KR20220157823A - 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법 - Google Patents

새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법 Download PDF

Info

Publication number
KR20220157823A
KR20220157823A KR1020210065832A KR20210065832A KR20220157823A KR 20220157823 A KR20220157823 A KR 20220157823A KR 1020210065832 A KR1020210065832 A KR 1020210065832A KR 20210065832 A KR20210065832 A KR 20210065832A KR 20220157823 A KR20220157823 A KR 20220157823A
Authority
KR
South Korea
Prior art keywords
al2o3
particles
deposition
spherical
aerosol
Prior art date
Application number
KR1020210065832A
Other languages
English (en)
Inventor
오종민
김익수
조명연
박철환
신원호
구상모
이동원
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Priority to KR1020210065832A priority Critical patent/KR20220157823A/ko
Publication of KR20220157823A publication Critical patent/KR20220157823A/ko
Priority to KR1020230034737A priority patent/KR20230066513A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

새로운 이중-입자 에어로졸 증착(dual-particle aerosol deposition)을 사용한 고품질 알루미나 제조 방법이 개시된다. 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나(Al2O3) 제조 방법은, (a) 실온에서, 이중-입자 에어로졸 증착 공정을 사용하여 각형 α-Al2O3 및 구형의 α-Al2O3 분말 혼합물을 준비하는 단계; (b) 상기 이중-입자 에어로졸 증착 공정을 사용하여 추가적인 열처리(thermal treatment) 없이 각형 Al2O3 입자들 및 구형 Al2O3 입자들이 혼합된 분말을 에어로졸화하여 생성된 에어로졸은 에어로졸 챔버와 증착 챔버의 두 챔버 사이의 압력 차이에 의해 연결된 테플론 튜브를 통해 에어로졸 챔버로부터 증착 챔버로 이송되고, 수렴 노즐을 통해 기판 홀더에 부착된 기판 위에 증착하여 Al2O3 세라믹 코팅층을 형성하여 단일-입자 에어로졸 공정에 의한 Al2O3 필름보다 투과율(transmittance)과 경도(hardness)가 우수한 Al2O3 필름을 갖는 알루미나층을 제조하는 단계; 및 (c) 상기 Al2O3 필름의 표면 거칠기와 투과율(transmittance)과 경도(hardness)를 측정하는 단계를 포함한다.
고품질 알루미나(alumina, Al2O3) 코팅은 광전자(optoelectronics), 태양 전지(solar cells) 및 부식/불순물 방지 코팅(corrosion/impurity resistant coatings) 및 절삭 공구 분야에서 대규모의 수요를 갖는다. 알루미나 코팅의 품질은 그 경도(hardness)와 투명성(transparency)에 의존한다. 널리 사용되는 세라믹 인 단단하고 투명한 알루미나 코팅을 얻기 위해, 새로운 에어로졸 증착(aerosol deposition) 시도는 Al2O3 세라믹 코팅을 제조하기 위해 사용된 시작 분말은 각형 및 구형 Al2O3 입자들(angular and spherical Al2O3 particles)로 구성된다. 10:0, 7:3, 5:5, 3:7 및 0:10 비율을 갖는 각형:구형 Al2O3 입자 혼합물(angular and spherical Al2O3 mixture)을 사용하여 제조된 Al2O3 필름은 표면에서 거칠기(roughness) 및 마이크로구조가 상당한 변화가 나타났다. 3:7 각형:구형 Al2O3 혼합물 필름(3:7 angular:spherical Al2O3 mixture film)의 극적인 형상 변화(dramatic morphology modulation)는 결과적으로 에어로졸 혼합물(aerosol mixture)에 의한 중첩 해머링 효과(superposition hammering effec), 단일-입자 에어로졸 증착 공정을 사용하여 생성된 Al2O3 필름 보다 향상된 투과율(transmittance, 84.7 %) 및 경도(hardness, 13.6 GPa)를 갖는다. 이전 연구에서는 Al2O3 필름 특성을 최적화하기 위해 고 에너지 접근 방식들(high-energy approaches)을 사용했다. 그러나, 이러한 이중 입자 접근 방식( dual-particle approach)은 추가적인 열처리(thermal treatment) 없이 빠른 코팅 속도(32
Figure pat00023
× μm/min)를 달성하는 동안에 투과율(transmittance)과 경도(hardness)가 우수한 Al2O3 필름을 생성한다. 우리의 제안 접근 방식은 우수한 내구성(durability)을 갖는 투명한 Al2O3 필름을 생산하는 새롭고 에너지 효율적인 방법을 제공한다.

Description

새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법{Fabrication method of high-quality alumina coating through novel, dual-particle aerosol deposition}
본 발명은 새로운 이중-입자 에어로졸 증착(dual-particle aerosol deposition)을 사용한 고품질 알루미나(Al2O3) 제조 방법에 관한 것이다.
1. 개요
세라믹 재료(ceramic materials)는 화학적 불활성(chemical inertness), 기계적 강도(mechanical strength), 고유한 열 안정성(inherent thermal stability) 및 내 부식성(corrosion resistance)과 같은 특정 특성의 이점을 활용하는 응용 분야에서 널리 사용된다[1-4]. 단단하고 투명한 알루미나(Al2O3) 코팅은 광전자(optoelectronics), 태양 전지(solar cell), 내마모성 코팅(wear-resistant coatings), 코팅, 보호 코팅(protective coatings) 및 절단 도구(cutting tools)에 광범위하게 사용되었다[5-12]. Al2O3 필름(Al2O3 films)을 제조하기 위해 플라즈마 스프레이 코팅(plasma spray coating), 스핀 코팅(spin coating), 마그네트론 스퍼터링(magnetron sputtering), 졸-겔 방법(sol-gel method), 이온 빔 증착(ion-beam deposition) 및 화학적 기상 증착(chemical vapor deposition)을 포함한 다양한 공정이 사용되었다[4-12].
그러나, 이러한 기존 방법은 낮은 증착 속도(1.0 nm/min), 낮은 증착 접착력(low post-deposition adhesion) 및 높은 처리 온도(high processing temperatures, ~ 1000℃)와 같은 몇 가지 중요한 단점이 있다[6,11-13].
증착 중 열처리(thermal treatment during deposition)가 표면 및 내부 결함(기공-pores 및 균열-cracks)의 감소를 통해 Al2O3 필름들의 투과율(transmittance)과 경도(hardness)를 향상시키는 것으로 나타났지만 원하지 않는 열 균열 및 팽창(thermal cracking and expansion)은 고온 처리(high temperature treatment)를 수반한다[14-21]. 고온 처리 없이 Al2O3 필름의 투과율과 경도(transmittance and hardness of Al2O3 films without high temperature processing)를 최적화하는 대체 제조 방법이 제안되었다. 에어로졸 증착(AD) 방법은 높은 증착 속도(high deposition rate)를 가지며, 저 진공 시스템(여러 Torr 시스템)의 23℃ 상온에서 수행된다[22]. 에어로졸 증착(AD)에 의해 제작된 세라믹 필름(AD fabricated ceramic films)은 기판 타입(substrate type)에 민감하지 않으며, 기판 상에서 입자들이 주는 기계적 충격(mechanical impact of particles on the substrate)에 의해 고정층에 대한 해머링 효과로 인해 (열 처리없이) 접착력이 향상되는 것으로 보고되었다[23,24]. AD 필름은 에어로졸화 된 원료 출발 물질의 운동 에너지가 열 에너지로 변환되어 형성되며, 에어로졸 입자가 기판에 충돌하여 산산조각이 나면서 새로운 표면을 생성한다[22,25,26]. 또한, 하드 배리어 코팅(hard barrier coatings), 소수성 코팅(hydrophobic coatings), 커패시터들, CBRAM 및 습도 센서와 같은 응용 분야에 사용되는 AD fabricated Al2O3 및 Al2O3 기반 복합 필름은 우수한 성능을 보여준다[27-33].
이와 관련된 선행기술로써, 특허 등록번호 10-20464190000 (등록일자 2019년 11월 13일), "필름 저항의 적용을 위한 에어로졸 증착 공정을 통해 산화알루미늄과 구리 복합 필름의 접착 방법"이 등록되어 있다. 23℃ 실온에서 필름 저항(Film Resistor)의 적용을 위한 에어로졸 증착(AD) 공정을 통해 Al2O3/Cu 복합 필름(Al2O3/Cu composite films)의 접착 방법은 Al2O3/Cu 복합 필름의 미세구조가 표면 형태와 Al2O3/Cu 비율 간의 상관성을 관찰하였다. Al2O3/Cu 복합 필름에 적용되는 부하를 점진적으로 증가시킴으로써 스크래치 테스트가 수행되었다. 또한, Al2O3/Cu 복합 필름들과 Al2O3 기판 간의 인장강도(tensile strength)를 증가시킴으로써 접착력을 평가하였다. Al2O3/Cu 복합 필름의 접착성이 이러한 필름들과 Al2O3 기판 간의 기계적 인터로킹(mechanical interlocking) 및 앵커링 본드들(anchoring bonds) 때문에 2 접착 매커니즘(adhesive mechanisms)에 의해 강하게 영향을 받았다는 결과를 확인하였다. Al2O3와 Cu 모두 50 wt%의 함량을 갖는 혼합 분말이 기판에 증착될 때, 접착 강도(adhesive strength)는 7.08 MPa, 전기 저항도(resistivity)는 851.9Ωm였다.
Cho et al. [28] 및 Lebedev et al. [34]은 각각 높은 투명도(high transparency, 85 %)와 높은 경도(high hardness, ~ 15.7 GPa)를 보여주는 AD 제작 Al2O3 코팅을 보고했다.
그러나, 이러한 Al2O3 필름은 투명도를 최적화하기 위해 얇거나(~ 300nm), 경도를 최적화하기 위해 두께(5.5μm)로 투과율과 경도 사이의 균형을 명확하게 보여주었다. Al2O3 필름 특성을 개선하기 위해 AD 공정의 3개의 파라미터들은 일반적으로 주입된 가스 타입(injected gas type), 노즐 오리피스 크기(nozzle orifice size) 및 주입 가스량(quantity of injected gas)가 조정된다[27-30,34].
에어로졸 입자의 속도(velocity of aerosolized particles)를 높이면 해머링 효과(hammering effect)가 향상되어 더 부드럽고 고밀도의 AD 필름이 생성되지만 에너지 소비가 더 커진다[33,35].
밀도(density) 증가를 통해 필름 표면 평활도(film surface smoothness)를 향상시키기 위해 상기 언급한 AD 코팅 시스템의 능력은 에어로졸 입자들(aerosolized particles)의 과도한 충격 에너지(excessive impact energy)에 의해 야기된 기판 및 파이오니아 층(pioneer layer)의 불가피한 에칭에 의해 본질적으로 제한된다. 크레이터들(craters)와 기공(pores), 응집된 에어로졸 입자들와 같은 결과적인 원치 않는 결함은 증착된 필름의 투과율(transmittance)과 경도(hardness)를 감소시키고 결과의 재현성을 낮추게 된다[31,32,34-36].
이러한 문제를 해결하기 위해 우리는 에어로졸 입자의 해머링 효과를 향상시키고 에어로졸 증착(AD) 동안 에칭을 방지하는 새로운 접근 방식을 개발하였다.
특허 등록번호 10-20464190000 (등록일자 2019년 11월 13일), "필름 저항의 적용을 위한 에어로졸 증착 공정을 통해 산화알루미늄과 구리 복합 필름의 접착 방법", 광운대학교 산학협력단
[1] N. Roux, S. Tanaka, C. Johnson, R. Verrall, Ceramic breeder material development, Fusion Eng. Des. 41 (1998) 31-38. [2] J. Luyten, I. Thijs, W. Vandermeulen, S. Mullens, B. Wallaeys, R. Mortelmans, Strong ceramic foams from polyurethane templates, Adv. Appl. Ceram. 104 (2005) 4-8. [3] L.R. Meza, S. Das, J.R. Greer, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices, Science 345 (2014) 1322-1326. [4] F. Shao, K. Yang, H. Zhao, C. Liu, L. Wang, S. Tao, Effects of inorganic sealant and brief heat treatments on corrosion behavior of plasma sprayed Cr2O3-Al2O3 composite ceramic coatings, Surf. Coating. Technol. 276 (2015) 8-15. [5] J. Houska, J. Blazek, J. Rezek, S. Proksova, Overview of optical properties of Al2O3 films prepared by various techniques, Thin Solid Films 520 (2012) 5405-5408. [6] P. Jin, G. Xu, M. Tazawa, K. Yoshimura, D. Music, J. Alami, U. Helmersson, Low temperature deposition of α-Al2O3 thin films by sputtering using a Cr2O3 template, J. Vac. Sci. Technol., A 20 (2002) 2134-2136. [7] A.J. Devasahayam, I. Agatic, B. Druz, H. Hegde, I. Zaritsky, S.R. Das, M. Boudreau, T. Yin, R. Mallard, S. LaFramboise, Material properties of ion beam deposited oxides for the optoelectronic industry, J. Vac. Sci. Technol., A 20 (2002) 1135-1140. [8] G. Dingemans, W.M.M. Kessels, Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells, J. Vac. Sci. Technol., A 30 (2012) 040802. [9] D.G. Cahill, S.M. Lee, T.I. Selinder, Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings, J. Appl. Phys. 83 (1998) 5783-5786. [10] M. Zhang, B. Xu, G. Ling, Preparation and characterization of α-Al2O3 film by low temperature thermal oxidation of Al8Cr5 coating, Appl. Surf. Sci. 331 (2015) 1-7. [11] R. Haubner, E. Rauchenwald, M. Lessiak, R. Pitonak, R. Weissenbacher, Novel high PERFORAMCNE CVD coatings for MACHINIG applications, Powder Metall. Prog. 18 (2018) 128-138. [12] J. Muller, M. Schierling, E. Zimmermann, D. Neuschutz, Chemical vapor deposition of smooth α-Al2O3 films on nickel base superalloys as diffusion barriers, Surf. Coating. Technol. 120 (1999) 16-21. [13] M. Astrand, T.I. Selinder, F. Fietzke, H. Klostermann, PVD-Al2O3-coated cemented carbide cutting tools, Surf. Coating. Technol. 188 (2004) 186-192. [14] T.Y. Liu, L.G. Teoh, C.K. Huang, Y.C. Lee, A study of roughness improvement of Al2O3 substrates using sol-gel method, Procedia Eng 141 (2016) 108-114. [15] X. Lan, X. Ou, Y. Cao, S. Tang, C. Gong, B. Xu, Y. Xia, J. Yin, A. Li, F. Yan, Z. Liu, The effect of thermal treatment induced inter-diffusion at the interfaces on the charge trapping performance of HfO2/Al2O3 nanolaminate-based memory devices, J. Appl. Phys. 114 (2013) 044104. [16] V. Edlmayr, M. Moser, C. Walter, C. Mitterer, Thermal stability of sputtered Al2O3 coatings, Surf. Coating. Technol. 204 (2010) 1576-1581. [17] A. Krell, P. Blank, H. Ma, T. Hutzler, M. Nebelung, Processing of high-density submicrometer Al2O3 for new applications, J. Am. Ceram. Soc. 86 (2003) 546-553. [18] B.P. Dhonge, T. Mathews, S.T. Sundari, C. Thinaharan, M. Kamruddin, S. Dash, A.K. Tyagi, Spray pyrolytic deposition of transparent aluminum oxide (Al2O3) films, Appl. Surf. Sci. 258 (2011) 1091-1096. [19] A. Braun, G. Falk, R. Clasen, Transparent polycrystalline alumina ceramic with submicrometre microstructure by means of electrophoretic deposition, Mater. Sci. Eng. Tech. 37 (2006) 293-297. [20] S.H. Tamboli, V. Puri, R.K. Puri, R.B. Patil, M.F. Luo, Comparative study of physical properties of vapor chopped and nonchopped Al2O3 thin films, Mater. Res. Bull. 46 (2011) 815-819. [21] M. Emamy, A. Razaghian, H.R. Lashgari, R. Abbasi, The effect of Al-5Ti-1B on the microstructure, hardness and tensile properties of Al2O3 and SiC-containing metal-matrix composites, Mater. Sci. Eng., A 485 (2008) 210-217. [22] J. Akedo, S. Nakano, J. Park, S. Baba, K. Ashida, The aerosol deposition method, Synthesiol. English Ed. 1 (2008) 121-130. [23] B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, H.E. Kim, Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications, Thin Solid Films 518 (2010) 2194-2199. [24] J. Exner, M. Hahn, M. Schubert, D. Hanft, P. Fuierer, R. Moos, Powder requirements for aerosol deposition of alumina films, Adv. Powder Technol. 26 (2015) 1143-1151. [25] D.M. Chun, S.H. Ahn, Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system, Acta Mater. 59 (2011) 2693-2703. [26] J. Kwon, H. Park, I. Lee, C. Lee, Effect of gas flow rate on deposition behavior of Fe based amorphous alloys in vacuum kinetic spray process, Surf. Coating. Technol. 259 (2014) 585-593. [27] N. Seto, K. Endo, N. Sakamoto, S. Hirose, J. Akedo, Hard α-Al2O3 films coating on industrial roller using aerosol deposition method, J. Therm. Spray Technol. 23 (2014) 1373-1381. [28] M.Y. Cho, S.J. Park, S.M. Kim, D.W. Lee, H.K. Kim, S.M. Koo, K.S. Moon, J.M. Oh, Hydrophobicity and transparency of Al2O3-based poly-tetra-fluoro-ethylene composite thin films using aerosol deposition, Ceram. Int. 44 (2018) 16548-16555. [29] S.M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, T. Tsurumi, Alumina thick films as integral substrates using aerosol deposition method, Jpn. J. Appl. Phys. 43 (2004) 5414-5418. [30] O.Y. Kwon, D.W. Lee, J.M. Oh, J. Cai, B.S. Kim, Characterization of broadband dielectric properties of aerosol-deposited Al2O3 thick films, J. Ceram. Process. Res. 19 (2018) 290-295. [31] M.Y. Cho, S. Kim, I.S. Kim, E.S. Kim, Z.J. Wang, N.Y. Kim, S.W. Kim, J.M. Oh, Perovskite-induced ultrasensitive and highly stable humidity sensors systems prepared by aerosol deposition at room temperature, Adv. Funct. Mater. (2019) 1907449. [32] C. Lee, M.Y. Cho, M. Kim, J. Jang, Y. Oh, K. Oh, S. Kim, B. Park, B. Kim, S.M. Koo, J.M. Oh, D. Lee, Applicability of aerosol deposition process for flexible electronic device and determining the film formation mechanism with cushioning effects, Sci. Rep. 9 (2019) 1-10. [33] S. Kim, M.Y. Cho, I.S. Kim, W.J. Kim, S.H. Park, S. Baek, J.M. Oh, S.W. Kim, Solvent-free aerosol deposition for highly luminescent and thermally stable perovskite-ceramic nanocomposite film, Adv. Mater. Interfaces 6 (2019) 1900359. [34] M. Lebedev, S. Krumdieck, Optically transparent, dense α-Al2O3 thick films deposited on glass at room temperature, Curr. Appl. Phys. 8 (2008) 233?236. [35] H.K. Kim, S.W. Lee, S.G. Lee, Y.H. Lee, Densification mechanism of BaTiO3 films on Cu substrates fabricated by aerosol deposition, Electron. Mater. Lett. 11 (2015) 388-397. [36] J. Exner, M. Schubert, D. Hanft, J. Kita, R. Moos, How to treat powders for the room temperature aerosol deposition method to avoid porous, low strength ceramic films, J. Eur. Ceram. Soc. 39 (2019) 592-600. [37] P.E. Leger, M. Sennour, F. Delloro, F. Borit, A. Debray, F. Gaslain, M. Jeandin, M. Ducos, Multiscale experimental and numerical approach to the powder particle shape effect on Al-Al2O3 coating build-up, J. Therm. Spray Technol. 26 (2017) 1445-1460. [38] J.M. Shockley, C. Desrayaud, R.R. Chromik, S. Descartes, Significance of Al2O3 particle morphology in the microstructure evolution of cold-sprayed Al-Al2O3 during unconstrained high-pressure torsion, Mater. Sci. Eng., A 684 (2017) 510-516. [39] J.G. Lee, Y.H. Cha, D.Y. Kim, J.H. Lee, T.K. Lee, W.Y. Kim, J. Park, D. Lee, S.C. James, S.S. Al-Deyab, S.S. Yoon, Robust mechanical properties of electrically insulative alumina films by supersonic aerosol deposition, J. Therm. Spray Technol. 24 (2015) 1046-1051. [40] D.W. Lee, H.J. Kim, Y.H. Kim, Y.H. Yun, S.M. Nam, Growth process of α-Al2O3 ceramic films on metal substrates fabricated at room temperature by aerosol deposition, J. Am. Ceram. Soc. 94 (2011) 3131-3138. [41] C.W. Kim, J.H. Choi, H.J. Kim, D.W. Lee, C.Y. Hyun, S.M. Nam, Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films, Ceram. Int. 38 (2012) 5621-5627. [42] D.W. Lee, H.J. Kim, S.M. Nam, Effects of starting powder on the growth of Al2O3 films on Cu substrate using the aerosol deposition method, J. Kor. Phys. Soc. 57 (2010) 1115-1121. [43] V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, J. Theor. Appl. Phys. 6 (2012) 6. [44] D.W. Lee, M.Y. Cho, I.S. Kim, Y.N. Kim, D. Lee, S.M. Koo, C. Park, J.M. Oh, Experimental and numerical study for Cu metal coatings at room temperature via powder spray process, Surf. Coating. Technol. 353 (2018) 66-74. [45] S. Sutha, S. Suresh, B. Raj, K.R. Ravi, Transparent alumina based superhydrophobic self-cleaning coatings for solar cell cover glass applications, Sol. Energy Mater. Sol. Cells 165 (2017) 128-137. [46] J. Kim, H. Kwon, H. Park, C. Lee, Microstructural features affecting optical properties of vacuum kinetic sprayed Al2O3 thin film, Surf. Interfaces 9 (2017) 114-123. [47] M.R. Figueiredo, M.D. Abad, A.J. Harris, C. Czettl, C. Mitterer, P. Hosemann, Nanoindentation of chemical-vapor deposited Al2O3 hard coatings at elevated temperatures, Thin Solid Films 578 (2015) 20-24. [48] I.A. Kariper, Hardness of thin films and the influential factors, Diamond Carbon Compos. Nanocompos. 100 (2016) 1. [49] B. Jonsson, S. Hogmark, Hardness measurements OF thin films, Thin Solid Films 114 (1984) 257-269. [50] Y. Ye, S. Jia, D. Zhang, W. Liu, H. Zhao, A study for anticorrosion and tribological behaviors of thin/thick diamond-like carbon films in seawater, Surf. Topogr. 6 (2018) 014004. [51] Y. Sato, Y. Uemichi, K. Nishikawa, S. Yoshikado, Fabrication of Al2O3 films using aerosol deposition method and their characterization, IOP Conf. Ser. Mater. Sci. Eng. 18 (2011) 092056. [52] D.W. Lee, H.J. Kim, Y.N. Kim, M.S. Jeon, S.M. Nam, Substrate hardness dependency on properties of Al2O3 thick films grown by aerosol deposition, Surf. Coating. Technol. 209 (2012) 160-168
상기 문제점을 해결하기 위한 본 발명의 목적은 새로운 이중-입자 에어로졸 증착(dual-particle aerosol deposition)을 사용한 고품질 알루미나(Al2O3) 제조 방법을 제공한다.
본 발명의 목적을 달성하기 위해, 새로운 이중-입자 에어로졸 증착(dual-particle aerosol deposition)을 사용한 고품질 알루미나(Al2O3) 제조 방법은, (a) 실온에서, 이중-입자 에어로졸 증착 공정을 사용하여 각형 α-Al2O3 및 구형의 α-Al2O3 분말 혼합물을 준비하는 단계; (b) 상기 이중-입자 에어로졸 증착 공정을 사용하여 추가적인 열처리(thermal treatment) 없이 각형 Al2O3 입자들 및 구형 Al2O3 입자들이 혼합된 분말을 에어로졸화하여 생성된 에어로졸은 에어로졸 챔버와 증착 챔버의 두 챔버 사이의 압력 차이에 의해 연결된 테플론 튜브를 통해 에어로졸 챔버로부터 증착 챔버로 이송되고, 수렴 노즐을 통해 기판 홀더에 부착된 기판 위에 증착하여 Al2O3 세라믹 코팅층을 형성하여 단일-입자 에어로졸 공정에 의한 Al2O3 필름보다 투과율(transmittance)과 경도(hardness)가 우수한 Al2O3 필름을 갖는 알루미나층을 제조하는 단계; 및 (c) 상기 Al2O3 필름의 표면 거칠기와 투과율(transmittance)과 경도(hardness)를 측정하는 단계를 포함한다.
본 발명은 새로운 이중-입자 에어로졸 증착(dual-particle aerosol deposition)을 사용한 고품질 알루미나(Al2O3) 제조 방법을 제시하였다.
고품질 알루미나(alumina, Al2O3) 코팅은 광전자(optoelectronics), 태양 전지(solar cells) 및 부식/불순물 방지 코팅(corrosion/impurity resistant coatings) 및 절삭 공구 분야에서 대규모의 수요를 갖는다. 알루미나 코팅의 품질은 그 경도(hardness)와 투명성(transparency)에 의존한다. 널리 사용되는 세라믹 인 단단하고 투명한 알루미나 코팅을 얻기 위해, 새로운 에어로졸 증착(aerosol deposition) 시도는 Al2O3 세라믹 코팅을 제조하기 위해 사용된 시작 분말은 각진 구형 Al2O3 입자들(angular and spherical Al2O3 particles)로 구성된다. 10:0, 7:3, 5:5, 3:7 및 0:10 비율을 갖는 각형:구형 Al2O3 입자 혼합물(angular and spherical Al2O3 mixture)을 사용하여 제조된 필름은 표면에서 거칠기(roughness) 및 마이크로구조가 상당한 변화가 나타났다.
3:7 각형:구형 Al2O3 혼합물 필름(3:7 angular:spherical Al2O3 mixture film)의 극적인 형상 변화(dramatic morphology modulation)는 결과적으로 에어로졸 혼합물(aerosol mixture)에 의한 중첩 해머링 효과(superposition hammering effec), 단일-입자 에어로졸증착 공정으로 형성된 Al2O3 필름 보다 향상된 투과율(transmittance, 84.7 %) 및 경도(hardness, 13.6 GPa)를 갖는다. 이전 연구에서는 Al2O3 필름 특성을 최적화하기 위해 고 에너지 접근 방식들(high-energy approaches)을 사용했다. 그러나, 이러한 이중 입자 접근 방식(dual-particle approach)은 추가적인 열처리(thermal treatment) 없이 빠른 코팅 속도(32
Figure pat00001
× μm/min)를 달성하는 동안에 단일-입자 에어로졸 증착 공정을 사용하여 생성된 Al2O3 필름 보다 투과율(transmittance)과 경도(hardness)가 우수한 Al2O3 필름을 생성한다. 우리의 제안 접근 방식은 우수한 내구성(durability)을 갖는 투명한 Al2O3 필름을 생산하는 새롭고 에너지 효율적인 방법을 제공하였다.
도 1은 각형 및 구형 Al2O3 출발 분말을 사용한 에어로졸 증착(AD) 공정의 개략도이다.
도 2는 다른 시작 분말을 사용하여 유리 기판에 Al2O3 필름을 증착됨 (a) 각진 Al2O3 입자 및 (e) 구형 Al2O3 입자. 상이한 출발 분말로 생성된 증착된 Al2O3 필름의 현미경 사진; (b) 각형 Al2O3 입자 및 (f) 구형 Al2O3 입자. 다른 표면의 표면 현미경 사진을 사용하여 생산된 Al2O3 필름의 영역; (c), (d) 각형 Al2O3 입자 및 (g), (h) 구형 Al2O3 입자.
도 3은 (a), (a1)의 비율로 각형:구형 Al2O3 입자 혼합물로 준비된 증착된 Al2O3 필름의 표면 및 단면 SEM 이미지; 10:0, (b), (b1); 7:3, (c), (c1); 5:5 및 (d), (d1); 3:7.
도 4는 (a) 10:0 및 (b) 3:7 비율의 각형:구형 Al2O3 혼합물로 제작 된 필름의 각 SAED 패턴을 사용한 TEM 이미지. (c) Al2O3 필름의 XRD 패턴. (d) XRD 패턴을 기반으로 한 Al2O3 필름의 Williamson-Hall (WH) 플롯.
도 5는 시작 분말의 증착 메커니즘 개략도는 다음과 같다. (a) 각형 Al2O3 입자, (b) 구형 Al2O3 입자, (c) 혼합물 각형 및 구형 Al2O3 입자.
도 6은 (a) 10:0, 7:3, 5:5, 3:7 및 0:10 비율의 각형:구형 Al2O3 입자 혼합물(angular:spherical Al2O3 particle mixtures)로 제작된 유리 기판 및 Al2O3 필름의 측정된 투과율(transmittance). (b) 10:0 및 3:7 각형:구형 Al2O3 혼합 필름의 세 가지 대표 지점의 하중-깊이 곡선(Load-depth curves). (c) 10:0 및 (d) 3:7 각형:구형 Al2O3 혼합 필름의 평균 경도(average hardness)(15개 측정 기준).
도 7은 10, 5 및 3 L/min의 가스 유속(gas flow rates)에서 3:7의 비율로 각 : 구형 Al2O3 입자 혼합물로 제작된 Al2O3 필름; (a) 광학 이미지(optical images), (b) 증착 성공률(deposition success rate) 및 (c) 증착률(deposition rate).
도 8은 측정된 성능; (a) 투과율, (b) 표면 RMS 값, (c) 하중-깊이 곡선, (d) 5L/min의 최적 가스 유속으로 제작된 3:7 각형:구형 Al2O3 혼합 필름(angular:spherical Al2O3 mixture film)의 경도(hardness).
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 발명의 구성 및 동작을 상세하게 설명한다. 본 발명의 설명에 있어서 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 자세한 설명을 생략한다. 또한, 첨부된 도면 번호는 동일한 구성을 표기할 때에 다른 도면에서 동일한 도면번호를 부여한다.
본 발명은 새로운 이중-입자 에어로졸 증착(dual-particle aerosol deposition)을 사용한 고품질 알루미나 제조 방법이 개시된다.
고품질 알루미나(alumina, Al2O3) 코팅은 광전자(optoelectronics), 태양 전지(solar cells) 및 부식/불순물 방지 코팅(corrosion/impurity resistant coatings) 및 절삭 공구 분야에서 대규모의 수요를 갖는다. 알루미나 코팅의 품질은 그 경도(hardness)와 투명성(transparency)에 의존한다. 널리 사용되는 세라믹 인 단단하고 투명한 알루미나 코팅을 얻기 위해, 새로운 에어로졸 증착(aerosol deposition) 시도는 Al2O3 세라믹 코팅을 제조하기 위해 사용된 시작 분말은 각진 구형 Al2O3 입자들(angular and spherical Al2O3 particles)로 구성된다. 10:0, 7:3, 5:5, 3:7 및 0:10 비율을 갖는 각형:구형 Al2O3 입자 혼합물(angular and spherical Al2O3 mixture)을 사용하여 제조된 필름은 표면에서 거칠기(roughness) 및 마이크로 구조가 상당한 변화가 나타났다.
3:7 각형:구형 Al2O3 혼합물 필름(3:7 angular:spherical Al2O3 mixture film)의 극적인 형상 변화(dramatic morphology modulation)는 결과적으로 에어로졸 혼합물(aerosol mixture)에 의한 중첩 해머링 효과(superposition hammering effec), 향상된 투과율(transmittance, 84.7 %) 및 경도(hardness, 13.6 GPa)를 갖는다. 이전 연구에서는 Al2O3 필름 특성을 최적화하기 위해 고 에너지 접근 방식들(high-energy approaches)을 사용했다. 그러나, 이러한 이중 입자 접근 방식( dual-particle approach)은 추가적인 열처리(thermal treatment) 없이 빠른 코팅 속도(32
Figure pat00002
×μm/min)를 달성하는 동안에 단일-입자 에어로졸 증착 공정을 사용하여 생성된 Al2O3 필름 보다 투과율(transmittance)과 경도(hardness)가 우수한 Al2O3 필름을 생성한다. 우리의 제안 접근 방식은 우수한 내구성(durability)을 갖는 투명한 Al2O3 필름을 생산하는 새롭고 에너지 효율적인 방법을 제공하였다.
본 발명의 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법은 (a) 23℃ 실온에서, 이중-입자 에어로졸 증착 공정을 사용하여 각형(angular) α-Al2O3 및 구형(spherical shaped)의 α-Al2O3 분말 혼합물(각형:구형 입자 비율 10:0, 7:3, 5:5, 3:7, 0:10)을 준비하는 단계;
(b) 상기 이중-입자 에어로졸 증착 공정을 사용하여 추가적인 열처리(thermal treatment) 없이 각형 Al2O3 입자들 및 구형 Al2O3 입자들이 혼합된 분말을 에어로졸화하여 생성된 에어로졸은 에어로졸 챔버와 증착 챔버의 두 챔버 사이의 압력 차이에 의해 연결된 테플론 튜브를 통해 에어로졸 챔버로부터 증착 챔버로 이송되고, 오리피스를 구비하는 수렴 노즐을 통해 기판 홀더에 부착된 기판 위에 증착하여 Al2O3 세라믹 코팅층을 형성하여 단일-입자 에어로졸 공정에 의한 Al2O3 필름보다 투과율(transmittance)과 경도(hardness)가 우수한 Al2O3 필름을 갖는 알루미나층을 제조하는 단계; 및
(c) 상기 Al2O3 필름의 표면 거칠기와 투과율(transmittance)과 경도(hardness)를 측정하는 단계를 포함한다.
상기 단계(a)에서, 상기 이중-입자 에어로졸 증착 공정은 N2 캐리어 가스 또는 He 캐리어 가스를 사용하며, 질소 N2가 아닌 헬륨 He을 캐리어 가스로 사용할 때 에어로졸 입자들이 더 빠르고 캐리어 가스를 더 많이 주입하면 에어로졸 입자 속도가 증가하여 해머링 효과가 향상된다.
상기 이중-입자는 각각 0.52 μm와 0.59 μm의 평균 입자 분포를 갖는 각형 Al2O3 입자들 및 구형 Al2O3 입자들을 사용한다.
상기 각형 α-Al2O3 및 구형의 α-Al2O3 분말 혼합물은 10:0, 7:3, 5:5, 3:7 및 0:10 비율을 갖는 각형:구형 Al2O3 입자 혼합물(angular and spherical Al2O3 mixture)을 사용하며,
상기 이중-입자 에어로졸 증착 공정을 사용하여 추가적인 열처리(thermal treatment) 없이 각형 Al2O3 입자들 및 구형 Al2O3 입자들가 혼합된 분말을 에어로졸화하여 생성된 에어로졸은 에어로졸 챔버와 증착 챔버의 두 챔버 사이의 압력 차이에 의해 연결된 테플론 튜브를 통해 상기 에어로졸 챔버로부터 상기 증착 챔버로 이송되고, 수렴 노즐을 통해 기판 홀더에 부착된 기판 위에 증착하여 상기 기판 상에 제조된 Al2O3 필름을 형성한다.
상기 Al2O3 필름으로써, 5 L/min의 최적 가스 유량 하에서 유리 기판 위에 증착된 3:7 각형:구형 Al2O3 혼합물 필름(3:7 angular:spherical Al2O3 mixture film)의 형상 변화(morphology modulation)는 결과적으로 에어로졸 혼합물에 의한 중첩 해머링 효과(superposition hammering effec), 단일-입자 에어로졸 증착 공정을 사용하여 생성된 Al2O3 필름 보다 향상된 투과율(transmittance, 84.7 %) 및 경도(hardness, 13.6 GPa)를 갖는다.
도 1은 각형 및 구형 Al2O3 출발 분말을 사용한 에어로졸 증착(AD) 공정의 개략도이다.
도 2는 다른 시작 분말을 사용하여 유리 기판에 Al2O3 필름을 증착됨 (a) 각진 Al2O3 입자 및 (e) 구형 Al2O3 입자. 상이한 출발 분말로 생성된 증착된 Al2O3 필름의 현미경 사진; (b) 각형 Al2O3 입자 및 (f) 구형 Al2O3 입자. 다른 표면의 표면 현미경 사진을 사용하여 생산된 Al2O3 필름의 영역; (c), (d) 각형 Al2O3 입자 및 (g), (h) 구형 Al2O3 입자를 나타낸다.
도 3은 (a), (a1)의 비율로 각형: 구형 Al2O3 입자 혼합물로 준비된 증착된 Al2O3 필름의 표면 및 단면 SEM 이미지; 10:0, (b), (b1); 7:3, (c), (c1); 5:5 및 (d), (d1); 3:7을 나타낸다.
도 4는 (a) 10:0 및 (b) 3:7 비율의 각형: 구형 Al2O3 혼합물로 제작 된 필름의 각 SAED 패턴을 사용한 TEM 이미지. (c) Al2O3 필름의 XRD 패턴. (d) XRD 패턴을 기반으로 한 Al2O3 필름의 Williamson-Hall (WH) 플롯을 나타낸다.
도 5는 시작 분말의 증착 메커니즘 개략도는 다음과 같다. (a) 각형 Al2O3 입자, (b) 구형 Al2O3 입자, (c) 혼합물 각형 및 구형 Al2O3 입자를 나타낸다.
도 6은 (a) 10:0, 7:3, 5:5, 3:7 및 0:10 비율의 각형:구형 Al2O3 입자 혼합물(angular:spherical Al2O3 particle mixtures)로 제작된 유리 기판 및 Al2O3 필름의 측정된 투과율(transmittance). (b) 10:0 및 3:7 각형:구형 Al2O3 혼합 필름의 세 가지 대표 지점의 하중-깊이 곡선(Load-depth curves). (c) 10:0 및 (d) 3:7 각형:구형 Al2O3 혼합 필름의 평균 경도(average hardness)(15개 측정 기준)를 나타낸다.
도 7은 10, 5 및 3 L/min의 가스 유속(gas flow rates)에서 3:7의 비율로 각 : 구형 Al2O3 입자 혼합물로 제작된 Al2O3 필름; (a) 광학 이미지(optical images), (b) 증착 성공률(deposition success rate) 및 (c) 증착률(deposition rate)을 나타낸다.
도 8은 측정된 성능; (a) 투과율, (b) 표면 RMS 값, (c) 하중-깊이 곡선, (d) 5L/min의 최적 가스 유속으로 제작된 3:7 각형:구형 Al2O3 혼합 필름(angular:spherical Al2O3 mixture film)의 경도(hardness)를 나타낸다.
2. 실험
2.1 에어로졸 증착
도 1에 도시된 바와 같이, AD 장치는 에어로졸 챔버(aerosol chamber), 증착 챔버(deposition chamber), 그리고 두 종류의 진공 펌프(vacuum pumps)로 구성된다. 필름 제작을 위해, 각형 형태(angular shaped)의 α-Al2O3 (AL-160SG-3, Showa Denko Co. Ltd., Tokyo, Japan) 및 구형 형태(spherical shaped)의 α-Al2O3(AA05, Sumitomo Chemical Co. Ltd, Tokyo, Japan) 분말 혼합물(각형:구형 입자 비율 10:0, 7:3, 5:5, 3:7, 0:10)을 준비하고 분말 용기에 넣는다. 로터리 펌프(rotary pump)와 기계식 부스터 펌프(mechanical booster pump)를 사용하여 내부 먼지와 습기를 제거하고, 에어로졸 챔버와 증착 챔버 사이에 압력 차이를 만들어 증착을 용이하게 하였다. 분말을 에어로졸화하기 위해 에어로졸 형성을 증가시키기 위해 300~500rpm의 진동 속도와 함께 N2 캐리어 가스를 에어로졸 챔버에 주입했다. 생성된 에어로졸은 두 챔버 사이의 압력 차이에 의해 연결된 테플론 튜브(Teflon tube)를 통해 에어로졸 챔버로부터 증착 챔버로 이송되었다. 가속 에어로졸은 0.4 x 10.0
Figure pat00003
오리피스가 있는 수렴 노즐(converging nozzle)을 통해 10 x 10
Figure pat00004
유리 기판(기판 홀더에 부착됨)에 분무 증착되었다. 특정 AD 실험 조건은 보충 정보(표 S1)에 나열되어 있다.
2.2 특성
이중-입자 에어로졸 증착 공정에 의해 형성된 Al2O3 필름의 형상과 입자 크기를 확인하기 위해 현미경사진 입자 크기 분석기(micrograph and particle size analyzer)(PSA, PartAn SI, MICROTRAC, USA)를 사용하여 각각 입자 모양을 관찰하고 평균 입자 직경을 측정했다. 또한, Al2O3 필름의 Brunauer-Emmett-Teller(BET) 표면적을 측정하여 입자 형상을 추가적으로 관찰하였다. Al2O3 필름의 표면 및 단면 미세 구조는 15 kV에서 전계 방출 주사전자현미경(FE-SEM, MIRA3 XMU, TESCAN, USA)으로 관찰되었다. 원자 현미경(AFM, XE-100, Park Systems Corp., Korea)을 이용하여 Al2O3 필름의 5μm×5μm 영역의 상세한 표면 형태를 측정하였다. AFM 데이터는 표면 및 3D 형태학적 보기(3D morphological views)를 제공하는 XEI 소프트웨어(Park Systems Corp., suwon, Korea)를 사용하여 분석되었다. 필름 투과율(film transmittance)과 결정도(crystallinity)는 자외선 가시 광선 분광 광도계(ultra-violet visible light spectrophotometry, UV-VIS, Lambda 465, PerkinElmer, USA) 및 X-선 회절 분광법(X-ray diffraction spectroscopy)(XRD, X'pert PRO, Panalytical)과 Cu Kα 방사선(λ = 1.5406 Å), 각각. 패턴은 0.1°(2θ) 단위로 20°- 60°의 2θ 간격으로 수집되었다. Al2O3 필름의 국부적인 마이크로 구조와 결정도를 관찰하기 위해 주사 투과 전자 현미경(scanning transmission electron microscopy:STEM, JEM-2100F, JEOL, Tokyo, JAPAN) 및 선택 영역 전자 회절(selected area electron diffraction, SAED)을 각각 사용했다. 또한, 필름의 경도(hardness)를 확인하기 위해 나노인덴터(nanoindenter)(TI 950, Bruker, USA)를 사용했다.
3. 결과
3.1. 각형 및 구형 Al2O3 입자 비율(angular and spherical Al2O3 particle proportion)이 증착 특성의 효과
도 2에 도시된 바와 같이, 각각 0.52 μm와 0.59 μm의 평균 입자 분포(average particle distribution,
Figure pat00005
)를 갖는 각형 Al2O3 입자들 및 구형 Al2O3 입자들은 도 2에 도시된 바와 같이 유리 기판 위에 증착했다. 도 2 (b)와 (f)에서 보는 바와 같이, 각형 Al2O3 입자들은 전체적으로 균일한 코팅층을 형성하며, 구형 Al2O3 입자들은 불완전한 코팅층을 형성한다. 각형 Al2O3 입자들의 더 큰 증착 성공은 도 2(c)와 (d)에서 보인 바와 같이, 균일한 파쇄에 기인할 수 있다. 구형 Al2O3 입자들의 증착된 필름은 잘 파쇄된 입자들(well-fractured particles)과 불완전하게 파쇄된 입자들(in-completely fractured particles)을 번갈아 보였다(도 2(g) 및 (h) 참조). 더욱이, 이중-입자 Al2O3 필름은 1 분 후 물에서 초음파 처리하는 동안 벗겨 졌는데 이는 국부적으로 잘 파쇄된 구형 Al2O3 입자들이 존재하는 반면, 코팅 층은 실질적으로 존재하지 않음을 나타낸다.
표면 현미경 사진으로부터, 다른 입자 형상들의 증착 메커니즘들이 관찰되었다. 각형 Al2O3 입자들에 대해 측정된 BET 표면적(5.65
Figure pat00006
/g)은 구형 Al2O3 입자들에 대해 측정된 BET 표면적(2.91
Figure pat00007
/g)의 거의 두배 였다. 그러므로, 서로 다른 증착 결과는 각형 Al2O3 입자들과 기판 사이보다 충돌시 에어로졸화 된 구형 Al2O3 입자들과 기판 사이의 접촉점이 더 작기 때문이다[37]. 또한, 구형 Al2O3 입자들(접촉 면적이 넓음)에서보다 각형 Al2O3 입자들과 기판 사이의 날카로운 접촉 영역의 결과로써, 각형 Al2O3 입자들에서 압축 응력(compressive stress)과 전단 균열(shear cracking)이 더 활발하게 활동한다[38]. 분쇄된 각형 Al2O3 입자들(pulverized angular Al2O3 particles)은 균일하게 증착되고 고정층을 형성하여 기판과 증착된 필름 사이의 강력한 결합을 유도하는 것으로 나타났다. 반면에, 구형 Al2O3 입자들은 고정층(anchoring layer)을 형성하는 것보다 밑에 있는 하부층에 부착될 가능성이 더 높았다.
따라서, 해머링 효과(hammering effect)가 잘 형성된 1 차 고정층(primary anchoring layer)을 생성하고 재료가 매우 빠른 코팅 속도(최대 100
Figure pat00008
×μm/min)를 달성하기 때문에 각형 Al2O3 입자들은 주로 조밀한 Al2O3 필름(dense Al2O3 films)의 AD 제조 공정[25,28-34]에 사용됐다. 그러나, 이 층은 마이크로 구조의 결함, 응집된 대형 Al2O3 입자들의 증착 또는 불완전하게 분쇄된 Al2O3 입자들에 의해 발생하는 표면 크레이터(surface craters)와 고르지 않은 거칠기(uneven roughness)를 나타냈다[25,29,34]. 대조적으로, 구형 Al2O3 입자들을 사용하는 Al2O3 증착 필름(Al2O3 deposited films using spherical Al2O3 particles)은 더 적은 크레이터(fewer craters)를 갖는 더 부드러운 표면(smoother surfaces)을 보이지만, 그 필름은 원료 입자들로 코팅되어 재료가 매우 낮은 코팅 속도(very low coating speed)(1
Figure pat00009
×μm /min)를 달성한다.
각형 Al2O3 입자들(angular Al2O3 particles)은 높은 운동 에너지(high kinetic energy)를 제공하고, 각 Al2O3 입자들에 의해 유도된 결함들은 에어로졸 혼합물(aerosol mixture)로 중첩 망치질하여 감소될 수 있다. 따라서, 우리는 AD 연구에서 각형 및 구형 Al2O3 입자들의 다양한 혼합물을 유리 기판에 증착하는 새로운 접근 방식을 채택했다. 관찰된 증착률(deposition rates)은 보충 정보(그림 S1)에서 볼 수 있듯이 시작 분말의 각 Al2O3 입자 비율과 관련이 있다. 10:0, 7:3, 5:5, 3:7 및 0:10 각형:구형 Al2O3 혼합 필름의 증착 속도는 각각 100, 33, 22, 10 및 1
Figure pat00010
×μm/min이었다. 결함의 감소는 구형 Al2O3 입자들의 비율 증가에 해당한다. 3:7 각형:구형 Al2O3 혼합 막에 대해 달성된 비교적 느린 증착 속도 10
Figure pat00011
×μm/min은 이전에 보고된 증착 속도(412
Figure pat00012
×μm/min)에 비해 빠른 것으로 간주할 수 있다 [28,34].
추가된 구형 Al2O3 입자들의 영향을 확인하려면, 제조된 Al2O3 필름의 형상, 표면 및 단면 마이크로 구조 이미지(도 3 참조)가 관찰되었다. 10:0, 7:3, 5:5, 3:7 비율의 각형:구형 Al2O3 입자 혼합물을 사용하여 증착된 Al2O3 필름은 점진적으로 매끄러운 표면(smoother surfaces)과 더 적은 크레이터(fewer craters)를 보여준다(도 3(a)-도 3(d)). 또한, 10:0 (38.8nm), 7:3(25.4nm), 5:5(20.9nm) 및 3:7(16.1nm)의 표면 거칠기(surface roughness)의 RMS(root-mean-square) 값은 각형:구형 Al2O3 혼합 필름은 보충 정보(도 S2)에서 볼 수 있듯이 구형 Al2O3 입자들의 비율이 증가함에 따라 감소한다. Al2O3 필름의 표면 거칠기의 RMS 값은 이전에보고된 투명한 Al2O3 필름의 RMS 값(27~100 nm)보다 훨씬 낮았다[28,39,40]. 표면 프로파일러(surface profiler)를 사용하여 Al2O3 필름의 표면 편차(surface deviations)의 측정은 점진적으로 더 매끄러운 표면이 확인되었으며 이는 보충 정보(도 S3)에 표시된 것처럼 표면 크레이터들(surface craters)의 감소와 일치한다. 1μm 두께의 제작된 Al2O3 필름의 단면 현미경 사진은 구형 Al2O3 입자 비율이 증가함에 따라 더 조밀한 구조와 더 적은 기공(reveal denser structures and fewer pores)을 보여준다(도 3 (a1)-(d1) 참조). 이러한 결과는 구형 Al2O3 입자들의 영향이 응집된 Al2O3 입자들의 분산과 사전 증착된 Al2O3 필름 모두에 영향을 주며 Al2O3 필름의 표면 형태(surface morphology)를 극적으로 개선됨을 나타낸다.
3.2. 증착 거동에 대한 심층 분석(In-depth analysis of deposition behaviors)
각형:구형 Al2O3 입자 혼합물을 10:0 비율로 사용하여 증착된 Al2O3 필름은 많은 내부 기공과 응집된 입자들(internal pores and agglomerated particles)이 있는 구조를 보여준다(도 4(a)). 이러한 Al2O3 필름의 결함(기공 및 응집)은 해머링 효과가 불충분하여 기공을 채우지 못한 비파괴 응집 입자들(non-fractured agglomerated particles)에 의해 형성된 것으로 의심된다. 또한, 불균일하게 분포된 결정과 함께 큰 크기의 결정을 나타내는 비대칭 패턴의 강렬한 광점들(intense light spots)은 다공성 구조(porous structure)의 SAED 패턴들(SAED patterns)로부터 관찰된다[31,32]. 대조적으로, 다결정 경계들(polycrystalline boundaries)을 나타내는 흰색 선이 있는 극도로 조밀한 구조는 도 4(b)와 같이 3:7 각형:구형 Al2O3 혼합 필름에서 관찰된다. 조밀한 마이크로 구조의 SAED 패턴의 흐릿한 반점들(hazy spots)의 수집과 더 큰 대칭은 Al2O3 필름 전체에 균일하게 분포된 상대적으로 작은 결정(relatively small crystallites)이 형성되었음을 제시한다.
또한, XRD 패턴으로부터 도 4(c)를 참조하여 10:0 및 3:7 각형:구형 Al2O3 혼합 필름의 결정 구조와 결정 크기를 결정했다. α-Al2O3 상만 관찰되었으며 2 차 상이 형성되지 않았다. 10:0 및 3:7 각형:구형 Al2O3 혼합 필름의 계산된 결정 크기는 각각 17.3 nm, 및 8.4 nm이고, 각각 116의 평면에서. 나노 결정 구조는 기판과 에어로졸화 된 Al2O3 입자들 사이의 충돌에 의해 야기된 압축된 Al2O3 입자들(plastic deformation, 소성 변형을 나타냄)의 축적-변형 유도 파단(accumulated-strain-induced fracturing of compressed Al2O3 particles)에 의해 형성되었을 것이다[40-42]. 에어로졸 혼합물은 AD 동안 분쇄(fracturing)를 개선하는 에어로졸 혼합물의 중첩 해머링 효과(superposition hammering effect of the aerosol mixture)를 나타낸다. AD 공정은 필름 내부에 잔류 변형(residual strain)을 발생시켜 박리, 균열 및 강성 저하(peeling, cracking, and stiffness degradation)를 초래할 수 있다. 이러한 이유로 고유 변형(inherent strain)은 Williamson-Hall(WH) 방정식을 사용하여 계산되었다[43,44]. 10:0 및 3:7 각형:구형 Al2O3 혼합 필름의 내부 변형(internal strain of 10:0 and 3:7 angular:spherical Al2O3 mixture films)은 각각 0.34 % 및 0.006 %였으며, 도 4(d)에 표시된대로 012, 104, 113 및 024면에 대한 측정을 기반으로 한다. 이러한 결과들은 8.4 nm의 더 작은 결정 크기(the smaller crystallite size)를 형성하는데 필요한 더 강한 해머링 효과에도 불구하고, 3:7 각형:구형 Al2O3 혼합 필름이 덜 변형되어 열화(degradation)에 덜 민감하다는(less susceptible) 것을 보여준다. 구형 Al2O3 입자들은 에어로졸이 중첩 해머링(superposition hammering)에 의한 고유 잔류 응력(inherent residual stress)을 갖는 하부 파이오니아 층(pioneer layer)을 분쇄하는 능력을 향상시키는 것으로 보인다.
감소된 내부 기공들과 잘-분쇄된 결정(by reduced internal pores and well-fractured crystallite)을 특징으로 하는 필름 구조의 더 매끄러운 표면과 극도의 밀도(smoother surface and extreme density)는 표면 및 내부 광 산란(surface and internal light scattering)을 감소시켜 AD Al2O3 필름의 투과율(transmittance of AD Al2O3 films)이 증가될 것으로 예상된다.
다른 Al2O3 입자들의 정형화 된 증착 메커니즘은 도 5에 설명하였다. 각형 Al2O3 입자들(angular Al2O3 particles)의 경우, 입자들의 불완전한 파쇄(incomplete fracturing of particles) 또는 도 5(a)와 같이 응집된 크기가 큰 Al2O3 입자들의 존재 때문에 필름 전체에 표면 크레이터(surface craters) 및 내부 비충전 기공들(internal unfilled pores)이 생성된다.
해머링 효과는 상대적으로 약하지만 충돌 동안 각형 Al2O3 입자들의 분쇄는 더 큰 파쇄 영역에 의해 중요하다. 대조적으로, 구형 Al2O3 입자들(spherical Al2O3 particles)을 사용하여 증착된 Al2O3 필름은 필름 표면 상에 부드러운 형태(smooth morphology)와 분쇄되지 않은 구형 Al2O3 입자들(non-fractured raw spherical Al2O3 particles)의 조합이 나타난다(도 5(b)). 입자들의 더 작은 파쇄 영역(particles' smaller fracturing zone) 때문에, Al2O3 필름을 파단(fracturing)이라기 보다 리바운딩 반발(rebounding)과 밀집화(rebounding rather than fracturing, densifying the Al2O3 film) 전에, 구형 Al2O3 입자들의 일부가 운동 에너지를 충돌에 의해 기판으로 전달된다.
도 5(c)는 각형 Al2O3 입자들과 구형 Al2O3 입자들의 혼합물(mixture of the angular and spherical Al2O3 particles)을 사용하여 증착된 Al2O3 필름을 보여준다. 분쇄된 입자 조각들이 중첩 해머링 효과(superposition hammering effect)에 의해 내부 기공들(internal pores)을 채운다. 충돌 및 반발하는(colliding and rebounding) 구형 Al2O3 입자들에 의해 향상된다. 구형 Al2O3 입자들의 필름 표면과의 충돌이 증가하면, 조밀한 마이크로 구조(dense microstructure)와 매끄러운 표면(smoothed surface)이 생성된다.
3.3. 순수한 각형 Al2O3 입자들과 각형 및 구형 Al2O3 입자들의 혼합물로 생성 된 필름 간의 성능 비교
도 6은 투과율(transmittance) 및 경도(hardness)를 포함하는 상이한 각형:구형 Al2O3 혼합 필름 특성을 보여준다. 550nm 파장에서 유리 기판의 투과율은 90.5 %이고, 증착된 10:0, 7:3, 5:5 및 3:7 각형:구형 Al2O3 혼합 필름의 측정된 투과율은 각각 72.0 %, 75.7 %, 80.6 %, 83.8 %이다[도 6(a) 참조]. 구형 Al2O3 입자들(spherical Al2O3 particles)의 비율 증가에 따른 투과율(transmittance)의 향상은 섹션 3.2에서 논의된 강화된 해머링 효과에 의한 감소된 표면 거칠기(surface roughness) 및 결함(defects) 때문일 수 있다. 0:10 각형:구형 Al2O3 혼합 필름은 표면에 분쇄되지 않은 Al2O3 입자들(non-fractured Al2O3 particles)이 존재하기 때문에 매우 낮은 투과율(41.6%)을 나타냈다. 이러한 결과는 투과율(transmittance)을 감소시키는 광 산란(light scattering)을 야기하는 표면 결함(pores 공극, craters 크레이터 및 agglomerations 응집)과 내부 결함이 모두 발생함을 확인하였다[45,46]. 또한, 표면 및 내부 필름 결함은 그 경도(hardness)에 영향을 주는 경향이 있다. Al2O3 필름들(Al2O3 films)의 경도를 평가하기 위해 다이아몬드-팁 나노인덴터로 필름(diamond-tipped nanoindenter)의 각 필름의 15 지점을 측정했다. 2mN의 로드(load)가 상단으로부터 10:0 및 3:7 각형:구형 Al2O3 혼합 필름(angular:spherical Al2O3 mixture films)에 적용되었다. 각 필름의 세 가지 대표 지점에 대해 하중-깊이 곡선(load-depth curves)이 도 6(b)에 도시되었다. 10:0 및 3:7 각형:구형 Al2O3 혼합 필름의 평균 경도 값(average hardness values)은 각각 10.7 GPa 및 13.1 GPa로 계산되었으며, 도 6(c) 및 (d)에서 파란색 선으로 표시하였다. 일반적으로, 필름 경도(film hardness)는 필름 표면과 내부에 크레이터들(craters) 및 기공들(pores)과 같은 결함(defects)의 존재에 의해 악영향을 받는다[47,48]. 각형 Al2O3 입자들만을 사용하여 증착된 Al2O3 필름의 경우, 해머링 효과는 표면을 매끄럽게하고 결함을 줄이며 에어로졸 입자들을 분쇄하여 내부 틈새들(internal gaps)을 채우는데 충분하지 않다. 매끄러운 표면, 감소된 내부 기공 및 작고 잘 파쇄된 결정(smoothed surface, reduced internal pores and small, well-fractured crystallites)을 특징으로 하는 3:7 각형:구형 Al2O3 혼합 필름의 더 큰 경도는 우수한 마이크로 구조(superior microstructure)와 결정도(crystallinity)의 직접적인 결과였다.역사적으로, 증착된 필름의 경도(hardness of a deposited film)의 향상은 필연적으로 증착된 필름의 두께 증가를 요구됐습니다[49,50]. 그러나, 13.1GPa에서 1μm 두께, 각형:구형 Al2O3 혼합 막의 경도는 이전 연구에서 달성한 10.4μm 두께의 Al2O3 막의 경도 13.33GPa와 비교할 때 탁월하였다.
3.4. 최적화 된 Al2O3 필름의 성능
우리는 이미 3:7의 비율로 각형:구형 Al2O3 입자 혼합물로 제작된 Al2O3 필름의 우수한 투과율과 경도를 입증했다. 그러나, 8개의 제작된 샘플로 평균 증착 성공률을 결정하는 동안 낮은 재현성이 드러났다. 10 L/min의 가스 유속으로 제작 된 Al2O3 필름은 박리된 모서리, 표면 에칭 및 25%의 증착 성공률을 보여 에어로졸 화 된 Al2O3 입자의 충격 에너지가 너무 큼을 시사한다. 따라서, 재현성을 높이기 위해 Al2O3 막 증착시 해머링 효과를 극대화하면서 에칭을 최소화하도록 가스 주입 유량을 조정해야 한다.
도 7은 각각 3, 5, 및 10 L/min의 가스 유속 하에서 제작된 Al2O3 필름의 광학 이미지, 증착 성공률, 증착률을 보여준다.
가스 유량 3L/min의 가스 유속에서 25 %의 증착 성공률이 달성되었다. 필름의 32 mm2 × μm/min의 높은 증착 속도는 박리(peeling)를 초래하는 압축이 없음을 보여준다. 에어로졸 입자들의 운동 에너지 감소는 필름 내에서 입자-입자 결합(particle-particle bonding)을 약화시키고 Al2O3 입자들의 균열을 줄인다(ewer fractured Al2O3 particles). 3 L/min의 가스 유속은 에칭 효과를 감소시켰지만, 해머링 효과의 원치 않는 에칭 효과를 감소시키고 밀도가 낮은 마이크로 구조를 형성했다.
가스 유량 5L/min에서 증착 성공률 100 %, 증착률 32mm2 × μm/min을 달성했다. 5L/min의 가스 유량(gas flow rate)은 필름 열화를 방지하기 위해 에칭 및 박리를 줄이면서 해머링 효과를 최적화했다. 5 L/min의 최적 가스 유량 하에서 3:7 각형:구형 Al2O3 혼합 필름이 유리 기판 위에 증착되었다. Al2O3 필름 특성의 최적화를 확인하기 위해 제작된 Al2O3 필름의 투과율(transmittance), 표면 거칠기(surface roughness) 및 경도(hardness)를 측정했다(도 8 참조). 550nm 파장에서 측정된 투과율은 도 8(a)와 8(b)에서 보는 바와 같이 표면 거칠기(RMS 12.2nm)가 개선된 결과 84.7 %로 증가했다. 또한, 도 8(d)에서 빨간색 선으로 표시된 13.6 GPa의 약간 개선된 평균 경도 값을 얻었다.
지금까지 AD로 제작된 Al2O3 필름의 밀도와 투명성을 개선하기 위한 두 가지 접근 방식이 있었다. 한 가지 접근 방식은 캐리어 가스 유형(carrier gas type) 및 가스 유량(gas flow rate)을 제어하는 것이다. 일반적으로, 질소 N2가 아닌 헬륨 He을 캐리어 가스(운반 기체)로 사용할 때 에어로졸 입자들이 더 빠르고 캐리어 가스를 더 많이 주입하면 에어로졸 입자 속도가 증가하여 해머링 효과가 향상된다.
두 번째 접근법은 보충 정보(표 S2)[28,34,39,51,52]에서 조사한 것처럼 노즐 구멍 크기(nozzle orifice size)를 줄임으로써 에어로졸 입자 속도를 증가시킨다. 각형 및 구형 Al2O3 입자들을 3:7 비율로 혼합하여 Al2O3 필름을 제작하는 새로운 접근 방식은 해머링 효과를 극대화하여 조밀한 마이크로 구조(dense microstructure)를 형성했다. 또한, 5 L/min의 최적 가스 유량을 통해 Al2O3 막 표면을 평활화하고 에칭을 방지함으로써 Al2O3 필름의 초-투명(ultra-transparency) 및 상당한 신뢰성을 달성했다. Al2O3 필름의 AD 제조에 대한 이중 입자 접근 방식(dual-particle approach to AD fabrication of Al2O3 film)은 단지 1μm 필름 두께에서도 측정된 표면 RMS, 투과율(transmittance) 및 경도(hardness) 측면에서 우수한 결과를 얻었다. 디스플레이 산업에서 조밀하고 매끄러운 3:7 각형:구형 Al2O3 필름의 코팅은 광 발광 효율(photoluminescence efficiency)을 향상시킬 것으로 예상된다. 이 Al2O3 필름의 우수한 성능은 내식성(corrosion resistance)과 내마모성(resistance)을 필요로 하는 반도체 산업의 부품 표면 코팅으로도 적용될 수 있다. 또한, 추가 연구를 통해 이중 세라믹 입자들을 사용하여 고밀도 및 경질 세라믹 코팅(dense and hard ceramic coating)을 제조하는 새로운 접근 방식으로 다른 세라믹 재료(ceramic materials)를 적용할 수 있다고 합리적으로 예상할 수 있다.
4. 결론
우리는 시작 분말로 각형 및 구형 Al2O3 입자 혼합물(angular and spherical Al2O3 particle mixture)을 사용하여 AD 증착 Al2O3 필름의 표면 형태와 내부 마이크로 구조를 개선하는 새로운 저에너지 접근법을 제시하여 각각의 증착 메커니즘을 결합했다. 이 조합은 Al2O3 필름의 표면 형태(surface morphology)와 조밀화(densification)를 개선하는 중첩 해머링 효과(superposition hammering effect)를 생성했다. 결과적으로, 제작된 제품의 투과율(transmittance)과 경도(hardness)는 구형 Al2O3 입자들의 비율이 증가함에 따라 Al2O3 필름은 점진적으로 개선되었다. 최적의 각형:구형 Al2O3 입자 혼합 비율은 3:7로 결정되었다. 그러나, 표면 에칭(surface etching)에 의해 필름 증착 성공의 낮은 재현성이 관찰되었다. 에칭 효과를 줄이려면, 해머링 효과를 유지하면서 에어로졸화 된 Al2O3 입자들(aerosolized Al2O3 particles)의 충격 에너지는 가스 분사 유속(gas-injection flow rate)을 5L/min으로 줄임으로써 조정되었다. 궁극적으로 최적화 된 이중-입자 에어로졸 증착 공정에 의해 생성된 Al2O3 필름은 단일-입자 에어로졸 증착 공정을 사용하여 생성된 Al2O3 필름 보다 우수한 투과율(84.7%), 높은 경도(13.6 GPa) 및 높은 증착 속도(32
Figure pat00013
× μm/min)를 보여주었다.
이 새로운 접근 방식의 개발은 각형 및 구형 Al2O3 입자들(angular and spherical Al2O3 particles)의 증착 메커니즘의 관찰, 큰 오리피스(orifice) 영역과 낮은 가스 소비에서도 에너지 소비 감소를 포함하는 방법 고려사항; 및 단단한 초-투명 Al2O3 필름(hard ultra-transparent Al2O3 film)의 제조와 같은 연구 목표에 의해 정보가 알려진다. 이 새로운 기술은 투명하고 내구성있는 보호 코팅층(transparent and durable protective coating layer)이 필요한 상업용 응용 분야를 위한 알루미나 코팅(alumina coating)의 제조를 용이하게 한다.
본 발명의 구체적인 실시예를 참조하여 설명하였지만, 본 발명은 상기와 같이 기술적 사상을 예시하기 위해 구체적인 실시 예와 동일한 구성 및 작용에만 한정되지 않고, 본 발명의 기술적 사상과 범위를 벗어나지 않는 한도 내에서 다양하게 변형하여 실시될 수 있으며, 본 발명의 범위는 후술하는 특허청구범위에 의해 결정되어야 한다.

Claims (10)

  1. (a) 실온에서, 이중-입자 에어로졸 증착 공정을 사용하여 각형(angular) α-Al2O3 및 구형(spherical)의 α-Al2O3 분말 혼합물을 준비하는 단계;
    (b) 상기 이중-입자 에어로졸 증착 공정을 사용하여 추가적인 열처리(thermal treatment) 없이 각형 Al2O3 입자들 및 구형 Al2O3 입자들이 혼합된 분말을 에어로졸화하여 생성된 에어로졸은 에어로졸 챔버와 증착 챔버의 두 챔버 사이의 압력 차이에 의해 연결된 테플론 튜브를 통해 에어로졸 챔버로부터 증착 챔버로 이송되고, 수렴 노즐을 통해 기판 홀더에 부착된 기판 위에 증착하여 Al2O3 세라믹 코팅층을 형성하여 단일-입자 에어로졸 공정에 의한 Al2O3 필름보다 투과율(transmittance)과 경도(hardness)가 우수한 Al2O3 필름을 갖는 알루미나층을 제조하는 단계; 및
    (c) 상기 Al2O3 필름의 표면 거칠기와 투과율(transmittance)과 경도(hardness)를 측정하는 단계;
    를 포함하는 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법.
  2. 제1항에 있어서,
    상기 단계(a)에서, 상기 이중-입자 에어로졸 증착 공정은
    AD 장치는 에어로졸 챔버, 증착 챔버, 그리고 두 종류의 진공 펌프(vacuum pumps)로 구비하며, 필름 제작을 위해, 상기 각형 α-Al2O3 및 구형의 α-Al2O3 분말 혼합물(각형:구형 Al2O3 입자 비율 10:0, 7:3, 5:5, 3:7, 0:10)을 준비하고 분말 용기에 넣는 단계;
    로터리 펌프와 기계식 부스터 펌프를 사용하여 내부 먼지와 습기를 제거하고, 상기 에어로졸 챔버와 상기 증착 챔버 사이에 압력 차이를 만들어 증착을 용이하게 하며, 이중-입자 분말 혼합물을 에어로졸화하여 에어로졸 형성을 증가시키기 위해 300~500rpm의 진동 속도와 함께 캐리어 가스(N2)를 에어로졸 챔버에 주입했으며, 생성된 에어로졸은 에어로졸 챔버와 증착 챔버의 두 챔버 사이의 압력 차이에 의해 연결된 테플론 튜브를 통해 상기 에어로졸 챔버로부터 상기 증착 챔버로 이송되었으며, 가속 에어로졸은 0.4 x 10.0
    Figure pat00014
    오리피스가 있는 수렴 노즐(converging nozzle)을 통해 10 x 10
    Figure pat00015
    유리 기판(기판 홀더에 부착됨)에 분무 증착되는 단계;
    를 포함하는 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법.
  3. 제1항에 있어서,
    상기 단계(a)에서, 상기 이중-입자 에어로졸 증착 공정은 N2 캐리어 가스 또는 He 캐리어 가스를 사용하며, 질소 N2가 아닌 헬륨 He을 캐리어 가스로 사용할 때 에어로졸 입자들이 더 빠르고 캐리어 가스를 더 많이 주입하면 에어로졸 입자 속도가 증가하여 해머링 효과가 향상되는, 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법.
  4. 제1항에 있어서,
    상기 기판은 유리 기판을 사용하는, 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법.
  5. 제1항에 있어서,
    상기 이중-입자는 각각 0.52 μm와 0.59 μm의 평균 입자 분포를 갖는 각형 Al2O3 입자들 및 구형 Al2O3 입자들을 사용하는, 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법.
  6. 제1항에 있어서,
    상기 각형 α-Al2O3 및 구형의 α-Al2O3 분말 혼합물은 10:0, 7:3, 5:5, 3:7 및 0:10 비율을 갖는 각형:구형 Al2O3 입자 혼합물(angular and spherical Al2O3 mixture)을 사용하며,
    상기 이중-입자 에어로졸 증착 공정을 사용하여 추가적인 열처리(thermal treatment) 없이 각형 Al2O3 입자들 및 구형 Al2O3 입자들가 혼합된 분말을 에어로졸화하여 생성된 에어로졸은 에어로졸 챔버와 증착 챔버의 두 챔버 사이의 압력 차이에 의해 연결된 테플론 튜브를 통해 상기 에어로졸 챔버로부터 상기 증착 챔버로 이송되고, 수렴 노즐을 통해 기판 홀더에 부착된 기판 위에 증착하여 상기 기판 상에 제조된 Al2O3 필름을 형성하는, 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법.
  7. 제1항에 있어서,
    상기 Al2O3 필름으로써, 5 L/min의 최적 가스 유량 하에서 유리 기판 위에 증착된 3:7 각형:구형 Al2O3 혼합물 필름(3:7 angular:spherical Al2O3 mixture film)의 형상 변화(morphology modulation)는 결과적으로 에어로졸 혼합물에 의한 중첩 해머링 효과(superposition hammering effec), 단일-입자 에어로졸 증착 공정을 사용하여 생성된 Al2O3 필름 보다 향상된 투과율(transmittance, 84.7 %) 및 경도(hardness, 13.6 GPa)를 갖는, 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법.
  8. 제1항에 있어서,
    상기 Al2O3 필름의 표면 현미경 사진으로부터, 다른 입자 형상들의 증착 메커니즘들이 관찰되었으며, 각형 Al2O3 입자들에 대해 측정된 BET 표면적(5.65
    Figure pat00016
    /g)은 구형 Al2O3 입자들에 대해 측정된 BET 표면적(2.91
    Figure pat00017
    /g)의 거의 두배 였으며, 서로 다른 증착 결과는 각형 Al2O3 입자들과 기판 사이보다 충돌시 에어로졸화 된 구형 Al2O3 입자들과 기판 사이의 접촉점이 더 작기 때문이며, 또한, 구형 Al2O3 입자들(상대적으로 접촉 면적이 넓음)에서보다 각형 Al2O3 입자들과 기판 사이의 날카로운 접촉 영역의 결과로써, 각형 Al2O3 입자들에서 압축 응력과 전단 균열이 더 활발하게 활동하며, 분쇄된 각형 Al2O3 입자들은 균일하게 증착되고 고정층을 형성하여 기판과 증착된 필름 사이의 강력한 결합을 유도하는 것으로 나타났으며, 반면에, 구형 Al2O3 입자들은 고정층(anchoring layer)을 형성하는 것보다 하부층에 부착될 가능성이 더 높으며, 따라서, 해머링 효과가 잘 형성된 1 차 고정층(primary anchoring layer)을 생성하고 재료가 최대 100
    Figure pat00018
    ×μm/min의 매우 빠른 코팅 속도를 달성하기 때문에 각형 Al2O3 입자들은 주로 조밀한 Al2O3 필름의 AD 제조 공정에 사용되지만, 이 Al2O3 층은 마이크로 구조의 결함, 응집된 대형 Al2O3 입자들의 증착 또는 불완전하게 분쇄된 Al2O3 입자들에 의해 발생하는 표면 크레이터(surface craters)와 고르지 않은 거칠기(uneven roughness)를 나타내며. 대조적으로, 구형 Al2O3 입자들을 사용하는 Al2O3 증착 필름(Al2O3 deposited films using spherical Al2O3 particles)은 더 적은 크레이터(fewer craters)를 갖는 더 부드러운 표면(smoother surfaces)을 보이지만, 그 AL2O3 필름은 원료 입자들로 코팅되어 재료가 1
    Figure pat00019
    ×μm /min 매우 낮은 코팅 속도를 달성되는, 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법.
  9. 제8항에 있어서,
    상기 기판에 형성된 Al2O3 필름의 관찰된 증착률(deposition rates)은 이중-입자 분말이 혼합된 시작 분말의 각 Al2O3 입자 비율과 관련이 있으며, 10:0, 7:3, 5:5, 3:7 및 0:10 각형:구형 Al2O3 혼합 필름의 증착 속도는 각각 100, 33, 22, 10 및 1
    Figure pat00020
    ×μm/min이었으며, 결함의 감소는 구형 Al2O3 입자들의 비율 증가에 해당하며, 3:7 각형:구형 Al2O3 혼합 막에 대해 달성된 비교적 느린 증착 속도 10mm2×μm/min은 이전에 보고 된 증착 속도(412
    Figure pat00021
    ×μm/min)에 비해 빠르며,
    추가된 구형 Al2O3 입자들의 영향을 확인하기 위해, 제조된 Al2O3 필름의 형상, 표면 및 단면 마이크로 구조 이미지가 관찰되었으며 10:0, 7:3, 5:5, 3:7 비율의 각형:구형 Al2O3 입자 혼합물을 사용하여 증착된 Al2O3 필름은 점진적으로 매끄러운 표면(smoother surfaces)과 더 적은 크레이터(fewer craters)를 보였으며,
    10:0 (38.8nm), 7:3(25.4nm), 5:5(20.9nm) 및 3:7(16.1nm)의 표면 거칠기(surface roughness)의 RMS(root-mean-square) 값은 각형:구형 Al2O3 혼합 필름은 구형 Al2O3 입자들의 비율이 증가함에 따라 감소하며, Al2O3 필름의 표면 거칠기의 RMS 값은 이전에 보고된 투명한 Al2O3 필름의 RMS 값(27~100 nm)보다 훨씬 낮았으며,
    표면 프로파일러(surface profiler)를 사용하여 Al2O3 필름의 표면 편차(surface deviations)의 측정은 점진적으로 더 매끄러운 표면이 확인되었으며 이는 표면 크레이터들(surface craters)의 감소하고, 1μm 두께의 제작된 Al2O3 필름의 단면 현미경 사진은 구형 Al2O3 입자 비율이 증가함에 따라 더 조밀한 구조와 더 적은 기공(reveal denser structures and fewer pores)을 보여주며, 이는 구형 Al2O3 입자들의 영향이 응집된 Al2O3 입자들의 분산과 사전 증착된 Al2O3 필름 모두에 영향을 주며 Al2O3 필름의 표면 형태(surface morphology)가 개선됨을 나타내는, 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법.
  10. 제9항에 있어서,
    가스 유량 3L/min의 가스 유속에서 25 %의 증착 성공률이 달성되었으며, Al2O3 필름의 32
    Figure pat00022
    ×μm/min의 높은 증착 속도는 박리(peeling)를 초래하는 압축이 없으며, 에어로졸 입자들의 운동 에너지 감소는 필름 내에서 입자-입자 결합(particle-particle bonding)을 약화시키고 Al2O3 입자들의 균열을 줄이고(ewer fractured Al2O3 particles), 3 L/min의 가스 유속은 해머링 효과의 원치 않는 에칭 효과를 감소시키고 밀도가 낮은 마이크로 구조를 형성했으며,
    가스 유량 5L/min에서 증착 성공률 100 %, 증착률 32mm2 × μm/min을 달성되었으며, 5L/min의 가스 유량(gas flow rate)은 필름 열화를 방지하기 위해 에칭 및 박리를 줄이면서 해머링 효과를 최적화했으며, 5 L/min의 최적 가스 유량 하에서 3:7 각형:구형 Al2O3 혼합 필름이 유리 기판 위에 증착되었으며, Al2O3 필름 특성을 확인하기 위해 제작된 Al2O3 필름의 투과율(transmittance), 표면 거칠기(surface roughness) 및 경도(hardness)를 측정했다(도 8 참조). 550nm 파장에서 측정된 투과율은 표면 거칠기(RMS 12.2nm)가 개선된 결과 84.7 %로 증가했고, 13.6 GPa의 약간 개선된 평균 경도 값을 얻는, 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법.
KR1020210065832A 2021-05-21 2021-05-21 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법 KR20220157823A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210065832A KR20220157823A (ko) 2021-05-21 2021-05-21 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법
KR1020230034737A KR20230066513A (ko) 2021-05-21 2023-03-16 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210065832A KR20220157823A (ko) 2021-05-21 2021-05-21 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230034737A Division KR20230066513A (ko) 2021-05-21 2023-03-16 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법

Publications (1)

Publication Number Publication Date
KR20220157823A true KR20220157823A (ko) 2022-11-29

Family

ID=84235117

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210065832A KR20220157823A (ko) 2021-05-21 2021-05-21 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법
KR1020230034737A KR20230066513A (ko) 2021-05-21 2023-03-16 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230034737A KR20230066513A (ko) 2021-05-21 2023-03-16 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법

Country Status (1)

Country Link
KR (2) KR20220157823A (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024524835A (ja) 2022-05-24 2024-07-09 エルジー エナジー ソリューション リミテッド 電池セル積層体、その製造方法及び前記電池セル積層体に整列マークを表示する整列マーク表示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046419B1 (ko) 2018-02-27 2019-11-19 광운대학교 산학협력단 필름 저항의 적용을 위한 에어로졸 증착 공정을 통해 산화알루미늄과 구리 복합 필름의 접착 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046419B1 (ko) 2018-02-27 2019-11-19 광운대학교 산학협력단 필름 저항의 적용을 위한 에어로졸 증착 공정을 통해 산화알루미늄과 구리 복합 필름의 접착 방법

Non-Patent Citations (53)

* Cited by examiner, † Cited by third party
Title
[1] N. Roux, S. Tanaka, C. Johnson, R. Verrall, Ceramic breeder material development, Fusion Eng. Des. 41 (1998) 31-38.
[10] M. Zhang, B. Xu, G. Ling, Preparation and characterization of α-Al2O3 film by low temperature thermal oxidation of Al8Cr5 coating, Appl. Surf. Sci. 331 (2015) 1-7.
[11] R. Haubner, E. Rauchenwald, M. Lessiak, R. Pitonak, R. Weissenbacher, Novel high PERFORAMCNE CVD coatings for MACHINIG applications, Powder Metall. Prog. 18 (2018) 128-138.
[12] J. Muller, M. Schierling, E. Zimmermann, D. Neuschutz, Chemical vapor deposition of smooth α-Al2O3 films on nickel base superalloys as diffusion barriers, Surf. Coating. Technol. 120 (1999) 16-21.
[13] M. Astrand, T.I. Selinder, F. Fietzke, H. Klostermann, PVD-Al2O3-coated cemented carbide cutting tools, Surf. Coating. Technol. 188 (2004) 186-192.
[14] T.Y. Liu, L.G. Teoh, C.K. Huang, Y.C. Lee, A study of roughness improvement of Al2O3 substrates using sol-gel method, Procedia Eng 141 (2016) 108-114.
[15] X. Lan, X. Ou, Y. Cao, S. Tang, C. Gong, B. Xu, Y. Xia, J. Yin, A. Li, F. Yan, Z. Liu, The effect of thermal treatment induced inter-diffusion at the interfaces on the charge trapping performance of HfO2/Al2O3 nanolaminate-based memory devices, J. Appl. Phys. 114 (2013) 044104.
[16] V. Edlmayr, M. Moser, C. Walter, C. Mitterer, Thermal stability of sputtered Al2O3 coatings, Surf. Coating. Technol. 204 (2010) 1576-1581.
[17] A. Krell, P. Blank, H. Ma, T. Hutzler, M. Nebelung, Processing of high-density submicrometer Al2O3 for new applications, J. Am. Ceram. Soc. 86 (2003) 546-553.
[18] B.P. Dhonge, T. Mathews, S.T. Sundari, C. Thinaharan, M. Kamruddin, S. Dash, A.K. Tyagi, Spray pyrolytic deposition of transparent aluminum oxide (Al2O3) films, Appl. Surf. Sci. 258 (2011) 1091-1096.
[19] A. Braun, G. Falk, R. Clasen, Transparent polycrystalline alumina ceramic with submicrometre microstructure by means of electrophoretic deposition, Mater. Sci. Eng. Tech. 37 (2006) 293-297.
[2] J. Luyten, I. Thijs, W. Vandermeulen, S. Mullens, B. Wallaeys, R. Mortelmans, Strong ceramic foams from polyurethane templates, Adv. Appl. Ceram. 104 (2005) 4-8.
[20] S.H. Tamboli, V. Puri, R.K. Puri, R.B. Patil, M.F. Luo, Comparative study of physical properties of vapor chopped and nonchopped Al2O3 thin films, Mater. Res. Bull. 46 (2011) 815-819.
[21] M. Emamy, A. Razaghian, H.R. Lashgari, R. Abbasi, The effect of Al-5Ti-1B on the microstructure, hardness and tensile properties of Al2O3 and SiC-containing metal-matrix composites, Mater. Sci. Eng., A 485 (2008) 210-217.
[22] J. Akedo, S. Nakano, J. Park, S. Baba, K. Ashida, The aerosol deposition method, Synthesiol. English Ed. 1 (2008) 121-130.
[23] B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, H.E. Kim, Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications, Thin Solid Films 518 (2010) 2194-2199.
[24] J. Exner, M. Hahn, M. Schubert, D. Hanft, P. Fuierer, R. Moos, Powder requirements for aerosol deposition of alumina films, Adv. Powder Technol. 26 (2015) 1143-1151.
[25] D.M. Chun, S.H. Ahn, Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system, Acta Mater. 59 (2011) 2693-2703.
[26] J. Kwon, H. Park, I. Lee, C. Lee, Effect of gas flow rate on deposition behavior of Fe based amorphous alloys in vacuum kinetic spray process, Surf. Coating. Technol. 259 (2014) 585-593.
[27] N. Seto, K. Endo, N. Sakamoto, S. Hirose, J. Akedo, Hard α-Al2O3 films coating on industrial roller using aerosol deposition method, J. Therm. Spray Technol. 23 (2014) 1373-1381.
[28] M.Y. Cho, S.J. Park, S.M. Kim, D.W. Lee, H.K. Kim, S.M. Koo, K.S. Moon, J.M. Oh, Hydrophobicity and transparency of Al2O3-based poly-tetra-fluoro-ethylene composite thin films using aerosol deposition, Ceram. Int. 44 (2018) 16548-16555.
[29] S.M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, T. Tsurumi, Alumina thick
[3] L.R. Meza, S. Das, J.R. Greer, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices, Science 345 (2014) 1322-1326.
[30] O.Y. Kwon, D.W. Lee, J.M. Oh, J. Cai, B.S. Kim, Characterization of broadband dielectric properties of aerosol-deposited Al2O3 thick films, J. Ceram. Process. Res. 19 (2018) 290-295.
[31] M.Y. Cho, S. Kim, I.S. Kim, E.S. Kim, Z.J. Wang, N.Y. Kim, S.W. Kim, J.M. Oh, Perovskite-induced ultrasensitive and highly stable humidity sensors systems prepared by aerosol deposition at room temperature, Adv. Funct. Mater. (2019) 1907449.
[32] C. Lee, M.Y. Cho, M. Kim, J. Jang, Y. Oh, K. Oh, S. Kim, B. Park, B. Kim, S.M. Koo, J.M. Oh, D. Lee, Applicability of aerosol deposition process for flexible electronic device and determining the film formation mechanism with cushioning effects, Sci. Rep. 9 (2019) 1-10.
[33] S. Kim, M.Y. Cho, I.S. Kim, W.J. Kim, S.H. Park, S. Baek, J.M. Oh, S.W. Kim, Solvent-free aerosol deposition for highly luminescent and thermally stable perovskite-ceramic nanocomposite film, Adv. Mater. Interfaces 6 (2019) 1900359.
[34] M. Lebedev, S. Krumdieck, Optically transparent, dense α-Al2O3 thick films deposited on glass at room temperature, Curr. Appl. Phys. 8 (2008) 233?236.
[35] H.K. Kim, S.W. Lee, S.G. Lee, Y.H. Lee, Densification mechanism of BaTiO3 films on Cu substrates fabricated by aerosol deposition, Electron. Mater. Lett. 11 (2015) 388-397.
[36] J. Exner, M. Schubert, D. Hanft, J. Kita, R. Moos, How to treat powders for the room temperature aerosol deposition method to avoid porous, low strength ceramic films, J. Eur. Ceram. Soc. 39 (2019) 592-600.
[37] P.E. Leger, M. Sennour, F. Delloro, F. Borit, A. Debray, F. Gaslain, M. Jeandin, M. Ducos, Multiscale experimental and numerical approach to the powder particle shape effect on Al-Al2O3 coating build-up, J. Therm. Spray Technol. 26 (2017) 1445-1460.
[38] J.M. Shockley, C. Desrayaud, R.R. Chromik, S. Descartes, Significance of Al2O3 particle morphology in the microstructure evolution of cold-sprayed Al-Al2O3 during unconstrained high-pressure torsion, Mater. Sci. Eng., A 684 (2017) 510-516.
[39] J.G. Lee, Y.H. Cha, D.Y. Kim, J.H. Lee, T.K. Lee, W.Y. Kim, J. Park, D. Lee, S.C. James, S.S. Al-Deyab, S.S. Yoon, Robust mechanical properties of electrically insulative alumina films by supersonic aerosol deposition, J. Therm. Spray Technol. 24 (2015) 1046-1051.
[4] F. Shao, K. Yang, H. Zhao, C. Liu, L. Wang, S. Tao, Effects of inorganic sealant and brief heat treatments on corrosion behavior of plasma sprayed Cr2O3-Al2O3 composite ceramic coatings, Surf. Coating. Technol. 276 (2015) 8-15.
[40] D.W. Lee, H.J. Kim, Y.H. Kim, Y.H. Yun, S.M. Nam, Growth process of α-Al2O3 ceramic films on metal substrates fabricated at room temperature by aerosol deposition, J. Am. Ceram. Soc. 94 (2011) 3131-3138.
[41] C.W. Kim, J.H. Choi, H.J. Kim, D.W. Lee, C.Y. Hyun, S.M. Nam, Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films, Ceram. Int. 38 (2012) 5621-5627.
[42] D.W. Lee, H.J. Kim, S.M. Nam, Effects of starting powder on the growth of Al2O3 films on Cu substrate using the aerosol deposition method, J. Kor. Phys. Soc. 57 (2010) 1115-1121.
[43] V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, J. Theor. Appl. Phys. 6 (2012) 6.
[44] D.W. Lee, M.Y. Cho, I.S. Kim, Y.N. Kim, D. Lee, S.M. Koo, C. Park, J.M. Oh, Experimental and numerical study for Cu metal coatings at room temperature via powder spray process, Surf. Coating. Technol. 353 (2018) 66-74.
[45] S. Sutha, S. Suresh, B. Raj, K.R. Ravi, Transparent alumina based superhydrophobic self-cleaning coatings for solar cell cover glass applications, Sol. Energy Mater. Sol. Cells 165 (2017) 128-137.
[46] J. Kim, H. Kwon, H. Park, C. Lee, Microstructural features affecting optical properties of vacuum kinetic sprayed Al2O3 thin film, Surf. Interfaces 9 (2017) 114-123.
[47] M.R. Figueiredo, M.D. Abad, A.J. Harris, C. Czettl, C. Mitterer, P. Hosemann, Nanoindentation of chemical-vapor deposited Al2O3 hard coatings at elevated temperatures, Thin Solid Films 578 (2015) 20-24.
[48] I.A. Kariper, Hardness of thin films and the influential factors, Diamond Carbon Compos. Nanocompos. 100 (2016) 1.
[49] B. Jonsson, S. Hogmark, Hardness measurements OF thin films, Thin Solid Films 114 (1984) 257-269.
[5] J. Houska, J. Blazek, J. Rezek, S. Proksova, Overview of optical properties of Al2O3 films prepared by various techniques, Thin Solid Films 520 (2012) 5405-5408.
[50] Y. Ye, S. Jia, D. Zhang, W. Liu, H. Zhao, A study for anticorrosion and tribological behaviors of thin/thick diamond-like carbon films in seawater, Surf. Topogr. 6 (2018) 014004.
[51] Y. Sato, Y. Uemichi, K. Nishikawa, S. Yoshikado, Fabrication of Al2O3 films using aerosol deposition method and their characterization, IOP Conf. Ser. Mater. Sci. Eng. 18 (2011) 092056.
[52] D.W. Lee, H.J. Kim, Y.N. Kim, M.S. Jeon, S.M. Nam, Substrate hardness dependency on properties of Al2O3 thick films grown by aerosol deposition, Surf. Coating. Technol. 209 (2012) 160-168
[6] P. Jin, G. Xu, M. Tazawa, K. Yoshimura, D. Music, J. Alami, U. Helmersson, Low temperature deposition of α-Al2O3 thin films by sputtering using a Cr2O3 template, J. Vac. Sci. Technol., A 20 (2002) 2134-2136.
[7] A.J. Devasahayam, I. Agatic, B. Druz, H. Hegde, I. Zaritsky, S.R. Das, M. Boudreau, T. Yin, R. Mallard, S. LaFramboise, Material properties of ion beam deposited oxides for the optoelectronic industry, J. Vac. Sci. Technol., A 20 (2002) 1135-1140.
[8] G. Dingemans, W.M.M. Kessels, Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells, J. Vac. Sci. Technol., A 30 (2012) 040802.
[9] D.G. Cahill, S.M. Lee, T.I. Selinder, Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings, J. Appl. Phys. 83 (1998) 5783-5786.
films as integral substrates using aerosol deposition method, Jpn. J. Appl. Phys. 43 (2004) 5414-5418.

Also Published As

Publication number Publication date
KR20230066513A (ko) 2023-05-16

Similar Documents

Publication Publication Date Title
Iwasawa et al. Plasma‐resistant dense yttrium oxide film prepared by aerosol deposition process
EP1277850B1 (en) Sprayed film of yttria-alumina complex oxide
Wu et al. Thin films with nanotextures for transparent and ultra water‐repellent coatings produced from trimethylmethoxysilane by microwave plasma CVD
Kim et al. Fabrication of high-quality alumina coating through novel, dual-particle aerosol deposition
JP4854445B2 (ja) Cmpコンディショナおよびその製造方法
KR101110371B1 (ko) 내플라즈마 결정질 세라믹 코팅막 및 그 제조방법
US9117736B2 (en) Diamond and diamond composite material
US9099375B2 (en) Diamond and diamond composite material
KR20230066513A (ko) 새로운 이중-입자 에어로졸 증착을 사용한 고품질 알루미나 제조 방법
Cao et al. Effect of process gas flow on the coating microstructure and mechanical properties of vacuum kinetic-sprayed TiN layers
Wang et al. Electrical and mechanical properties of nano-structured TiN coatings deposited by vacuum cold spray
Lee et al. Effects of starting powder on the growth of Al2O3 films on Cu substrates using the aerosol deposition method
CN106835133A (zh) 一种具有二硼化钛‑金刚石复合涂层的工件及其制备方法
KR102499540B1 (ko) 반도체 제조 장치용 부재, 및 반도체 제조 장치용 부재를 구비한 반도체 제조 장치, 및 디스플레이 제조 장치
Li et al. Microstructure and transparent super-hydrophobic performance of vacuum cold-sprayed Al 2 O 3 and SiO 2 aerogel composite coating
Kim et al. Effect of processing parameters and powder size on microstructures and mechanical properties of Y 2 O 3 coatings fabricated by suspension plasma spray
TW574174B (en) Nanostructured tungsten carbide material and method of fabricating the same
JP2006131992A (ja) セラミックス膜およびその製造方法、セラミックス複合膜およびその製造方法ならびに切削工具
KR100991770B1 (ko) 입방정계 질화붕소 박막의 증착 방법
Kim et al. Microstructural features affecting optical properties of vacuum kinetic sprayed Al2O3 thin film
Kitiwan et al. Spark plasma sintering of SiC-coated large-size diamond powder
JP4963009B2 (ja) 透明性が改良された無機質膜−基板複合材料及びその製造方法
Akedo et al. Aerosol deposition for nanocomposite material synthesis:—a novel method of ceramics processing without firing
Kitiwan et al. Consolidation of diamond composites using silicon carbide-coated diamond powder
Karthikeyan et al. Cold sprayed nanostructured WC-Co

Legal Events

Date Code Title Description
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination