KR20220148331A - 플라즈마 프로세싱 시스템들에서 사용하기 위한 캐리어 플레이트 - Google Patents

플라즈마 프로세싱 시스템들에서 사용하기 위한 캐리어 플레이트 Download PDF

Info

Publication number
KR20220148331A
KR20220148331A KR1020227036960A KR20227036960A KR20220148331A KR 20220148331 A KR20220148331 A KR 20220148331A KR 1020227036960 A KR1020227036960 A KR 1020227036960A KR 20227036960 A KR20227036960 A KR 20227036960A KR 20220148331 A KR20220148331 A KR 20220148331A
Authority
KR
South Korea
Prior art keywords
carrier plate
pedestal
wafer
top surface
pocket
Prior art date
Application number
KR1020227036960A
Other languages
English (en)
Other versions
KR102569094B1 (ko
Inventor
카를 리저
Original Assignee
램 리써치 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 램 리써치 코포레이션 filed Critical 램 리써치 코포레이션
Publication of KR20220148331A publication Critical patent/KR20220148331A/ko
Application granted granted Critical
Publication of KR102569094B1 publication Critical patent/KR102569094B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/6773Conveying cassettes, containers or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

웨이퍼를 수용하기 위한 캐리어 플레이트는 캐리어 플레이트의 상단 표면의 중간 섹션 내에 규정된 포켓을 포함하고 표면 직경을 갖는다. 포켓은 기판 지지 영역을 규정한다. 캐리어 플레이트의 리테이닝 피처는 포켓의 외측 에지에 규정된다. 캐리어 플레이트의 테이퍼된 부분은 리테이닝 피처로부터 외측 직경으로 연장한다. 테이퍼된 부분은 포커스 링을 수용하도록 구성된다. 캐리어 플레이트의 하단 표면은 프로세스 챔버 내에서 사용되는 페데스탈 위에 놓이도록 구성된다. 복수의 웨이퍼 지지부들은 웨이퍼가 수용되는 경우, 웨이퍼를 지지하도록 기판 지지 영역의 상단 표면 상에 배치된다.

Description

플라즈마 프로세싱 시스템들에서 사용하기 위한 캐리어 플레이트{CARRIER PLATE FOR USE IN PLASMA PROCESSING SYSTEMS}
본 실시예들은 반도체 프로세싱 툴들에서 사용되는 구조물에 관한 것이고, 보다 자세하게는, 페데스탈 위에 반도체 웨이퍼를 지지하기 위하여 사용되는 캐리어 플레이트 구조물 및 전달들을 위해 상기 캐리어 플레이트 구조물을 사용하기 위한 방법들에 관한 것이다.
PECVD (plasma-enhanced chemical vapor deposition) 와 같은 웨이퍼 프로세싱에서, 캐리어 링 어셈블리는 웨이퍼를 일 스테이션에서 다른 스테이션으로 전달하기 위해 채용된다. 웨이퍼를 일 프로세스 스테이션으로부터 리프팅하고 다음 스테이션 위에 위치시키기 위해, 리테이닝 피처 (retaining feature) 가 캐리어 링 어셈블리 내에서 채용된다. 리테이닝 피처는 웨이퍼 에지 아래로 연장하도록 설계되고, 프로세스 위치 동안 웨이퍼 에지에는 여전히 컨택트하지 않는다. 이러한 배열은 웨이퍼 에지 주위의 많은 갭들을 남긴다. 결과적으로, 고온 PECVD 프로세스들에서, 웨이퍼 에지는 더 차갑고, 웨이퍼의 나머지 부분과 상이한 RF 커플링을 경험하며, 갭 내의 잠재 또는 주기적인 기생 플라즈마 라이트-업을 경험하여 RF 전력의 프로세스를 앗아가고 (rob), 다른 많은 유해한 이슈들을 야기할 수 있다. 또한, 웨이퍼가 프로세싱 툴 둘레에서 인덱싱 되면서 웨이퍼와의 컨택트를 형성하고 컨택트를 깨는 캐리어 링으로 인해, 프로세싱 챔버에서 생성된 입자들이 이주하고 (migrate) 웨이퍼 에지 상에 증착되어 다이 수율 (die yield) 에 영향을 줄 가능성이 높다.
웨이퍼가 캐리어 링 리테이닝 피처를 돌출하게 하는 (overhang) 웨이퍼 에지에서의 온도 불연속성 (temperature discontinuity) 은 웨이퍼 다이가 형성되지 않는 소규정 양의 에지 배제 영역 (edge exclusion zone) (예를 들어, 3 ㎜) 이 유지되는 한, 허용 (tolerate) 될 수 있다. 그러나, 제조사들이 에지 배제 영역을 더 멀리 (예를 들어, 약 1.8 ㎜ 이하로) 밀어냄으로 인해서, 이 돌출된 영역은 점점 더 경쟁 상의 단점 및 극복해야 할 엔지니어링 과제가 되고 있다.
또한, 전술한 결함들은 막 두께 및 다른 성능 메트릭 (metrics) 에 있어서의 불균일성의 다양한 원인들을 초래한다. 리프트 핀들을 거쳐서 페데스탈 또는 척 직상에 웨이퍼들을 전달하도록 로봇들을 채용하는 프로세스 모듈들에 있어서, 이러한 변형은 성능 이슈들을 야기할 수도 있다. 불균일성은 Lam Research Corporation 에 의해 제조된 쿼드 스테이션 프로세스 모듈들과 같이, 멀티 프로세스 스테이션들을 갖는 프로세스 모듈들에서 특히 이슈가 된다. 이러한 이슈들을 극복하기 위해, 캐리어 링들을 사용하는 링이 없는 (ringless) 웨이퍼 이송 메커니즘이 채용된다. 그러나, 캐리어 링들은 조정 (coordination), 추가적 메커니즘들 (예를 들어, 스핀들 모터들) 및 더 많은 자동화를 필요로 한다. 또한, 캐리어 링들을 채용하는 웨이퍼 이송 메커니즘은 전달 중에 누적된 핸드오프 에러들을 설명하기 위해, 웨이퍼가 수용되는 포켓 내에 허용할 수 없는 큰 방사상 갭을 필요로 한다. 웨이퍼 이송 메커니즘에서, 캐리어 링들은 웨이퍼 아래로 완전히 연장되지 않고 단지 웨이퍼 에지를 넘어서 또는 단지 웨이퍼 에지에서 시작한다. 또한, 경쟁 우위를 유지하기 위해, 더 새로운 프로세스들은 고 정밀 피처들이 캐리어 링 리테이닝 피처에 의해 점유되는 바로 그 영역인, 웨이퍼 에지에 매우 가깝게 위치될 것을 요구한다. 이러한 이점들을 제공하기 위해, 웨이퍼의 후측, 특히 웨이퍼 에지 상의 증착은 제거되거나 상당하게 감소되어야 한다.
이러한 맥락에서 본 개시의 실시예들이 발생한다.
본 개시의 실시예들은 캐리어 링-유사 웨이퍼 이송의 단점들 없이 캐리어 링-유사 웨이퍼 이송과 유사한 프로세스를 가능하게 하면서, 웨이퍼를 수용할 때, 웨이퍼를 지지하는 탈착가능한 캐리어 플레이트를 채용하는 시스템들, 장치들, 및 방법들을 제공한다. 예로서, 캐리어 플레이트는 링이 없는 (ringless) 웨이퍼 이송 메커니즘들 및 다른 웨이퍼 이송 메커니즘들의 한계들을 극복한다. 캐리어 플레이트는 프로세싱 동안 웨이퍼가 배치되는 포켓을 가지고, 캐리어 플레이트는 페데스탈 위에 놓이도록 구성된다. 웨이퍼가 상이한 스테이션으로 이송되어야 할 때, 캐리어 플레이트 상에 놓인 웨이퍼를 갖는 캐리어 플레이트가 리프팅되고 또 다른 페데스탈로 이동될 수도 있다. 따라서, 캐리어 플레이트의 지지 표면으로부터 웨이퍼를 리프팅할 필요 없이, 캐리어 플레이트 이송에 의해 스테이션으로부터 스테이션으로의 웨이퍼의 이송들이 가능해진다.
PECVD와 같은 증착에 사용되는 프로세스 챔버의 특정한 예에서, 웨이퍼는 프로세스 챔버의 페데스탈 상에 수용되는, 캐리어 플레이트 상에 수용되고 지지된다. 캐리어 플레이트는 웨이퍼가 수용될 때, 웨이퍼의 적어도 일 직경을 연장하는 표면을 덮는 포켓을 포함한다. 포켓의 측면들과 하단부는 단일 컴포넌트 구조물로 형성되므로 연속적이다. 포켓은 기판 지지 영역을 규정한다. 일 실시예에서, 프로세싱 및 전달 동안 웨이퍼는 캐리어 플레이트와 컨택트된 상태를 유지한다. 결과적으로, 캐리어 플레이트가 웨이퍼 이송을 수행하도록 이동될 때, 이러한 운동은 웨이퍼와의 컨택트하거나 컨택트를 끊을 필요가 없다. 캐리어 플레이트의 이러한 디자인은 또한 웨이퍼 에지 아래의 갭들을 제거한다. 최소 컨택트 영역들 (minimum contact areas, MCAs) 을 제공하는 작은 범프들 (bumps) 과 같은, 웨이퍼-캐리어 플레이트 이격 피처들은, 캐리어 플레이트의 기판 지지 영역 내로 바로 이격 피처들을 제조함에 의해 매우 작게 만들어질 수 있다. 이러한 이격 피처들의 정밀한 제조는 웨이퍼의 밑면 (underside) 에 있는 갭들을 최소화한다. 일 실시예에서, 페데스탈을 위한 금속 및 캐리어 플레이트를 위한 세라믹 사용에 의해 하이브리드 웨이퍼 수용 메커니즘이 설계될 수도 있다. 이 하이브리드 구조물은 링 전달 메커니즘 (ring transfer mechanism) 의 한계를 해결하면서 링 전달 메커니즘의 쓰루풋 이점들 및 단순성을 보존한다.
본 명세서에서 논의된 다양한 실시예들은 종래의 웨이퍼 이송 메커니즘들에 비해 많은 이점들을 제공한다. 이점들 중 하나는 웨이퍼 에지에서 온도 불연속성의 제거를 포함한다. 또 다른 이점은 불연속적인 고주파 전송 임피던스 또는 기생 플라즈마 라이트-업을 초래할 수 있는 웨이퍼 에지 주변의 갭들의 제거이다. 캐리어 플레이트가 웨이퍼 에지 근처의 임계 영역 (critical region) 주위를 둘러싸고 웨이퍼 아래로 연장하는 고 정밀 포켓 피처를 제공하기 때문에 웨이퍼의 에지 및 밑면에서의 입자 오염이 감소된다. 웨이퍼와 캐리어 플레이트가 일 유닛으로서 일 스테이션에서 다른 스테이션으로 이동하기 때문에, 캐리어 플레이트는 웨이퍼와 컨택트한 상태를 유지한다. 결과적으로, 포켓으로부터 웨이퍼를 리프팅하기 위한 별도의 이송 메커니즘이 필요하지 않다. 캐리어 플레이트는 종래의 스핀들-캐리어 링 핸드오프와 관련된 것들과 같이, 편심 핸드오프를 발생시키지 않고 그 상에 로봇에 의해 웨이퍼가 고 정밀하게 배치될 수 있는 표면을 제공한다. 캐리어 플레이트를 그 상에 수용하는 저가의 금속 (예를 들면, 알루미늄) 페데스탈 및 웨이퍼 아래의 고정밀 세라믹 표면을 결합함에 의해 저가 솔루션을 제공한다.
일 실시예에서, 웨이퍼를 프로세싱하기 위해 사용되는 프로세스 챔버가 개시된다. 프로세스 챔버는 캐리어 플레이트를 수용하도록 구성된 페데스탈을 포함한다. 페데스탈은 상단 표면 및 환형 표면을 갖는다. 페데스탈의 상단 표면은 캐리어 플레이트의 중간 섹션에 규정되고 표면 직경을 연장한다. 페데스탈의 환형 표면은 제 1 높이에 의해 규정된 스텝 다운에 의해 상단 표면으로부터 분리된다. 환형 표면은 상단 표면의 표면 직경으로부터 페데스탈의 외부 직경으로 외측 방향으로 연장한다. 캐리어 플레이트는 적어도 표면 직경으로 연장하고 캐리어 플레이트의 상단 표면 상에 중간 섹션 내에 규정되는 포켓을 갖는다. 리테이닝 피처는 포켓의 외측 에지에 인접하게 배치 (dispose) 된다. 테이퍼된 부분은 리테이닝 피처로부터 페데스탈의 외측 직경으로 연장한다. 포켓은 웨이퍼가 수용될 때, 웨이퍼를 지지하기 위한 기판 지지 영역을 규정한다. 복수의 캐리어 지지부들이 페데스탈의 상단 표면을 따라 분포된다. 복수의 캐리어 지지부들은 캐리어 플레이트가 수용될 때 캐리어 플레이트에 대한 신뢰성 있는 지지를 제공하는 최소 컨택트 영역들을 규정한다.
또 다른 실시예에서, 웨이퍼를 수용하기 위한 캐리어 플레이트가 개시된다. 캐리어 플레이트는 표면 직경을 가지고 캐리어 플레이트의 중간 섹션 내에 규정되는 포켓을 포함한다. 포켓은 기판 지지 영역을 규정한다. 리테이닝 피처는 포켓의 외측 에지에 있는 캐리어 플레이트 내에 규정된다. 테이퍼된 부분은 리테이닝 피처에서 외측 직경으로 연장하도록 구성되고 캐리어 플레이트 내에 규정된다. 테이퍼된 부분은 포커스 링을 수용하도록 구성된다. 캐리어 플레이트의 하단 표면은 페데스탈 위에 놓이도록 구성된다. 복수의 웨이퍼 지지부들은 웨이퍼가 수용될 때, 웨이퍼를 지지하도록 기판 지지 영역의 상단 표면 상에 배치된다.
본 발명의 다른 양태들 및 이점들은, 본 발명의 원리들을 예시를 통해 예시하는, 첨부된 도면들과 함께 취해진 후술할 상세한 기술로 명백해질 것이다.
도 1a는 일 실시예를 따라 예를 들면 웨이퍼 상에 막들을 형성하도록, 웨이퍼를 프로세싱하도록 사용되는 기판 프로세싱 시스템을 예시한다.
도 1b는 일 실시예에 따라 웨이퍼 상에서 증착 프로세스를 수행하도록 구성된 기판 프로세싱 시스템을 예시한다.
도 1ca, 도 1cb 및 도 1cc는 대안적인 실시예에 따라, 웨이퍼를 프로세싱하도록 사용되는 기판 프로세싱 시스템을 예시한다.
도 1d는 일 실시예에 따라, 웨이퍼 상에서 증착 프로세스를 수행하도록 구성된 기판 프로세싱 시스템의 멀티-스테이션 챔버의 단면도를 예시한다.
도 2a는 일 실시예에 따른 기판 프로세싱 시스템의 멀티-스테이션 프로세싱 툴의 상면도를 예시하고, 4개의 프로세싱 스테이션들이 제공되고 스파이더 포크 (spider fork) 가 캐리어 플레이트를 이동시키도록 사용된다.
도 2b는 일 실시예에 따른 인바운드 로드 록 (inbound load lock) 및 아웃 바운드 로드 록 (outbound load lock) 을 갖는 도 2a에 예시된 기판 프로세싱 시스템의 멀티-스테이션 프로세싱 툴의 일 실시예의 개략도를 도시한다.
도 3은 대안적인 일 실시예에 따라, 캐리어 플레이트들을 이동하도록 사용되는 웨이퍼 블레이드들을 갖는 기판 프로세싱 시스템의 멀티-스테이션 프로세싱 툴의 상면도를 예시한다.
도 4는 일 실시예에 따른 멀티-스테이션 프로세싱 툴의 프로세싱 스테이션들의 예시적인 구성의 상면도를 예시한다.
도 5a는 본 발명의 일 실시예에 따라, 기판 프로세싱 시스템의 상부에 캐리어 플레이트가 수용되는 페데스탈 (300) 의 주변 부분의 단면도를 예시한다.
도 5aa는 본 발명의 일 실시예에 따라, 도 3a에서 식별된 포켓 내에 수용된 웨이퍼의 에지 부분의 확대도를 예시한다.
도 5b는 본 발명의 대안적인 일 실시예에 따라, 포커스 링을 수용하기 위해 사용되는 캐리어 플레이트를 포함하는, 웨이퍼의 주변 부분의 단면도를 예시한다.
도 5ca 및 도 5cb는 본 발명의 대안적인 일 실시예에 따라, 포커스 링을 수용하기 위해 사용되는 캐리어 플레이트를 포함하는, 웨이퍼의 주변 부분의 단면도들을 예시한다.
도 5da 및 도 5db는 본 발명의 대안적인 일 실시예에 따라, 캐리어 플레이트 상에 수용된 웨이퍼의 주변 부분의 단면도들을 예시한다.
도 5e는 일 실시예에 따른, 정전 척 배열 (arrangement) 의 세부 사항들을 식별하는 캐리어 플레이트의 단면도를 예시한다.
도 5ea은 본 발명의 일 실시예에 따른, 캐리어 플레이트의 세부 사항들을 식별하는 캐리어 플레이트의 포켓 내에 수용된 웨이퍼의 주변 부분의 확대도를 예시한다.
도 5fa은 본 발명의 일 실시예에 따라, 디스인게이지된 상태에서 페데스탈의 바디 내에 분배된 복수의 리프트 핀들을 포함하는 캐리어 플레이트의 확대 단면도를 예시한다.
도 5fb는 본 발명의 일 실시예에 따른, 인게이지된 상태의 복수의 리프트 핀들을 갖는 캐리어 플레이트의 단면도를 예시한다.
도 6은 일 실시예에 따른, 시스템들을 제어하기 위한 제어 모듈 (즉, 제어기) 를 도시한다.
본 개시의 실시예들은 프로세스 챔버에서 사용되는 캐리어 플레이트의 다양한 세부 사항들을 제공한다. 캐리어 플레이트는 일 페데스탈 또는 복수의 페데스탈들을 포함하는 프로세스 챔버에서 사용될 수도 있다. 일 구성에서, 프로세스 챔버가 페데스탈들의 세트를 포함한다면, 프로세스 챔버는 캐리어 플레이트들의 유사한 세트를 갖는다. 웨이퍼들이 캐리어 플레이트들 상에 로딩되고, 캐리어 플레이트들은 캐리어 플레이트 각각으로부터 웨이퍼를 제거하지 않고, 일 페데스탈에서 다른 페데스탈로 이동할 수도 있다. 일 구성에서, 캐리어 플레이트가 이송될 때, 시스템은 예를 들어 회전 어셈블리에 의해, 모든 캐리어 플레이트들을 동시에 이송할 수도 있다. 이러한 방식으로, 모든 캐리어 플레이트들은 프로세스 챔버 내에서 다른 프로세싱을 가능하게 하도록 상이한 페데스탈로 이송된다. 본 실시예들은 프로세스, 장치, 시스템, 디바이스, 또는 방법과 같이, 다양한 방식들으로 구현될 수 있다. 여러가지 실시예들이 이하에서 기술된다.
막들의 증착은 플라즈마 강화 화학 증기 증착 (plasma enhanced chemical vapor deposition, PECVD) 시스템에서 구현될 수 있다. PECVD 시스템은 많은 다른 형태들을 취할 수도 있다. PECVD 시스템은 웨이퍼 프로세싱에 적합한 “반응기들” 또는 하나 이상의 챔버를 포함한다. 챔버 각각은 프로세싱할 하나 이상의 웨이퍼들을 하우징하도록 복수의 스테이션들을 포함할 수도 있다. 하나 이상의 챔버들은 웨이퍼를 규정된 위치 또는 위치들 (예를 들어, 회전, 진동 또는 다른 흔들림 (agitation) 같은 움직임과 함께 또는 움직임 없이 그 위치 내) 에서 유지한다. 증착을 겪는 웨이퍼는 반응기 챔버 안으로 및 밖으로 전달될 수도 있고, 그리고 프로세싱 도중 반응기 챔버 내에서 일 스테이션으로부터 다른 스테이션으로 전달될 수도 있다. 당연히, 막 증착은 단일 스테이션에서 전부가 발생할 수도 있고, 막의 임의의 단편 (fraction) 은 임의의 수의 스테이션들에서 증착될 수도 있다.
프로세스 동안, 웨이퍼는 페데스탈, 웨이퍼 척 및/또는 다른 지지 장치 상에 수용된 캐리어 플레이트에 의해 제자리에서 홀딩된다. 특정한 동작들에 있어서, 장치는 웨이퍼를 가열하기 위해 가열 플레이트와 같은 히터를 포함할 수도 있다.
도 1a는 웨이퍼 (101) 를 프로세싱하는데 사용되는, 예시적인 기판 프로세싱 시스템 (100) 을 예시한다. 시스템은 상부 챔버 부분 (102a) 및 하부 챔버 부분 (102b) 을 갖는 프로세스 챔버 (102) 를 포함한다. 중심 컬럼은 페데스탈 (140) 을 지지하도록 구성된다. 일 실시예에서, 페데스탈 (140) 은 전력을 공급받는 전극이다. 이 실시예에서, 페데스탈 (140) 은 매칭 네트워크 (106) 를 통해 전력 공급부 (104) 에 전기적으로 커플링된다. 전력 공급부는 제어 모듈 (110), 예를 들어, 제어기에 의해 제어된다. 제어기 (110) 는 프로세스 입력 및 제어부 (108) 에 의해 공급된 입력들을 실행함으로써 기판 프로세싱 시스템 (100) 을 동작시키도록 구성된다. 프로세스 입력 및 제어부 (108) 는 웨이퍼 (101) 위에 막을 증착하거나 또는 형성하도록, 웨이퍼 (101) 의 기계적 운동을 제어하기 위한 전력 레벨들, 타이밍 파라미터들, 프로세스 가스들, 입력들 등의 프로세스 레시피 입력들을 제공할 수도 있다.
일 실시예에서, 중심 컬럼은 리프트 핀 메커니즘의 적어도 일 부분을 포함하는 것으로 도시된다. 리프트 핀 메커니즘은 리프트 핀 제어부 (122) 의해 제어되는 리프트 핀들 (120) 을 포함한다. 도 1a에 예시된 일 실시예에서, 리프트 핀은 중심 컬럼에 배치되는 것으로 도시된다. 다른 실시예들에서, 리프트 핀들은 페데스탈 (140) 의 바디의 임의의 위치에 배치될 수도 있으며 중심 컬럼으로만 제한되지 않는다는 점에 유의해야 한다. 리프트 핀들 (120) 은 스파이더 포크 메커니즘 또는 엔드-이펙터로 하여금 페데스탈의 표면 상으로 캐리어 플레이트를 하강시키도록 또는 페데스탈 (140) 의 표면으로부터 캐리어 플레이트를 리프팅하게 하도록 페데스탈 (140) 로부터 캐리어 플레이트 (200) 를 상승시키도록 사용된다. 기판 프로세싱 시스템 (100) 은 또한 예를 들면 설비로부터 공급된 화학 가스 (gas chemistry supplies) 같은 프로세스 가스들 (114) 과 연결된 가스 공급 매니폴드 (112) 를 더 포함한다. 수행될 프로세싱에 따라, 제어기 (110) 는 가스 공급 매니폴드 (112) 를 통해 프로세스 가스들 (114) 의 전달을 제어한다. 선택된 가스들은 샤워헤드 (150) 내로 흐르고 페데스탈 (140) 상에 수용된 캐리어 플레이트 상에 놓인 웨이퍼 (101) 의 상단 표면과 웨이퍼 (101) 를 대면하는 샤워헤드 (150) 의 페이스 사이에 규정되는 공간 볼륨 내에 분포된다.
또한, 가스들은 미리 혼합되거나 (premix) 미리 혼합되지 않을 수도 있다. 적절한 밸브 및 질량 유량 (mass flow) 제어 메커니즘들이 프로세스의 증착 및 플라즈마 프로세싱 페이즈들 동안 올바른 가스들이 전달되는 것을 보장하기 위해 채용될 수도 있다. 프로세스 가스들은 유출구를 통해 챔버를 나간다. 진공 펌프 (예를 들어, 1 또는 2 단계 기계적 드라이 펌프 및/또는 터보 분자 펌프) 가 프로세스 가스들을 인출하고 쓰로틀 밸브 또는 펜둘럼 밸브와 같은, 폐루프 제어된 플로우 제한 디바이스에 의해 반응기 내에서 적합하게 저 압력을 유지하도록 사용된다.
또한 페데스탈 (140) 위에 수용되는 캐리어 플레이트 (200) 가 도시된다. 캐리어 플레이트 (200) 는 웨이퍼 (101) 가 수용될 때, 웨이퍼 (101) 를 지지하고 홀딩하도록 구성된다. 일부 실시예들에서, 캐리어 플레이트 (200) 는 프로세스 챔버 내외로 이동될 수 있는 탈착가능한 유닛이다. 이러한 실시예들에서, 웨이퍼는 프로세스 챔버 외부의 캐리어 플레이트 (200) 상에 사전-로딩 (pre-load) 되고, 캐리어 플레이트 (200) 는 로딩된 웨이퍼와 함께 프로세스 챔버로 이송된다. 사전-로딩된 웨이퍼 (101) 를 갖는 캐리어 플레이트 (200) 는 페데스탈 (140) 상에 수용된다.
캐리어 플레이트 (200) 는 페데스탈 (140) 의 상단 표면의 표면 직경을 연장하고 중심 영역에 규정되는 기판 지지 영역 (201) 을 포함한다. 일부 실시예들에서, 표면 직경은 적어도 캐리어 플레이트 (200) 상에 수용되는 웨이퍼의 직경과 동일하다.
페데스탈 (140) 은 정전 척 (ESC) 제어부 (미도시) 에 연결된다. ESC 제어부를 통해 페데스탈 (140) 에 인가된 전압은 페데스탈 (140) 의 상단 표면으로부터 또는 페데스탈 (140) 의 상단 표면까지 캐리어 플레이트 (200) 를 클램핑 또는 디클램핑하기 위해 클램핑 힘 또는 디클램핑 힘의 생성을 가능하게 한다. 일부 실시예들에서, 클램핑 또는 디클램핑을 위한 전압은 제어기 (110) 에 의해 제공된 신호에 응답하여 제공될 수도 있다. 제어기 (110) 는 또한 리프트 핀이 활성화될 때 캐리어 플레이트가 페데스탈의 상단 표면으로부터 리프팅되도록 리프트 핀 메커니즘을 제어하도록 구성된다.
도 1b는 프로세스 챔버 내에 인게이징되도록 구성된 기판 프로세싱 시스템의 대안적 예를 예시한다. 도 1b의 기판 프로세싱 시스템의 컴포넌트들은 전원이 페데스탈 (140) 대신 샤워헤드 (150) 로 매칭 네트워크 (106) 을 통해 전기적으로 연결되는 것을 제외하고, 도 1a에 예시된 기판 프로세싱 시스템과 유사하다. 도 1a 및 도 1b의 유사한 컴포넌트들은 동일한 참조 번호를 사용하여 번호가 매겨진다.
도 1ca는 도 1a에 예시된 예시적 기판 프로세싱 시스템과 상이한 예시적 기판 프로세싱 시스템을 예시한다. 도 1a 및 도 1ca의 공통적인 컴포넌트들은 동일한 참조 번호를 사용하여 번호가 매겨진다. 본 명세서에서 다양한 도면들에 예시된 다양한 컴포넌트들의 치수들은 컴포넌트들을 식별하기 위해 과장되었으며 실제 치수들의 진정한 표현이 아님을 유의해야 한다. 도 1ca의 페데스탈 (140') 은 외측 직경을 연장하는 상단 표면을 포함한다. 이 예에서, 페데스탈 (140') 은 환형 표면을 포함하지 않는다. 캐리어 플레이트 (200') 는 페데스탈 (140') 위에 수용된다. 캐리어 플레이트 (200') 의 하단 표면의 기하구조 (geometry) 는 페데스탈 (140') 의 상단 표면의 기하구조와 매칭하도록 구성된다. 포켓은 페데스탈 (140') 의 외측 직경보다 작은 표면 직경을 커버하도록 캐리어 플레이트 (200') 의 중간 섹션 내에 규정된다. 일 실시예에서, 캐리어 플레이트 (200') 는 페데스탈 (140') 상에 배치된 복수의 키네머틱 핀들 (kinematic pins) (미도시) 을 인게이징함에 의해 페데스탈 (140') 위에 수용된다. 일부 실시예들에서, 3개 키네머틱 핀들이 페데스탈 (140') 의 상단 표면 상에 균일하게 분포되고 페데스탈 (140') 위에 수용될 때, 캐리어 플레이트 (200') 를 정렬하도록 사용된다. 키네머틱 핀들은 캐리어 플레이트 (200') 를 위한 신뢰성 있는 컨택트 지지부를 제공한다. 인게이지된 키네머틱 핀들의 수는 예시적인 것이며, 추가적인 키네머틱 핀들이 페데스탈 (140') 위에 캐리어 플레이트 (200') 를 정렬시키기 위해 페데스탈 (140') 상에 제공될 수도 있다는 점을 주지해야 한다. 이러한 실시예들에서, 캐리어 지지부들은 페데스탈 (140') 의 상단 표면 상에 제공되지 않을 수도 있고, 키네머틱 핀들은 캐리어 플레이트 (200') 를 신뢰할 수 있게 지지하도록 MCA들을 제공한다.
도 1cb 및 도 1cc은 캐리어 플레이트 (200') 가 키네머틱 핀들의 대신 상이한 정렬 메커니즘을 사용하여 페데스탈 (140') 위에 수용되는 대안적인 실시예를 예시한다. 이 실시예에서, 그루브-형 피처 (141) 는 페데스탈 (140') 의 상단 표면 상에 규정된다. 캐리어 플레이트 (200') 의 하단 표면은 캐리어 플레이트 (200') 의 외측 둘레에 인접한 연장부 (201) 를 포함한다. 캐리어 플레이트 (201') 의 연장부 (201) 는 페데스탈 (140') 의 그루브-형 피처 (141) 에 끼워지도록 크기가 정해진다. 일부 실시예들에서, 페데스탈 (140') 의 외측 직경은 캐리어 플레이트 (200') 의 직경과 동일하다. 이러한 실시예들에서, 그루브-형 피처 (141) 는 그루브-형 피처 (141) 의 직경과 캐리어 플레이트 (200') 의 연장부 (201) 의 직경이 동일하도록, 페데스탈 (140') 의 외측 둘레에 인접하게 규정된다. 다른 실시예들에서, 페데스탈 (140') 의 직경은 캐리어 플레이트 (200') 의 직경보다 클 수도 있다. 이러한 실시예들에서, 페데스탈의 그루브-형 피처는 그루브-형 피처의직경이 캐리어 플레이트 (200') 상에 규정된 연장부 (201) 의 직경과 동일하도록, 페데스탈 (140') 의 외측 둘레로부터 적절한 거리에 규정될 수도 있다. 캐리어 플레이트 (200') 는 그루브-형 피처 (141) 에 의해 지지되고 페데스탈 (140') 의 상단 표면 상에 캐리어 지지부들은 제공되지 않는다. 페데스탈 (140') 의 상단 표면 및 캐리어 플레이트의 하단 표면은 유사한 기하학적 프로파일을 갖는다.
도 1d는 일 실시예에 따라, 복수의 스테이션들과 인게이지하는 기판 프로세싱 시스템 (100') 의 단면도를 예시한다. 프로세싱 챔버 (102') 는 복수의 스테이션들을 하우징하는 하부 챔버 부분들 (102b') 및 복수의 샤워 헤드들 (150) 을 하우징하는 상부 챔버 부분 (102a') 을 포함한다. 상부 챔버 부분 (102a') 의 샤워 헤드들 (150) 의 수는 하부 챔버 부분 (102b') 내에 배치된 스테이션들의 수와 동일하다. 상부 챔버 부분 (102a') 은 샤워 헤드들 (150) 이 스테이션 각각의 페데스탈 (140) 위에 실질적으로 정렬되도록, 샤워 헤드들 (150) 을 하강시키도록 구성된다. 하부 챔버 부분 (102b') 은 지지 구조물 (103) 에 의해 지지되도록 구성된다. 지지 구조물 (103) 은 가스들, RF 전력, 압력 제어, 온도 제어, 타이밍 및 관련 제어기 및 전자 장치들을 제공하기 위해 활용되는 설비들 뿐만 아니라 멀티-스테이션 프로세스 챔버 (102') 를 지지할 수 있는 임의의 적합한 구조에 의해 규정될 수도 있다. 일 실시예에서, 지지 구조물 (103) 은 기판 프로세싱 시스템 (100') 의 프로세스 챔버 (102') 가 설치되는 표면 (예를 들어, 클린 룸 플로어) 위에 프로세스 챔버 (102') 를 지지하는, 금속 튜브형 구조로부터 규정된다. 진공 펌프들 (160a, 160b) 이 제공되고 하부 챔버 부분 (102b') 과 인터페이싱한다. 진공 펌프들 (160a, 160b) 은 충분한 가스 플로우를 제공하고, 프로세스 챔버 (102') 내에서 압력 제어를 제공하거나 또는/그리고 프로세스 가스들을 제거하도록 구성된다. 통상적으로, 프로세스 가스들은 진공 펌프들 (160a, 160b) 을 향해 기판 (101) 위로 그리고 캐리어 플레이트들 (200) 의 에지들 위로 흐르도록 허용되고, 따라서 가스 플로우 경로들 (402) 을 규정한다.
도 2a는 멀티-스테이션 기판 프로세싱 시스템 (100') 의 상면도를 예시하고, 4개의 프로세싱 스테이션들이 프로세스 챔버 (102') 내에 제공된다. 이 상면도는 (예를 들어, 예시를 위해 제거된 상부 챔버 부분 (102a') 을 갖는) 프로세스 챔버 (102') 의 하부 챔버 부분 (102b') 상면도이다. 일 실시예에서, 4개의 스테이션들은 스파이더 포크들과 인게이지하는 리프팅 메커니즘 (226) 에 의해 액세스된다. 스파이더 포크 각각은 제 1 암 및 제 2 암을 포함하고, 암 각각은 페데스탈 (140) 의 측면 각각의 일부를 둘러싸도록 포지셔닝된다. 이 도면에서, 스파이더 포크들은 캐리어 플레이트 (200) 아래에 있는 것들을 수송하기 위해 대시-선으로 도시된다. 스파이더 포크들은 회전 메커니즘 (220) 에 커플링된다. 참조 번호 226이 스파이더 포크들을 가리키고 있지만, 스파이더 포크들 및 회전 메커니즘 (220) 은 리프팅 메커니즘 (226) 의 일부임을 주지해야 한다. 스파이더 포크들이 인게이지될 때, 스파이더 포크들은 동시에 스테이션들로부터 (즉, 캐리어 플레이트들 (200) 의 하부 표면으로부터) 캐리어 플레이트들을 리프팅하고 캐리어 플레이트들 (200) 의 외측 에지들 아래로 이동하도록 구성되고, 그 후, 웨이퍼들 (101) 각각 상에서 플라즈마 프로세싱, 프로세싱 및/또는 막 증착이 더 발생할 수 있도록 다음 위치로 (적어도 하나의 캐리어 플레이트들이 웨이퍼 (101) 를 지지하는) 캐리어 플레이트들 (200) 을 하강시키기 전에 하나 이상의 스테이션들을 회전시킨다.
도 2b는 인바운드 로드록 (301) 및 아웃바운드 로드록 (303) 을 갖는 멀티-스테이션 프로세싱 시스템 (100') 의 실시예의 개략도를 도시한다. 대기압에서 로봇 (305) 이 대기 포트 (310) 를 통해 인바운드 로드록 (301) 내로 포드 (pod) (313) 를 통해 로딩된 카세트로부터 웨이퍼들을 이동시키도록 구성된다. 인바운드 로드록 (301) 은 대기 포트 (310) 가 폐쇄될 때, 인바운드 로드록 (301) 이 펌핑다운될 수도 있도록 진공 소스 (미도시) 에 커플링된다. 인바운드 로드록 (301) 은 또한 프로세스 챔버 (102) 와 인터페이싱된 챔버 이송 포트 (316) 를 포함한다. 따라서, 챔버 이송부 (316) 가 개방될 때, 또 다른 로봇이 프로세싱을 위해 하부 챔버 부분 (102b') 내에 배치된 제 1 프로세스 스테이션의 페데스탈 (140) 로 인바운드 로드 록 (301) 으로부터 웨이퍼를 이동시킬 수도 있다.
도 2b에 도시된 실시예에서 도시된 프로세스 챔버 (102') 는 1 내지 4 로 번호가 매겨진 4개의 프로세스 스테이션들을 포함한다. 일부 실시예들에서, 프로세스 챔버 (102) 는 웨이퍼들이 진공 브레이크 (vacuum break) 및/또는 공기 노출을 경험하지 않고 프로세스 스테이션들 사이에서 캐리어 플레이트 (200) 를 사용하여 이송될 수도 있도록 저압 분위기를 유지하도록 구성될 수도 있다. 도 2b에 도시된 프로세스 스테이션 각각은 웨이퍼 및 프로세스 가스 전달 라인 유입구들 (미도시) 을 갖는 캐리어 플레이트를 수용하는 페데스탈 (140) 을 포함한다.
도 2b는 또한 프로세스 챔버 (102') 내에서 기판을 이송하기 위한 리프팅 메커니즘 (226) 의 스파이더 포크들을 도시한다. 이하에서 보다 상세히 설명되는 바와 같이, 스파이더 포크들은 회전하고 일 스테이션에서 다른 스테이션으로 웨이퍼를 이송할 수 있도록 한다. 이송은 스파이더 포크들이 캐리어 플레이트들 (200) 의 외측 밑면 아래로 이동하도록 하고 캐리어 플레이트들 (200) 을 웨이퍼 (101) 와 함께 리프팅 함으로써 발생한다. 웨이퍼 (101) 를 갖는 캐리어 플레이트들은 다음 페데스탈로 (140) 로 이동된다. 일 구성에서, 스파이더 포크들은 프로세싱 동안 고 레벨의 열을 견디도록 세라믹 재료로 이루어진다.
도 2a 및 도 2b의 구성에서, 접지 플레이트는 페데스탈들 각각 주변에 제공되지 않는다. 이와 같이, 하부 챔버 바디는 노출된 채로 남고 RF 접지 리턴 (RF ground return) 은 일반적으로 챔버 벽들을 통해 발생한다. 이 구성은 RF 접지 리턴에 어떠한 대칭도 제공하지 않는다. 대안적인 실시예에서, 대칭적 RF 접지 리턴을 제공하기 위해 접지 플레이트가 포함될 수도 있다.
도 3은 도 2a에 예시된 리프팅 메커니즘의 대안적인 실시예를 예시한다. 리프팅 메커니즘 (226') 은 스파이더 포크들 대신 웨이퍼 블레이드들을 포함한다. 리프팅 메커니즘 (226') 의 웨이퍼 블레이드들은 회전 메커니즘 (220) 에 부착된다. 도 3의 참조 번호 (226') 가 스파이더 포크들을 가리키고 있지만, 스파이더 포크들 및 회전 메커니즘 (220) 은 캐리어 플레이트들 (200) 을 리프팅하기 위해 프로세스 챔버 (102') 내에서 채용되는 리프팅 메커니즘 (226') 의 일부라는 것을 주지해야 한다. 일부 실시예들에서, 회전 메커니즘 (220) 은 스핀들 모터 (미도시) 에 의해 작동되는 스핀들이다.
캐리어 플레이트들 (200) 이 이동되어야 할 때, 리프트 핀들은 리프트 핀 제어를 사용하여 인게이지된다. 리프트 핀들은 웨이퍼와 함께 캐리어 플레이트들 (200) 을 페데스탈 (140) 로부터 리프팅한다. 웨이퍼 블레이드들은 캐리어 플레이트들 (200) 아래에서 이동하고 캐리어 플레이트들 (200) 을 리프트 핀들로부터 리프팅한다. 리프트 핀들은 하우징 내로 후퇴하고, 스핀들 및 웨이퍼 블레이드들은 캐리어 플레이트들 (200) 을 다음 페데스탈 (140) 으로 로테이팅한다. 리프트 핀들은 웨이퍼 블레이드들로부터 캐리어 플레이트들 (200) 을 수용하도록 다시 인게이지한다. 웨이퍼 블레이드들 및 스핀들은 방해가 되지 않게 회전되고 캐리어 플레이트들 (200) 은 페데스탈 (140) 상에 수용된다. 웨이퍼를 갖는 캐리어 플레이트 (200) 의 이송은 웨이퍼를 갖는 캐리어 플레이트들 (200) 이 상이한 페데스탈들 상에 위치되어 웨이퍼의 추가적 프로세싱을 허용하도록 조정 (coordinate) 된다. 도 3에 예시된 실시예에서, 리프트 핀들이 인게이지될 때, 리프트 핀들은 웨이퍼 블레이드들의 운동을 방해하지 않도록 페데스탈의 바디에 전략적으로 배치된다.
도 4는 상이한 스테이션들의 페데스탈들 (140) 의 포지셔닝 (positioning) 을 예시하는, 하부 챔버 부분 (102b') 의 상면도이다. 도시된 바와 같이, 페데스탈들 (140) 은 하부 챔버 부분 (102b') 내에 배치된 표면 상에 규정된 프로세스 개구들 내에 배치된다. 페데스탈 (140) 들은 캐리어 플레이트들 (200) 을 수용하도록 구성된다. 일부 실시예들에서, 페데스탈 (140) 상에 수용된 캐리어 플레이트 (200) 의 직경은 프로세스 개구들의 직경보다 작은, 페데스탈 (140) 의 외측 직경과 동일하다.
일부 실시예들에서, 캐리어 플레이트들 (200) 의 하단 표면의 기하학적 프로파일은 캐리어 플레이트들 (200) 이 수용될 때, 캐리어 플레이트들 (200) 이 페데스탈 (140) 상에 놓일 수도 있도록 페데스탈 (140) 의 상단의 기하학적 프로파일과 매칭한다. 일부 실시예들에서, 포켓은 캐리어 플레이트 (200) 의 상단 표면 상의 중간 섹션 내에 규정되고 표면 직경을 연장한다. 포켓의 표면 직경 (D2) 은 프로세싱을 위해 캐리어 플레이트들 (200) 상에 수용된 웨이퍼 (101) 의 폭을 수용하도록 크기가 정해진다. 포켓의 표면 직경의 크기에 대한 추가적인 정보는, 본 명세서에서 그 전체가 참조로서 인용되는, 2014 년 12 월 19 일 출원된 "Reducing Backside Deposition at Wafer Edge"라는 명칭의 출원 제 14/578,126 호를 참조할 수 있다. 프로세스 개구들의 외측 에지와 페데스탈들, 캐리어 플레이트들 각각에 사이에 갭이 존재한다. 이 갭은 공기 플로우/프로세스 가스 플로우를 위한 충분한 공간을 제공한다. 갭의 치수는 사용된 페데스탈 및 캐리어 플레이트들의 크기에 따라 스케일링 (scale) 될 것이라는 점을 이해해야 한다. 보다 크거나 보다 작은 웨이퍼들을 수용하는 시스템들의 경우, 예시적인 치수들이 이에 따라 스케일링된다.
일부 실시예들에서, 하부 챔버 부분 (102b') 의 표면은 접지에 대한 리턴 경로가 RF 전력에 대해 규정되도록, 직경 (D1) 에 의해 규정된 프로세스 개구들 둘레에 대칭적인 접지 전위를 제공하도록 구성될 수도 있다. 이는 프로세스 균일성들을 개선할 뿐만 아니라 증착 막들의 보다 엄격한 제어를 달성한다.
일부 실시예들에서, 하부 챔버 부분 (102b') 의 표면은 또한 리프팅 메커니즘 (226 또는 226') 의 회전 메커니즘 (220) 을 수용하도록 사용되는 중심 개구를 포함한다. 회전 메커니즘 (220) 은 스파이더 포크들에 커플링된다. 스파이더 포크들이 회전 메커니즘 (220) 에 부착되는 것으로 도시되었지만, 다른 실시예들은 스파이더 포크들 대신 웨이퍼 블레이드들과 인게이지할 수도 있다. 리프팅 메커니즘들 (226, 226') 이 스파이더 포크들 또는 웨이퍼 블레이드들과 인게이지하는 실시예들에서, 리프팅 메커니즘은 방사상으로 이동하도록 구성된다. 또 다른 실시예들에서, 스파이더 포크들 또는 웨이퍼 블레이드들을 갖는 리프팅 메커니즘 대신, 회전 메커니즘 (220) 을 포함할 수도 있고 또는 포함하지 않을 수도 있는 다른 리프팅 메커니즘들이 사용될 수도 있다. 프로세스 챔버 (102') 내에 상이한 리프팅 메커니즘들 (226) 이 제공되는 실시예들에서, 리프팅 메커니즘(들)은 대응하는 페데스탈들의 일 측면 상에 배치될 수도 있다. 이러한 실시예들에서, 리프팅 메커니즘(들)은 캐리어 플레이트들 (200) 을 리프팅하고 이동시키도록 방사상 뿐만 아니라 수직으로도 이동하도록 구성될 수도 있다. 사용되는 리프팅 메커니즘들의 유형에 관계없이, 리프팅 메커니즘들 (226) 은 제어기 (110) 에 연결된다. 제어기 (110) 는 웨이퍼(들)를 갖는 캐리어 플레이트들 (200) 이 이동되어야 할 때 프로세스 스테이션들에서 리프트 핀들 및 리프팅 메커니즘들을 활성화시키기 위해 필요한 신호들을 제공한다. 기판 프로세싱 시스템의 개요에 따라, 기판 프로세싱 시스템에 사용되는 캐리어 플레이트의 세부사항들은 이제 도 5a 내지 도 5fb를 참조하여 기술될 것이다.
도 5a는 상부에 캐리어 플레이트 (200) 가 수용되는 프로세스 챔버 (102) 내의 페데스탈 (140) 의 예시적인 단면도를 예시한다. 페데스탈 (140) 은 상단 표면 (140a) 및 환형 표면 (140b) 을 포함한다. 상단 표면 (140a) 은 페데스탈 (140) 의 중간 섹션 내에 규정되고 표면 직경을 커버하도록 중심 축으로부터 연장된다. 환형 표면 (140b) 은 상단 표면 (140a) 의 수직 위치가 환형 표면 (140b) 의 수직 위치보다 높도록, 상단 표면 (140a) 의 외측 에지로부터 단차부 (140c) 아래로 규정된다. 일 실시예에서, 환형 표면 (140b) 은 페데스탈 (140) 의 외측 직경을 향해 연장된다. 일부 실시예들에서, 환형 표면 (140b) 의 외측 직경은 페데스탈 (140) 의 외측 직경보다 작을 수도 있다. 이러한 실시예들에서, 페데스탈 (140) 의 제 2 환형 표면 (140d) 으로부터 환형 표면 (140b) 을 분리하도록 추가적인 단차(들)가 페데스탈 (140) 내에 규정될 수도 있다. 다른 실시예들에서, 환형 표면 (140b) 의 외측 직경은 페데스탈 (140) 의 외측 직경까지 연장될 수도 있다. 페데스탈 (140) 의 상단 표면 (140a) 과 환형 표면 (140b) 을 분리하는 단차부 (140c) 는, 단차 높이에 의해 규정된다. 일부 실시예들에서, 단차 높이는 약 3 ㎜와 약 6 ㎜ 사이이다. 다른 실시예들에서, 단차 높이는 약 4 ㎜이다. 캐리어 플레이트 (200) 는 프로세스 챔버 (102) 내에 수용될 때, 페데스탈 (140) 의 상단 표면 (140a) 위에 놓이도록 구성된다. 일부 실시예들에서, 캐리어 플레이트 (200) 가 수용되는 페데스탈 (140) 의 상단 표면 (140a) 위에 복수의 캐리어 지지부들이 배치될 수도 있다.
일부 실시예들에서, 캐리어 플레이트의 하단 표면은 캐리어 플레이트가 페데스탈 (140) 상에 놓이도록 하는 표면 프로파일을 가질 수도 있다. 예를 들어, 하단 표면은 중심 부분, 수직 부분 및 수평 부분을 포함할 수도 있다. 중심 부분은 캐리어 플레이트의 중심에 규정된다. 수직 부분은 중심 부분의 외측 에지로부터 수평 부분의 내측 에지로 하향으로 규정된다. 이 실시예에서, 수직 부분의 높이는 제 2 높이 (d2) 에 의해 규정된다. 제 2 높이 (d2) 는 페데스탈 (140) 의 단차부 (140c) 의 높이와 동일하다. 추가적인 단차부가 제 2 환형 표면 (140d) 으로부터 환형 표면 (140b) 을 분리하도록 페데스탈 (140) 내에 규정될 수도 있다. 일 실시예에서, 단차부 (140c), 추가적 단차부 (가능한 경우) 는 스파이더 포크 (226) 와 같은 리프팅 메커니즘이 배치되는 리세스를 규정한다. 스파이더 포크 (226) 는 캐리어 플레이트 (200) 가 인게이지될 때, 캐리어 플레이트 (200) 를 지지하고 이동시키도록 사용된다.
일부 실시예들에서, 캐리어 플레이트 (200) 는 캐리어 플레이트 (200) 의 상단 표면 상의 중간 섹션에 규정된 포켓 (202) 을 포함한다. 포켓 (202) 은 적어도 페데스탈 (140) 의 상단 부분의 표면 직경을 커버하도록 구성된 기판 지지 영역 (201) 을 규정한다. 일 실시예에서, 포켓의 표면 직경은 포켓 상에 수용되는 웨이퍼의 적어도 표면 직경을 커버하도록 규정된다. 웨이퍼의 표면 직경은 100 ㎜ 웨이퍼, 150 ㎜ 웨이퍼, 200 ㎜ 웨이퍼, 330 ㎜ 웨이퍼 및 450 ㎜ 웨이퍼 중 하나일 수도 있다. 물론, 본 명세서에서 제공되는 웨이퍼의 직경들은 단지 예들일 뿐이고, 다른 크기의 웨이퍼가 적절한 크기의 포켓 (202) 내에 수용될 수도 있다.
캐리어 플레이트 (200) 는 또한 포켓 (202) 의 외측 에지에 인접하게 배치되는 리테이닝 피처 (retaining feature) (204) 를 포함한다. 리테이닝 피처의 상단 표면 (204a) 은 포켓에 인접하다. 포켓 (202) 의 벽을 규정하는 단차부 (206) 는 리테이닝 피처 (204) 의 상단 표면 (204a) 을 캐리어 플레이트 (200) 의 기판 지지 영역 (201) 으로부터 분리시킨다. 단차부 (206) 는 기판 지지 영역 (201) 의 수평 표면이 리테이닝 피처 (204) 의 상단 표면 (204a) 의 수평 표면보다 낮도록 제 1 높이 (d1) 까지 상향으로 연장된다. 일부 실시예에서, 제 1 높이는 포켓 (202) 의 기판 지지 영역 (201) 상에 수용되는 웨이퍼의 두께보다 크도록 설계된다. 캐리어 플레이트 (200) 의 테이퍼된 부분 (204b) 은 리테이닝 피처 (204) 에 인접하게 배치되고 리테이닝 피처 (204) 로부터 페데스탈 (140) 의 외측 직경으로 연장한다. 테이퍼된 부분 (204b) 은 포커스 링 (208) 을 수용하도록 구성된다.
일부 실시예들에서, 페데스탈 (140) 의 상단 표면 (140a) 은 페데스탈 (140) 의 상단 표면 (140a) 위의 지지 레벨에서 캐리어 플레이트 (200) 를 지지하도록, 복수의 캐리어 지지부들 (306a, 306b 등) 을 포함한다. 일부 실시예들에서, 캐리어 지지부들 (306) 은 페데스탈 (140) 의 상단 표면 (140a) 의 에지에 또는 에지를 따라 포지셔닝된다. 다른 실시예들에서, 캐리어 지지부들 (306) 은 캐리어 플레이트 (200) 가 신뢰성 있게 놓일 수도 있도록 페데스탈 (140) 의 상단 표면 (140a) 에 대하여 균일하게 분포된다. 일부 실시예들에서, 추가적인 캐리어 지지부들 (306g, 306h) 은 캐리어 플레이트 (200) 의 하단 부분을 지지하도록 페데스탈 (140) 의 환형 표면 (140b) 에 규정될 수도 있다. 대안적인 실시예들에서, 환형 표면 (140b) 상에는 캐리어 지지부들은 규정되지 않는다. 이러한 실시예들에서, 캐리어 플레이트 (200) 의 하단 부분은 환형 표면 (140b) 직상에 놓인다. 이러한 설계는 캐리어 플레이트 (200) 와 환형 표면 (140b) 사이의 어떤 갭들도 방지하기 위해 구현될 수도 있어서 프로세스 챔버 내에 존재하는 임의의 플라즈마 또는 다른 전구체들이 캐리어 플레이트 (200) 의 밑면에 액세스하는 것이 방지된다.
복수의 웨이퍼 지지부들 (304a, 304b 등) 은 웨이퍼 (101) 가 캐리어 플레이트 (200) 의 포켓 (202) 내에 수용될 때, 웨이퍼 (101) 를 위해 신뢰성 있는 지지를 제공하도록 캐리어 플레이트 (200) 의 포켓 (202) 내에 규정된 기판 지지 영역 (201) 의 상단 표면을 따라 균일하게 분포된다. 포켓 (202) 내의 웨이퍼 지지부들 (304) 의 높이 및 포켓 (202) 의 깊이는 웨이퍼 (101) 가 포켓 (202) 에 수용될 때 캐리어 플레이트 (200) 의 상단 표면 (즉, 리테이닝 피처 (204) 의 상단 표면) 과 같은 평면 상에 (flush with) 있도록 규정된다. 일부 실시예들에서, 포켓 (202) 의 깊이는 웨이퍼 (101) 의 두께 및 기판 지지 영역 (201) 상의 웨이퍼 지지부들 (304) 의 조합된 높이와 동일할 수도 있다. 일부 실시예들에서, 웨이퍼 (101) 가 캐리어 플레이트 (200) 의 포켓 (202) 내의 웨이퍼 지지부들 (304) 상에 지지될 때, 갭 (203) 이 웨이퍼 (101) 의 에지와 캐리어 플레이트 (200) 의 리테이닝 피처 (204) 의 내측 에지 사이에 존재할 수도 있다. 웨이퍼 (101) 가 포켓 (202) 에 수용될 때, 리테이닝 피처 (204) 의 상단 표면 (204a) 이 웨이퍼 (101) 의 상단 표면으로부터 연장하는 실질적으로 편평한 표면을 제공하도록, 일부 실시예들에서, 갭 (203) 이 제어될 수 있다. 캐리어 플레이트 (200) 상에 형성된 포켓 (202) 의 크기는 내부에 수용된 웨이퍼 (101) 의 직경에 따라 정해진다는 점을 주지해야 한다. 예를 들어, 캐리어 플레이트 (200) 의 포켓 (202) 에 수용된 300 ㎜ 웨이퍼의 경우, 포켓 (202) 은 갭 (203) 이 약 0.2 ㎜ 내지 약 1 ㎜가 되도록 크기가 정해진다.
일부 실시예들에서, 기판 지지 영역 (201) 에서의 (즉, 포켓 (202) 내의 캐리어 플레이트 (200) 의 부분) 캐리어 플레이트의 두께 (d3) 는 사용된 재료 및 캐리어 플레이트 (200) 의 전체 중량에 기반한다. 또한, 기판 지지 영역 (201) 에서 캐리어 플레이트의 두께 (d3) 는 포켓 (202) 내에 규정된 기판 지지 영역 (201) 의 상단 표면 프로파일에 종속될 수도 있다. 일부 실시예들에서, 포켓 (202) 내에 규정된 기판 지지 영역 (201) 에서 캐리어 플레이트의 두께 (d3) 는 약 0.5 ㎜ 내지 약 5 ㎜이다. 일부 실시예들에서, 포켓 (202) 내의 기판 지지 영역 (201) 의 상단 표면이 균일한 평면 표면 프로파일을 가질 때, 기판 지지 영역 (201) 에서 캐리어 플레이트의 두께 (d3) 는 약 1 ㎜ 와 약 1.5 ㎜ 사이일 수도 있다. 일부 다른 실시예들에서, 포켓 (202) 내의 기판 지지 영역 (201) 의 상단 표면이 리브형 (ribbed) 표면 프로파일을 가질 때, 포켓 (202) 내의 기판 지지 영역 (201) 에서 캐리어 플레이트의 두께 (d3) 는 약 1 ㎜ 와 약 3 ㎜ 사이일 수도 있다. 일부 실시예들에서, 기판 지지 영역 (201) 은 세라믹 재료로 만들어진다.
일부 실시예들에서, 캐리어 플레이트 (200) 의 테이퍼된 부분 (204b) 뿐만 아니라 리테이닝 피처 (204) 의 에지 및 상단 표면 (204a) 은 다양한 기하학적 프로파일을 채택할 수도 있다. 도 5a에 예시된 일 실시예에서, 리테이닝 피처 (204) 는 포켓 (202) 내의 기판 지지 영역 (201) 을 리테이닝 피처 (204) 로부터 분리시키는 단차부 (206) 에 바로 인접한 상단 표면 (204a) 을 갖도록 설계된다. 제 2 단차부 (207) 는 단차부 (206) 에 대향하는 측면 상에 형성되고, 테이퍼된 부분 (204b) 은 제 2 단차부 (207) 의 하단 에지로부터 페데스탈 (140) 의 외측 직경으로 외향으로 연장되어 쐐기-형상 프로파일을 규정한다. 리테이닝 피처 (204) 및 테이퍼된 부분 (204b) 은 도 5b 및 도 5c에 도시된 예들을 포함하여 대안적인 기하학적 프로파일들을 채택할 수도 있다는 점을 주지해야 한다.
도 5aa은 웨이퍼 (101) 가 수용되는 포켓 (202) 의 에지의 확대도를 예시한다. 웨이퍼 (101) 는 웨이퍼 (101) 에 신뢰성 있는 컨택트 영역을 제공하는, 포켓 (202) 의 기판 지지 영역 (201) 에 규정된 웨이퍼 지지부들 (304a 등) 상에 수용된다.
도 5a에서 계속하여, 웨이퍼 지지부들 (304a, 304b 등) 이 기판 지지 영역 (201) 의 상단 표면 상에 분포되는 것으로 도시된다. 일부 실시예들에서, 웨이퍼 지지부들 (304a, 304b 등) 은 기판 지지 영역 (201) 의 상단 표면의 주변 부분에 대해 대칭적으로 분포된다. 다른 실시예들에서, 임의의 수의 웨이퍼 지지부들이 기판 지지 영역 (201) 의 상단 표면 상에 분포될 수 있으며, 이들 웨이퍼 지지부들 (304) 은 증착 프로세스 동작들 동안 웨이퍼를 지지하기 위한 임의의 적합한 구성의 기판 지지 영역 (201) 의 상단 표면에 대하여 분포될 수도 있다. 일부 실시예들에서, 웨이퍼 지지부들 (304a, 304b 등) 은 작은 범프들로서 캐리어 플레이트 내에 바로 제조된다. 작은 범프들은 웨이퍼 (101) 가 수용될 때, 웨이퍼 (101) 에 연속적인 컨택트를 제공하는 최소 컨택트 영역들 (MCA) 을 규정한다. MCA들은 고정밀도 또는 허용 오차가 요구될 때 또는/그리고 최소 물리적 컨택트가 결함 위험을 감소시키기 위해 바람직한 때 캐리어 플레이트 (200) 의 기판 지지 영역 (201) 의 상단 표면과 웨이퍼 표면 사이 정밀 맞물림 (mating) 을 향상하도록 사용된다.
일부 실시예에서, 단일 컴포넌트의 일부로서 제조될 때보다 작은 치수들을 갖는 고정밀 웨이퍼 지지부들을 제조하는 것이 가능하다. 예를 들어, 정밀 웨이퍼 지지부들은 측면들 및 하단이 연속적인 포켓 (202) 의 기판 지지 영역 (201) 의 상단 표면 상에 바로 제조될 수도 있다. 일 실시예에서, 캐리어 플레이트 (200) 는 페데스탈 (140) 과는 상이한 재료로 제조될 수도 있다. 예를 들어, 캐리어 플레이트 (200) 는 세라믹 재료로 제조될 수도 있고, 페데스탈 (140) 은 알루미늄과 같은 금속으로 제조될 수도 있다.
일 실시예에서, 캐리어 플레이트 (200) 는 비-실리콘 함유 재료로 제조될 수도 있다. 일 실시예에서, 비-실리콘 함유 재료는 알루미늄 산화물 등을 포함할 수도 있다. 또 다른 실시예에서, 캐리어 플레이트 (200) 는 알루미늄 질화물, 실리콘 등과 같은 고 열전도성 재료로 제조될 수도 있다. 일부 다른 실시예에서, 캐리어 플레이트 (200) 는 알루미늄 산화물로 제조될 수도 있다. 전술한 재료들은 예들로서 제공되며 완전한 목록으로 이해되어서는 안된다. 일부 실시예들에서, 페데스탈 (140) 은 유전체 재료로 제조될 수도 있다. 하이브리드 페데스탈-캐리어 플레이트는 웨이퍼 운동을 수행하도록 컨택트를 만들거나 끊을 필요 없이 단일 프로세스 스테이션 또는 챔버에서 다른 프로세스 스테이션 또는 챔버로 웨이퍼 (101) 를 이동시키기 위한 저가의 솔루션을 제공한다. 캐리어 플레이트 (200) 의 설계는 웨이퍼 (101) 가 존재할 때, 웨이퍼 (101) 의 에지 아래의 갭들을 제거한다. MCA들은 캐리어 플레이트 영역에 한정되지 않고, 테이퍼된 부분 (204b) 의 상단 표면과 같이, 캐리어 플레이트 (200) 의 다른 영역들 내에 포함될 수 있다.
일 실시예에서, 포커스 링 (208) 은 캐리어 플레이트 (200) 의 테이퍼된 부분 (204b) 위에 수용되어 캐리어 플레이트 (200) 상에 수용된 웨이퍼 (101) 의 증착 표면을 연장한다. 또한, 포커스 링 (208) 은 캐리어 플레이트 (200) 의 테이퍼된 부분 (204b) 을 프로세스 챔버 내에서 사용되는 화학 재료들에 노출되지 않도록 보호한다. 일부 실시예들에서, 포커스 링의 유전 상수 (dielectric constant) 는 캐리어 플레이트 (200) 의 유전 상수보다 작다. 포커스 링 (208) 은 테이퍼된 부분 (204b) 상에 수용된다. 포커스 링은 단차부 (207) 에 의해 규정된 리세스로부터 캐리어 플레이트 (200) 의 외측 직경까지 연장된다. 일부 실시예들에서, 포커스 링 (208) 의 기하학적 프로파일은 테이퍼된 부분 (204b) 의 기하학적 프로파일에 매칭한다. 예를 들어, 도 5a에 예시된 실시예에서, 테이퍼된 부분 (204b) 은 쐐기-형상 프로파일을 갖도록 도시된다. 테이퍼된 부분 (204b) 의 넓은 측면은 페데스탈 (140) 의 단차부 (140c) 에 인접하게 배치되고, 테이퍼된 부분 (204b) 의 좁은 측면은 페데스탈 (140) 의 외측을 대향하게 배치된다. 이 실시예에서, 캐리어 플레이트 (200) 의 테이퍼된 부분 (204b) 의 상단 표면 위에 수용되는 포커스 링 (208) 은 또한 쐐기-형상 프로파일을 갖도록 도시된다. 포커스 링 (208) 은 포커스 링 (208) 의 좁은 측면이 내측으로 향하고 포커스 링 (208) 의 넓은 측면이 외측으로 향하도록 테이퍼된 부분 (204b) 위에 배치된다. 이러한 배열은 캐리어 플레이트 (200) 상에 수용된 포커스 링 (208) 의 상단 표면이 웨이퍼 (101) 가 수용될 때, 웨이퍼 (101) 의 상단 표면과 충분히 동일 평면 상에 있게 한다. 포커스 링 (208) 은, 일 실시예에서, 증착 프로세스 동안 플라즈마를 담도록 맞춰진 임피던스를 갖도록 구성된다. 임피던스 관리에 대한 추가적인 정보에 대해서는, 본 명세서에 그전체가 참조로서 인용되는, 2016 년 3 월 22 일자로 출원된 "Asymmetric Pedestal/Carrier Ring Arrangement for Edge Impedance Modulation"이라는 명칭의 출원 제 15/077,844 호를 참조할 수 있다.
일 실시예에서, 페데스탈 (140) 은 정전 척 (ESC) 으로서 기능하도록 설계된다. 이러한 실시예에서, ESC 제어부 (351) 는 ESC 클램핑을 가능하게 하도록 페데스탈 (140) 의 바디에 형성된 복수의 전극들에 필요한 전압을 제공하도록 페데스탈 (140) 에 커플링될 수도 있다. 일 실시예에서, ESC 제어부 (351) 는 바이폴라 (bipolar) 클램핑을 유도하는 전압을 제공하도록 구성된다. ESC 제어부 (351) 의 세부 사항들은 도 5e를 참조하여 보다 상세하게 기술될 것이다. ESC 제어부 (351) 는 클램핑 또는 디클램핑을 위한 적절한 전압을 제공하기 위한 전원을 포함할 수도 있으며, 제어기 (110) 에 연결될 수도 있다. 제어기 (110) 는 캐리어 플레이트 (200) 가 페데스탈 (140) 위에 수용될 때 클램핑 전압이 페데스탈 (140) 에 인가되게 하도록 ESC 제어부 (351) 로 제 1 신호를 생성하고 캐리어 플레이트 (200) 가 페데스탈 (140) 으로부터 디클램핑될 필요가 있을 때 역 전압이 페데스탈 (140) 으로 인가되게 하도록 제 2 신호를 생성하도록 구성된다.
제어기 (110) 는 프로세스 입력 및 제어부 (108) 를 실행함에 의해 프로세스 레시피들을 수신하고 프로세스 레시피들에 따라서 프로세스 챔버 (102) 의 다양한 컴포넌트들로 적절한 신호들을 제공하도록 구성된다. 페데스탈 (140) 의 하나 이상의 측면들 상에 스파이더 포크 (226) 와 같은 리프팅 메커니즘이 제공될 수도 있다. 리프팅 메커니즘은 인게이징될 때, 페데스탈 (140) 상에 또는 페데스탈로부터 캐리어 플레이트 (200) 를 하강시키거나 리프팅하도록 구성된다. 스파이더 포크 (226) 는 제어기 (110) 가 스파이더 포크 (226) 를 활성화시키도록 적절한 신호를 제공할 수 있도록 제어기 (110) 에 연결된다. 일부 실시예들에서, 스파이더 포크 (226) 는 캐리어 플레이트 (200) 를 일 프로세스 스테이션으로부터, 예를 들어 쿼드 표면 장착 프로세스 챔버와 같은, 프로세스 챔버 내의 또 다른 프로세스 스테이션으로 이동시키도록 추가적으로 구성될 수도 있다. 스파이더 포크 (226) 는 캐리어 플레이트 (200) 를 페데스탈 (140) 로부터 리프팅하는데 사용되는 리프팅 메커니즘의 일 형태이고, 다른 메커니즘들이 채용될 수도 있다.
페데스탈 (140) 의 상단 표면 상에 하나 이상의 리세스들이 제공된다. 리세스들은 리프트 핀들이 활성화될 때 리프트 핀들이 각각의 하우징으로부터 외향으로 연장하게 구성된다. 페데스탈 (140) 의 바디에는 복수의 리프트 핀들 (lift pin) 이 분포된다. 리프트 핀들은 캐리어 플레이트 (200) 가 스파이더 포크 (226) 에 의해 리프팅되고 이동될 수도 있도록 캐리어 지지부들 (306) 상에 놓인 캐리어 플레이트 (200) 를 상승시키는데 활용될 수 있는 리프트 핀 메커니즘의 일부이다. 리프트 핀들은 제어기 (110) 에 커플링된 리프트 핀 제어부 (미도시) 를 사용하여 활성화된다. 신호는 리프트 핀 제어부를 활성화 또는 비활성화시키도록 제어기 (110) 에 의해 제공된다.
일부 실시예들에서, 캐리어 플레이트 (200) 의 하단 표면은 캐리어 플레이트가 페데스탈 (140) 상에 놓이도록 하는 기하학적 프로파일을 가진다. 예를 들어, 캐리어 플레이트의 하단 표면은 중심 부분, 수직 부분 및 수평 부분을 포함할 수도 있다. 중심 부분은 적어도 포켓의 표면 직경에서 연장하는 캐리어 플레이트의 중심에 규정된다. 수직 부분은 중심 부분의 외측 에지로부터 수평 부분의 내측 에지로 하향으로 규정된다. 이 실시예에서, 수직 부분의 높이는 제 2 높이 (d2) 에 의해 규정된다. 제 2 높이 (d2) 는 페데스탈 (140) 상에 수용될 때, 단차부 (140c) 의 높이와 동일하다. 일 실시예에서, 추가적인 단차부가 페데스탈 (140) 내에 규정될 수도 있다. 예를 들어, 추가적인 단차부는 환형 표면 (140b) 의 수직 위치가 제 2 환형 표면 (140d) 의 수직 위치보다 높도록 환형 표면 (140b) 으로부터 제 2 환형 표면 (140) 을 분리할 수도 있다. 단차부 (140c) 및 추가적인 단차부 (있는 경우) 는 스파이더 포크 (226) 와 같은 포크 메커니즘이 배치되는 리세스를 규정한다. 스파이더 포크 (226) 는 인게이지될 때, 캐리어 플레이트 (200) 를 리프팅하도록 사용된다.
도 5b는 일 실시예에서 캐리어 플레이트 (200a) 가 그 상에 수용되는 페데스탈 (140') 의 주변 부분의 도면을 예시한다. 페데스탈 (140') 의 기하학적 프로파일은 도 5a를 참조하여 논의된 페데스탈 (140) 의 기하학적 프로파일과 상이하다. 이 실시예에서, 페데스탈의 환형 표면 (140b) 으로부터 상단 표면을 분리하는 단차부 (140c) 는 스파이더 포크 (226) 가 배치되는 리세스 영역을 규정한다. 캐리어 플레이트 (200a) 의 기하학적 프로파일은 또한 도 5a를 참조하여 규정된 캐리어 플레이트 (200) 와 상이하다. 예시된 바와 같이, 리테이닝 피처 (204) 는 포켓 (202) 의 단차부 (206) 에 인접한 상단 표면 (204a) 을 포함하고 리테이닝 피처 (204) 의 연장부 (204c) 는 포켓 (202) 으로부터 이격되는 측면 상의 리테이닝 피처 (204) 에 인접하게 규정된다. 단차부 (206) 는 직사각형 프로파일을 갖는다.
캐리어 플레이트 (200a) 의 기하학적 프로파일은 상승된 상단 표면 (204a) 을 갖는 실질적으로 직사각형이다. 포커스 링 (208') 은 상단 표면 (204a) 을 연장부 (204c) 로부터 분리시키는 단차부 (207) 에 의해 형성된 리세스 내에 리테이닝 피쳐 (204) 의 연장부 (204c) 위에 수용된다. 이 실시예에서, 포커스 링 (208') 의 기하학적 프로파일은 캐리어 플레이트 (200a) 의 기하학적 프로파일과 매칭하고 실질적으로 직사각형이다. 이는 도 5a에 예시된 포커스 링 (208), 테이퍼된 부분 (204b) 의 기하학적 프로파일과 대조적이다. 웨이퍼 지지부들 (304) 및 캐리어 지지부들 (306) 은 도 5a에 도시된 것과 유사한 방식으로 분배된다. 또한, 캐리어 플레이트 (200a) 의 하단 표면은 실질적으로 편평하고 페데스탈 (140) 의 외측 직경으로 연장된다. 캐리어 플레이트 (200a) 의 하단 표면의 프로파일은 일직선이며 도 5a에 도시된 바와 상이하다.
도 5ca 및 도 5cb는 리테이닝 피처 (204) 의 상단 표면 (204a') 이 도 5a에 도시된 상단 표면 (204) 과 상이하게 성형되는 대안적인 실시예들을 예시한다. 이 실시예에서, 상단 표면 (204a') 은 뾰족하다. 캐리어 플레이트 (200b) 의 테이퍼된 부분 (204b) 은 페데스탈 (140) 의 환형 표면 (140b) 위로 상단 표면 (204a') 으로부터 연장한다. 이 실시예에서, 리테이닝 피처 (204) 의 테이퍼된 부분 (204b) 은 상단 표면 (204a') 의 뾰족한 에지로부터 페데스탈 (140) 의 외측 직경으로 외향으로 연장한다. 이 실시예에서, 단차부 (206') 는 경사진 윤곽을 갖는다. 도 5a에서와 같이, 테이퍼된 부분 (204b) 을 갖는 캐리어 플레이트는 쐐기 형상을 갖는다. 테이퍼된 부분 (204b) 은 역시 쐐기 형상을 갖는 포커스 링 (208) 을 수용하도록 구성된다. 링 지지부들 (307) 은 수용될 때, 포커스 링 (208) 을 위한 신뢰성 있는 지지를 제공하도록 캐리어 플레이트 (200) 의 테이퍼된 부분 (204b) 위에 제공될 수도 있다. 페데스탈 (140) 의 하단 표면 프로파일은 도 5a의 캐리어 플레이트 (200) 와 유사하지만 도 5b의 하단 표면 프로파일과 상이한 방식으로 설계된 수평 부분 (140b), 수직 부분 (140c), 및 중간 섹션 (140a) 을 포함하도록 구성된다.
도 5cb는 페데스탈 (140") 이 도 5ca에 도시된 바와 상이한 상단 표면 프로파일을 가지고 캐리어 플레이트 (200b') 가 상이한 하단 표면 프로파일을 가지는 대안적인 실시예를 예시한다. 도 5cb에 예시된 실시예에서, 페데스탈 (140") 의 상단 표면 (140a) 은 대체로 편평하고 외측 직경으로 연장된다. 페데스탈 (140") 상에는 환형 링 표면이 없다. 캐리어 플레이트 (200b') 의 하단 표면 프로파일은 또한 편평하며 페데스탈 (140") 의 상단 표면 (140a) 상에 배치된 캐리어 지지부들 (306) 상에 놓이도록 구성된다.
도 5da은 캐리어 플레이트 (200c) 가 상이한 기하학적 프로파일을 갖는 또 다른 실시예를 예시한다. 웨이퍼가 캐리어 플레이트 (200c) 의 기판 지지 영역 (201) 상에 수용될 때, 이 실시예에서, 단차부 (206") 에 인접한 캐리어 플레이트 (200c) 의 상단 표면은 충분히 편평하고 웨이퍼 (101) 의 상단 표면과 동일한 평면 상에 있다. 또한, 캐리어 플레이트 (200c) 의 상단 표면은 페데스탈의 환형 표면 (140b) 에 실질적으로 평행하다. 이 실시예에서, 캐리어 플레이트 (200) 는 단일 피스 구조물이고 별도의 포커스 링 (208) 은 캐리어 플레이트 (200) 내에 제공되지 않는다.
또한, 이 실시예에서 캐리어 플레이트 (200) 는 리테이닝 피처 (204) 또는 테이퍼된 부분 (204b) 을 포함하지 않는다. 대안적인 실시예에서, 캐리어 플레이트는 리테이닝 피처 (204) 를 포함할 수도 있으며, 포커스 링 (208) 은 단일 유닛을 형성하도록 캐리어 플레이트 (200) 의 리테이닝 피처 (204) 에 일체로 커플링될 수도 있다. 캐리어 플레이트-포커스 링 유닛의 상단 표면은 캐리어 플레이트 (200) 상에 수용될 때 웨이퍼 (101) 의 상단 표면과 동일 평면 상에 있다. 이 실시예에서, 포커스 링의 기하학적 프로파일은 리테이닝 피처 (204) 의 기하학적 프로파일과 상보적이다. 단차부 (206") 의 프로파일은 곡선적 (curvilinear) 이다. 캐리어 플레이트 (200c) 의 하단 표면은 도 5a 및 도 5c를 참조하여 기술된 것과 유사한 방식으로 설계된다.
도 5db는 캐리어 플레이트 (200c) 의 하단 표면 및 페데스탈 (140") 의 상단 표면 (140a) 이 충분히 편평하고 외측 직경까지 연장하는 또 다른 실시예를 예시한다. 페데스탈 (140") 의 프로파일은 도 5cb에 예시된 실시예와 유사하다. 또한, 도 5da에 예시된 바와 같이, 캐리어 플레이트 (200c) 의 기판 지지 영역 (201) 상에 웨이퍼가 수용될 때, 캐리어 플레이트 (200c) 의 상단 표면은 충분히 편평하고 웨이퍼 (101) 의 상단 표면과 동일 평면 상에 있다. 이 실시예에서, 비록 다른 실시예에서 별도의 포커스 링이 제공될 수도 있고 캐리어 플레이트 (200c) 의 리테이닝 피처와 일체화될 수도 있지만, 캐리어 플레이트 (200c) 상에 배치된 별도의 포커스 링은 존재하지 않는다. 일부 실시예들에서, 캐리어 플레이트를 수용하기 위해, 페데스탈 (140") 의 상단 표면 (140a) 상에 복수의 캐리어 지지부들이 배치된다. 대안적인 실시예들에서, 복수의 키네머틱 핀들이 캐리어 플레이트 (200') 를 페데스탈 (140")과 정렬시키도록, 캐리어 지지부들 대신에 제공될 수도 있다. 예를 들어, 3개의 키네머틱 핀들은 페데스탈 (140") 의 상단 표면 상에 균일하게 배치될 수 있고 캐리어 플레이트 (200') 를 페데스탈 (140") 과 정렬시키는데 사용될 수도 있다. 키네머틱 핀들은, 페데스탈 (140") 상에 존재할 때, 캐리어 플레이트 (200') 를 위한 신뢰성 있는 컨택트 지지를 제공한다. 따라서, 다양한 실시예들에 따라서, 캐리어 플레이트는 키네머틱 핀들과 인게이징하는 키네머틱 센터링 메커니즘을 사용하거나 캐리어 지지부들, 그루브-형 피처들 등과 같은 다른 정렬 피처들을 사용하여 페데스탈 상에 정렬되거나 신뢰할 수 있게 지지될 수도 있다.
도 5e는 일 실시예에서 캐리어 플레이트 (200) 가 그 위로 수용되는 페데스탈 (140) 의 단면도를 예시한다. 도 5ea은 캐리어 플레이트 (200) 의 상이한 부분들을 명확히 예시하도록 캐리어 플레이트 (200) 의 에지 부분 (B) 의 확대도를 예시한다. 도 5e 및 도 5ea을 동시에 참조하면, 캐리어 플레이트 (200) 는 리테이닝 피처 (204), 그리고 캐리어 플레이트 (200) 의 중간 섹션 내에 형성된 포켓 (202) 에 규정된 기판 지지 영역 (201) 을 포함한다. 리테이닝 피처 (204) 의 상단 표면 (204a) 은 포켓 (202) 의 벽을 형성하는 단차부 (206) 에 인접하게 배치된다. 테이퍼된 부분 (204b) 은 리테이닝 피처 (204) 의 상단 표면 (204a) 에 인접하다. 테이퍼된 부분 (204b) 은 페데스탈 (140) 의 외측 반경으로 연장한다.
이 실시예에서, 캐리어 플레이트 (200) 의 하단 표면은 도 5a, 도 5c 및 도 5d를 참조하여 논의된 것과 프로파일에 있어서 유사하다. 예를 들어, 하단 표면의 수직 부분은 단차부 (140c) 의 높이에 대해 중심 부분의 외측 에지로부터 하향으로 연장하고, 수평 부분은 수직 부분의 하단으로부터 페데스탈 (140) 의 외측 직경으로 연장한다. 이 연장부는 페데스탈 (140) 상에 수용될 때 캐리어 플레이트 (200) 를 정렬하는데 사용될 수도 있다. 도시된 바와 같이, 캐리어 플레이트 (200) 는 단차부 (206) 에 인접한 리테이닝 피처 (204) 의 상단 표면 (204a) 및 리테이닝 피처 (204) 로부터 페데스탈 (140) 의 외측 직경으로 연장하는 테이퍼된 부분 (204b) 을 포함한다.
일부 실시예들에서, 리테이닝 피처 (204) 는 테이퍼된 부분 (204b) 상에 수용될 때 포커스 링 (208) 을 적절하게 위치시키도록, 포켓이 형성된 측면에 대향하는 측면 상에 규정된 단차부 (207) 에 의해 형성된 리세스를 포함할 수도 있다. 단차부 (207) 는 상단 표면 (204a) 으로부터 하향으로 제 3 높이로 연장한다. 일 실시예에서, 테이퍼된 부분 (204b) 의 상단 측면은 포커스 링 (208) 의 하단 표면과의 정밀한 정합을 제공하도록 링 지지부들 (307) (307a, 307b, 307c, 307d, 307e, 307f 등) 을 포함한다. 이러한 링 지지부들 (307) 은 캐리어 플레이트 (200) 를 지지하도록 페데스탈 (140) 의 상단 표면 (140a) 상에 제공된 캐리어 지지부들 (306), 그리고 웨이퍼 (101) 가 수용될 때 이를 지지하도록 기판 지지 영역 (201) 의 상단 표면 상에 배치된 웨이퍼 지지부들 (304) 에 추가적인 것이다.
ESC 제어부 (351) 는 페데스탈 (140) 이 정전 척으로 기능할 수 있게 하도록 페데스탈 (140) 에 제공될 수도 있다. ESC 제어기 (351) 는 페데스탈 (140) 의 상단 표면 (140a) 에 보다 가까운 페데스탈 (140) 의 바디에 내장된 복수의 전극들 (352a, 352b, 352c, 352d) 에 커플링된다. ESC 제어부 (351) 는 전극들 (352a 내지 352d) 에 전압을 제공하기 위한 전원을 포함한다. 전극들 (352a 내지 352d) 은 페데스탈 (140) 의 상단 표면 (140a) 아래에 균일하게 분포될 수도 있고 또는 페데스탈 (140) 의 상단 표면 (140a) 아래의 외주를 따라 분포될 수도 있고, 또는 페데스탈 (140) 의 환형 표면 (140b) 및 페데스탈 (140) 의 상단 표면 (140a) 모두 아래에 분포될 수도 있다.
일부 실시예들에서, ESC 제어부 (351) 는 바이폴라 클램핑 및 디 클램핑을 제공하도록 구성된다. 이러한 실시예들에서, 전극들 (352a 내지 352d) 에 인가되는 전압은 페데스탈 (140) 및 캐리어 플레이트 (200) 에 상이한 유형들의 전하들 (Q) (양 또는 음) 이 축적되게 한다. 인가되는 전압들은 페데스탈 (140) 에 사용된 재료의 유형 및 두께, 캐리어 플레이트 (200) 에 사용된 재료의 유형 및 두께에 종속될 수도 있다.
캐리어 플레이트 (200) 가 페데스탈 (140) 의 상단에 수용될 때, 제어기 (110) 는 캐리어 플레이트 (200) 와 페데스탈 (140) 사이에 클램핑 힘이 인가되게 하기 충분한 전압을 인가하도록 ESC 제어기 (351) 에 신호를 하는 클램핑 신호를 생성한다. 일부 실시예들에서, 인가되는 전압은 약 500 볼트와 약 4000 볼트 사이일 수도 있다. 예를 들어, 전압이 전극들 (352a 내지 352d) 에 인가될 때, 양전하가 캐리어 플레이트 (200) 로 이주하고 음전하가 페데스탈 (140) 에 남아 있거나 음전하가 캐리어 플레이트 (200) 로 이주하고 양전하가 페데스탈 (140) 에 남아있도록 전하들이 수직으로 이주한다. 이러한 전하들의 수직 운동은 캐리어 플레이트-웨이퍼 인터페이스로 넘어가는 페데스탈-캐리어 플레이트 인터페이스에서 시간-종속적인 인력 (attractive force) 이 발생되게 한다. 인력은 캐리어 플레이트 (200) 및 페데스탈 (140) 각각에서 반대 유형들의 전하들 (Q+, Q-) 의 축적에 의해 야기되고, 캐리어 플레이트-웨이퍼 인터페이스에서보다 페데스탈-캐리어 플레이트 인터-페이스에서 강하다.
캐리어 플레이트 (200) 가 페데스탈로부터 제거될 때, 제어기 (110) 는 ESC 제어기 (351) 가 전극들 (352a 내지 352d) 에 역 전압을 인가하게 하는 디-클램핑 신호를 생성한다. 일 실시예에서, 시간 및 디-클램핑 전압은 캐리어 플레이트 (200) 로 하여금 페데스탈 (140) 로부터 디-클램핑하게 하도록 제어될 수 있다. 클램핑 힘에서와 마찬가지로, 역 전압은 캐리어 플레이트-웨이퍼 인터페이스에서보다 캐리어 플레이트-페데스탈 인터페이스에서 보다 빠른 방전을 야기하는 시간-종속적인 디-클램핑 힘을 야기한다. 디-클램핑 힘의 차등적인 레이트는 캐리어 플레이트-웨이퍼 인터페이스에 잔류하는 일부 잔류 전하가 웨이퍼 (101) 를 캐리어 플레이트 (200) 의 기판 지지 영역 (201) 에 클램핑된 채로 유지할 동안 캐리어 플레이트 (200) 가 페데스탈 (140) 로부터 리프팅되는 것을 허용한다.
예로서, 인가된 역 전압의 양을 제어하는 것은 캐리어 플레이트-페데스탈 인터페이스가 보다 빠른 레이트로 디-척킹함에 의해 쿨롱 척 (Coulombic chuck) 특성을 나타내도록 허용하는 한편, 캐리어 플레이트-웨이퍼 인터페이스는 보다 느린 레이트로 디-척킹함에 의해 존슨-라벡형 (Johnsen-Rahbek) 척 특성들을 나타낸다. 이러한 차등적 디-척킹은 캐리어 플레이트 (200) 가 이송 동안 웨이퍼를 제자리에 클램핑시키면서 일 프로세스 스테이션으로부터 다른 프로세스 스테이션으로 리프팅되고 이동될 수 있도록 한다. 일부 실시예들에서, 인가된 역 전압 및 시간 상수들은 다음 클램핑 전하가 다음 스테이션에 인가되기 전에 캐리어 플레이트 (200) 를 웨이퍼 (101) 와 함께 이송하기에 충분한 시간이 가용하다는 것을 보장하도록 모니터링된다.
일부 실시예들에서, 제어기 (110) 에 의해 제공된 신호는 ESC 제어기 (351) 에 의해 전극들 (352a 내지 352d) 에 인가되는 전압 및 역 전압의 양을 나타낸다. 신호는 디-클램핑 동작 동안 제어되는 방식으로 방전이 발생하고 클램핑 동작 동안 충분한 인력이 인가되도록, 시간 요인, 기판 지지 영역의 두께, 웨이퍼의 두께, 인가될 전압의 양, 그리고 다른 척킹/디-척킹 파라미터들을 고려한다. 클램핑 힘 또는 디-클램핑 힘의 강도는 전압 또는 역 전압이 인가되는 곳 (즉, 페데스탈-캐리어 플레이트 인터페이스) 에 더 가까울 때 보다 강하고 전하가 더 멀리 이동함에 따라 약화되기 때문에, 인가된 전압 및 시간 상수들의 근접 모니터링은 웨이퍼 (101) 가 하나의 프로세스 스테이션에서 다른 스테이션으로 이동되는 동안 뿐만 아니라 프로세스 챔버 내부로 그리고 외부로 이동되는 동안 웨이퍼 (101) 가 캐리어 플레이트 (200) 에 클램핑된 상태로 유지된다는 것을 보장한다. 차등적 디-척킹을 제공하는 이상의 방법은 웨이퍼가 하나의 프로세스 스테이션으로부터 다른 프로세스 스테이션으로 캐리어 플레이트를 이송하는 동안 이동하지 않는다고 보장하는 일 예이며 차등적 디-척킹의 다른 방식들도 채용될 수 있다는 점을 주지해야만 한다.
일부 실시예들에서, 캐리어 플레이트 (200) 는 프로세스 챔버 (102) 외부의 웨이퍼 (101) 와 함께 사전-로딩 (pre-loaded) 다음 프로세스 챔버 (102) 내로 이동될 수도 있다. 웨이퍼는 사전-로딩 프로세스 동안 캐리어 플레이트 (200) 에 클램핑될 수도 있다. 이러한 실시예들에서, 로딩된 웨이퍼 (101) 를 갖는 캐리어 플레이트 (200) 는 도 5e, 도 5ea를 참조하여 다른 유사한 수단에 의해 설명된 차등적 척킹/디-척킹 프로세스를 사용하여 프로세스 챔버 내부로 그리고 프로세스 챔버 외부로 이동된다.
일부 실시예들에서, 차등적 척킹 및 디-척킹을 효과적으로 수행하기 위해, 캐리어 플레이트 (200) 의 부분들은 유전체 재료로 제조될 수도 있다. 대안적인 실시예들에서, 캐리어 플레이트는 금속 층을 사이에 두는 교번적인 세라믹 층들로 만들어질 수도 있다.
도 5fa 및 도 5fb는 일 실시예에서, 캐리어 플레이트 (200) 를 리프팅하고 하강하도록 리프트 핀 메커니즘을 갖는 페데스탈 (140) 의 단면도를 예시한다. 페데스탈 (140) 은 복수의 리프트 핀들 (120) 과 인게이지하는 리프트 핀 메커니즘을 포함하며, 리프트 핀 각각은 페데스탈 (140) 의 상단 표면 (140a) 상에 규정된 리세스 내에 배치된다. 일부 실시예들에서, 추가적인 리프트 핀들 (120) 은 페데스탈 (140) 의 환형 표면 (140b) 상에 규정된 대응하는 리세스들 내에 제공될 수도 있다. 리프트 핀들 (120) 은 제어기 (110) 에 커플링된 리프트 핀 제어기 (122) 에 연결된다. 리프트 핀들이 인게이지하거나 디스인게이지할 필요가 있을 때 제어기 (110) 에 의해 적절한 신호가 리프트 핀 제어부 (122) 로 전달된다. 리프트 핀들의 디스인게이지될 때, 리프트 핀들이 도 5fa에서 예시된 바와 같이, 각각의 하우징 내로 후퇴한다.
리프트 핀들이 인게이지할 때, 리프트 핀들은 캐리어 플레이트 (200) 를 리프팅하도록 대응하는 리세스들을 통해 각각의 하우징으로부터 연장된다. 도 5fb는 리프트 핀들이 인게이지되고 웨이퍼 (101) 가 그 위에 수용된 캐리어 플레이트 (200) 가 페데스탈 (140) 의 상단 표면으로부터 리프팅되는 일 실시예를 예시한다. 리프트 핀들을 디스인게이지하기 위한 신호는 캐리어 플레이트 (200) 를 페데스탈 (140) 에 클램핑하도록 하는 신호와 조정 (coordinate) 된다. 유사하게, 리프트 핀들 (120) 을 인게이지하는 신호는 그 상에 수용된 웨이퍼 (101) 를 갖는 캐리어 플레이트 (200) 가 페데스탈 (140) 로부터 이동될 수 있도록 캐리어 플레이트 (200) 를 디-클램프하도록 하는 신호와 조정된다. 도 5fa에 예시된 실시예에서, 3개의 리프트 핀들 (120) 은 페데스탈 (140) 의 바디 내에 균일하게 분포된다. 대안적인 실시예들에서, 복수의 리프트 핀들 (120) 은 페데스탈 (140) 의 바디의 주변 영역을 따라 균일하게 분포되거나 또는 페데스탈 (140) 의 바디 내에 균일하게 분포될 수도 있다.
일부 실시예들에서, 캐리어 플레이트를 클램핑 또는 디- 클램핑하기 위한 신호들에 추가하여, 웨이퍼 (101) 를 캐리어 플레이트 (200) 로부터 리프팅하기 위한 신호가 생성될 수도 있다. 이는 예를 들어, 웨이퍼의 프로세싱이 완료되고 프로세싱된 웨이퍼가 프로세싱 챔버 (102) 외부로 이동되는 경우일 수도 있다. 웨이퍼 (101) 가 캐리어 플레이트 (200) 로부터 리프팅될 때, 캐리어 플레이트 (200) 의 기판 지지 영역 (201) 의 상단 표면 상에 규정된 대응하는 리세스들을 통해 그리고 페데스탈 (140) 의 상단 표면 상에 형성된 각각의 리세스들을 통해 연장하도록 리프트 핀들을 인게이지하기 위해 제어기 (110) 에서 리프트 핀 제어부 (122) 로 신호가 전달될 수 있다. 이러한 실시예들에서, 캐리어 플레이트 (200) 는 리프트 핀이 그를 통해 연장될 수 있는 각각의 리세스들을 적절하게 정렬되도록 페데스탈 (140) 과 정렬된다. 따라서, 제어기 (110) 로부터의 신호는 적절한 컴포넌트 (예를 들어, 캐리어 플레이트 또는 웨이퍼) 가 리프팅될 수 있도록 리프트 핀들이 선택적으로 연장되도록 한다.
다양한 실시예들은 웨이퍼 (101) 아래에서 완전히 연장하는 캐리어 플레이트를 포함하는 장치 (arrangement) 를 기술한다. 이러한 장치는 웨이퍼 (101) 의 에지 아래의 갭들을 제거하고, 따라서 종래의 캐리어 링 장치의 단점들을 해결한다. 다양한 실시예들에서, 놓여진 웨이퍼 (101) 및 웨이퍼 (101) 를 둘러싼 피처들은 단일 부품이고, 웨이퍼 (101) 가 캐리어 플레이트 (200) 와 일정한 컨택트를 가짐에 따라서 (즉, 캐리어 플레이트 상에 형성된 MCA들) 캐리어 플레이트-웨이퍼 시스템의 운동은 웨이퍼 운동을 수행하도록 컨택트하고 컨택트를 해제하는 결과로 이어지지 않는다.
또한, 일부 실시예들에서, 웨이퍼 (101) 는 캐리어 플레이트 (200) 에 형성된 포켓 (202) 내에 위치될 수도 있으며, 포켓 (202) 의 측면들 및 하단은 이들이 단일 컴포넌트로 제조되기 때문에 연속적이다. MCA들과 같은, 정밀 웨이퍼-캐리어 플레이트 스페이싱 피처들은 캐리어 플레이트 (200) 내에 직접 제조될 수 있기 때문에 매우 작을 수도 있다. 일반적으로, 이러한 고 정밀 스페이싱 피처들은, 예를 들어, 세라믹 (즉, 캐리어 플레이트를 제조하는데 사용되는 재료) 내에서 그라인딩함으로써 제조될 수 있다. 일부 실시예들에서, 세라믹으로 제조된 페데스탈 (140) 이 비싸기 때문에, 페데스탈 (140) 이 알루미늄과 같은 금속으로 제조되는 동안 캐리어 플레이트 (200) 는 세라믹으로 제조되는, 하이브리드 솔루션 사용에 의한 저비용 대안이 채용될 수도 있다. 하이브리드 솔루션은 전술한 재료들에 제한되지 않으며 여전히 저비용으로 유지되고 캐리어 플레이트 (200) 및 페데스탈 (140) 이 설계되는 기능성을 유지할 수 있으면서도 캐리어 플레이트 (200) 및 페데스탈 (140) 을 위해 다른 재료들이 채용될 수도 있다.
또한, 일부 실시예들에서, 캐리어 플레이트 (200) 는 정전 척 (ESC) 메커니즘을 통합할 수 있다. ESC 메커니즘은 웨이퍼 (101) 가 처음에 놓일 때, 그리고 인가 온도가 너무 높지 않으면, 대전될 수 있고, 그 후 웨이퍼 (101) 는 어떤 전력도 인가되지 않은 상태에서 이송 동안 캐리어 플레이트 (200) 에 부착되는 상태로 남을 수 있다. 일부 실시예들에서, 프로세스 입력 및 제어부 (108) 에 의해 제공되는 프로세스 레시피들을 사용하여 인가 온도가 제어기 (110) 에 의해 제어될 수도 있다. 이송 동안 웨이퍼 (101) 의 부착은 전달 동안 웨이퍼 슬라이딩이 발생하지 않는다는 이점을 갖는다. ESC 클램핑 전압은 직접적인, 직류 (DC) 전기적 컨택트 없이 용량적으로 커플링될 수 있다. 도 5fa은 캐리어 플레이트가 페데스탈에 클램핑될 때 캐리어 플레이트-웨이퍼 인터페이스로 넘어가는 캐리어 플레이트-페데스탈 인터페이스에서 발생하는 용량성 커플링을 예시한다. 도 5fb는 캐리어 플레이트가 페데스탈로부터 디-클램핑될 때도 캐리어 플레이트로 웨이퍼를 클램핑하는 캐리어 플레이트-웨이퍼 인터페이스에 잔류하는 잔류 용량성 커플링을 예시한다.
일부 실시예들에서, 캐리어 플레이트는 별도의 포커스 링 컴포넌트를 포함한다. 다른 실시예들에서, 포커스 링은 별도의 부품일 수도 별도의 부품이 아닐 수도 있으며, 포커스 링 및 캐리어 플레이트의 리테이닝 피처의 상대적 기하학적 형상은 가변되고 서로에게 상보적일 수 있다.
다양한 실시예들은 종래의 캐리어 링 어셈블리들과 관련된 다양한 단점을 극복하면서 캐리어 링 이송의 단순성 및 쓰루풋 이점들을 보존함으로써 종래의 캐리어 링 어셈블리들의 한계들을 극복한다. 본 명세서에 기술된 다양한 실시예들의 장점들 중 일부는 다음과 같다. 이점들 중 하나는 웨이퍼 에지에서 온도 불연속성의 제거를 포함한다. 이는 많은 손상없이 캐리어 플레이트의 리테이닝 피처의 상단 표면으로의 웨이퍼 표면 트랜지션들 때문이다. 웨이퍼의 에지 주위의 갭들은 제거된다. 이러한 갭들은 불필요한 기생 플라즈마 라이트-업을 발생시킨다. 캐리어 플레이트가 웨이퍼 에지 근처의 임계 영역 (critical region) 주위를 둘러싸고 웨이퍼 아래로 연장하는 고 정밀 포켓 피처를 제공하기 때문에 웨이퍼의 에지 및 밑면에서의 입자 오염이 감소된다. 캐리어 플레이트가 일 프로세스 챔버에서 다른 프로세스 챔버로 그리고 프로세스 챔버 내의 일 스테이션에서 다른 스테이션으로 일 유닛으로서 이동하면서, 캐리어 플레이트는 웨이퍼와 컨택트를 유지한다. 포켓으로부터 웨이퍼를 리프팅하기 위해 별도의 이송 메커니즘이 필요하지 않다. 캐리어 플레이트는 종래의 스핀들-캐리어 링 핸드오프로 인해 누적적 편심을 발생시키지 않으면서 로봇에 의해 웨이퍼가 고 정밀도로 배치될 수 있는 표면을 제공한다. 이는 특히 ESC 클램핑 메커니즘이 웨이퍼와 캐리어 플레이트 사이에서 채용될 때 참이다. 캐리어 플레이트는 웨이퍼 아래의 고 정밀 세라믹 표면 및 웨이퍼를 갖는 캐리어 플레이트가 수용되는 저가의 금속 (예를 들면, 알루미늄) 페데스탈을 제공함에 의해 저 비용 솔루션을 제공한다.
도 6은 전술한 시스템들을 제어하기 위한 제어 모듈 (600) 을 도시한다. 일 실시예에서, 다양한 도면들에 예시된 제어 모듈 (110) 은 예시적인 컴포넌트들 중 일부를 포함할 수도 있다. 예를 들어, 제어 모듈 (600) 은 프로세서, 메모리 및 하나 이상의 인터페이스들을 포함할 수도 있다. 제어 모듈 (600) 은 센싱된 값들에 부분적으로 기초하여 시스템의 디바이스들을 제어하도록 채용될 수도 있다. 단지 예를 들면, 제어 모듈 (600) 은 센싱된 값들 및 다른 제어 파라미터들에 기초하여 밸브들 (602), 필터 가열기들 (604), 펌프들 (606), 및 기타 디바이스들 (608) 중 하나 이상을 제어할 수도 있다. 제어 모듈 (600) 은 단지 예를 들면, 압력 마노미터들 (610), 플로우 미터들 (612), 온도 센서들 (614), 및/또는 기타 센서들 (616) 로부터 센싱된 값들을 수신한다. 제어 모듈 (600) 은 또한 전구체 전달 및 막의 증착 동안 프로세스 조건들을 제어하기 위해 채용될 수도 있다. 제어 모듈 (600) 은 통상적으로 하나 이상의 메모리 디바이스들 및 하나 이상의 프로세서들을 포함할 것이다.
제어 모듈 (600) 은 전구체 전달 시스템 및 증착 장치의 액티비티들을 제어할 수도 있다. 제어 모듈 (600) 은 프로세스 타이밍, 전달 시스템 온도, 필터들에 걸친 압력 차, 밸브 포지션들, 가스들의 혼합물, 챔버 압력, 챔버 온도, 웨이퍼 온도, 무선 주파수 (radio frequency, RF) 전력 레벨들, 웨이퍼 척 또는 페데스탈 포지션, 및 특정한 프로세스의 다른 파라미터들을 제어하는 인스트럭션들의 세트들을 포함하는 컴퓨터 프로그램들을 실행한다. 제어 모듈 (600) 은 또한 압력 차를 모니터링할 수도 있고 하나 이상의 경로들로부터 하나 이상의 다른 경로들로 기상 (vapor) 전구체 전달을 자동으로 스위칭할 수도 있다. 제어 모듈 (600) 과 연관된 메모리 디바이스들 상에 저장된 다른 컴퓨터 프로그램들이 일부 실시예들에서 채용될 수도 있다
통상적으로 제어 모듈 (600) 과 연관된 사용자 인터페이스가 있을 것이다. 사용자 인터페이스는 디스플레이 (618) (예를 들어, 장치 및/또는 프로세스 조건들의 디스플레이 스크린 및/또는 그래픽 소프트웨어 디스플레이들) 및 포인팅 디바이스들, 키보드들, 터치 스크린들, 마이크로폰들, 등과 같은 사용자 입력 디바이스들 (620) 을 포함할 수도 있다.
프로세스 시퀀스의 전구체 전달, 증착 및 다른 프로세스들을 제어하기 위한 컴퓨터 프로그램들은 임의의 종래의 컴퓨터 판독가능 프로그래밍 언어: 예를 들어, 어셈블리 어, C, C++, Pascal, Fortran 등으로 작성될 수 있다. 컴파일된 객체 코드 또는 스크립트가 프로그램에서 식별된 태스크들을 수행하도록 프로세서에 의해 실행된다.
제어 모듈 파라미터들은 예를 들어, 필터 압력 차들, 프로세스 가스 조성 및 플로우 레이트들, 온도, 압력, RF 전력 레벨들 및 저주파수 RF 주파수와 같은 플라즈마 조건들, 냉각 가스 압력, 및 챔버 벽 온도와 같은 프로세스 조건들에 관련된다.
시스템 소프트웨어는 많은 상이한 방식들로 설계되거나 구성될 수도 있다. 예를 들어, 다양한 챔버 컴포넌트 서브루틴들 또는 제어 객체들이 본 발명의 증착 프로세스들을 수행하기 위해 필요한 챔버 컴포넌트들의 동작을 제어하도록 작성될 수도 있다. 이 목적을 위한 프로그램들 또는 프로그램들의 섹션들의 예들은 기판 포지셔닝 코드, 프로세스 가스 제어 코드, 압력 제어 코드, 가열기 제어 코드 및 플라즈마 제어 코드를 포함한다.
기판 포지셔닝 프로그램이 페데스탈 또는 척 상으로 기판을 로딩 (load) 하고 가스 유입구 및/또는 타깃과 같은 챔버의 다른 부품과 기판 사이의 간격을 제어하도록 사용되는 챔버 컴포넌트들을 제어하기 위한 프로그램 코드를 포함할 수도 있다. 프로세스 가스 제어 프로그램은 가스 조성 및 플로우 레이트들을 제어하기 위한 코드 및 선택가능하게 챔버 내 압력을 안정화하기 위해 증착 전에 챔버 내로 가스를 흘리기 위한 코드를 포함할 수도 있다. 필터 모니터링 프로그램은 측정된 차(들)와 미리 결정된 값(들)을 비교하는 코드 및/또는 경로들을 스위칭하기 위한 코드를 포함한다. 압력 제어 프로그램은 예를 들어, 챔버의 배기 시스템의 쓰로틀 밸브를 조절함으로써 챔버 내 압력을 제어하기 위한 코드를 포함할 수도 있다. 가열기 제어 프로그램은 전구체 전달 시스템의 컴포넌트들, 기판 및/또는 시스템의 다른 부분들을 가열하기 위해 가열 유닛들로의 전류를 제어하기 위한 코드를 포함할 수도 있다. 대안적으로, 가열기 제어 프로그램은 웨이퍼 척으로의 헬륨과 같은 열 전달 가스의 전달을 제어할 수도 있다.
증착 동안 모니터링될 수도 있는 센서들의 예들은, 이로 제한되는 것은 아니지만, 질량 유량 제어 모듈들, 압력 마노미터들 (610) 과 같은 압력 센서들 및 전달 시스템, 페데스탈 또는 척 내에 위치된 열전대들 (예를 들어, 온도 센서들 (614)) 을 포함한다. 적절하게 프로그램된 피드백 및 제어 알고리즘들은 목표된 프로세스 조건들을 유지하기 위해 이들 센서들로부터의 데이터를 사용할 수도 있다. 전술한 바는 단일-챔버 반도체 프로세싱 툴 또는 멀티-챔버 반도체 프로세싱 툴에서 본 발명의 실시예들의 구현예를 기술한다.
본 실시예들의 전술한 기술은 예시 및 기술을 목적으로 제공되었다. 이는 본 발명을 제한하거나 총망라하는 것으로 의도되지 않았다. 특정한 실시예의 개별 엘리먼트들 또는 피처들은 일반적으로 특정한 실시예로 제한되지 않고, 적용되면, 구체적으로 도시되거나 기술되지 않더라도, 선택된 실시예에서 사용될 수 있고 상호교환가능하다. 동일한 바가 또한 많은 방식들로 가변될 수도 있다. 이러한 변동들은 본 발명으로부터 벗어나는 것으로 간주되지 않고, 모든 이러한 수정들이 본 발명의 범위 내에 포함되는 것으로 의도된다.
전술한 실시예들이 이해의 명확성을 목적으로 다소 상세히 기술되었지만, 특정한 변화들 및 수정들이 첨부된 청구항의 범위 내에서 실시될 수 있다는 것이 자명할 것이다. 이에 따라, 본 실시예들은 예시적이고 비제한적인 것으로 고려되고, 본 실시예들은 본 개시에 제공된 상세들로 제한되지 않고 청구항들의 범위 및 등가물 내에서 수정될 수도 있다.

Claims (19)

  1. 웨이퍼를 수용하기 위한 캐리어 플레이트에 있어서, 상기 캐리어 플레이트는 프로세스 챔버의 페데스탈 위에 수용되고, 상기 캐리어 플레이트는,
    캐리어 플레이트의 상단 표면 상의 중간 섹션에 규정된 포켓으로서, 상기 포켓은 기판 지지 영역을 규정하고 적어도 표면 직경을 커버하는, 상기 포켓;
    리테이닝 피처 (retaining feature) 의 상단 표면이 상기 포켓의 단차부 (step) 에 인접하도록 상기 포켓의 외측 에지에 인접하게 배치된 상기 리테이닝 피처로서, 상기 리테이닝 피처는,
    상기 단차부의 대향하는 측면 상에 배치된 제 2 단차부, 및
    기울어진 리세스를 규정하도록 상기 리테이닝 피처의 상기 제 2 단차의 하단 에지로부터 상기 페데스탈의 외경으로 하향으로 테이퍼링되는 테이퍼된 (tapered) 부분으로서, 상기 포켓에 상기 웨이퍼가 수용되는 경우, 포커스 링의 상단 표면이 상기 웨이퍼의 상단 표면 및 상기 리테이닝 피처의 상기 상단 표면과 동일 평면 상 (co-planar) 에 있도록, 상기 기울어진 리세스는 상기 포커스 링을 수용하도록 구성된 상기 테이퍼된 부분의 상단 표면 상에 형성되는, 상기 테이퍼된 부분을 포함하는, 상기 리테이닝 피처; 및
    상기 웨이퍼가 수용되는 경우, 상기 웨이퍼를 지지하도록 상기 기판 지지 영역의 상단 표면 상에 배치된 복수의 웨이퍼 지지부들을 포함하고,
    상기 캐리어 플레이트의 하단 표면은 상기 프로세스 챔버에서 사용된 상기 페데스탈 위에 수용되도록 구성되고, 상기 캐리어 플레이트의 하단 표면의 기하학적 프로파일은 상기 페데스탈의 상단 표면의 기하학적 프로파일과 매칭하는, 캐리어 플레이트.
  2. 제 1 항에 있어서,
    상기 캐리어 플레이트의 상기 하단 표면은 상기 페데스탈의 상기 상단 표면의 상기 기하학적 프로파일과 매칭하도록 윤곽이 형성되고, 그리고
    상기 페데스탈의 상기 상단 표면은 중심 부분, 수직 부분 및 수평 부분을 포함하고, 상기 중심 부분은 상기 표면 직경을 연장하고, 상기 수직 부분은 제 2 높이에 대해 상기 중심 부분의 외측 에지로부터 하향으로 연장하고, 상기 수평 부분은 상기 수직 부분의 하단으로부터 상기 외경을 향하여 연장하는, 캐리어 플레이트.
  3. 제 2 항에 있어서,
    상기 제 2 높이는 4 ㎜인, 캐리어 플레이트.
  4. 제 1 항에 있어서,
    상기 페데스탈의 상기 상단 표면은 편평하고, 그리고 상기 캐리어 플레이트의 상기 하단 표면의 기하학적 프로파일은 상기 페데스탈의 상기 상단 표면의 편평한 프로파일과 매칭하도록 실질적으로 편평한, 캐리어 플레이트.
  5. 제 1 항에 있어서,
    상기 캐리어 플레이트의 상기 하단 표면은 상기 외경으로 연장하는, 캐리어 플레이트.
  6. 제 1 항에 있어서,
    상기 캐리어 플레이트는 탈착가능한 유닛이고 수용된 상기 웨이퍼와 함께 상기 프로세스 챔버의 내부 및 외부로 이동되도록 구성되는, 캐리어 플레이트.
  7. 제 1 항에 있어서,
    상기 포켓의 상기 표면 직경은 적어도 상기 캐리어 플레이트 상에 수용된 상기 웨이퍼의 직경인, 캐리어 플레이트.
  8. 제 1 항에 있어서,
    상기 포커스 링의 기하학적 프로파일은 상기 캐리어 플레이트의 상기 테이퍼된 부분의 기하학적 프로파일과 매칭하는, 캐리어 플레이트.
  9. 제 1 항에 있어서,
    상기 포커스 링은 상기 캐리어 플레이트의 상기 테이퍼된 부분에 일체로 커플링되는, 캐리어 플레이트.
  10. 제 1 항에 있어서,
    상기 복수의 웨이퍼 지지부들은 수용되는 경우 상기 웨이퍼를 지지하기 위한 최소 컨택트 영역들 (minimum contact areas; MCAs) 을 규정하는, 캐리어 플레이트.
  11. 제 1 항에 있어서,
    상기 테이퍼된 부분의 상기 상단 표면은 수용되는 경우 상기 포커스 링을 지지하기 위한 최소 컨택트 영역들을 제공하도록 복수의 링 지지부들을 포함하는, 캐리어 플레이트.
  12. 제 1 항에 있어서,
    활성화되는 경우 상기 캐리어 플레이트가 수용되는 상기 페데스탈의 바디 내에 분포된 리프트 핀들로 하여금 이를 통해 연장하게 하도록 상기 기판 지지 영역의 상단 표면 상에 배치된 복수의 리세스들을 더 포함하고, 상기 리프트 핀들은 활성화되는 경우 상기 웨이퍼를 리프팅하도록 구성되는, 캐리어 플레이트.
  13. 웨이퍼를 프로세싱하기 위한 프로세스 챔버에 있어서,
    캐리어 플레이트를 지지하도록 구성된 페데스탈로서, 상기 페데스탈의 상단 표면은 적어도 외경으로 연장하는, 상기 페데스탈; 및
    상기 페데스탈 상에 배치되도록 구성된 상기 캐리어 플레이트로서,
    상기 캐리어 플레이트의 상단 표면 상의 중간 섹션 내에 규정되고 표면 직경을 연장하도록 구성된 포켓으로서, 상기 포켓은 기판 지지 영역을 규정하는, 상기 포켓;
    리테이닝 피처 (retaining feature) 의 상단 표면이 상기 포켓의 단차부 (step) 에 인접하도록 상기 포켓의 외측 에지에 인접하게 배치된 상기 리테이닝 피처로서, 상기 리테이닝 피처는,
    상기 단차부의 대향하는 측면 상에 배치된 제 2 단차부, 및
    기울어진 리세스를 규정하도록 상기 리테이닝 피처의 상기 제 2 단차의 하단 에지로부터 상기 페데스탈의 상기 외경으로 하향으로 테이퍼링되는 테이퍼된 부분으로서, 상기 포켓에 상기 웨이퍼가 수용되는 경우, 포커스 링의 상단 표면이 상기 웨이퍼의 상단 표면 및 상기 리테이닝 피처의 상기 상단 표면과 동일 평면 상에 있도록, 상기 기울어진 리세스는 상기 포커스 링을 수용하도록 구성된 상기 테이퍼된 부분의 상단 표면 상에 형성되는, 상기 테이퍼된 부분을 포함하는, 상기 리테이닝 피처; 및
    상기 웨이퍼가 수용되는 경우, 상기 웨이퍼를 지지하도록 상기 기판 지지 영역의 상단 표면 상에 배치된 복수의 웨이퍼 지지부들을 포함하는, 상기 캐리어 플레이트를 포함하고,
    상기 캐리어 플레이트의 하단 표면은 상기 프로세스 챔버 내 상기 페데스탈 위에 수용되도록 구성되고, 상기 캐리어 플레이트의 하단 표면의 기하학적 프로파일은 상기 페데스탈의 상단 표면의 기하학적 프로파일과 매칭하는, 프로세스 챔버.
  14. 제 13 항에 있어서,
    상기 캐리어 플레이트는 탈착가능한 유닛이고 수용된 상기 웨이퍼와 함께 상기 프로세스 챔버의 내부 및 외부로 이동되도록 구성되는, 프로세스 챔버.
  15. 제 13 항에 있어서,
    상기 페데스탈의 상기 상단 표면은 중심 부분, 수직 부분 및 수평 부분을 포함하고, 상기 중심 부분은 상기 표면 직경을 연장하고, 상기 수직 부분은 제 2 높이에 대해 상기 중심 부분의 외측 에지로부터 하향으로 연장하고, 상기 수평 부분은 상기 수직 부분의 하단으로부터 상기 외경을 향하여 연장하고, 그리고
    상기 캐리어 플레이트의 상기 하단 표면은 상기 페데스탈의 상기 상단 표면의 상기 기하학적 프로파일과 매칭하도록 윤곽이 형성되는, 프로세스 챔버.
  16. 제 13 항에 있어서,
    상기 페데스탈의 상기 상단 표면은 편평하고, 그리고 상기 캐리어 플레이트의 상기 하단 표면의 기하학적 프로파일은 상기 페데스탈의 상기 상단 표면의 상기 기하학적 프로파일과 매칭하도록 실질적으로 편평한, 프로세스 챔버.
  17. 제 13 항에 있어서,
    상기 페데스탈 내에 통합되고 제어기에 커플링된 리프팅 메커니즘을 더 포함하고, 상기 리프팅 메커니즘은 상기 제어기로부터의 신호에 기초하여 상기 캐리어 플레이트를 리프팅하도록 구성되고, 상기 신호는 디-클램핑 신호인, 프로세스 챔버.
  18. 제 13 항에 있어서,
    상기 페데스탈의 바디 전반에 분포된 복수의 리프트 핀들을 더 포함하고, 상기 복수의 리프트 핀들 각각은 인게이지될 (engage) 때, 상기 페데스탈의 상기 상단 표면 상에 규정된 대응하는 리세스를 통해 외향으로 연장하고 상기 캐리어 플레이트를 리프팅하고, 그리고 디스인게이지될 (disengage) 때 하우징 내로 후퇴하도록 구성되고, 상기 복수의 리프트 핀들은 리프트 핀 제어부에 연결되고, 상기 리프트 핀 제어부는 제어기에 커플링되고 상기 제어기로부터의 신호에 응답하여 상기 복수의 리프트 핀들과 인게이지, 디스인게이지하도록 구성되는, 프로세서 챔버.
  19. 제 13 항에 있어서,
    상기 페데스탈의 상기 상단 표면에 근접한 상기 페데스탈의 바디 내부에 배치되는 복수의 전극들을 더 포함하고, 상기 복수의 전극들은 정전 척 (ESC) 제어부에 커플링되고, 상기 ESC 제어부는 상기 페데스탈과 상기 캐리어 플레이트 사이에 바이폴라 클램핑 또는 디-클램핑을 유도하도록 상기 복수의 전극들에 전압을 인가하도록 구성되고, 상기 캐리어 플레이트가 상기 페데스탈 위에 수용될 때, 클램핑 또는 디-클램핑을 위한 상기 전압은 상기 ESC 제어부에 커플링된 제어기로부터 수신된 신호에 응답하여 인가되는, 프로세스 챔버.
KR1020227036960A 2016-11-03 2017-10-26 플라즈마 프로세싱 시스템들에서 사용하기 위한 캐리어 플레이트 KR102569094B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/343,159 US10923385B2 (en) 2016-11-03 2016-11-03 Carrier plate for use in plasma processing systems
US15/343,159 2016-11-03
KR1020197015885A KR102459790B1 (ko) 2016-11-03 2017-10-26 플라즈마 프로세싱 시스템들에서 사용하기 위한 캐리어 플레이트
PCT/US2017/058461 WO2018085105A1 (en) 2016-11-03 2017-10-26 Carrier plate for use in plasma processing systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197015885A Division KR102459790B1 (ko) 2016-11-03 2017-10-26 플라즈마 프로세싱 시스템들에서 사용하기 위한 캐리어 플레이트

Publications (2)

Publication Number Publication Date
KR20220148331A true KR20220148331A (ko) 2022-11-04
KR102569094B1 KR102569094B1 (ko) 2023-08-21

Family

ID=62021745

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020197015885A KR102459790B1 (ko) 2016-11-03 2017-10-26 플라즈마 프로세싱 시스템들에서 사용하기 위한 캐리어 플레이트
KR1020227036960A KR102569094B1 (ko) 2016-11-03 2017-10-26 플라즈마 프로세싱 시스템들에서 사용하기 위한 캐리어 플레이트

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020197015885A KR102459790B1 (ko) 2016-11-03 2017-10-26 플라즈마 프로세싱 시스템들에서 사용하기 위한 캐리어 플레이트

Country Status (5)

Country Link
US (2) US10923385B2 (ko)
KR (2) KR102459790B1 (ko)
CN (2) CN109890999B (ko)
TW (2) TWI764803B (ko)
WO (1) WO2018085105A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170002465A1 (en) * 2015-06-30 2017-01-05 Lam Research Corporation Separation of Plasma Suppression and Wafer Edge to Improve Edge Film Thickness Uniformity
US10923385B2 (en) * 2016-11-03 2021-02-16 Lam Research Corporation Carrier plate for use in plasma processing systems
KR20190092154A (ko) * 2018-01-30 2019-08-07 삼성전자주식회사 반도체 설비의 실링 장치 및 기류 산포 제어 장치
GB201815258D0 (en) * 2018-09-19 2018-10-31 Spts Technologies Ltd A support
KR102651311B1 (ko) 2019-06-03 2024-03-27 삼성전자주식회사 마이크로폰들을 이용하여 사용자의 음성을 분석하는 전자 장치 및 모바일 장치
JP2022537038A (ja) * 2019-06-18 2022-08-23 ラム リサーチ コーポレーション 基板処理システム用の縮径キャリアリングハードウェア
US10692730B1 (en) 2019-08-30 2020-06-23 Mattson Technology, Inc. Silicon oxide selective dry etch process
KR102077975B1 (ko) * 2019-10-15 2020-02-14 주식회사 기가레인 플라즈마 처리 수직도가 향상된 플라즈마 처리 장치
WO2021126919A1 (en) * 2019-12-17 2021-06-24 Lam Research Corporation Purging spindle arms to prevent deposition and wafer sliding
US11749554B2 (en) * 2020-11-05 2023-09-05 Sandisk Technologies Llc Multi-wafer deposition tool for reducing residual deposition on transfer blades and methods of operating the same
US11827977B2 (en) 2021-04-19 2023-11-28 Innoscience (Suzhou) Technology Co., Ltd. Laminar flow MOCVD apparatus for III-nitride films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020059981A1 (en) * 1999-12-30 2002-05-23 Fangi Hao Lower electrode design for higher uniformity
KR20120120909A (ko) * 2011-04-25 2012-11-02 오보텍 엘티 솔라 엘엘씨 진공 처리 장치를 위한 접지 어셈블리
KR20120125311A (ko) * 2010-02-25 2012-11-14 신에쯔 한도타이 가부시키가이샤 기상 성장용 반도체 기판 지지 서스셉터, 에피택셜 웨이퍼의 제조장치 및 에피택셜 웨이퍼의 제조방법
US20130112134A1 (en) * 2009-02-23 2013-05-09 Giga Industries, Inc. Method and Systems for Characterization and Production of High Quality Silicon

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766365A (en) * 1994-02-23 1998-06-16 Applied Materials, Inc. Removable ring for controlling edge deposition in substrate processing apparatus
TW524873B (en) * 1997-07-11 2003-03-21 Applied Materials Inc Improved substrate supporting apparatus and processing chamber
US5916370A (en) * 1998-06-12 1999-06-29 Applied Materials, Inc. Semiconductor processing chamber having diamond coated components
US6350320B1 (en) * 2000-02-22 2002-02-26 Applied Materials, Inc. Heater for processing chamber
US20030217693A1 (en) * 2002-05-22 2003-11-27 Applied Materials, Inc. Substrate support assembly having an edge protector
CN101243542B (zh) * 2005-08-17 2011-02-09 应用材料股份有限公司 具有焊接板和加热器的基材支撑件
KR20070093493A (ko) * 2006-03-14 2007-09-19 엘지이노텍 주식회사 서셉터 및 반도체 제조장치
US20080194113A1 (en) * 2006-09-20 2008-08-14 Samsung Electronics Co., Ltd. Methods and apparatus for semiconductor etching including an electro static chuck
JP4918453B2 (ja) * 2007-10-11 2012-04-18 東京エレクトロン株式会社 ガス供給装置及び薄膜形成装置
US20090165721A1 (en) * 2007-12-27 2009-07-02 Memc Electronic Materials, Inc. Susceptor with Support Bosses
CN101552182B (zh) * 2008-03-31 2010-11-03 北京北方微电子基地设备工艺研究中心有限责任公司 一种用于半导体制造工艺中的边缘环机构
KR20150136142A (ko) * 2008-04-16 2015-12-04 어플라이드 머티어리얼스, 인코포레이티드 웨이퍼 프로세싱 증착 차폐 컴포넌트들
US8409995B2 (en) * 2009-08-07 2013-04-02 Tokyo Electron Limited Substrate processing apparatus, positioning method and focus ring installation method
US20110049779A1 (en) * 2009-08-28 2011-03-03 Applied Materials, Inc. Substrate carrier design for improved photoluminescence uniformity
JP5477314B2 (ja) * 2011-03-04 2014-04-23 信越半導体株式会社 サセプタ及びこれを用いたエピタキシャルウェーハの製造方法
US8371567B2 (en) 2011-04-13 2013-02-12 Novellus Systems, Inc. Pedestal covers
JP5665726B2 (ja) * 2011-12-14 2015-02-04 株式会社東芝 エッチング装置およびフォーカスリング
WO2013112764A1 (en) * 2012-01-25 2013-08-01 Applied Materials, Inc. Retaining ring monitoring and control of pressure
CN202651058U (zh) * 2012-07-06 2013-01-02 中微半导体设备(上海)有限公司 一种控制基座外缘聚焦环温度的组件
JP2014120661A (ja) * 2012-12-18 2014-06-30 Tokyo Electron Ltd ダミーゲートを形成する方法
US10167571B2 (en) * 2013-03-15 2019-01-01 Veeco Instruments Inc. Wafer carrier having provisions for improving heating uniformity in chemical vapor deposition systems
JP2015109249A (ja) * 2013-10-22 2015-06-11 東京エレクトロン株式会社 プラズマ処理装置
CN105448631B (zh) * 2014-06-12 2017-07-25 中微半导体设备(上海)有限公司 一种基片安装平台和一种等离子处理装置及其运行方法
US10242848B2 (en) 2014-12-12 2019-03-26 Lam Research Corporation Carrier ring structure and chamber systems including the same
US10648079B2 (en) 2014-12-19 2020-05-12 Lam Research Corporation Reducing backside deposition at wafer edge
CN105990084A (zh) * 2015-03-02 2016-10-05 北京北方微电子基地设备工艺研究中心有限责任公司 聚焦环、下电极机构及半导体加工设备
US9428833B1 (en) 2015-05-29 2016-08-30 Lam Research Corporation Method and apparatus for backside deposition reduction by control of wafer support to achieve edge seal
US10923385B2 (en) * 2016-11-03 2021-02-16 Lam Research Corporation Carrier plate for use in plasma processing systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020059981A1 (en) * 1999-12-30 2002-05-23 Fangi Hao Lower electrode design for higher uniformity
US20130112134A1 (en) * 2009-02-23 2013-05-09 Giga Industries, Inc. Method and Systems for Characterization and Production of High Quality Silicon
KR20120125311A (ko) * 2010-02-25 2012-11-14 신에쯔 한도타이 가부시키가이샤 기상 성장용 반도체 기판 지지 서스셉터, 에피택셜 웨이퍼의 제조장치 및 에피택셜 웨이퍼의 제조방법
KR20120120909A (ko) * 2011-04-25 2012-11-02 오보텍 엘티 솔라 엘엘씨 진공 처리 장치를 위한 접지 어셈블리

Also Published As

Publication number Publication date
TWI764803B (zh) 2022-05-11
CN109890999A (zh) 2019-06-14
TWI738901B (zh) 2021-09-11
KR102569094B1 (ko) 2023-08-21
US20180122633A1 (en) 2018-05-03
CN109890999B (zh) 2022-02-18
TW202145421A (zh) 2021-12-01
US10923385B2 (en) 2021-02-16
WO2018085105A1 (en) 2018-05-11
US20210090936A1 (en) 2021-03-25
US11670535B2 (en) 2023-06-06
TW201829837A (zh) 2018-08-16
KR20190067931A (ko) 2019-06-17
CN114709119A (zh) 2022-07-05
KR102459790B1 (ko) 2022-10-26

Similar Documents

Publication Publication Date Title
KR102459790B1 (ko) 플라즈마 프로세싱 시스템들에서 사용하기 위한 캐리어 플레이트
KR102458099B1 (ko) 반도체 프로세싱을 위한 웨이퍼 포지셔닝 페데스탈
TWI811712B (zh) 藉由介接腔室進行之易損零件的自動更換
TWI745308B (zh) 末端作用器機構及大氣轉移模組
KR102514879B1 (ko) 반도체 프로세싱을 위해 원뿔형 웨이퍼 센터링 및 홀딩 디바이스
US9698042B1 (en) Wafer centering in pocket to improve azimuthal thickness uniformity at wafer edge
CN110060941B (zh) 减少在晶片边缘的背面沉积
KR20200022414A (ko) 캐리어 링 구조체 및 이를 포함하는 챔버 시스템들
KR20180099776A (ko) 웨이퍼 에지 링 리프팅 솔루션
TWI765922B (zh) 具有小間隙之銷升降器組件
WO2013162774A1 (en) Method and apparatus for independent wafer handling
US9385017B2 (en) Apparatus and methods for handling workpieces of different sizes

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant