턴(SP1) 또는 제2 분리 패턴(SP2)을 사이에 두고 제2 방향(D2)으로 서로 이격될 수 있다.
적층 구조체(ST) 상에 제2 기판(70)이 제공될 수 있다. 즉, 제2 기판(70)의 제1 면(도 7b의 SS1) 상에 적층 구조체(ST)가 제공될 수 있다. 제2 기판(70)은 제1 수직 채널 구조체들(VS1) 및 제2 수직 채널 구조체들(VS2) 각각의 하부와 연결될 수 있다. 제2 기판(70)은 적층 구조체(ST) 상의 하부 반도체층(195) 및 적층 구조체(ST)와 하부 반도체층(195) 사이의 소스 구조체(SC)를 포함할 수 있다. 하부 반도체층(195) 및 소스 구조체(SC)는 제1 기판(10)의 상면(또는, 적층 구조체(ST)의 상면)과 나란하게 제1 방향(D1) 및 제2 방향(D2)으로 연장될 수 있다. 하부 반도체층(195)은 제1 기판(10)의 상면과 나란하게 연장되는 평판 형상을 가질 수 있다.
하부 반도체층(195)은, 예를 들어, 불순물이 도핑된 다결정 반도체 물질 또는 단결정(monocrystalline) 반도체 물질을 포함할 수 있다. 소스 구조체(SC)는 적층 구조체(ST) 상의 제1 소스 도전 패턴(SCP1) 및 적층 구조체(ST)와 제1 소스 도전 패턴(SCP1) 사이의 제2 소스 도전 패턴(SCP2)을 포함할 수 있다. 제2 소스 도전 패턴(SCP2)은 제1 소스 도전 패턴(SCP1)과 제1 적층 구조체(ST1)의 제1 층간 절연막들(ILDa) 중 최상부의 것 사이에 제공될 수 있다. 제2 소스 도전 패턴(SCP2)은 제1 소스 도전 패턴(SCP1)과 직접 접촉할 수 있다. 제1 소스 도전 패턴(SCP1)의 제3 방향(D3)으로의 두께는 제2 소스 도전 패턴(SCP2)의 제3 방향(D3)으로의 두께보다 클 수 있다. 소스 구조체(SC)는 불순물이 도핑된 반도체 물질을 포함할 수 있다. 소스 구조체(SC)는, 예를 들어, 하부 반도체층(195)과 동일한 도전형의 불순물이 도핑된 반도체 물질을 포함할 수 있다. 예를 들어, 제1 소스 도전 패턴(SCP1)의 불순물 농도는 제2 소스 도전 패턴(SCP2)의 불순물 농도 및 하부 반도체층(195)의 불순물 농도보다 클 수 있다.
제2 기판(70)의 제2면(도 7b의 SS2) 상에 제5 층간 절연막(181), 제6 층간 절연막(187) 및 제7 층간 절연막(188)이 차례로 제공될 수 있다. 제2 면은 제1면의 반대면일 수 있다. 제5 층간 절연막(181) 내에 후면 비아(191) 및 콘택 패드(193)가 제공될 수 있다. 제6 층간 절연막(187) 내에는 관통 콘택 플러그(TCP)와 연결되는 관통 비아(196)가 제공될 수 있다. 제7 층간 절연막(188) 내에는 관통 비아(196)와 연결되는 후면 도전 패턴(197)이 제공될 수 있다.
도 7a는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치의 일부를 설명하기 위한 확대도로, 도 6a의 A 부분에 대응된다.
도 6a 및 도 7a를 참조하면, 하부 반도체층(195) 및 소스 구조체(SC)를 포함하는 제2 기판(70)의 제1 부분(71) 및 데이터 저장 패턴(DSP), 수직 반도체 패턴(VSP), 매립 절연 패턴(VI) 및 하부 데이터 저장 패턴(DSPr)을 포함하는 제1 수직 채널 구조체들(VS1) 중 하나가 도시된다. 이하에서, 설명의 편의를 위해 단수의 수직 채널 홀(CH) 및 제1 수직 채널 구조체(VS1)에 대해 설명하나, 이하의 설명은 다른 수직 채널 홀들(CH) 및 제1 수직 채널 구조체들(VS1)에 대해서도 동일하게 적용될 수 있다.
제1 수직 채널 구조체(VS1)의 상면(VS1t)은 하부 반도체층(195)과 접촉할 수 있다. 제1 수직 채널 구조체(VS1)의 상면(VS1t)은 하부 데이터 저장 패턴(DSPr)의 상면에 해당할 수 있다. 제1 수직 채널 구조체(VS1)의 상면(VS1t)은 제1 소스 도전 패턴(SCP1)의 상면(SCP1b)보다 높은 레벨에 위치할 수 있다.
데이터 저장 패턴(DSP)은 수직 채널 홀(CH)의 측벽 상에 차례로 적층된 블록킹 절연막(BLK), 전하 저장막(CIL) 및 터널링 절연막(TIL)을 포함할 수 있다. 블록킹 절연막(BLK)은 적층 구조체(ST) 또는 소스 구조체(SC)에 인접할 수 있고, 터널링 절연막(TIL)은 수직 반도체 패턴(VSP)에 인접할 수 있다. 전하 저장막(CIL)은 블록킹 절연막(BLK) 및 터널링 절연막(TIL) 사이에 개재될 수 있다. 블록킹 절연막(BLK), 전하 저장막(CIL) 및 터널링 절연막(TIL)은 적층 구조체(ST) 및 수직 반도체 패턴(VSP) 사이에서 제3 방향(D3)으로 연장될 수 있다. 수직 반도체 패턴(VSP)과 제1 및 제2 게이트 전극들(ELa, ELb) 사이의 전압 차이에 의해 유도되는 파울러-노드하임 터널링(Fowler-Nordheim tunneling) 현상에 의해, 데이터 저장 패턴(DSP)은 데이터를 저장 및/또는 변경할 수 있다. 예를 들어, 블록킹 절연막(BLK) 및 터널링 절연막(TIL)은 실리콘 산화물을 포함할 수 있고, 전하 저장막(CIL)은 실리콘 질화물 또는 실리콘 산화질화물을 포함할 수 있다.
소스 구조체(SC) 중 제1 소스 도전 패턴(SCP1)은 수직 반도체 패턴(VSP)에 접촉할 수 있고, 제2 소스 도전 패턴(SCP2)은 데이터 저장 패턴(DSP)을 사이에 두고 수직 반도체 패턴(VSP)과 서로 이격될 수 있다. 제1 소스 도전 패턴(SCP1)은 수직 반도체 패턴(VSP)을 사이에 두고 매립 절연 패턴(VI)과 서로 이격될 수 있다.
보다 구체적으로, 제1 소스 도전 패턴(SCP1)은 제2 소스 도전 패턴(SCP2)의 상면(SCP2b)보다 낮은 레벨 또는 제1 소스 도전 패턴(SCP1)의 상면(SCP1b)보다 높은 레벨에 위치한 돌출부들(SCP1p)을 포함할 수 있다. 다만, 돌출부들(SCP1p)은 제2 소스 도전 패턴(SCP2)의 하면(SCP2a)보다 높은 레벨에 위치할 수 있다. 예를 들어, 데이터 저장 패턴(DSP) 또는 하부 데이터 저장 패턴(DSPr)과 접하는 돌출부들(SCP1p) 각각의 일 면은 곡면 형상을 가질 수 있다.
이하, 도 7b, 도 7c 및 도 7d를 참조하여 후면 비아(191), 콘택 패드(193) 및 이의 인접 구조가 보다 상세히 설명된다.
도 6a, 도 7b, 도 7c, 및 도 7d를 참조하면, 후면 비아(191)는 복수 개가 제공될 수 있으며, 복수 개의 후면 비아들(191)이 제2 기판(70)의 제2면(SS2)으로부터 제3 방향(D3)으로 돌출될 수 있다. 후면 비아(191)는 셀 어레이 영역(CAR) 상에 제공되는 것으로 도시되었으나, 이와는 달리 셀 어레이 콘택 영역(EXR)에 제공될 수 있다. 후면 비아(191)는 이하 제조 방법에서 설명되는 것과 같이, 수직 채널 홀들(CH) 또는 콘택 플러그들이 형성되는 관통홀들의 형성을 위한 식각 공정 시에 발생될 수 있는 아킹(arching) 현상을 방지하기 위한 구조일 수 있다. 후면 비아(191)는 하부 반도체층(195) 이외의 다른 층들과 전기적으로 연결되지 않을 수 있다.
콘택 패드(193)는 후면 비아(191)와 동일 레벨에 배치될 수 있다. 즉, 콘택 패드(193)와 후면 비아(191) 모두 제5 층간 절연막(181) 내에 배치될 수 있다. 본 명세서에서 동일 레벨이라 함은, 해당 구성들의 적어도 일부가 수평적으로 중첩되는 것을 의미할 수 있다. 보다 상세하게, 후면 비아(191)는 제5 층간 절연막(181) 내의 제1 관통홀(182)을 채울 수 있고, 콘택 패드(193)는 제5 층간 절연막(181) 내의 제2 관통홀(183)을 채울 수 있다. 도 5에 도시된 것과 같이, 복수 개의 관통 콘택 플러그들(TCP)과 각각 연결되는 콘택 패드들(193)은 서로 이격될 수 있다. 콘택 패드(193)는 관통 콘택 플러그(TCP)의 형성을 위한 관통홀의 형성 시에 발생될 수 있는 아킹(arching) 현상을 방지하기 위한 구조이며, 관통 콘택 플러그(TCP)의 형성을 위한 관통홀 형성 시, 식각 정지막으로 사용될 수 있다.
후면 비아(191)의 하면(BS1)의 폭은 상면(TS1)의 폭 보다 넓을 수 있다. 콘택 패드(193)의 하면(BS2)의 폭은 상면(TS2)의 폭 보다 넓을 수 있다. 후면 비아(191)의 상면(TS1)과 콘택 패드(193)의 상면(TS2)은 제2 기판(70)의 제2면(SS2)을 기준으로 실질적으로 동일 높이일 수 있다. 콘택 패드(193)의 하면(BS2)은 후면 비아(191)의 하면(BS1)보다 높을 수 있다. 콘택 패드(193)의 두께(t2)는 후면 비아(191)의 두께(t1) 보다 얇을 수 있다. 제1 방향(D1)으로, 콘택 패드(193)의 폭은 후면 비아(191)의 폭 보다 클 수 있다. 유사하게, 제2 방향(D2)으로, 콘택 패드(193)의 폭은 후면 비아(191)의 폭 보다 클 수 있다.
제2 기판(70), 보다 상세히는 하부 반도체층(195)을 관통하는 제3 관통홀(184)을 채우는 캐핑 절연 패턴(186)이 제공될 수 있다. 캐핑 절연 패턴(186)은 제2 관통홀(183) 내로 연장되어 콘택 패드(193)의 하면(BS2)을 덮을 수 있다.
관통 콘택 플러그(TCP)와 관통 비아(196) 사이의 경계는 콘택 패드(193) 내에 위치할 수 있다. 즉, 관통 비아(196)는 제6 층간 절연막(187)을 관통하여 콘택 패드(193)의 상부 내로 삽입될 수 있으며, 관통 비아(196)의 하면은 콘택 패드(193) 내에 위치할 수 있다. 일 예로, 도 7b 및 도 7d에 도시된 것과 같이, 관통 콘택 플러그(TCP)와 관통 비아(196)는 콘택 패드(193) 내에서 접할 수 있다. 이와는 달리, 도 7c에 도시된 것과 같이, 관통 콘택 플러그(TCP)와 관통 비아(196)는 콘택 패드(193)를 사이에 두고 이격될 수 있다. 관통 비아(196)는 그 상면의 폭이 하면의 폭보다 클 수 있다. 관통 비아(196)의 상면은 후면 비아(191)의 상면(TS1) 및 콘택 패드(193)의 상면(TS2) 보다 높을 수 있다. 관통 콘택 플러그(TCP)는 제3 관통홀(184)을 통하여 제2 기판(70)을 관통하여 콘택 패드(193)와 연결될 수 있다.
관통 비아(196) 상에 후면 도전 패턴(197)이 제공될 수 있다. 후면 도전 패턴(197)은 그 하면의 폭이 상면의 폭보다 작을 수 있다. 후면 도전 패턴(197)은, 관통 비아(196) 및 관통 콘택 플러그(TCP)를 통해 제2 도전 라인(CL2)과 전기적으로 연결될 수 있고, 더 나아가 주변 회로 구조체(PS)의 주변 트랜지스터들(PTR) 중 적어도 어느 하나와 전기적으로 연결될 수 있다. 후면 도전 패턴(197)는 도 1의 입출력 패드(1101) 또는 도 3 및 도 4의 입출력 패드들(2210) 중 하나에 해당할 수 있다. 이와는 달리, 후면 도전 패턴(197)은 후면 금속 배선들의 일부일 수 있다. 후면 도전 패턴(197)은 관통 비아(196) 및 관통 콘택 플러그(TCP)와 다른 물질을 포함할 수 있다. 일 예로, 후면 도전 패턴(197)는 알루미늄을 포함하고, 관통 비아(196) 및 관통 콘택 플러그(TCP)는 텅스텐, 티타늄, 또는 탄탈륨 중 적어도 하나를 포함할 수 있다.
후면 비아(191)와 콘택 패드(193)는 동일한 물질을 포함할 수 있다. 일 예로, 후면 비아(191)와 콘택 패드(193)는 동일한 물질로 형성되는 층의 일부들일 수 있다. 일 예로, 후면 비아(191)와 콘택 패드(193)는 제1 도전형(예를 들어, n형)의 불순물이 도핑된 반도체 물질 또는 금속과 같은 도전 물질을 포함할 수 있다.
도 7b 및 도 7c를 참조하면, 후면 비아(191)와 콘택 패드(193)는 하부 반도체층(195)과 동일한 물질로 형성될 수 있다. 그 결과, 후면 비아(191)와 하부 반도체층(195) 사이에는 계면이 존재하지 않을 수 있다. 일 예로, 후면 비아(191), 콘택 패드(193), 및 하부 반도체층(195)은 각각 다결정 실리콘층을 포함할 수 있다. 도 7d를 참조하면, 후면 비아(191)와 콘택 패드(193)는 하부 반도체층(195)과 다른 물질로 형성될 수 있다. 그 결과, 후면 비아(191)와 하부 반도체층(195) 사이에 계면이 존재할 수 있다. 일 예로, 후면 비아(191) 및 콘택 패드(193)는 금속층, 일 예로, 텅스텐, 티타늄, 탄탈륨, 및 이들의 도전성 금속질화물 중 적어도 하나를 포함할 수 있다. 이와는 달리, 하부 반도체층(195)은 다결정 실리콘을 포함할 수 있다. 후면 비아(191)와 하부 반도체층(195) 사이에 금속 실리사이드층이 추가로 제공될 수 있으나 이에 한정되지 않는다.
도 8a, 도 14a 및 도 15a는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치의 제조 방법을 설명하기 위한 도면들, 도 5의 Ⅰ-Ⅰ' 선에 따른 단면도들이다. 도 8b, 도 14b, 및 도 15b는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치의 제조 방법을 설명하기 위한 도면들로, 도 5의 Ⅱ-Ⅱ' 선에 따른 단면도들이다.
도 9a 내지 도 13a는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치의 제조 방법을 설명하기 위한 도면들, 도 5의 Ⅲ-Ⅲ' 선에 따른 단면도들이다. 도 9b 내지 도 13b는 본 발명의 실시예들에 따른 3차원 반도체 메모리 장치의 제조 방법을 설명하기 위한 도면들로, 도 5의 Ⅳ-Ⅳ' 선에 따른 단면도들이다.
도 8a 및 도 8b를 참조하면, 제1 기판(10) 상에 주변 회로 구조체(PS)가 형성될 수 있다. 주변 회로 구조체(PS)를 형성하는 것은 제1 기판(10) 내부에 소자 분리막(11)을 형성하는 것, 소자 분리막(11)에 의해 정의되는 제1 기판(10)의 활성 영역 상에 주변 트랜지스터들(PTR)을 형성하는 것, 및 주변 트랜지스터들(PTR)과 전기적으로 연결되는 주변 콘택 플러그들(31), 주변 회로 배선들(33), 제1 본딩 패드들(35) 및 이들을 덮는 제1 층간 절연막(30)을 형성하는 것을 포함할 수 있다.
제1 본딩 패드들(35)의 상면들은 제1 층간 절연막(30)의 상면과 실질적으로 공면을 이룰 수 있다. 이하에서, 실질적으로 공면을 이루는 것은 평탄화 공정이 수행될 수 있음을 의미한다. 평탄화 공정은, 예를 들어, 화학적 기계적 연마(chemical mechanical polishing, CMP) 공정 또는 에치 백(etch back) 공정을 통해 수행될 수 있다.
도 9a 및 도 9b를 참조하면, 캐리어 기판(100) 상에 제5 층간 절연막(181)이 형성될 수 있다. 제5 층간 절연막(181)은 실리콘 산화물을 포함할 수 있다. 제5 층간 절연막(181)을 관통하여 캐리어 기판(100)을 노출하는 제1 관통홀(182) 및 제2 관통홀(183)이 형성될 수 있다. 제1 관통홀(182)은 복수 개가 형성될 수 있으며 셀 어레이 영역(CAR) 및/또는 셀 어레이 콘택 영역(EXR)에 형성될 수 있다. 제2 관통홀(183)은 단수 또는 복수 개가 형성될 수 있으며 셀 어레이 콘택 영역(EXR)에 형성될 수 있다. 제1 관통홀(182) 및 제2 관통홀(183)은 각각 식각 공정의 특성 상 하부가 상부보다 좁게 형성될 수 있다.
제1 관통홀(182)을 채우는 후면 비아(191)가 형성되고 제2 관통홀(183)을 채우는 예비 콘택 패드(192)가 형성될 수 있다. 후면 비아(191)와 예비 콘택 패드(192)는 캐리어 기판(100)과 접할 수 있다. 후면 비아(191)와 예비 콘택 패드(192)는 동일 물질로 동일 증착 공정을 통하여 형성될 수 있다. 일 예로, 후면 비아(191)와 예비 콘택 패드(192)는 도 7b 내지 도 7d를 참조하여 설명한것과 같이, 다결정 실리콘 또는 텅스텐으로 형성될 수 있다. 일 예로, 후면 비아(191)와 예비 콘택 패드(192)는 제1 도전형(예를 들어, n형)의 불순물이 도핑된 반도체 물질, 일 예로 다결정 실리콘을 증착하여 형성될 수 있다.
도 10a 및 도 10b를 참조하면, 후면 비아(191)와 예비 콘택 패드(192)를 덮는 하부 반도체층(195)이 형성될 수 있다. 하부 반도체층(195)은 다결정 실리콘으로 형성될 수 있다. 후면 비아(191)와 예비 콘택 패드(192)가 다결정 실리콘으로 형성되는 경우, 후면 비아(191)와 예비 콘택 패드(192) 및 하부 반도체층(195)의 형성 공정은 연속적인 증착 공정을 통하여 수행될 수 있다. 이와는 달리, 후면 비아(191)와 예비 콘택 패드(192)가 하부 반도체층(195)과 다른 물질, 예를 들어 텅스텐 등으로 형성되는 경우, 하부 반도체층(195)의 형성 전에 평탄화 공정이 수행될 수 있다.
도 11a 및 도 11b를 참조하면, 하부 반도체층(195)을 관통하는 제3 관통홀(184)이 형성될 수 있다. 제3 관통홀(184)은 마스크 패턴을 이용한 식각 공정으로 형성될 수 있다. 제3 관통홀(184)의 형성 시 제2 관통홀(183)의 상부가 노출될 수 있으며, 예비 콘택 패드(192)의 상부가 함께 제거되어 콘택 패드(193)가 형성될 수 있다. 일 예로, 예비 콘택 패드(192)는 두께의 1/3 내지 2/3이 제거될 수 있다. 그 결과, 콘택 패드(193)는 하부 반도체층(195)과 분리될 수 있다. 이후, 제3 관통홀(184)을 채우고 콘택 패드(193)의 상면을 덮는 캐핑 절연 패턴(186)이 형성될 수 있다. 일 예로, 캐핑 절연 패턴(186)은 제3 관통홀(184)을 채우는 실리콘 산화막을 형성한 후 평탄화 공정을 수행하여 형성될 수 있다.
도 12a 및 도 12b를 참조하면, 하부 반도체층(195) 상에 하부 희생막(101) 및 하부 반도체막(103)이 형성될 수 있다. 하부 반도체막(103)은 제1 도전형(예를 들어, n형)의 불순물이 도핑된 반도체 물질, 일 예로 다결정 실리콘을 증착하는 것을 통해 형성될 수 있다. 하부 희생막(101)은, 예를 들어, 실리콘 질화물로 형성될 수 있다. 다른 예로, 하부 희생막(101)은 다층 구조를 갖는 복수의 절연막들로 형성될 수 있다.
하부 반도체막(103) 상에 제1 층간 절연막들(111) 및 제1 희생막들(121)을 교대로 적층할 수 있다. 이후, 제1 층간 절연막들(111) 및 제1 희생막들(121)을 관통하는 제1 수직 채널 홀들(CH1)이 형성되고, 제1 수직 채널 홀들(CH1) 내에 희생막들이 채워질 수 있다. 제1 수직 채널 홀들(CH1)들 상에 제2 층간 절연막들(112) 및 제2 희생막들(122)을 교대로 적층할 수 있다. 제1 및 제2 희생막들(121, 122)은 제1 및 제2 층간 절연막들(111, 112)과 다른 절연 물질로 형성될 수 있다. 제1 및 제2 희생막들(121, 122)은 제1 및 제2 층간 절연막들(111, 112)에 대해 식각 선택성을 가지고 식각될 수 있는 물질로 형성될 수 있다. 예를 들어, 제1 및 제2 희생막들(121, 122)은 실리콘 질화물로 형성될 수 있고, 제1 및 제2 층간 절연막들(111, 112)은 실리콘 산화물로 형성될 수 있다. 제1 및 제2 희생막들(121, 122) 각각은 실질적으로 동일한 두께를 가질 수 있고, 제1 및 제2 층간 절연막들(111, 112)은 일부 영역에서 두께가 달라질 수 있다.
이후, 제2 층간 절연막들(112) 및 제2 희생막들(122)을 관통하여 제1 수직 채널 홀들(CH1) 내의 희생막들을 노출하는 제2 수직 채널 홀들(CH2)이 형성될 수 있다. 제2 수직 채널 홀들(CH2)은 제1 수직 채널 홀들(CH1)과 제3 방향(D3)으로 중첩될 수 있고, 제1 수직 채널 홀들(CH1)과 연결되어 수직 채널 홀들(CH)을 구성할 수 있다. 제2 수직 채널 홀들(CH2)에 의하여 노출된 희생막들을 제거한 후, 수직 채널 홀들(CH) 내에 수직 채널 구조체들(VS1, VS2, VS3)이 형성될 수 있다. 이에 따라, 교대로 적층된 제1 및 제2 층간 절연막들(111, 112) 및 제1 및 제2 희생막들(121, 122)을 포함하는 예비 적층 구조체(STp)가 형성될 수 있다. 제1 내지 제3 수직 채널 구조체들(VS1, VS2, VS3) 각각은 수직 채널 홀들(CH) 각각의 내부 측벽을 컨포멀하게 덮는 데이터 저장 패턴(DSP) 및 수직 반도체 패턴(VSP)을 형성하는 것, 수직 반도체 패턴(VSP)으로 둘러싸인 공간에 매립 절연 패턴(VI)을 형성하는 것 및 매립 절연 패턴(VI)과 데이터 저장 패턴(DSP)으로 둘러싸인 공간에 도전 패드(PAD)를 형성하는 것을 통해 형성될 수 있다. 제1 내지 제3 수직 채널 구조체들(VS1, VS2, VS3)의 상면들은 제2 층간 절연막들(112) 중 최상부의 것의 상면 및 제4 층간 절연막(60)의 상면과 실질적으로 공면을 이룰 수 있다.
교대로 적층된 제1 및 제2 층간 절연막들(111, 112) 및 제1 및 제2 희생막들(121, 122)을 포함하는 예비 적층 구조체(STp)에 대한 트리밍(trimming) 공정이 수행될 수 있다. 트리밍 공정은 셀 어레이 영역(CAR) 및 셀 어레이 콘택 영역(EXR)에서 예비 적층 구조체(STp)의 상면의 일부를 덮는 마스크 패턴을 형성하는 것, 마스크 패턴을 통해 예비 적층 구조체(STp)를 패터닝하는 것, 마스크 패턴의 면적을 축소시키는 것 및 축소된 면적을 갖는 마스크 패턴을 통해 예비 적층 구조체(STp)를 패터닝하는 것을 포함할 수 있다. 마스크 패턴의 면적을 축소하고, 마스크 패턴을 통해 예비 적층 구조체(STp)를 패터닝하는 것은 번갈아 반복될 수 있다. 트리밍 공정에 의해, 제1 및 제2 층간 절연막들(111, 112) 각각의 적어도 일부가 외부로 노출될 수 있고, 셀 어레이 콘택 영역(EXR)에서 예비 적층 구조체(STp)의 계단 구조가 형성될 수 있다. 예비 적층 구조체(STp)의 계단 구조는 하부 반도체층(195)의 일부 및 콘택 패드(193)를 노출할 수 있다. 이 후, 예비 적층 구조체(STp)의 계단 구조를 덮는 제4 층간 절연막(60)이 형성될 수 있다. 일 예로, 제4 층간 절연막(60)은 실리콘 산화물을 포함할 수 있다.
수직 채널 홀들(CH)의 형성은 높은 종횡비의 홀들을 형성하기 위한 식각 공정을 포함할 수 있다. 이에 따라 플라즈마에 의한 아킹 현상이 발생할 수 있고, 후면 비아(191)는 아킹의 원인이 되는 하전 입자를 캐리어 기판(100)을 통하여 배출도록 통로를 제공할 수 있다.
도 5, 도 13a 및 도 13b를 참조하면, 제4 층간 절연막(60)의 상면을 덮는 제3 층간 절연막(50)이 형성될 수 있다. 제3 층간 절연막(50), 예비 적층 구조체(STp), 하부 반도체막(103), 하부 희생막(101) 및 하부 반도체층(195)의 적어도 일부를 관통하는 제1 및 제2 트렌치들(TR1, TR2)이 형성될 수 있다. 제1 및 제2 트렌치들(TR1, TR2)은 셀 어레이 영역(CAR)으로부터 셀 어레이 콘택 영역(EXR)으로 연장될 수 있다. 제1 트렌치(TR1)의 깊이는 제2 트렌치(TR2)의 깊이보다 작을 수 있다. 제1 트렌치(TR1)의 하면은 제1 층간 절연막들(111) 중 최상부의 것의 상면보다 높은 레벨에 위치할 수 있다. 제2 트렌치(TR2)의 하면은 제1 내지 제3 수직 채널 구조체들(VS1, VS2, VS3)의 하면들보다 낮은 레벨에 위치할 수 있다.
제1 및 제2 트렌치들(TR1, TR2)에 의해 노출되는 제1 및 제2 희생막들(121, 122) 및 하부 희생막(101)이 제거될 수 있다. 제1 및 제2 희생막들(121, 122) 및 하부 희생막(101)을 제거하는 것은, 예를 들어, 불산(HF) 및/또는 인산(H3PO4) 용액을 사용하는 습식 식각 공정을 통해 수행될 수 있다.
하부 희생막(101)이 제거될 때, 하부 희생막(101)이 제거된 공간에 의해서 노출되는 제1 및 제2 수직 채널 구조체들(VS1, VS2) 각각의 데이터 저장 패턴(DSP)의 일부가 함께 제거될 수 있다.
하부 희생막(101)이 제거된 공간을 채우는 제1 소스 도전 패턴(SCP1)이 형성될 수 있다. 제1 소스 도전 패턴(SCP1)은 제1 및 제2 수직 채널 구조체들(VS1, VS2) 각각의 수직 반도체 패턴(VSP)과 접촉할 수 있다. 제1 소스 도전 패턴(SCP1)은, 예를 들어, 불순물이 도핑된 반도체 물질로 형성될 수 있다. 도시되지 않았으나, 제1 소스 도전 패턴(SCP1)의 내부에는 에어 갭이 형성될 수도 있다. 하부 반도체막(103)은 제2 소스 도전 패턴(SCP2)으로 지칭될 수 있고, 제1 및 제2 소스 도전 패턴들(SCP1, SCP2)을 포함하는 소스 구조체(SC)가 형성될 수 있다. 결과적으로, 소스 구조체(SC) 및 하부 반도체층(195)을 포함하는 제2 기판(70)이 형성될 수 있다.
제1 및 제2 희생막들(121, 122)이 제거된 공간을 채우는 제1 및 제2 게이트 전극들(ELa, ELb)이 형성될 수 있다. 제1 및 제2 층간 절연막들(111, 112)은 제1 및 제2 적층 구조체들(ST1, ST2)의 제1 및 제2 층간 절연막들(ILDa, ILDb)로 지칭될 수 있고, 결과적으로 제1 및 제2 층간 절연막들(ILDa, ILDb) 및 제1 및 제2 게이트 전극들(ELa, ELb)을 포함하는 적층 구조체(ST)가 형성될 수 있다.
제1 트렌치(TR1)를 채우는 제1 분리 패턴(SP1) 및 제2 트렌치(TR2)를 채우는 제2 분리 패턴(SP2)이 형성될 수 있다. 제1 및 제2 분리 패턴들(SP1, SP2)의 상면들은 제3 층간 절연막(50)의 상면과 실질적으로 공면을 이룰 수 있다.
셀 어레이 영역(CAR)에서 제3 층간 절연막(50)을 관통하여 제1 및 제2 수직 채널 구조체들(VS1, VS2)의 상면들과 접촉하는 비트 라인 콘택 플러그들(BLCP)이 형성될 수 있다. 셀 어레이 콘택 영역(EXR)에서 제3 및 제4 절연막들(50, 60)을 관통하여 제1 및 제2 게이트 전극들(ELa, ELb)의 패드부들(ELp)과 접촉하는 셀 콘택 플러그들(CCP)이 형성될 수 있다. 셀 콘택 플러그들(CCP)은 제1 및 제2 층간 절연막들(ILDa, ILDb)의 적어도 일부를 관통할 수 있다. 셀 어레이 콘택 영역(EXR)에서 제3 및 제4 절연막들(50, 60)을 관통하여 하부 반도체층(195)과 연결되는 소스 콘택 플러그(DCP)가 형성될 수 있다. 셀 어레이 콘택 영역(EXR)에서 제3 및 제4 절연막들(50, 60)을 관통하여 콘택 패드(193)와 연결되는 관통 콘택 플러그(TCP)가 형성될 수 있다.
셀 콘택 플러그들(CCP), 소스 콘택 플러그(DCP), 및 관통 콘택 플러그(TCP) 중 적어도 일부는 함께 형성될 수 있다. 셀 콘택 플러그들(CCP), 소스 콘택 플러그(DCP), 및 관통 콘택 플러그(TCP)을 형성하는 것은 제3 및 제4 절연막들(50, 60)을 관통하는 높은 종횡비의 홀들을 형성하기 위한 식각 공정을 포함할 수 있다. 이에 따라 플라즈마에 의한 아킹 현상이 발생할 수 있고, 후면 비아(191) 및 콘택 패드(193)는 아킹의 원인이 되는 하전 입자를 캐리어 기판(100)을 통하여 배출도록 통로를 제공할 수 있다. 콘택 패드(193)는 콘택 홀의 형성을 위한 식각 공정의 식각 정지막으로 사용될 수 있다.
셀 어레이 영역(CAR)에서 제3 층간 절연막(50) 상에 비트 라인 콘택 플러그들(BLCP)과 접촉하는 비트 라인들(BL)이 형성될 수 있다. 셀 어레이 콘택 영역(EXR)에서 제3 층간 절연막(50) 상에 제1 내지 제3 도전 라인들(CL1, CL2, CL3)이 형성될 수 있다.
제3 층간 절연막(50) 상에 비트 라인들(BL), 제1 및 제2 도전 라인들(CL1, CL2)과 전기적으로 연결되는 연결 콘택 플러그들(41), 연결 회로 배선들(43), 제2 본딩 패드들(45) 및 이들을 덮는 제2 층간 절연막(40)이 형성될 수 있다. 제2 본딩 패드들(45)의 상면들은 제2 층간 절연막(40)의 상면과 실질적으로 공면을 이룰 수 있다. 이에 따라 캐리어 기판(100) 상에 셀 어레이 구조체(CS)가 형성될 수 있다.
도 14a 및 도 14b를 참조하면, 캐리어 기판(100) 상에 형성된 셀 어레이 구조체(CS)와 도 8a 및 도 8b를 참조하여 설명한 방법에 의해 제1 기판(10) 상에 형성된 주변 회로 구조체(PS)가 서로 결합될 수 있다. 보다 상세하게는, 주변 회로 구조체(PS)가 형성된 제1 기판(10)의 제1 면과 셀 어레이 구조체(CS)가 형성된 캐리어 기판(100)의 제1 면이 마주보도록, 셀 어레이 구조체(CS)를 주변 회로 구조체(PS) 상에 부착할 수 있다.
캐리어 기판(100)은 셀 어레이 구조체(CS)와 주변 회로 구조체(PS)가 서로 마주보도록 제1 기판(10) 상에 제공될 수 있다. 주변 회로 구조체(PS)의 제1 본딩 패드들(35)은 셀 어레이 구조체(CS)의 제2 본딩 패드들(45)과 서로 접촉하면서 융합될 수 있다. 제1 및 제2 본딩 패드들(35, 45)이 서로 결합된 이후, 셀 어레이 구조체(CS) 상의 캐리어 기판(100)은 제거될 수 있다. 이에 따라, 후면 비아(191) 및 콘택 패드(193)가 노출될 수 있다.
도 15a 및 도 15b를 참조하면, 제5 층간 절연막(181) 상에 제6 층간 절연막(187)을 형성한 후, 제6 층간 절연막(187)을 관통하여 콘택 패드(193) 및/또는 관통 콘택 플러그(TCP)와 연결되는 관통 비아(196)가 형성될 수 있다. 관통 비아(196)는 제6 층간 절연막(187)을 관통하는 관통홀을 형성한 후 이를 금속 물질로 채워 형성할 수 있다. 일 예로, 관통 비아(196)는 텅스텐, 티타늄, 탄탈륨, 및 이들의 도전성 금속질화물 중 적어도 하나로 형성될 수 있다.
다시 도 5, 도 6a 및 도 6b를 참조하면, 관통 비아(196) 상에 후면 도전 패턴(197)을 형성할 수 있다. 후면 도전 패턴(197)은 관통 비아(196)를 덮는 금속층 및 상기 금속층을 덮는 마스크 패턴을 형성한 후, 마스크 패턴을 식각 마스크로 금속층을 패터닝하여 형성될 수 있다. 그 결과, 후면 도전 패턴(197)의 하면은 상면보다 폭이 클 수 있다. 일 예로, 후면 도전 패턴(197)는 알루미늄으로 형성될 수 있다. 이 후, 제6 층간 절연막(187)을 덮고 후면 도전 패턴(197)을 노출하는 제7 층간 절연막(188)이 형성될 수 있다.
본 발명의 실시예들에 따르면, 고 종횡비의 관통홀들의 형성시 발생될 수 있는 아킹 현상을 방지하기 위한 후면 비아(191)와 식각 정지막으로 사용되는 콘택 패드(193)가 동시에 형성될 수 있다. 이에 따라, 반도체 메모리 소자 제조의 공정 단순화가 가능할 수 있다. 또한, 콘택 패드(193)도 관통홀 형성 시 발생될 수 있는 아킹 현상을 방지할 수 있어 반도체 메모리 소자의 전기적 특성 및 신뢰성을 개선할 수 있다.
이상, 첨부된 도면들을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (20)

  1. 제1 기판의 제1면 상에 주변 회로 구조체를 형성하는 것;
    제2 기판의 제1면 상에 셀 어레이 구조체를 형성하는 것; 및
    상기 제1 기판의 상기 제1면과 상기 제2 기판의 상기 제1 면이 마주보도록 상기 주변 회로 구조체 상에 셀 어레이 구조체를 부착하는 것을 포함하고,
    상기 셀 어레이 구조체를 형성하는 것은:
    상기 제2 기판의 상기 제1면 상에 후면 비아 및 예비 콘택 패드를 형성하는 것;
    상기 후면 비아 및 상기 예비 콘택 패드의 상면들과 연결되는 하부 반도체층을 형성하는 것;
    상기 하부 반도체층을 관통하여 상기 예비 콘택 패드를 노출하는 관통 홀을 형성하는 것, 상기 관통 홀의 형성 시, 상기 예비 콘택 패드는 그 상부가 제거되어 상기 하부 반도체층과 분리된 콘택 패드가 되고;
    상기 하부 반도체층 상에 적층 구조체를 형성하는 것;
    상기 적층 구조체 상에 제1 층간 절연막을 형성하는 것; 및
    상기 제1 층간 절연막을 관통하여 상기 콘택 패드에 연결되는 관통 콘택 플러그를 형성하는 것을 포함하는 3차원 반도체 메모리 장치의 제조 방법.
  2. 제 1 항에 있어서,
    상기 후면 비아와 상기 예비 콘택 패드를 형성하는 것은:
    상기 제2 기판 상에 제2 층간 절연막을 형성하는 것:
    상기 제2 층간 절연막을 관통하는 제1 관통홀 및 제2 관통홀을 형성하는 것; 및
    상기 제1 관통홀 및 상기 제2 관통홀을 도전 물질로 채우는 것을 포함하는 3차원 반도체 메모리 장치의 제조 방법.
  3. 제 2 항에 있어서,
    상기 하부 반도체층은 상기 도전 물질로 형성되는 3차원 반도체 메모리 장치의 제조 방법.
  4. 제 3 항에 있어서,
    상기 도전 물질은 다결정 실리콘을 포함하는 3차원 반도체 메모리 장치의 제조 방법.
  5. 제 2 항에 있어서,
    상기 도전 물질은 텅스텐, 티타늄, 또는 탄탈륨 중 적어도 하나를 포함하고,
    상기 하부 반도체층은 다결정 실리콘 물질로 형성되는 3차원 반도체 메모리 장치의 제조 방법.
  6. 제1 기판;
    상기 제1 기판 상의 주변 회로 구조체; 및
    상기 주변 회로 구조체 상에 제공되고 셀 어레이 영역 및 셀 어레이 콘택 영역을 포함하는 셀 어레이 구조체를 포함하되,
    상기 셀 어레이 구조체는:
    제2 기판;
    상기 제2 기판의 제1 면과 상기 주변 회로 구조체 사이의 적층 구조체;
    상기 셀 어레이 영역에서 상기 적층 구조체를 관통하는 수직 채널 구조체들;
    상기 제2 기판을 사이에 두고 상기 적층 구조체와 이격되는 후면 도전 패턴;
    상기 셀 어레이 콘택 영역에서 상기 제2 기판을 관통하여 상기 후면 도전 패턴과 연결되는 관통 콘택 플러그;
    상기 제2 기판의 제2 면으로부터 돌출되는 후면 비아;
    상기 후면 비아와 동일 레벨에 배치되고 상기 관통 콘택 플러그와 연결되는 콘택 패드를 포함하는 3차원 반도체 메모리 장치.
  7. 제 6 항에 있어서,
    상기 후면 비아의 상면과 상기 콘택 패드의 상면은 실질적으로 동일 높이이고,
    상기 콘택 패드의 상면은 상기 콘택 패드의 하면보다 높은 3차원 반도체 메모리 장치.
  8. 제 6 항에 있어서,
    상기 콘택 패드와 상기 후면 비아는 동일 물질을 포함하는 3차원 반도체 메모리 장치.
  9. 제 8 항에 있어서,
    상기 콘택 패드, 상기 후면 비아, 및 상기 제2 기판은 다결정 실리콘층을 포함하는 3차원 반도체 메모리 장치.
  10. 제 8 항에 있어서,
    상기 콘택 패드 및 상기 후면 비아는 금속층을 포함하고,
    상기 제2 기판은 다결정 실리콘층을 포함하는 3차원 반도체 메모리 장치.
  11. 제 6 항에 있어서,
    상기 콘택 패드의 하면 폭은 상면 폭보다 넓고,
    상기 후면 비아의 하면 폭은 상면 폭보다 넓은 3차원 반도체 메모리 장치.
  12. 제 6 항에 있어서,
    상기 셀 어레이 구조체는 상기 후면 도전 패턴과 상기 관통 콘택 플러그 사이의 관통 비아를 더 포함하고,
    상기 관통 비아와 상기 관통 콘택 플러그 사이의 경계는 상기 콘택 패드 내에 위치하는 3차원 반도체 메모리 장치.
  13. 제 12 항에 있어서,
    상기 관통 비아와 상기 관통 콘택 플러그는 상기 콘택 패드 내에 접하는 3차원 반도체 메모리 장치.
  14. 제 12 항에 있어서,
    상기 관통 비아의 상면은 상기 후면 비아의 상면보다 높은 3차원 반도체 메모리 장치.
  15. 제 6 항에 있어서,
    상기 콘택 패드의 폭은 상기 후면 비아의 폭보다 큰 3차원 반도체 메모리 장치.
  16. 제1 기판;
    상기 제1 기판 상의 주변 회로 구조체; 및
    상기 주변 회로 구조체 상에 제공되고 셀 어레이 영역 및 셀 어레이 콘택 영역을 포함하는 셀 어레이 구조체를 포함하되,
    상기 셀 어레이 구조체는:
    제2 기판;
    상기 제2 기판의 제1 면과 상기 주변 회로 구조체 사이의 적층 구조체;
    상기 셀 어레이 영역에서 상기 적층 구조체를 관통하는 수직 채널 구조체들;
    상기 셀 어레이 콘택 영역에서 상기 제2 기판을 사이에 두고 상기 적층 구조체와 이격되는 후면 도전 패턴;
    상기 셀 어레이 콘택 영역에서 상기 제2 기판을 관통는 관통 콘택 플러그;
    상기 후면 도전 패턴과 상기 관통 콘택 플러그 사이에 배치되는 콘택 패드; 및
    상기 후면 도전 패턴과 상기 관통 콘택 플러그를 연결하는 관통 비아를 포함하고,
    상기 관통 비아의 하면과 상기 관통 콘택 플러그의 상면 사이의 계면은 상기 콘택 패드 내에 제공되는 3차원 반도체 메모리 장치.
  17. 제 16 항에 있어서,
    상기 셀 어레이 구조체는 상기 제2 기판의 제2 면으로부터 돌출되는 후면 비아를 더 포함하고,
    상기 후면 비아는 상기 콘택 패드와 동일 레벨에 배치되는 3차원 반도체 메모리 장치.
  18. 제 17 항에 있어서,
    상기 후면 비아의 상면과 상기 콘택 패드의 상면은 실질적으로 동일 높이이고,
    상기 콘택 패드의 상면은 상기 콘택 패드의 하면보다 높은 3차원 반도체 메모리 장치.
  19. 제 17 항에 있어서,
    상기 콘택 패드, 상기 후면 비아, 및 상기 제2 기판은 다결정 실리콘층을 포함하는 3차원 반도체 메모리 장치.
  20. 제1 기판, 상기 제1 기판 상의 주변 회로 구조체, 및 상기 주변 회로 구조체 상에 제공되고 셀 어레이 영역 및 셀 어레이 콘택 영역을 포함하는 셀 어레이 구조체를 포함하는 3차원 반도체 메모리 장치; 및
    입출력 패드를 통하여 상기 3차원 반도체 메모리 장치와 전기적으로 연결되며, 상기 3차원 반도체 메모리 장치를 제어하는 컨트롤러를 포함하되,
    상기 셀 어레이 구조체는:
    제2 기판;
    상기 제2 기판의 제1 면과 상기 주변 회로 구조체 사이의 적층 구조체;
    상기 셀 어레이 영역에서 상기 적층 구조체를 관통하는 수직 채널 구조체들;
    상기 제2 기판을 사이에 두고 상기 적층 구조체와 이격되는 후면 도전 패턴;
    상기 셀 어레이 콘택 영역에서 상기 제2 기판을 관통하여 상기 후면 도전 패턴과 연결되는 관통 콘택 플러그;
    상기 제2 기판의 제2 면으로부터 돌출되는 후면 비아;
    상기 후면 비아와 동일 레벨에 배치되고 상기 관통 콘택 플러그와 연결되는 콘택 패드를 포함하는 전자 시스템.
KR1020210122385A 2021-09-14 2021-09-14 3차원 반도체 메모리 장치, 이를 포함하는 전자 시스템, 및 3차원 반도체 메모리 장치의 제조 방법 KR20230039859A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210122385A KR20230039859A (ko) 2021-09-14 2021-09-14 3차원 반도체 메모리 장치, 이를 포함하는 전자 시스템, 및 3차원 반도체 메모리 장치의 제조 방법
US17/828,170 US20230084497A1 (en) 2021-09-14 2022-05-31 Three-dimensional semiconductor memory devices, electronic systems including the same, and methods of fabricating the devices
CN202211113052.0A CN115811885A (zh) 2021-09-14 2022-09-14 制造三维半导体存储器装置的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210122385A KR20230039859A (ko) 2021-09-14 2021-09-14 3차원 반도체 메모리 장치, 이를 포함하는 전자 시스템, 및 3차원 반도체 메모리 장치의 제조 방법

Publications (1)

Publication Number Publication Date
KR20230039859A true KR20230039859A (ko) 2023-03-22

Family

ID=85478687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210122385A KR20230039859A (ko) 2021-09-14 2021-09-14 3차원 반도체 메모리 장치, 이를 포함하는 전자 시스템, 및 3차원 반도체 메모리 장치의 제조 방법

Country Status (3)

Country Link
US (1) US20230084497A1 (ko)
KR (1) KR20230039859A (ko)
CN (1) CN115811885A (ko)

Also Published As

Publication number Publication date
CN115811885A (zh) 2023-03-17
US20230084497A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
KR20220034273A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20220140917A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
US11887951B2 (en) Three-dimensional semiconductor memory device and electronic system including the same
KR20230164431A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20230014928A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20230006990A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20220048747A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20230039859A (ko) 3차원 반도체 메모리 장치, 이를 포함하는 전자 시스템, 및 3차원 반도체 메모리 장치의 제조 방법
US20240023337A1 (en) Three-dimensional semiconductor memory device, electronic system including the same, and method of fabricating the same
US20220375888A1 (en) Three-dimensional semiconductor memory device and electronic system including the same
US20230320096A1 (en) Three-dimensional semiconductor memory device and electronic system including the same
EP4301109A1 (en) Three-dimensional semiconductor memory devices and electronic systems including the same
EP4369882A1 (en) Three-dimensional semiconductor memory device and electronic system including the same
US20240098996A1 (en) Three-dimensional semiconductor memory device and electronic system including the same
US20220216151A1 (en) Three-dimensional semiconductor memory devices, methods of fabricating the same, and electronic systems including the same
KR20240016714A (ko) 3차원 반도체 메모리 장치, 이를 포함하는 전자 시스템
KR20230016022A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20240045622A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20230060837A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20220047934A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20230015028A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20230028975A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20240055258A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20220162224A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템
KR20230099759A (ko) 3차원 반도체 메모리 장치 및 이를 포함하는 전자 시스템