KR20230029357A - Nozzle type deposition apparatus - Google Patents

Nozzle type deposition apparatus Download PDF

Info

Publication number
KR20230029357A
KR20230029357A KR1020210111747A KR20210111747A KR20230029357A KR 20230029357 A KR20230029357 A KR 20230029357A KR 1020210111747 A KR1020210111747 A KR 1020210111747A KR 20210111747 A KR20210111747 A KR 20210111747A KR 20230029357 A KR20230029357 A KR 20230029357A
Authority
KR
South Korea
Prior art keywords
nozzle
deposition apparatus
source
pattern
type deposition
Prior art date
Application number
KR1020210111747A
Other languages
Korean (ko)
Other versions
KR102678079B1 (en
Inventor
정유종
도영원
장재영
설봉호
Original Assignee
참엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 참엔지니어링(주) filed Critical 참엔지니어링(주)
Priority to KR1020210111747A priority Critical patent/KR102678079B1/en
Priority claimed from KR1020210111747A external-priority patent/KR102678079B1/en
Priority to CN202111298031.6A priority patent/CN115725969A/en
Priority to TW111100693A priority patent/TWI831112B/en
Publication of KR20230029357A publication Critical patent/KR20230029357A/en
Application granted granted Critical
Publication of KR102678079B1 publication Critical patent/KR102678079B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a nozzle-type deposition apparatus. More specifically, according to the present invention, as a source for depositing a pattern is provided and deposited as many times as necessary for pattern deposition, an amount of the source used can be minimized. In addition, as the source is supplied only to a region where the pattern is to be formed, precise pattern deposition is possible and diffusion of the source is prevented. Accordingly, a phenomenon in which the source is deposited in another area may be fundamentally prevented. Also, since a heating gas is utilized, clogging of a pipe and a nozzle to which the source is supplied can be prevented. In addition, as the source is supplied in a nozzle manner, the deposition apparatus can be configured simply and efficiently. The nozzle-type deposition apparatus of the present invention comprises: a laser module; a first nozzle; a second nozzle; a nozzle housing; and a heater unit.

Description

노즐형 증착장치{Nozzle type deposition apparatus}Nozzle type deposition apparatus {Nozzle type deposition apparatus}

본 발명은 기판에 패턴을 형성하기 위해 패턴을 형성하는 소스를 토출하고 레이저를 조사하여 증착하는 증착장치에 대한 것이다. 보다 상세하게는 기판에는 다양한 회로 배선을 위한 패턴이 형성되는데 종래에는 이러한 회로패턴을 화학기상증착장치(Chemical Vapor Deposition : CVD)와 같은 대규모 설비에서 형성하였으나 본 발명은 일반 대기 환경에서 기판에 미세 회로패턴을 형성하는 증착장치에 대한 것이다. The present invention relates to a deposition apparatus for depositing a pattern by discharging a pattern-forming source and irradiating a laser to form a pattern on a substrate. More specifically, patterns for various circuit wiring are formed on the substrate. Conventionally, these circuit patterns were formed in large-scale facilities such as chemical vapor deposition (CVD), but the present invention is a fine circuit on the substrate in a general atmospheric environment It relates to a deposition apparatus for forming a pattern.

박막 패턴은 반도체 웨이퍼를 포함하여 LCD, OLED를 포함하는 평판형 디스플레이의 구동을 위한 기판에 형성되며 이러한 박막 패턴은 CVD 등 대규모 설비를 이용하여 증착하는 것이 일반적이다. 특히 나노 또는 마이크로 단위의 미세한 패턴은 마스크를 활용하는 노광, 식각, 증착 고정을 통해 제조되는 것이 통상적이다.Thin film patterns are formed on substrates for driving flat-type displays including LCDs and OLEDs, including semiconductor wafers, and these thin film patterns are generally deposited using large-scale equipment such as CVD. In particular, it is common to manufacture fine patterns in nano or micro units through exposure using a mask, etching, and evaporation fixation.

LCD, OLED를 포함하는 평판형 디스플레이에는 화상을 표시하기 위해 발광하는 구성과 화소의 on/off를 위한 배선 회로가 증착된 기판으로 이루어지는 것이 일반적인데 회로 패턴이 형성된 기판은 다양한 요인에 의해 미세한 회로의 단선/단락과 같은 결함이 발생하고 이러한 결함을 수리하기 위한 리페어 공정이 필수적이다. 리페어 공정을 위해서는 기판에 형성된 패턴을 끊어주거나 이어주는 공정이 필요하다. 패턴을 이어주는 공정에는 미세한 패턴을 증착하는 것이 필요한데 종래에는 결함이 있는 부위를 포함하는 일정 영역에 패턴을 형성할 금속 소스를 공급하고 패턴을 증착할 부위에 레이저를 조사하여 증착하였다.Flat-type displays including LCD and OLED generally consist of substrates on which light emitting elements for displaying images and wiring circuits for on/off of pixels are deposited. Defects such as disconnection/short circuit occur, and a repair process to repair these defects is essential. For the repair process, a process of cutting or connecting patterns formed on the substrate is required. In the process of connecting the patterns, it is necessary to deposit a fine pattern. Conventionally, a metal source to form a pattern is supplied to a certain area including a defective area, and laser is irradiated to the area to deposit the pattern.

종래의 박막패턴 증착장치는 대한민국 등록특허 10-0739443호에 개시되어 있는데 박막증착용 챔버 내에 메탈소스 가스를 공급하여 국부적인 메탈소스 분위기를 형성하고 패턴을 형성할 위치에 레이저를 조사하여 증착하는 장치가 개시되어 있다. 이러한 박막패턴 증착장치는 대규모의 챔버 내에서 이루어지는 것은 아니고 대기 중에 일부 영역을 메탈소스 분위기를 형성하여 국부적인 박막 증착을 효율적으로 수행하는 이점은 있지만 일정한 영역 내를 메탈소스 분위기로 형성하여야 하므로 메탈소스의 사용량이 과다하고 메탈소스 분위기를 형성하기 위해 에어커튼 등 부가적인 구성이 필요하며 일정 영역 내에 메탈소스 분위기가 형성됨에 따라 불필요한 부위에 메탈소스가 증착되어 박막패턴 형성 중 또 다른 결함이 발생할 수 있는 문제가 있고 미세한 패턴을 효율적으로 증착하는데 한계가 있으며 플랙서블 기판과 같이 열에 취약한 기판에 손상을 줄 가능성이 있는 문제가 있다.A conventional thin film pattern deposition apparatus is disclosed in Korean Patent Registration No. 10-0739443, which supplies a metal source gas into a thin film deposition chamber to form a local metal source atmosphere and deposits by irradiating a laser at a position where a pattern is to be formed. is disclosed. This thin film pattern deposition apparatus is not made in a large-scale chamber, but has the advantage of efficiently performing local thin film deposition by forming a metal source atmosphere in a partial area in the air, but since a metal source atmosphere must be formed in a certain area, the metal source The amount of use is excessive and additional configurations such as air curtains are required to form a metal source atmosphere. As the metal source atmosphere is formed within a certain area, the metal source is deposited in an unnecessary area, which may cause another defect during thin film pattern formation. There are problems, there are limitations in efficiently depositing fine patterns, and there is a possibility of damaging a substrate that is vulnerable to heat, such as a flexible substrate.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 패턴을 증착하기 위한 소스를 패턴 증착에 필요한 만큼 제공하여 증착함에 따라 소스의 사용량을 최소화할 수 있고, 패턴을 형성할 부위에만 소스를 공급함에 따라 정밀한 패턴 증착이 가능하고 소스의 확산을 방지하여 다른 부위에 소스가 증착되는 것을 원천적으로 막을 수 있고, 히팅 가스를 활용하여 소스가 공급되는 배관 및 노즐의 막힘을 방지할 수 있고, 노즐 방식으로 소스를 공급함에 따라 증착장치를 간이하고 효율적으로 구성할 수 있는 노즐형 증착장치를 제공함에 있다.The present invention is to solve the above problems, it is possible to minimize the amount of use of the source by providing a source for pattern deposition as much as necessary for pattern deposition, and by supplying the source only to the area where the pattern is to be formed. Precise pattern deposition is possible, it is possible to fundamentally prevent the source from being deposited in other areas by preventing the source from spreading, and it is possible to prevent clogging of the pipe and nozzle through which the source is supplied by using a heating gas. It is to provide a nozzle-type deposition device that can simply and efficiently configure the deposition device by supplying.

상기와 같은 목적을 달성하기 위해 본 발명의 노즐형 증착장치는 기판에 패턴을 증착하는 증착장치에 있어서, 상기 기판에 패턴을 형성하기 위해 레이저를 조사하는 레이저 모듈과, 상기 기판에 패턴을 증착하기 위해 증착할 소스를 토출하는 제1노즐과, 상기 제1노즐의 외곽부에 형성되어 미리 설정된 온도로 가열된 가스를 분사하는 제2노즐과, 상기 제1노즐 및 제2노즐을 내부에 수납하는 노즐 하우징과, 상기 노즐 하우징 내부에 수납되어 상기 제1노즐 및 제2노즐을 가열하기 위한 히터부를 포함한다.In order to achieve the above object, a nozzle-type deposition apparatus of the present invention is a deposition apparatus for depositing a pattern on a substrate, a laser module for irradiating a laser to form a pattern on the substrate, and depositing a pattern on the substrate. A first nozzle for discharging a source to be deposited for deposition, a second nozzle formed on the outer portion of the first nozzle and ejecting a gas heated to a preset temperature, and a second nozzle for accommodating the first and second nozzles inside A nozzle housing and a heater unit accommodated in the nozzle housing to heat the first nozzle and the second nozzle.

또한, 상기 제1노즐은 제2노즐의 내부에 삽입 설치되고, 상기 제2노즐에서 분출되는 가스는 제1노즐의 외곽부를 따라 분사되는 것을 특징으로 한다.In addition, the first nozzle is inserted into the second nozzle, characterized in that the gas ejected from the second nozzle is injected along the outer edge of the first nozzle.

또한, 상기 제1노즐은 제2노즐 끝단에서 미리 설정된 길이만큼 돌출되도록 설치되고, 상기 제2노즐은 상기 노즐 하우징 끝단에서 미리 설정된 길이만큼 돌출되도록 설치되는 것을 특징으로 한다.In addition, the first nozzle is installed to protrude by a predetermined length from the end of the second nozzle, and the second nozzle is characterized in that it is installed to protrude by a predetermined length from the end of the nozzle housing.

또한, 상기 제2노즐을 통해서 분출되는 가스는 제1노즐의 외곽부를 따라 분사되고, 상기 기판에 증착되는 패턴보다 넓은 미리 설정된 일정 영역까지 분사되는 것을 특징으로 한다.In addition, the gas ejected through the second nozzle is ejected along the outer edge of the first nozzle and is ejected to a predetermined area wider than the pattern deposited on the substrate.

또한, 상기 제1노즐에서 분사되는 소스는 텅스텐, 코발트를 포함하는 금속 분말이고, 상기 제2노즐에서 분사되는 가스는 아르곤을 포함하는 불활성 기체인 것을 특징으로 한다.In addition, the source sprayed from the first nozzle is a metal powder containing tungsten and cobalt, and the gas sprayed from the second nozzle is an inert gas containing argon.

또한, 상기 노즐 하우징은 금속 재질로 이루어진 블록형태이고, 상기 제1노즐, 제2노즐 및 히터부의 수납을 위한 2 이상의 수납홀을 더 포함한다.In addition, the nozzle housing has a block shape made of a metal material, and further includes two or more accommodating holes for accommodating the first nozzle, the second nozzle, and the heater unit.

또한, 상기 노즐 하우징 외곽부 일부 또는 전부에는 노즐 하우징에서 발생한 열이 외부로 전달되는 것을 방지하기 위해 열차폐 부재가 마련되는 것을 특징으로 한다.In addition, a heat shield member may be provided on part or all of the outer portion of the nozzle housing to prevent heat generated in the nozzle housing from being transferred to the outside.

또한, 상기 제1노즐 및 제2노즐에서 토출/분출되는 소스 및 가스 중 패턴 증착에 사용된 후 남은 소스 및 가스를 흡입하는 흡입부를 더 포함한다.In addition, a suction unit for sucking in the remaining source and gas after being used for pattern deposition among the sources and gases discharged/ejected from the first and second nozzles is further included.

또한, 상기 흡입부는 기판에 형성되는 패턴을 중심으로 상기 제1노즐 및 제2노즐과 마주 보는 위치에 곡선형태로 마련되는 것을 특징으로 한다.In addition, the suction unit is characterized in that it is provided in a curved shape at a position facing the first nozzle and the second nozzle around the pattern formed on the substrate.

또한, 상기 제1노즐 및 제2노즐은 기판에 경사지게 설치되고, 상기 흡입부에는 상기 제1노즐 및 제2노즐에서 토출/분출되는 소스 및 가스 중 패턴 증착에 사용된 후 남은 소스 및 가스를 흡입하는 2 이상의 흡입유로가 형성되고, 상기 흡입유로는 상기 제1노즐 및 제2노즐의 대칭되는 경사도를 갖도록 마련되는 것을 특징으로 한다.In addition, the first nozzle and the second nozzle are installed obliquely on the substrate, and the suction part sucks the remaining source and gas after being used for pattern deposition among the sources and gases discharged/ejected from the first nozzle and the second nozzle. Two or more suction passages are formed, and the suction passage is characterized in that it is provided to have a symmetrical gradient of the first nozzle and the second nozzle.

이상과 같은 구성의 본 발명은 노즐형태로 증착하는데 필요한 소스를 공급함에 따라 소스의 사용량을 최소화할 수 있으며 소스의 낭비를 극소화할 수 있는 효과가 있다.The present invention configured as described above has an effect of minimizing the amount of use of the source and minimizing the waste of the source by supplying the source necessary for deposition in the form of a nozzle.

또한, 노즐을 통해 패턴 증착에 필요한 부위에 소스를 공급함에 따라 미세한 패턴을 정밀하고 정확하게 형성할 수 있다.In addition, fine patterns can be precisely and accurately formed by supplying a source through a nozzle to an area required for pattern deposition.

또한, 히팅 가스를 소스가 공급되는 노즐의 외곽부뿐만 아니라 증착이 이루어지는 일정 영역에 공급하여 노즐 막힘 및 불필요한 부위에 소스가 증착되는 것을 원천적으로 방지할 수 있다.In addition, it is possible to fundamentally prevent clogging of the nozzle and deposition of the source in an unnecessary area by supplying the heating gas not only to the periphery of the nozzle to which the source is supplied but also to a certain area where deposition is performed.

또한, 노즐형태의 증착장치를 통해 증착 장치의 구성을 소형으로 제작할 수 있어 증착장치의 운용 및 설치가 용이하고, 유지 보수를 효율적으로 수행할 수 있다.In addition, since the configuration of the deposition device can be manufactured in a small size through the nozzle-shaped deposition device, operation and installation of the deposition device are easy, and maintenance can be performed efficiently.

도 1은 본 발명의 일실시예에 따른 노즐형 증착장치의 사시도이고,
도 2는 본 발명의 일실시예에 따른 노즐형 증착장치에서 제1노즐과 제2노즐의 확대 사시도이고,
도 3은 본 발명의 노즐형 증착장치를 통해 패턴이 형성되는 것을 나타내는 도면이고,
도 4는 본 발명의 일실시예에 따른 노즐형 증착장치의 흡입부를 나타내는 사시도이고,
도 5는 본 발명의 일실시예에 따른 노즐형 증착장치의 흡입부가 포함되어 패턴 증착이 이루어지는 것을 나타내는 도면이다.
1 is a perspective view of a nozzle-type deposition apparatus according to an embodiment of the present invention;
2 is an enlarged perspective view of a first nozzle and a second nozzle in a nozzle-type deposition apparatus according to an embodiment of the present invention;
3 is a view showing that a pattern is formed through the nozzle-type deposition apparatus of the present invention;
4 is a perspective view showing a suction part of a nozzle-type deposition apparatus according to an embodiment of the present invention;
5 is a view showing that pattern deposition is performed by including a suction part of a nozzle-type deposition apparatus according to an embodiment of the present invention.

이하에서 도면을 참조하여 본 발명에 따른 노즐형 증착장치에 대해 상세히 설명한다.Hereinafter, a nozzle-type deposition apparatus according to the present invention will be described in detail with reference to the drawings.

도 1은 본 발명의 일실시예에 따른 노즐형 증착장치의 사시도이고, 도 2는 본 발명의 일실시예에 따른 노즐형 증착장치에서 제1노즐과 제2노즐의 확대 사시도이고, 도 3은 본 발명의 노즐형 증착장치를 통해 패턴이 형성되는 것을 나타내는 도면이고, 도 4는 본 발명의 일실시예에 따른 노즐형 증착장치의 흡입부를 나타내는 사시도이고, 도 5는 본 발명의 일실시예에 따른 노즐형 증착장치의 흡입부가 포함되어 패턴 증착이 이루어지는 것을 나타내는 도면이다.1 is a perspective view of a nozzle-type deposition apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged perspective view of a first nozzle and a second nozzle in a nozzle-type deposition apparatus according to an embodiment of the present invention, and FIG. It is a view showing that a pattern is formed through the nozzle-type deposition apparatus of the present invention, Figure 4 is a perspective view showing the inlet of the nozzle-type deposition apparatus according to an embodiment of the present invention, Figure 5 is an embodiment of the present invention It is a view showing that the pattern deposition is performed by including the suction part of the nozzle-type deposition apparatus according to FIG.

패턴 특히 미세한 패턴을 증착하는 공정은 CVD같은 대규모 설비에서 이루어지고, 종래 대기 중에서 박막을 증착하는 박막 증착챔버장치가 있지만 기존의 CVD 설비에 비해 구성이 간단하기는 하지만 국부적인 메탈소스 분위기를 형성하여야 하고 패턴 증착에 사용되는 소량의 메탈소스 이 외에 남은 메탈소스는 버려지므로 메탈소스의 낭비가 심한 문제가 있다. 또한, 국부적인 메탈소스 분위기의 형성을 위해 외부 대기와 차단하기 위한 부가 구성이 필요하므로 구성이 복잡해지는 문제가 있다.The process of depositing patterns, especially fine patterns, is performed in large-scale facilities such as CVD, and there is a conventional thin film deposition chamber device for depositing thin films in the atmosphere. Although the configuration is simpler than conventional CVD facilities, a local metal source atmosphere must be formed. Since the remaining metal sources other than a small amount of the metal source used for pattern deposition are discarded, there is a serious problem of waste of the metal source. In addition, there is a problem in that the configuration is complicated because an additional configuration for blocking the external atmosphere is required to form a local metal source atmosphere.

본 발명의 노즐형 증착장치는 패턴을 증착형성할 기판(10)에 소스(30)에 열을 가해 증착하기 위한 레이저를 조사하는 레이저 모듈(100)과 기판(10)에 패턴을 증착하기 위한 원료인 소스(30)를 노즐 형태로 토출하는 제1노즐(200)과 제1노즐(200)로 이동하는 소스(30)의 경화로 발생할 수 있는 노즐 막힘을 방지하면서 패턴이 증착되는 부위를 포함하는 일정 영역을 외부와 단절하기 위해 제1노즐(200)의 외곽부에 형성되어 미리 설정된 온도로 가열된 히팅 가스(40)를 분사하는 제2노즐(300)과 제1노즐(200) 및 제2노즐(300)이 내부에 수납되는 노즐 하우징(400)과 노즐 하우징(400) 내부에 수납되고 제1노즐(200) 및 제2노즐(300)을 가열하기 위한 히터부(500)를 포함하여 이루어진다.The nozzle-type deposition apparatus of the present invention includes a laser module 100 for irradiating a laser for deposition by applying heat to a source 30 on a substrate 10 to form a pattern by deposition, and a source for depositing a pattern on the substrate 10 The first nozzle 200 that discharges the phosphorus source 30 in the form of a nozzle and the area where the pattern is deposited while preventing nozzle clogging that may occur due to the hardening of the source 30 moving to the first nozzle 200 A second nozzle 300 formed on the outer portion of the first nozzle 200 to inject a heating gas 40 heated to a preset temperature in order to isolate a certain area from the outside, the first nozzle 200 and the second nozzle 300. It includes a nozzle housing 400 in which the nozzle 300 is accommodated and a heater unit 500 accommodated inside the nozzle housing 400 and heating the first nozzle 200 and the second nozzle 300. .

본 발명의 레이저 모듈(100)은 제1노즐(200)로부터 기판(10)에 증착될 위치로 토출되는 소스(30)에 열을 가해 경화시켜 증착시키기 위한 레이저를 공급하는 구성이다. 소스(30)는 기판에 형성할 패턴에 따라 달라지는데 예를 들어 텅스텐(W)을 사용할 경우 이에 맞는 레이저를 조사하여야 한다. 따라서 레이저의 파장, 출력, 펄스폭 등 소스(30)의 재질에 따라 적합한 레이저를 공급할 수 있는 레이저 모듈(100)을 선택하는 것이 필요하다. 또한, 소스(30)의 재질에 따라 적절한 레이저를 공급할 수 있도록 레이저 모듈(100)을 선택한 후 기판(10)에 패턴을 증착할 위치에 레이저를 조사하기 위해 광학모듈(미도시)을 통해 레이저의 경로를 변경할 수도 있다. 광학모듈을 통해 레이저의 경로를 변경할 수도 있고 기판(10)의 크기가 작다면 기판(10)을 이동할 수도 있음은 물론이다.The laser module 100 of the present invention is configured to supply a laser for hardening by applying heat to the source 30 discharged from the first nozzle 200 to the position to be deposited on the substrate 10 and supplying a laser for deposition. The source 30 varies depending on the pattern to be formed on the substrate. For example, when tungsten (W) is used, a suitable laser should be irradiated. Therefore, it is necessary to select a laser module 100 capable of supplying a suitable laser according to the material of the source 30, such as the wavelength, output, and pulse width of the laser. In addition, after selecting the laser module 100 to supply an appropriate laser according to the material of the source 30, in order to irradiate the laser to the position where the pattern is to be deposited on the substrate 10, the laser beam is emitted through an optical module (not shown). You can also change the route. Of course, the path of the laser may be changed through the optical module and the substrate 10 may be moved if the size of the substrate 10 is small.

본 발명의 제1노즐(200)은 소스(30)를 기판(10)의 증착될 위치로 토출하기 위한 구성이다. 제1노즐(200)을 통해 토출할 소스(30)는 버블러(미도시)와 같은 고체 금속을 기화시키거나 분말형태 변환시키는 구성으로부터 제1노즐(200) 뒷단에 소스 연결부(210)을 통해 공급받는다. 버블러에서 변환된 기화 또는 분말화된 소스는 배관유로를 통해 제1노즐(200)로 전달되는데 배관유로 및 제1노즐(200) 통해 기판으로 토출되는 소스(30)는 재질에 따라 다르겠지만 일정한 온도 이하로 떨어질 경우 경화되는 특성이 있다. 즉, 배관유로 및 제1노즐(200)의 막힘을 방지하기 위해서는 일정 온도 이상으로 유지하는 것이 매우 중요하다. 제1노즐(200)의 재질은 토출하는 소스(30)에 따라 다를 수 있겠지만 일정한 온도 이상으로 유지하는데 유리하도록 열전도율이 높고 내구도가 높은 금속 재질로 하는 것이 바람직하다. 물론 소스(30)의 경화를 막기 위해 표면 거칠기가 작은 재질로 하는 것이 바람직하다. 또한, 노즐의 직경은 증착하는 패턴의 폭에 따라 다르겠지만 미세하게 제작하는 것이 유리하다. 하지만 노즐의 직경이 작아질수록 미량의 소스(30)가 경화하더라도 노즐 막힘이 발생할 수 있으므로 패턴의 폭과 토출할 소스(30)의 재질 등을 고려하여 정하는 것이 바람직하다.The first nozzle 200 of the present invention is configured to discharge the source 30 to a position on the substrate 10 to be deposited. The source 30 to be discharged through the first nozzle 200 is configured to vaporize solid metal such as a bubbler (not shown) or convert it into a powder form through the source connection part 210 at the rear end of the first nozzle 200. be supplied The vaporized or powdered source converted from the bubbler is delivered to the first nozzle 200 through the pipe passage, and the source 30 discharged to the substrate through the pipe passage and the first nozzle 200 varies depending on the material but is constant It has the property of hardening when it drops below the temperature. That is, it is very important to maintain the temperature above a certain level in order to prevent clogging of the pipe passage and the first nozzle 200 . The material of the first nozzle 200 may vary depending on the source 30 to be discharged, but it is preferable to use a metal material having high thermal conductivity and high durability so as to be advantageous in maintaining a temperature above a certain temperature. Of course, in order to prevent hardening of the source 30, it is preferable to use a material having a small surface roughness. In addition, although the diameter of the nozzle may vary depending on the width of the pattern to be deposited, it is advantageous to manufacture it finely. However, as the diameter of the nozzle becomes smaller, nozzle clogging may occur even if a small amount of the source 30 is cured, so it is preferable to determine the width of the pattern and the material of the source 30 to be ejected in consideration.

본 발명의 제2노즐(300)은 제1노즐(200)의 외곽부에 마련되어 제1노즐(200)의 외곽부를 따라 미리 설정된 온도로 가열된 히팅가스(40)를 분사하는 구성이다. 앞서 설명한 것과 같이 제1노즐(200)은 기화 또는 분말 형태의 소스(30)가 통과하는 구성으로 일정 온도 이하로 떨어질 경우 소스(30)가 경화되어 노즐 막힘 현상이 발생한다. 제2노즐(300)은 이러한 노즐 막힘을 방지하기 위해 제1노즐(200)의 외곽부로 일정 온도로 가열된 히팅가스(40)를 분사하여 제1노즐(200)을 소스(30)의 경화가 일어나지 않는 온도 이상으로 유지하기 위한 구성이다. 제2노즐(300)은 예를 들어 도 1, 2에 도시된 것과 같이 제2노즐(300)의 내부에 제1노즐(200)을 삽입 설치하도록 한다면 제2노즐(300)로 공급되는 히팅가스(40)가 제1노즐(200)을 전체적으로 가열하기 때문에 앞서 설명한 것과 같이 소스(30)의 경화에 의한 노즐 막힘을 원천적으로 방지할 수 있다. 물론 제2노즐(300)을 제1노즐(200)의 외곽부에 여러 개를 마련하여도 동일한 효과를 얻을 수 있겠지만 제1노즐(200)을 내부에 삽입하는 것보다 효과는 떨어질 수 있다. 또한, 제2노즐(300)에서 분사되는 히팅가스(40)는 도 3에서와 같이 제1노즐(200) 외곽부를 따라 기판(10)까지 도달하도록 분사되면 패턴 증착하는데 사용되고 남은 소스(30)가 패턴 이외의 부위에 경화되어 또 다른 불량을 일으키는 것을 원천적으로 방지할 수 있다. 또한, 패턴을 증착하는데 국부적인 소스(30)의 분위기를 형성하는 것이 유리하므로 외부와의 차단도 얻을 수 있는 효과가 있다. 제2노즐(300)을 통해 분사하는 히팅가스(40)는 소스(30)와의 반응을 방지하면서 외부와의 차단효과를 극대화하기 위해 비활성 기체를 사용하는 것이 바람직하다. 또한, 분자량이 큰 불활성 기체인 아르곤(Ar)를 이용하는 것이 히팅가스(40)의 온도가 급격히 떨어지는 것을 방지하고 외부와의 차단효과를 높인다는 측면에서 바람직하다.The second nozzle 300 of the present invention is provided on the outer portion of the first nozzle 200 and is configured to spray the heating gas 40 heated to a preset temperature along the outer portion of the first nozzle 200 . As described above, the first nozzle 200 has a configuration through which the source 30 in the form of vaporization or powder passes, and when the temperature drops below a certain temperature, the source 30 is hardened and the nozzle clogging occurs. The second nozzle 300 injects the heating gas 40 heated to a certain temperature to the outer portion of the first nozzle 200 to prevent the clogging of the first nozzle 200 so that the source 30 is cured. It is a configuration to maintain above the temperature that does not occur. The second nozzle 300 is a heating gas supplied to the second nozzle 300 if the first nozzle 200 is inserted into the second nozzle 300 as shown in FIGS. 1 and 2, for example. Since (40) heats the first nozzle 200 as a whole, nozzle clogging due to hardening of the source 30 can be fundamentally prevented as described above. Of course, the same effect can be obtained even if several second nozzles 300 are provided on the outer portion of the first nozzle 200, but the effect may be lower than that of inserting the first nozzle 200 inside. In addition, when the heating gas 40 sprayed from the second nozzle 300 reaches the substrate 10 along the outer edge of the first nozzle 200 as shown in FIG. 3 , the remaining source 30 is used for pattern deposition. It is possible to fundamentally prevent another defect from being cured in a region other than the pattern. In addition, since it is advantageous to form an atmosphere of the local source 30 in depositing the pattern, there is an effect of obtaining a shield from the outside. The heating gas 40 sprayed through the second nozzle 300 is preferably an inert gas in order to maximize the blocking effect with the outside while preventing reaction with the source 30 . In addition, it is preferable to use argon (Ar), which is an inert gas having a high molecular weight, in terms of preventing the temperature of the heating gas 40 from rapidly dropping and increasing the shielding effect from the outside.

본 발명의 노즐 하우징(400)은 본 발명의 노즐형 증착장치의 본체를 이루면서 제1노즐(200)과 제2노즐(300) 및 후술할 히터부(500)를 수납하는 구성이다. 노즐 하우징(400)은 내부에 제1노즐(200)을 포함해서 히터부(500)까지 수납하여야 하므로 제1노즐(200), 제2노즐(300) 및 히터부(500)를 고정하는 기구들이 포함되어야 함은 물론이다. 노즐 하우징(400)을 하나의 블록형태로 제작한 후 제1노즐(200) 및 제2노즐(300)과 히터부(500)을 수납할 수 있는 수납홀(410)을 마련하면 히터부(500)에서 발생한 열을 온전히 제1노즐(200) 및 제2노즐(300)로 전달 할 수 있는 장점이 있다. 또한 별도의 고정을 위한 기구들이 필요하지 않고 하나의 노즐 하우징(400) 하나만 설비에 고정하면 되므로 설치 및 유지 보수가 용이한 장점이 있다. 다만, 히터부(500)에서 발생한 열이 노즐 하우징(400)의 몸체 전체로 전달되므로 열차폐 부재(420)를 노즐 하우징(400) 외부에 마련하여 설비로 열이 전달되지 않도록 하는 것이 바람직하다.The nozzle housing 400 of the present invention forms a main body of the nozzle-type deposition apparatus of the present invention and has a configuration for accommodating the first nozzle 200, the second nozzle 300, and a heater unit 500 to be described later. Since the nozzle housing 400 must contain the first nozzle 200 and the heater unit 500 therein, mechanisms for fixing the first nozzle 200, the second nozzle 300, and the heater unit 500 are required. Of course it should be included. After the nozzle housing 400 is manufactured in the form of a single block, the heater unit 500 There is an advantage in that the heat generated in ) can be completely transferred to the first nozzle 200 and the second nozzle 300. In addition, there is an advantage in that installation and maintenance are easy because separate fixing mechanisms are not required and only one nozzle housing 400 needs to be fixed to the equipment. However, since heat generated from the heater unit 500 is transferred to the entire body of the nozzle housing 400, it is preferable to provide a heat shield member 420 outside the nozzle housing 400 to prevent heat from being transferred to the equipment.

본 발명의 히터부(500)는 제1노즐(200) 및 제2노즐(300)을 일정 온도 이상으로 가열하는 구성이다. 제2노즐(300)로 일정 온도 이상으로 가열된 히팅가스(40)가 공급되더라도 제2노즐(300) 자체의 길이도 있고, 기판(10)까지 히팅가스(40)가 일정 온도 이상을 유지하면서 도달되어야 하므로 히팅가스(40)의 온도를 유지하기 위해 히터부(500)가 필요하다. 또한, 히터부(500)는 한쪽에만 설치하는 것이 아니라 제2노즐(300)을 중심으로 대칭되도록 설치하는 것이 바람직하다. 다만, 여러 개를 설치할수록 가열 효과를 극대화할 수 있지만 제조 비용이 높아지므로 정밀한 온도 조절과 제조비용에 맞춰 본 발명의 노즐형 증착장치가 설치되는 환경에 맞춰 선택하는 것이 바람직하다.The heater unit 500 of the present invention is configured to heat the first nozzle 200 and the second nozzle 300 to a certain temperature or higher. Even if the heating gas 40 heated to a certain temperature or higher is supplied to the second nozzle 300, the second nozzle 300 itself has a length, and the heating gas 40 reaches the substrate 10 while maintaining a certain temperature or higher. Since it must be reached, the heater unit 500 is required to maintain the temperature of the heating gas 40. In addition, it is preferable that the heater unit 500 is installed symmetrically around the second nozzle 300 instead of being installed on only one side. However, since the heating effect can be maximized as several are installed, the manufacturing cost increases, so it is preferable to select the nozzle-type deposition apparatus according to the environment in which the nozzle type deposition apparatus of the present invention is installed according to precise temperature control and manufacturing cost.

본 발명의 흡입부(600)는 제1노즐(200)에서 토출된 소스(30)가 패턴으로 증착되고 남은 소스(30) 및 제2노즐(300)로 분사되는 히팅가스(40)를 흡입하여 외부로 배출하기 위한 구성이다. 흡입부(600)는 도 4에 도시된 일례와 같이 제2노즐(300)의 외곽부를 감싸는 형태로 마련되는 것이 바람직하다. 또한, 흡입된 소스(30) 및 히팅가스(40)를 효율적으로 흡입하기 위해 흡입유로(610)는 복수로 여러 개 형성하는 것이 바람직하다. 또한, 패턴(20)의 증착을 위해 레이저를 조사하여야 하므로 정밀한 증착을 위해 제1노즐(200)을 기판에 기울어지게 설치한 후 기판에 수직으로 레이저가 조사되는 것이 바람직하다. 따라서 흡입유로(610)는 기울어진 제1노즐(200)에 대응되도록 경사지게 형성된다면 외부로 흩어지지 않고 효율적으로 흡입할 수 있는 효과가 있다. 또한, 도 5와 같이 노즐 하우징(400)을 기울어지도록 설치한 후 흡입부(600)가 반대편에 위치하도록 설치한다면 보다 효율적으로 소스(30)와 히팅가스(40)를 흡입할 수 있는 효과가 있다.In the suction unit 600 of the present invention, the source 30 discharged from the first nozzle 200 is deposited in a pattern, and the remaining source 30 and the heating gas 40 injected into the second nozzle 300 are sucked in to It is a configuration for discharging to the outside. As in the example shown in FIG. 4 , the suction unit 600 is preferably provided in a form surrounding the outer portion of the second nozzle 300 . In addition, it is preferable to form a plurality of suction passages 610 in order to efficiently suck in the sucked source 30 and the heating gas 40 . In addition, since the laser must be irradiated for the deposition of the pattern 20, it is preferable to install the first nozzle 200 at an angle to the substrate and then irradiate the laser perpendicularly to the substrate for precise deposition. Therefore, if the suction passage 610 is formed to be inclined to correspond to the inclined first nozzle 200, there is an effect of efficiently suctioning without scattering to the outside. In addition, as shown in FIG. 5, if the nozzle housing 400 is installed to be inclined and then the suction part 600 is installed to be positioned on the opposite side, the source 30 and the heating gas 40 can be more efficiently suctioned. .

레이저 모듈 : 100 제1노즐 : 200
제2노즐 : 300 노즐 하우징 : 400
히터부: 500 흡입부 : 600
Laser module: 100 Nozzle 1: 200
2nd nozzle: 300 Nozzle housing: 400
Heater: 500 Suction: 600

Claims (10)

기판에 패턴을 증착하는 증착장치에 있어서,
상기 기판에 패턴을 형성하기 위해 레이저를 조사하는 레이저 모듈과,
상기 기판에 패턴을 증착하기 위해 증착할 소스를 토출하는 제1노즐과,
상기 제1노즐의 외곽부에 형성되어 미리 설정된 온도로 가열된 가스를 분사하는 제2노즐과,
상기 제1노즐 및 제2노즐을 내부에 수납하는 노즐 하우징과,
상기 노즐 하우징 내부에 수납되어 상기 제1노즐 및 제2노즐을 가열하기 위한 히터부를 포함하는 노즐형 증착장치.
In the deposition apparatus for depositing a pattern on a substrate,
A laser module for irradiating a laser to form a pattern on the substrate;
A first nozzle for discharging a source to be deposited to deposit a pattern on the substrate;
A second nozzle formed on an outer portion of the first nozzle and spraying a gas heated to a preset temperature;
A nozzle housing accommodating the first nozzle and the second nozzle therein;
A nozzle-type deposition apparatus including a heater housed in the nozzle housing to heat the first nozzle and the second nozzle.
청구항 1에서,
상기 제1노즐은 제2노즐의 내부에 삽입 설치되고, 상기 제2노즐에서 분출되는 가스는 제1노즐의 외곽부를 따라 분사되는 것을 특징으로 하는 노즐형 증착장치.
In claim 1,
The nozzle-type deposition apparatus according to claim 1 , wherein the first nozzle is inserted into the second nozzle, and the gas ejected from the second nozzle is injected along an outer portion of the first nozzle.
청구항 2에서,
상기 제1노즐은 제2노즐 끝단에서 미리 설정된 길이만큼 돌출되도록 설치되고, 상기 제2노즐은 상기 노즐 하우징 끝단에서 미리 설정된 길이만큼 돌출되도록 설치되는 것을 특징으로 하는 노즐형 증착장치.
In claim 2,
The nozzle type deposition apparatus, wherein the first nozzle is installed to protrude from the end of the second nozzle by a predetermined length, and the second nozzle is installed to protrude by a predetermined length from the end of the nozzle housing.
청구항 2에서,
상기 제2노즐을 통해서 분출되는 가스는 제1노즐의 외곽부를 따라 분사되고, 상기 기판에 증착되는 패턴보다 넓은 미리 설정된 일정 영역까지 분사되는 것을 특징으로 하는 노즐형 증착장치.
In claim 2,
The nozzle-type deposition apparatus according to claim 1 , wherein the gas ejected through the second nozzle is ejected along an outer portion of the first nozzle and is ejected to a predetermined area wider than a pattern to be deposited on the substrate.
청구항 1에서,
상기 제1노즐에서 분사되는 소스는 텅스텐, 코발트를 포함하는 금속 분말이고, 상기 제2노즐에서 분사되는 가스는 아르곤을 포함하는 불활성 기체인 것을 특징으로 하는 노즐형 증착장치.
In claim 1,
The nozzle-type deposition apparatus, characterized in that the source injected from the first nozzle is a metal powder containing tungsten and cobalt, and the gas injected from the second nozzle is an inert gas containing argon.
청구항 1에서,
상기 노즐 하우징은 금속 재질로 이루어진 블록형태이고,
상기 제1노즐, 제2노즐 및 히터부의 수납을 위한 2 이상의 수납홀을 더 포함하는 노즐형 증착장치.
In claim 1,
The nozzle housing has a block shape made of a metal material,
A nozzle-type deposition apparatus further comprising two or more accommodating holes for accommodating the first nozzle, the second nozzle, and the heater unit.
청구항 6에서,
상기 노즐 하우징 외곽부 일부 또는 전부에는 노즐 하우징에서 발생한 열이 외부로 전달되는 것을 방지하기 위해 열차폐 부재가 마련되는 것을 특징으로 하는 노즐형 증착장치.
In claim 6,
A nozzle-type deposition apparatus, characterized in that a heat shield member is provided on part or all of the outer portion of the nozzle housing to prevent heat generated in the nozzle housing from being transferred to the outside.
청구항 1에서,
상기 제1노즐 및 제2노즐에서 토출/분출되는 소스 및 가스 중 패턴 증착에 사용된 후 남은 소스 및 가스를 흡입하는 흡입부를 더 포함하는 노즐형 증착장치.
In claim 1,
The nozzle-type deposition apparatus further comprises a suction unit for sucking in the source and gas remaining after being used for pattern deposition among the sources and gases discharged/ejected from the first nozzle and the second nozzle.
청구항 8에서,
상기 흡입부는 기판에 형성되는 패턴을 중심으로 상기 제1노즐 및 제2노즐과 마주 보는 위치에 곡선형태로 마련되는 것을 특징으로 하는 노즐형 증착장치.
In claim 8,
The nozzle-type deposition apparatus according to claim 1 , wherein the suction part is provided in a curved shape at a position facing the first nozzle and the second nozzle around the pattern formed on the substrate.
청구항 7에서,
상기 제1노즐 및 제2노즐은 기판에 경사지게 설치되고,
상기 흡입부에는 상기 제1노즐 및 제2노즐에서 토출/분출되는 소스 및 가스 중 패턴 증착에 사용된 후 남은 소스 및 가스를 흡입하는 2 이상의 흡입유로가 형성되고, 상기 흡입유로는 상기 제1노즐 및 제2노즐의 대칭되는 경사도를 갖도록 마련되는 것을 특징으로 하는 노즐형 증착장치.
In claim 7,
The first nozzle and the second nozzle are installed inclined on the substrate,
Two or more suction passages are formed in the suction part to suck in the source and gas remaining after being used for pattern deposition among the sources and gases discharged/ejected from the first nozzle and the second nozzle, and the suction passage is the first nozzle. and a nozzle-type deposition apparatus characterized in that it is provided to have a symmetrical inclination of the second nozzle.
KR1020210111747A 2021-08-24 2021-08-24 Nozzle type deposition apparatus KR102678079B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210111747A KR102678079B1 (en) 2021-08-24 Nozzle type deposition apparatus
CN202111298031.6A CN115725969A (en) 2021-08-24 2021-11-04 Nozzle type deposition apparatus
TW111100693A TWI831112B (en) 2021-08-24 2022-01-07 Nozzle type deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210111747A KR102678079B1 (en) 2021-08-24 Nozzle type deposition apparatus

Publications (2)

Publication Number Publication Date
KR20230029357A true KR20230029357A (en) 2023-03-03
KR102678079B1 KR102678079B1 (en) 2024-06-25

Family

ID=

Also Published As

Publication number Publication date
TW202310020A (en) 2023-03-01
CN115725969A (en) 2023-03-03
TWI831112B (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP6815390B2 (en) How to operate the depositor, how to deposit the evaporated source material on the substrate, and the depositor
KR100623730B1 (en) Evaporating source assembly and deposition apparatus having the same
KR101128745B1 (en) Vapor emission device, organic thin-film vapor deposition apparatus and method of organic thin-film vapor deposition
US20100025370A1 (en) Reactive gas distributor, reactive gas treatment system, and reactive gas treatment method
US8802200B2 (en) Method and apparatus for cleaning organic deposition materials
KR101132581B1 (en) Organic-material vapor generator, film deposition source, and film deposition apparatus
US9174250B2 (en) Method and apparatus for cleaning organic deposition materials
KR100666572B1 (en) Vapor deposition apparatus for organic material
JP4726123B2 (en) Application system
KR20120035788A (en) Apparatus for supplying organic matter and apparatus for depositing organic matter using the same
JP2005120476A (en) Vertical vapor deposition method for organic electro-luminescence device, apparatus therefor, and vapor deposition source used therefor
KR20230029357A (en) Nozzle type deposition apparatus
KR102678079B1 (en) Nozzle type deposition apparatus
KR20230141358A (en) Nozzle type deposition apparatus
CN107012446B (en) Precipitation equipment and deposition method
JP3874106B2 (en) Film forming apparatus and device manufacturing method
KR20060094723A (en) Side effusion type evaporation source and vapor deposion apparatus having the same
JP2020023750A (en) Methods of operating deposition apparatus, method of depositing evaporated source material on substrate, and deposition apparatus
KR101530033B1 (en) Thin layers deposition apparatus
KR100646514B1 (en) Apparatus for Depositing Organic Material
KR102461306B1 (en) Film forming apparatus and film forming method
KR101265017B1 (en) Upright type deposition apparatus
KR20060099974A (en) Evaporation source and vapor deposition apparatus having the same
KR20200140632A (en) Deposition apparatus
JP2004307934A (en) Gas deposition apparatus and gas deposition method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant