KR20220131856A - 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지 - Google Patents

양극 활물질, 이를 포함하는 양극 및 리튬 이차전지 Download PDF

Info

Publication number
KR20220131856A
KR20220131856A KR1020220035396A KR20220035396A KR20220131856A KR 20220131856 A KR20220131856 A KR 20220131856A KR 1020220035396 A KR1020220035396 A KR 1020220035396A KR 20220035396 A KR20220035396 A KR 20220035396A KR 20220131856 A KR20220131856 A KR 20220131856A
Authority
KR
South Korea
Prior art keywords
active material
grains
grain
positive electrode
crystal
Prior art date
Application number
KR1020220035396A
Other languages
English (en)
Inventor
정원식
최환영
김종필
윤여준
이강현
이태영
정용조
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20220131856A publication Critical patent/KR20220131856A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • G06N3/0455Auto-encoder networks; Encoder-decoder networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은, 양극 활물질의 외부 영역에 결정립 장축 배향도(DoA)가 높고, 결정립의 c축 배향도가 낮은 결정립 C를 25% ~ 80%의 비율로 포함하여, 용량 특성이 높고, 가스 발생량이 적은 양극 활물질에 관한 것이다.

Description

양극 활물질, 이를 포함하는 양극 및 리튬 이차전지{POSITIVE ELECTRODE ACTIVE MATERIAL, POSITIVE ELECTRODE AND LITHIUM SECONDARY BATTERY COMPRING THE SAME}
본 출원은 2021년 3월 22일에 출원된 한국특허출원 제10-2021-0036942호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지에 관한 것으로, 보다 상세하게는 용량 특성이 우수하고, 가스 발생이 적은 리튬 이차전지용 양극 활물질과 이를 포함하는 양극 및 리튬 이차전지에 관한 것이다.
최근 모바일 기기 및 전기 자동차에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로 LiCoO2와 같은 리튬 코발트 산화물, LiNiO2 등과 같은 리튬 니켈 산화물, LiMnO2 또는 LiMn2O4 등과 같은 리튬 망간 산화물, LiFePO4 등과 같은 리튬 인산철 산화물 등과 같은 리튬 전이금속 산화물들이 개발되었으며, 최근에는 Li[NiaCobMnc]O2, Li[NiaCobAlc]O2, Li[NiaCobMncAld]O2와 같이 2종 이상의 전이금속을 포함하는 리튬 복합전이금속 산화물이 개발되어 널리 사용되고 있다.
현재까지 개발된 2종 이상의 전이금속을 포함하는 리튬 복합전이금속 산화물은 통상 수십개 ~ 수백개의 1차 입자들이 응집된 구형의 2차 입자 형태로 제조되는데, 1차 입자의 배향 형태나 1차 입자의 형상(종횡비) 등에 따라 리튬 이온의 이동성이나 전해액 함침성 등의 물성이 달라지게 된다. 이에 따라 양극 활물질 입자의 입자 구조를 제어하여 양극 활물질의 성능을 향상하고자 하는 연구들이 시도되고 있다.
한국등록특허 제10-1611784호(특허문헌 1)에는 1차 입자의 a축 방향 길이가 c축 방향 길이보다 길고, 1차 입자의 a축이 방사형으로 배열된 양극 활물질이 개시되어 있다. 상기 특허문헌 1에서는 주사전자현미경(Scanning Electron Microscope, SEM) 및/또는 투과전자 현미경(Transmission Electron Microscope, TEM)을 이용하여 양극 활물질의 1차 입자 형태나 1차 입자의 배향성을 분석하였다.
그러나, 상기 특허문헌 1에서 사용한 TEM 분석의 경우, 입자 전체가 아닌 일부 영역에 대한 정보만 얻을 수 있어 양극 활물질 입자 전체의 특성을 대변하기 어렵다는 문제점이 있다. 또한, 양극 활물질의 물성은 1차 입자의 형태나 배향성뿐 아니라, 결정립(Crystalline)의 형태나 배향에 따라서도 달라지기 때문에 1차 입자의 형태나 배향성이 유사한 경우라도 서로 다른 물성을 나타낼 수 있다.
따라서, 보다 우수한 특성을 갖는 양극 활물질의 개발하기 위해서는 양극 활물질의 결정립 구조에 대한 연구가 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 양극 활물질 입자의 외부 영역에서 결정립의 장축 및 c축의 배향이 특정 조건을 만족하는 결정립을 특정 비율로 포함함으로써, 용량 특성이 우수하고, 가스 발생이 적은 양극 활물질을 제공하고자 한다.
또한, 본 발명은 상기 본 발명에 따른 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공하고자 한다.
일 구현예에 따르면, 본 발명은, 양극 활물질 입자의 중심에서 표면까지의 거리를 R 이라 할 때, 상기 양극 활물질 입자의 중심에서 R/2까지의 영역인 내부 영역과, R/2에서 양극 활물질 입자의 표면까지의 영역인 외부 영역을 포함하고, 상기 외부 영역의 전체 결정립 중 하기 [식 1]로 표시되는 결정립 장축 배향도 DoA가 0.5 ~ 1이고, 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 분석을 통해 얻어진 결정립의 결정 격자의 c축 회전 벡터 Rc와 상기 결정립의 위치 단위 벡터 P'의 외적값으로 표시되는 결정립 c축 배향도가 0.5 미만인 결정립 C의 비율(C1)이 25% 내지 80%, 바람직하게는 30% 내지 60%, 더 바람직하게는 30% 내지 50%, 보다 더 바람직하게는 30% 내지 40%인 양극 활물질을 제공한다.
[식 1]
Figure pat00001
상기 [식 1]에서, λ1은 상기 양극 활물질 단면을 주사이온현미경 분석하여 얻어진 이미지 데이터로부터 측정된 해당 결정립의 장축 벡터 EI의 크기이며, λ2는 상기 양극 활물질 단면을 주사이온현미경 분석하여 얻어진 이미지 데이터로부터 측정된 해당 결정립의 단축 벡터 EII의 크기이고, 상기 CD는 해당 결정립의 위치 단위 벡터 P'와 장축 단위 벡터 EI'의 내적값임.
본 발명에 따른 양극 활물질은 상기 외부 영역의 전체 결정립 중 상기 결정립 C의 비율(C1)이 상기 내부 영역의 전체 결정립 중 상기 결정립 C의 비율(C2)보다 큰 것이 바람직하며, 구체적으로는, 상기 외부 영역의 전체 결정립 중 상기 결정립 C의 비율(C1)과 상기 내부 영역의 전체 결정립 중 상기 결정립 C의 비율(C2)의 차가 3% 이상, 5% 이상, 3% 내지 20%, 또는 3% 내지 15%일 수 있다.
한편, 상기 양극 활물질은, 상기 결정립 장축 배향도 DoA가 0.5 ~ 1이고, 상기 결정립 c축 배향도가 0.5 ~ 1인 결정립 A, 상기 결정립 장축 배향도 DoA가 0.5 미만이고, 상기 결정립 c축 배향도가 0.5 ~ 1인 결정립 B, 및 상기 결정립 장축 배향도 DoA가 0.5 미만이고, 상기 결정립 c축 배향도가 0.5 미만인 결정립 D를 더 포함할 수 있다.
이때, 상기 외부 영역은 전체 결정립 중 결정립 C의 비율(C1)이 결정립 A의 비율(A1), 결정립 B의 비율(B1), 및 결정립 D의 비율(D1)보다 큰 것이 바람직하다.
또한, 상기 양극 활물질 입자 단면의 전체 결정립 중 결정립 A의 비율은 결정립 A의 비율은 5% ~ 40%, 바람직하게는 10% 내지 30%, 상기 결정립 B의 비율은 5% ~ 40%, 바람직하게는 10% 내지 30%, 상기 결정립 C의 비율은 20% 내지 80%, 바람직하게는 25% 내지 60%, 상기 결정립 D의 비율은 5% ~ 40%, 바람직하게는 10% 내지 30%일 수 있다.
한편, 상기 주사이온현미경 분석은, 상기 양극 활물질의 단면에 집속이온빔을 조사하여 주사이온현미경 이미지를 얻은 후, 딥 러닝을 이용하여 상기 주사이온현미경 이미지로부터 결정립 단위로 세그멘테이션(segmentation)된 데이터를 수득하고, 상기 세그멘테이션된 데이터로부터 상기 [식 1]로 표시되는 DoA를 계산하는 것일 수 있다.
또한, 상기 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 분석은, 상기 양극 활물질의 단면의 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 측정을 통해 각 결정립의 위치 정보 및 오일러 각(Euler angle) 정보를 포함하는 EBSD 오일러 맵(Euler map) 데이터를 수득하고, 하기 [식 2]를 통해 상기 결정립의 결정 격자의 c축 회전 벡터 Rc(x, y, z)를 구하는 것일 수 있다.
[식 2]
Figure pat00002
상기 [식 2]에서, [X, Y, Z]는 (0, 0, 1)이고, 상기 Φ, θ, Ψ는 오일러 맵 데이터로부터 수득된 오일러 각(Euler angle)임.
본 발명에 따른 상기 양극 활물질은 하기 [화학식 1]로 표시되는 리튬 복합전이금속 산화물일 수 있다.
[화학식 1]
Lix[NiaCobM1 cM2 d]O2-yAy
상기 [화학식 1]에서,
상기 M1은 Mn 및 Al으로 이루어진 군에서 선택된 1종 이상의 원소이고, 상기 M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며, 상기 A는 F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이고, 0.98≤x≤1.20, 0<a<1, 0<b<1, 0<c<1, 0≤d≤0.2, 0≤y≤0.2임.
다른 구현예에 따르면, 본 발명은 상기 본 발명에 따른 양극 활물질을 포함하는 양극 및 상기 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명의 양극 활물질은 외부 영역에 결정립의 장축 배향성이 높고, c축 배향성이 낮은 결정립을 특정 비율로 포함하여 이차 전지에 적용되었을 때, 용량 특성이 우수하고, 가스 발생량이 적다. 구체적으로는, 결정립 내부에서 Li 이온의 이동은 결정립의 ab면의 면 방향으로 이루어지는데, c축 배향성이 낮은 결정립의 경우, 상기 결정립 내부에서의 리튬 이동 통로인 ab면의 면 방향과 전해액의 접촉이 작기 때문에 전해액과의 부반응으로 인해 발생하는 가스 발생량을 줄일 수 있다. 한편, Li 이온이 결정립으로부터 탈리된 후에는 결정립과 결정립 사이의 계면을 따라 이동한다. 따라서, 결정립의 장축이 입자 중심에서 표면 방향으로 배열된 장축 배향성이 우수한 결정립이 양극 활물질 표면에 많이 분포할 경우, 리튬 이동 경로가 짧아져 리튬 이동성이 개선되고, 이로 인해 용량 특성이 개선되는 효과를 얻을 수 있다. 따라서, 본 발명과 같이 결정립의 장축 배향성이 높고, c축 배향성이 낮은 결정립을 외부 영역에 높은 비율로 포함할 경우, 용량 특성 및 가스 발생 특성을 모두 개선하는 효과를 얻을 수 있다.
도 1은 양극 활물질 단면의 주사이온현미경 이미지를 보여주는 도면이다.
도 2는 양극 활물질 단면의 주사이온현미경 이미지를 분석하여 세그멘테이션(segmentation) 이미지를 얻는 과정을 보여주는 도면이다.
도 3은 결정립의 장축 배향성과 DoA 값을 보여주는 도면이다.
도 4는 양극 활물질 단면을 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 분석하여 얻어진 EBSD 오일러 맵을 보여주는 도면이다.
도 5는 결정립의 c축 배향성 맵을 보여주는 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 있어서, '결정립'은 규칙적인 원자 배열을 갖는 단결정 입자 단위를 의미한다. 상기 결정립의 크기는 양극 활물질 단면의 X-선 회절 데이터를 Rietveld refinement 방법으로 분석하여 측정할 수 있다. 예를 들면, 상기 결정립 크기는 Malyer Panalyticla사의 Empyreon XRD 장비를 이용하여 하기 조건으로 X-선 회절 분석을 수행하여 XRD 데이터를 얻은 후, 상기 XRD 데이터를 Malyer panalytical사의 Highscore 프로그램을 이용하여 처리하여 얻을 수 있다. 이때, 반가폭은 Caglioti equation을 이용하여 측정하도록 설정하였다.
<X-선 회절 분석 조건>
광원: Cu-타겟, 45kV, 40mA 출력, 파장=1.54Å
디텍터: GaliPIX3D
시료 준비: 약 5g 정도의 시료를 2cm 직경의 홀더에 채워 회전 스테이지(ratiation stage)에 로딩하였다.
측정시간: 약 30분
측정영역: 2θ=15°~ 85°
본 발명에 있어서, '1차 입자'는 주사전자현미경(SEM)을 통해 양극 활물질의 단면을 관찰하였을 때 1개의 덩어리로 구별되는 최소 입자 단위를 의미하는 것으로, 하나의 결정립으로 이루어질 수도 있고, 복수개의 결정립으로 이루어질 수도 있다. 본 발명에서, 상기 1차 입자의 평균 입경은, 양극 활물질 입자의 단면 SEM 데이터에서 구별되는 각각의 입자 크기를 측정한 후, 이들의 산술 평균값을 구하는 방법으로 측정될 수 있다.
본 발명에 있어서, '2차 입자'는 복수 개의 1차 입자가 응집되어 형성되는 2차 구조체를 의미한다. 상기 2차 입자의 평균 입경은, 입도 분석기를 이용하여 측정될 수 있으며, 본 발명에서는 입도 분석기로 Microtrac社의 s3500을 사용하였다.
한편, 본 발명에서 각 결정립의 비율(%)은 (해당 결정립의 개수/ 해당 영역에 존재하는 전체 결정립의 개수)×100을 의미한다.
이하, 본 발명을 구체적으로 설명한다.
본 발명자들은 우수한 수명 특성 및 저항 특성을 구현할 수 있는 양극 활물질을 개발하기 위해 연구를 거듭한 결과, 양극 활물질의 외부 영역에 결정립의 장축 배향성이 높고, 결정립의 c축의 배향성이 낮은 결정립을 특정 비율로 포함할 경우, 이차 전지의 용량 특성 및 가스 발생 특성을 개선할 수 있음을 알아내고, 본 발명을 완성하였다.
양극 활물질
본 발명에 따른 양극 활물질은, 도 1에 도시된 바와 같이, 양극 활물질 입자의 중심에서 표면까지의 거리를 R 이라 할 때, 상기 양극 활물질 입자의 중심에서 R/2까지의 영역인 내부 영역(20)과, R/2에서 양극 활물질 입자의 표면까지의 영역인 외부 영역(10)을 포함하며, 상기 외부 영역(10)의 전체 결정립 중 하기 [식 1]로 표시되는 결정립 장축 배향도 DoA가 0.5 ~ 1이고, 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 분석을 통해 얻어진 결정립의 결정 격자의 c축 회전 벡터 Rc와 상기 결정립의 위치 단위 벡터 P'의 외적값으로 표시되는 결정립 c축 배향도가 0.5 미만인 결정립 C의 비율(C1)이 25% 내지 80%, 바람직하게는 30% 내지 60%, 더 바람직하게는 30% 내지 50%, 보다 더 바람직하게는 30% 내지 40%인 것을 특징으로 한다.
[식 1]
Figure pat00003
상기 [식 1]에서,
λ1은 상기 양극 활물질 단면을 주사이온현미경 분석하여 얻어진 이미지 데이터로부터 측정된 해당 결정립의 장축 벡터 EI의 크기이며, λ2는 상기 양극 활물질 단면을 주사이온현미경 분석하여 얻어진 이미지 데이터로부터 측정된 해당 결정립의 단축 벡터 EII의 크기이고, 상기 CD는 해당 결정립의 위치 단위 벡터 P'와 장축 벡터 EI의 내적값이다.
먼저, 상기 [식 1]로 표시되는 DoA에 대해 설명한다.
상기 [식 1]로 표시되는 DoA 값은 결정립의 장축의 배향성을 나타내기 위한 것으로, 주사이온현미경 분석을 통해 얻어진 데이터를 이용하여 구할 수 있다.
구체적으로는, 상기 양극 활물질의 단면에 집속이온빔을 조사하여 주사이온현미경 이미지를 얻는 후, 딥 러닝을 이용하여 상기 주사이온현미경 이미지로부터 결정립 단위로 세그멘테이션(segmentation)된 데이터를 수득하고, 상기 세그멘테이션된 데이터로부터 상기 [식 1]로 표시되는 결정립 장축 배향도 DoA를 계산할 수 있다.
이하에서는 주사이온현미경 분석을 통해 DoA값을 구하는 방법을 보다 구체적으로 설명한다.
주사이온현미경은 시료 표면에 이온빔을 주사하면서 이때 나오는 신호 이온 상을 통해 시료의 표면 구조를 측정하는 장치이다. 이때, 상기 이온빔은 서로 다른 결정면에서 반사율이 달라지기 때문에, 주사이온현미경을 이용하면 동일한 원자배열 구조를 갖는 단결정 결정립 단위로 구별된 양극 활물질 입자 단면 이미지를 얻을 수 있다. 도 1에는 양극 활물질 입자의 단면의 주사이온현미경 이미지가 도시되어 있다. 도 1을 통해, 양극 활물질 입자 단면 이미지가 결정립 단위로 구별되어 있음을 확인할 수 있다.
다음으로, 상기와 같이 얻어진 주사이온현미경 이미지를 분석하여 결정립 단위로 세그멘테이션(segmentation)된 데이터를 수득한다. 이때, 상기 이미지 분석은 딥 러닝(deep learning)을 이용하여 수행될 수 있다.
도 2에는 주사이온현미경 이미지를 분석하여 세그멘테이션된 데이터 정보를 얻는 과정이 도시되어 있다. 도 2에 도시된 바와 같이, 상기 이미지 분석은, 예를 들면, 딥-러닝을 통해 주사이온현미경 이미지로부터 경계선을 검출한 후, 이 경계선을 이용하여 결정립 단위로 세그멘테이션된 이미지 데이터를 얻는 방법으로 수행될 수 있다.
이때, 상기 경계선 검출은 오토인코더(AutoEncoder) 신경망(U-NET) 알고리즘을 이용하여 수행될 수 있으며, 상기 세그멘테이션은 워터쉐드 세그멘테이션(Watershed segmentation) 알고리즘 등을 이용하여 수행될 수 있다.
주사이온현미경 이미지 자체는 수치화된 정보를 포함하고 있지 않기 때문에, 본 발명에서는 딥-러닝을 통해 각 결정립 단위로 세그멘테이션된 데이터 정보를 구하고, 이를 통해 결정립의 모양, 위치 등의 정보를 수치화할 수 있도록 하였다.
상기와 같은 주사이온현미경 이미지 분석를 통해 세그멘테이션된 데이터를 얻게 되면, 상기 데이터로부터 측정하고자 하는 결정립의 위치 벡터, 장축 벡터 및 단축 벡터를 구할 수 있으며, 이를 이용하여, 식 1의 DoA 값을 계산할 수 있다.
[식 1]
Figure pat00004
상기 [식 1]에서,
λ1은 상기 양극 활물질 단면을 주사이온현미경 분석하여 얻어진 이미지 데이터로부터 측정된 해당 결정립의 장축 벡터 EI의 크기이며, 이때, 상기 장축 벡터 EI는 해당 결정립의 무게 중심을 지나는 벡터 중 상기 벡터와 결정립 내의 각 픽셀까지의 거리의 합이 가장 작은 벡터를 의미한다.
λ2는 상기 양극 활물질 단면을 주사이온현미경 분석하여 얻어진 이미지 데이터로부터 측정된 해당 결정립의 단축 벡터 EII의 크기이고, 이때, 상기 단축 벡터 EII는 해당 결정립의 무게 중심을 지나는 벡터 중 상기 벡터와 결정립 내의 각 픽셀까지의 거리의 합이 가장 큰 벡터를 의미한다.
한편, 상기 CD는 해당 결정립의 위치 단위 벡터 P'와 상기 장축 단위 벡터 EI'의 내적값이고, 상기 결정립의 위치 단위 벡터 P'는 양극 활물질 입자 단면의 중심에서 해당 결정립의 무게 중심점을 잇는 위치 벡터를 크기가 1이 되도록 환산한 벡터이고, 상기 장축 단위 벡터 EI'는 장축 벡터 EI을 크기가 1이 되도록 환산한 벡터이다.
상기 [식 1]을 통해 계산된 DoA 값은 해당 결정립의 장축이, 해당 결정립을 통과하면서 양극 활물질의 중심과 표면을 잇는 최단 선분에 대하여, 얼마나 기울어져 있는지를 나타내는 값으로, DoA 값이 1에 가까울수록 해당 결정립의 장축과 상기 최단 선분 사이의 각도가 작고, 0에 가까울수록 해당 결정립의 장축과 상기 최단 선분 사이의 각도가 커짐을 의미한다. 즉, DoA가 1에 가까울수록 결정립의 장축 배향성이 높다고 할 수 있다.
도 3에는 상기 방법을 통해 얻어진 DoA 값과 해당 결정립의 장축을 표시한 도면이 도시되어 있다. 도 3에 나타난 바와 같이, 양극 활물질 입자의 중심과 표면을 잇는 최단 선분과 결정립 장축 사이의 각도가 작은 결정립 1의 경우, DoA가 0.965로 1에 가깝게 나타난 반면, 양극 활물질 입자의 중심과 표면을 잇는 최단 선분과 결정립 장축 사이의 각도가 큰 결정립 2는 DoA가 0.352로 작게 나타남을 알 수 있다.
한편, 상기와 같은 각각의 결정립의 장축 배향도 정보를 맵핑하여 양극 활물질 입자의 외부 영역 및 내부 영역에서의 특정 장축 배향도 값을 갖는 결정립의 비율을 측정할 수 있다.
다음으로, 결정립 c축 배향도에 대해 설명한다.
상기 결정립 c축 배향도는, 결정립의 결정 격자의 c축의 배향성을 나타내기 위한 것으로, 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 분석을 통해 얻어진 결정립의 결정 격자의 c축 회전 벡터 Rc와 상기 결정립의 위치 단위 벡터 P'의 외적값이다.
구체적으로는, 상기 결정립 c축 배향도는 양극 활물질의 단면의 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 측정을 통해 각 결정립의 위치 정보 및 오일러 각(Euler angle) 정보를 포함하는 EBSD 오일러 맵(Euler map) 데이터를 수득하고, 상기 EBSD 오일러 맵 데이터를 이용하여 결정 격자의 c축 회전 벡터 Rc를 구하고, 상기 결정 격자의 c축 회전 벡터 Rc와 해당 결정립의 위치 단위 벡터 P'를 외적하여 얻을 수 있다.
이하, 본 발명에 따른 결정립 c축 배향도를 구하는 방법을 구체적으로 설명한다.
전자후방산란회절 분석은, 시료의 회절패턴을 이용하여 결정상(crystallographic phase)과 결정방위(crystallographic orientation)을 측정하고, 이를 기초로 시료의 결정학적 정보를 분석하는 방법이다. 주사전자현미경에서 시료(즉 양극 활물질 단면)를 전자빔의 입사 방향에 대해 큰 각도를 갖도록 기울이면 입사된 전자빔이 시료 내에서 산란되면서 시료 표면 방향으로 회절 패턴이 나타나게 되는데 이를 전자후방산란회절패턴(Electron Back scattered Diffraction Pattern, EBSP)라 한다. 전자후방산란회절 패턴은 전자빔이 조사된 영역의 결정 방위에 반응하기 때문에, 이를 이용하면 시료의 결정 방위를 정확하게 측정할 수 있으며, EBSD 소프트웨어를 통해 시료 전체의 결정 방위와 관련된 다양한 정보를 포함하는 오일러 맵(Euler map) 데이터를 얻을 수 있다. 도 4에는 양극 활물질 입자 단면을 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 분석하여 얻어진 오일러 맵이 도시되어 있다.
상기 EBSD 오일러 맵 데이터는 각 결정립의 위치 벡터 정보 및 오일러 각(Euler angle) 정보를 포함한다. 한편, 상기 오일러 각 정보를 이용하면, 각 결정립에서의 결정 격자의 c축 회전 벡터 Rc를 구할 수 있다.
상기 결정 격자의 c축 회전 벡터 Rc는 해당 결정립을 통과하면서 양극 활물질의 중심과 표면을 잇는 최단 선분에 대하여, 해당 결정립의 c축이 어느 방향으로 회전되었는지를 보여준다.
구체적으로는, 상기 결정 격자의 c축 회전 벡터 Rc는 하기 [식 2]에 의해 계산된 (x, y, z)일 수 있다.
[식 2]
Figure pat00005
상기 [식 2]에서, [X, Y, Z]는 (0, 0, 1)이고, 상기 Φ, θ, Ψ는 오일러 맵 데이터로부터 수득된 각 결정립의 오일러 각(Euler angle)이다.
상기와 같이 구해진 결정 격자의 c축 회전 벡터 Rc와 오일러 맵 데이터에 포함된 각 결정립의 위치 벡터 정보를 이용하여 결정립 c축 배향도를 구할 수 있다. 구체적으로는, 상기 결정립 c축 배향도는 결정 격자의 c축 회전 벡터 Rc와 결정립의 위치 단위 벡터 P'를 외적한 값으로 수치화될 수 있다.
이때, 상기 위치 단위 벡터 P'는 해당 결정립의 위치 벡터를 크기가 1이 되도록 환산한 것을 의미한다. 예를 들면, 해당 결정립의 위치 벡터가 (a, b, o)이라면, 상기 위치 단위 벡터는
Figure pat00006
이 된다.
상기 위치 단위 벡터 P'와 결정 격자의 c축 회전 벡터 Rc의 외적값은 양극 활물질 입자 내에서 해당 결정립의 c축 배향도을 보여주는 수치이다. 구체적으로는, 상기 위치 단위 벡터 P'와 결정 격자의 c축 회전 벡터 Rc의 외적값이 1인 경우에는 해당 결정립의 c축이 양극 활물질 입자의 중심과 표면을 잇는 최단 선분과 수직으로 배치되었음을 의미하고, 상기 외적값이 0인 경우에는 해당 결정립의 c축이 상기 최단 선분과 수평으로 배치되었음을 의미한다.
양극 활물질에서 리튬 이온은 c축과 수직한 방향을 따라 이동할 때 이동도가 c축 방향으로 이동할 때보다 10배 이상 빠르다. 따라서, c축에 수직한 방향을 따라 리튬 이동 경로(Lithium path)가 형성되게 된다. 또한, 상기 리튬 이동 경로가 양극 활물질 입자의 중심과 표면을 잇는 최단 선분에 평행하게 형성될 때, 리튬 이동 거리가 최소화되기 때문에 리튬 전도도가 향상된다. 따라서, 상기 위치 단위 벡터P'와 결정 격자의 c축 회전 벡터 Rc의 외적값이 1에 가까울 수록 해당 결정립의 배향성이 우수하다고 판단할 수 있다.
한편, 상기와 같이 얻어진 각 결정립의 c축 배향도를 종합하면, 양극 활물질 입자 단면에서의 전체 결정립의 c축 배향도를 얻을 수 있다. 도 5에는 각 결정립의 c축 배향도를 종합하여 얻어진 양극 활물질의 결정립 c축 배향성 맵(map)이 도시되어 있다. 도 5에서 적색으로 갈수록 c축 배향성이 우수하고, 청색으로 갈수록 c축 배향성이 떨어짐을 의미한다. 상기와 같은 c축 배향성 맵을 이용하면 양극 활물질 입자의 외부 영역 및 내부 영역에서 c축 배향성 조건을 만족하는 결정립의 비율을 구할 수 있다.
본 발명자들의 연구에 따르면, 양극 활물질 입자의 외부 영역에서 전체 결정립 중 [식 1]로 표시되는 결정립 장축 배향도 DoA가 0.5 ~ 1이고, 결정립 c축 배향도가 0.5 미만인 결정립(이하, 결정립 C라 함)의 비율(이하, C1이라 함)이 25% 내지 80%, 바람직하게는 30% 내지 60% 범위를 만족할 때, 용량 특성 및 가스 발생 특성이 우수하게 나타났다. 외부 영역에서의 결정립 C의 비율이 25% 이거나 80%를 초과하는 경우에는 용량 특성 및 가스 발생 특성 개선 효과가 미미하였다.
또한, 본 발명의 양극 활물질은, 외부 영역에서의 결정립 C의 비율(C1)이 내부 영역에서의 결정립 C의 비율(C2)보다 큰 것이 바람직하다. 외부 영역에서의 결정립 C의 비율이 더 큰 경우에 가스 발생 억제 효과가 더 우수하게 나타난다.
구체적으로는, 상기 외부 영역의 전체 결정립 중 상기 결정립 C의 비율(C1)과 상기 내부 영역의 전체 결정립 중 상기 결정립 C의 비율(C2)의 차가 3% 이상, 5% 이상, 3% 내지 20%, 또는 3% 내지 15%인 것이 바람직하다. 외부 영역과 내부 영역에서의 결정립 C의 비율의 차가 상기 범위를 만족할 때, 용량 개선 효과 및 가스 발생 저감 효과가 우수하게 나타나며, 외부 영역과 내부 영역에서의 결정립 C의 비율 차가 높을 경우에 더욱 개선된 효과를 얻을 수 있다.
한편, 본 발명에 따른 양극 활물질은, 상기 외부 영역 및 내부 영역에 상기 결정립 C 이외에, 결정립 c축 배향도가 0.5 ~ 1이고, 결정립 장축 배향도 DoA가 0.5 ~ 1인 결정립(이하, 결정립 A라 함), 결정립 c축 배향도가 0.5 ~ 1이고, 결정립 장축 DoA가 0.5 미만인 결정립(이하, 결정립 B라 함), 및 결정립 c축 배향도가 0.5 미만이고, 결정립 장축 배향도 DoA가 0.5 미만인 결정립(이하, 결정립 D라 함)을 더 포함할 수 있다.
한편, 본 발명의 양극 활물질에 있어서, 상기 외부 영역 전체 결정립 중 결정립 C의 비율(C1)이 다른 결정립의 비율, 즉, 결정립 A의 비율(A1), 결정립 B의 비율(B1), 및 결정립 D의 비율(D1)보다 큰 것이 바람직하다. 즉, C1>B1, C1>A1, C1>D1을 만족하는 것이 바람직하다.
충방전 시에 리튬 이온의 이동경로(Li path)와 전해액의 접촉 면적이 클수록 가스 발생이 많아지고, 구조 퇴화가 빠르게 일어나게 된다. C축 배향도가 낮은 결정립 C의 경우, 결정립 내부에서의 리튬 이동 경로인 ab 면의 면 방향과 전해액의 접촉 면적이 작기 때문에 가스 발생량이 적다. 이에 비해, 결정립 A 및 결정립 B의 경우, c축 배향도가 크기 때문에, 전해액과 ab면의 면 방향의 접촉 면적이 크고, 이에 따라, 결정립 A 또는 결정립 B가 외부 영역에 높은 비율로 존재할 경우, 가스 발생량이 중가하게 된다.
한편, 결정립 D의 경우에는 가스 발생량은 적으나, c축 배향도와 장축 배향도가 모두 낮기 때문에 리튬 이온의 삽입, 탈리가 어려워 용량 특성이 현저하게 떨어진다. 이에 비해, 결정립 C의 경우, 장축 배향도가 높기 때문에 충방전 시에 결정립과 결정립 사이의 계면을 따라 이동하는 리튬 이온의 이동 거리가 짧아 우수한 용량 특성을 구현할 수 있다.
따라서, 외부 영역 전체 결정립 중 결정립 C의 비율(C1)이 다른 결정립의 비율보다 높을 경우, 가스 발생 특성 및 용량 특성을 모두 우수하게 구현할 수 있다.
한편, 본 발명에 따른 양극 활물질에 있어서, 양극 활물질 입자 단면 전체 결정립 중 결정립 A의 비율은 5% ~ 40%, 바람직하게는 10% 내지 30%, 상기 결정립 B의 비율은 5% ~ 40%, 바람직하게는 10% 내지 30%, 상기 결정립 C의 비율은 20% 내지 80%, 바람직하게는 25% 내지 60%, 상기 결정립 D의 비율은 5% ~ 40%, 바람직하게는 10% 내지 30%일 수 있다. 양극 활물질 전체에서의 결정립 비율이 상기 범위를 만족할 때, 가스 발생 억제 효과와 용량 개선 효과가 더욱 우수하다.
한편, 양극 활물질의 결정립 비율은 양극 활물질 제조 시에 사용되는 전구체의 조성, 전구체의 결정립 형상 및 배향성, 도핑 원소 종류 및/또는 소성 온도 등에 따라 달라지므로, 전구체의 종류, 도핑 원소, 소성 온도 등을 적절하게 조절함으로써, 본 발명의 결정립 비율을 만족하는 양극 활물질을 제조할 수 있다.
한편, 본 발명에 따른 양극 활물질은 2 이상의 전이금속을 포함하는 리튬 복합전이금속 산화물일 수 있으며, 예를 들면, 하기 [화학식 1]로 표시되는 리튬 복합전이금속 산화물일 수 있다.
[화학식 1]
Lix[NiaCobM1 cM2 d]O2-yAy
상기 [화학식 1]에서, 상기 M1은 Mn 및 Al으로 이루어진 군에서 선택된 1종 이상의 원소일 수 있다.
상기 M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소일 수 있다.
또한, 상기 A는 F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있다.
상기 x는 전이금속 전체 몰수 대비 Li의 몰수 비를 나타내는 것으로, 0.98≤x≤1.20, 바람직하게는 0.99≤x≤1.10, 더 바람직하게는 1.0≤x≤1.10일 수 있다.
상기 a는 전이금속 전체 몰수 대비 Ni의 몰수 비를 나타내는 것으로, 0<a<1, 바람직하게는 0.3≤a<1, 더 바람직하게는 0.6≤a<1, 보다 더 바람직하게는 0.8≤a<1, 더욱 더 바람직하게는 0.85≤a<1, 일 수 있다.
상기 b는 전이금속 전체 몰수 대비 Co의 몰수 비를 나타내는 것으로, 0<b<1, 바람직하게는 0<b<0.7, 더 바람직하게는 0<b<0.4, 보다 더 바람직하게는 0<b<0.2, 더욱 더 바람직하게는 0<b≤0.1일 수 있다.
상기 c는 전이금속 전체 몰수 대비 M1의 몰수 비를 나타내는 것으로, 0<c<1, 바람직하게는 0<c<0.7, 더 바람직하게는 0<c<0.4, 보다 더 바람직하게는 0<c<0.2, 더욱 더 바람직하게는 0<c≤0.1일 수 있다
상기 d는 전이금속 전체 몰수 대비 M2의 몰수 비를 나타내는 것으로, 0≤d≤0.2, 바람직하게는 0≤d≤0.15, 더 바람직하게는 0≤d≤0.10일 수 있다.
상기 y는 산소 자리에 치환된 A 원소의 몰수비를 나타낸 것으로, 0≤y≤0.2, 바람직하게는 0≤y≤0.15, 더 바람직하게는 0≤y≤0.10일 수 있다.
한편, 상기 양극 활물질은 결정립 크기가 100nm 내지 200nm, 바람직하게는 100nm 내지 180nm, 더 바람직하게는 100nm 내지 150nm일 수 있다. 결정립 크기가 너무 커지면 암염(rock salt)상이 형성되어 저항 특성 및 수명 특성이 저하될 수 있고, 결정립 크기가 너무 작아지면 전해액과의 접촉 면적이 증가해서 퇴화가 빨리 일어날 수 있다.
또한, 상기 양극 활물질은 1차 입자의 평균 입경이 0.05㎛ 내지 4㎛, 바람직하게는 0.1㎛ 내지 2㎛일 수 있다. 1차 입자의 평균 입경이 너무 크면 암염(rock salt)상이 형성되어 저항 특성 및 수명 특성이 저하될 수 있고, 1차 입자의 평균 입경이 너무 작으면 전해액과의 접촉 면적이 증가해서 퇴화가 빨리 일어날 수 있다.
또한, 상기 양극 활물질은 2차 입자의 평균 입경이 2㎛ 내지 25㎛, 바람직하게는 4㎛ 내지 18㎛일 수 있다. 2차 입자의 평균 입경이 상기 범위를 만족할 때, 압연 공정에서 양극 활물질 입자가 부서지거나, 슬러리 제조 시에 공정성이 저하되는 것을 방지할 수 있다.
양극
다음으로, 본 발명에 따른 양극에 대해 설명한다.
상기 양극은 본 발명에 따른 양극 활물질을 포함한다. 구체적으로는 상기 양극은, 양극 집전체, 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층은 본 발명에 따른 양극 활물질을 포함한다.
이때, 상기 양극 활물질은 상술한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
상기 양극 집전체는 전도성이 높은 금속을 포함할 수 있으며, 양극 활물질층이 용이하게 접착하되, 전지의 전압 범위에서 반응성이 없는 것이라면 특별히 제한되는 것은 아니다. 상기 양극 집전체는 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 상기 양극 활물질과 함께, 필요에 따라 선택적으로 도전재, 바인더 등을 포함할 수 있다.
이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98.5중량%의 ?t량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 탄소나노튜브 등의 도전성 튜브; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 0.1 내지 15 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플루오라이드(PVDF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올(polyvinylalcohol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethymethaxrylate), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리아크릴산(poly acrylic acid), 및 이들의 수소를 Li, Na, 또는 Ca로 치환된 고분자, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 0.1 내지 15 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 필요에 따라 선택적으로 바인더, 도전재, 및 분산제를 용매 중에 용해 또는 분산시켜 제조한 양극 슬러리 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 디메틸포름아미드(dimethyl formamide, DMF), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재, 바인더, 및 분산제를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포 시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 슬러리 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
이차전지
또한, 본 발명은 상기 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함할 수 있다. 상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하에서는 나머지 구성에 대해서만 구체적으로 설명한다.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 <β< 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시 흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정 피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극활물질은 음극 활물질층의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 슬러리 조성물을 도포하고 건조하거나, 또는 상기 음극 슬러리 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조 시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있고, 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 용량 특성 및 수명 특성을 나타내며, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기나 전기 자동차 등의 다양한 분야에서 유용하게 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
제조예 1 - 양극 활물질 전구체 A 제조
NiSO4, CoSO4, 및 MnSO4를 니켈 : 코발트 : 망간의 몰비가 92 : 4 : 4가 되도록 하는 양으로 증류수 중에서 혼합하여 2.4M 농도의 전이금속 수용액을 준비하였다.
이어서, 상기 반응기에 탈이온수를 넣은 뒤 질소 가스를 반응기에 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 7.96M NaOH를 투입하여 반응기 내의 pH가 11.9를 유지하도록 하였다.
이후, 상기 전이금속 수용액을 상기 반응기 내로 850mL/hr의 속도로 투입하고, NaOH 수용액을 510mL/hr, NH4OH 수용액을 160mL/hr의 속도로 각각 투입하면서 반응 온도 50℃, pH 11.4, 교반 속도 600rpm 조건에서 40시간 동안 공침 반응을 진행시켜 평균 입경(D50)이 15㎛이고, Ni0.92Co0.04Mn0.04(OH)2로 표시되는 양극 활물질 전구체 A를 제조하였다.
제조예 2 - 양극 활물질 전구체 B 제조
공침 반응을 12시간동안 진행한 점을 제외하고는 제조예 1과 동일한 방법으로 평균 입경(D50) 4㎛이고, Ni0.92Co0.04Mn0.04(OH)2로 표시되는 양극 활물질 전구체 B를 제조하였다.
실시예 1
상기 제조예 1에 의해 제조된 양극 활물질 전구체 A와 LiOH를 Li : 전이금속(Ni+Co+Mn)의 몰비가 1.05:1이 되도록 혼합하고, 여기에 Nb2O3를 전이금속(Ni+Co+Mn) : Nb의 몰비가 99.75:0.25가 되도록 추가 혼합한 다음, 770℃로 13시간 동안 소성하여 Li[Ni0.92Co0.04Mn0.04]0.9975Nb0.0025O2 을 제조하였다.
그런 다음, 상기 Li[Ni0.9Co0.05Mn0.05]0.9975Nb0.0025O2을 물로 수세하고, 건조시킨 다음 붕산 500ppm을 혼합하여 300℃로 열처리하여 B 코팅된 양극 활물질을 제조하였다.
실시예 2
소성을 790℃로 수행한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실시예 3
상기 제조예 1에 의해 제조된 양극 활물질 전구체 A와 LiOH를 Li : 전이금속(Ni+Co+Mn)의 몰비가 1.05:1이 되도록 혼합하고, 여기에 MgO를 전이금속(Ni+Co+Mn) : Mg의 몰비가 99.75:0.25가 되도록 추가 혼합한 다음, 770℃로 13시간 동안 소성하여 Li[Ni0.92Co0.04Mn0.04]0.9975Mg0.0025O2 을 제조하였다.
그런 다음, 상기 Li[Ni0.92Co0.04Mn0.04]0.9975Mg0.0025O2을 물로 수세하고, 건조시킨 다음 붕산 500ppm을 혼합하여 300℃로 열처리하여 B 코팅된 양극 활물질을 제조하였다.
비교예 1
상기 제조예 1에 의해 제조된 양극 활물질 전구체 A와 LiOH를 Li : 전이금속(Ni+Co+Mn)의 몰비가 1.05:1이 되도록 혼합하고, 780℃로 13시간 동안 소성하여 Li[Ni0.92Co0.04Mn0.04]O2 을 제조하였다.
그런 다음, 상기 Li[Ni0.9Co0.05Mn0.05]O2을 물로 수세하고, 건조시킨 다음 붕산 500ppm을 혼합하여 300℃로 열처리하여 B 코팅된 양극 활물질을 제조하였다.
비교예 2
상기 제조예 2에 의해 제조된 양극 활물질 전구체 B와 LiOH를 Li : 전이금속(Ni+Co+Mn)의 몰비가 1.07:1이 되도록 혼합하고, 여기에 Nb2O3를 전이금속(Ni+Co+Mn) : Nb의 몰비가 99.75:0.25가 되도록 추가 혼합한 다음, 770℃로 13시간 동안 소성하여 Li[Ni0.92Co0.04Mn0.04]0.9975Nb0.0025O2 을 제조하였다.
그런 다음, 상기 Li[Ni0.9Co0.05Mn0.05]0.9975Nb0.0025O2을 물로 수세하고, 건조시킨 다음 붕산 500ppm을 혼합하여 300℃로 열처리하여 B 코팅된 양극 활물질을 제조하였다.
실험예 1
이온 밀링 시스템(Hitachi社, IM4000)을 이용하여 실시예 1 ~ 3 및 비교예 1 ~ 2에 의해 제조된 양극 활물질 각각을 단면 절단한 후, 상술한 주사이온현미경 분석 및 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 분석을 실시하여, 외부 영역 및 내부 영역에서의 결정립 A, B, C, D의 비율을 측정하였다.
측정 결과는 하기 표 1에 나타내었다.
외부 영역 결정립 비율(%) 내부 영역 결정립 비율(%) 외부 영역 결정립 C 비율 - 내부 영역 결정립 C 비율
A B C D A B C D
실시예 1 21 23.6 34.5 20.9 21.3 25.3 26.4 27 8.1
실시예 2 22.1 23 33.4 33.4 21.5 22.8 29.7 16.5 3.7
실시예 3 27.5 23.6 32.1 16.8 20 27 27.1 25.9 5
비교예 1 20.9 28.3 24.6 26.2 21.9 23.3 26.0 28.8 -1.4
비교예 2 8.9 3.6 80.4 7.1 14.3 9.5 71.4 4.8 9
실험예 2: 전지 특성 평가
상기 실시예 1~3 및 비교예 1~2에서 각각 제조한 양극 활물질과, 도전재(덴카 블랙) 및 바인더(PVDF)를 97.5 : 1 : 1.5의 중량비로 N-메틸-2-피롤리돈(NMP) 용매 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체의 일면에 도포하고, 건조한 후 압연하여 양극을 제조하였다.
음극으로는 리튬 메탈 전극을 사용하였다.
상기 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조한 다음, 전지 케이스 내부에 위치시킨 후, 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때, 전해액으로는, 에틸렌 카보네이트: 에틸메틸카보네이트: 디에틸카보네이트를 3:3:4의 부피비로 혼합한 유기 용매에 1M의 LiPF6를 용해시킨 전해액을 사용하였다.
그런 다음, 상기 이차전지를 각각 25℃에서 0.1C 정전류로 4.2V까지 충전을 실시하였다. 이후, 0.1C 정전류로 3V까지 방전을 실시하여 초기 충전 용량 및 초기 방전 용량을 측정하였다. 측정 결과는 하기 표 2에 나타내었다.
또한, 상기 실시예 1~3 및 비교예 1~2에서 각각 제조한 양극 활물질과, 도전재(덴카 블랙) 및 바인더(PVDF)를 97.5 : 1.0 : 1.5의 중량비로 N-메틸-2-피롤리돈(NMP) 용매 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체의 일면에 도포하고, 건조한 후 압연하여 양극을 제조하였다.
다음으로, 음극 활물질(천연 흑연), 도전재(카본블랙) 및 바인더(PVDF)를 95.6 : 1.0 : 3.4의 중량비로 N-메틸필로리돈 용매 중에 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리 조성물을 구리 집전체에 도포하고, 건조한 후 압연하여 음극을 제조하였다.
상기 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조한 다음, 전지 케이스 내부에 위치시킨 후, 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때, 전해액으로는, 에틸렌 카보네이트: 에틸메틸카보네이트를 3:7의 부피비로 혼합한 유기 용매에 0.7M의 LiPF6를 용해시킨 전해액을 사용하였다.
상기 리튬 이차 전지를 각각 25℃에서 0.1C 정전류로 4.2V까지 충전을 실시하였다. 이후, 0.1C 정전류로 3V까지 방전을 실시(1 사이클)하고, 이후, 45℃에서 0.33C으로 3V ~ 4.2V 구간에서 200사이클 충방전을 수행하였다.
상기 1사이클 충방전된 리튬 이차 전지와 200사이클 충방전된 리튬 이차 전지를 각각 진공 분위기의 챔버에서 천공하여 전지 내부의 가스를 배출시켜 진공 챔버 내부에 포집하고, 챔버의 가스를 가스크로마토그래피-불꽃 이온화 검출기(Gas Chromatograph-Flame Ionizaiton detector, GC-FID)를 이용하여 가스 발생량을 정량 분석하였다. 그런 다음, 200사이클 충방전된 리튬 이차 전지에서의 가스 발생량을 1사이클 충방전된 리튬 이차 전지에서의 가스 발생량으로 나눈 후 100을 곱하여 가스 증가량(%)을 계산하였다.
충전용량(mAh/g) 방전 용량(mAh/g) 가스 증가량(%)
실시예 1 244.8 227.7 130
실시예 2 239.2 220.5 151
실시예 3 242.5 222.4 149
비교예 1 226.5 204.8 252
비교예 2 240.5 213.2 312
상기 [표 2]에 나타난 바와 같이, 양극 활물질 입자의 외부 영역에서의 결정립 C의 비율이 본 발명의 범위를 만족하는 실시예 1 ~ 3의 양극 활물질을 사용한 이차전지는, 비교예 1 ~ 2의 양극 활물질을 사용한 이차전지에 비해 용량 특성이 우수하고, 가스 발생이 적었다. 또한, 외부 영역과 내부 영역에서의 결정립 C 비율의 차가 5% 이상으로 큰 실시예 1 및 실시예 3의 양극 활물질을 사용할 경우, 이러한 개선 효과가 더욱 우수하게 나타났다.

Claims (12)

  1. 양극 활물질 입자의 중심에서 표면까지의 거리를 R 이라 할 때, 상기 양극 활물질 입자의 중심에서 R/2까지의 영역인 내부 영역과, R/2에서 양극 활물질 입자의 표면까지의 영역인 외부 영역을 포함하고,
    상기 외부 영역의 전체 결정립 중 하기 [식 1]로 표시되는 결정립 장축 배향도 DoA가 0.5 ~ 1이고, 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 분석을 통해 얻어진 결정립의 결정 격자의 c축 회전 벡터 Rc와 상기 결정립의 위치 단위 벡터 P'의 외적값으로 표시되는 결정립 c축 배향도가 0.5 미만인 결정립 C의 비율(C1)이 25% 내지 80%인 양극 활물질.
    [식 1]
    Figure pat00007

    상기 [식 1]에서,
    λ1은 상기 양극 활물질 단면을 주사이온현미경 분석하여 얻어진 이미지 데이터로부터 측정된 해당 결정립의 장축 벡터 EI의 크기이며,
    λ2는 상기 양극 활물질 단면을 주사이온현미경 분석하여 얻어진 이미지 데이터로부터 측정된 해당 결정립의 단축 벡터 EII의 크기이고,
    상기 CD는 해당 결정립의 위치 단위 벡터 P'와 장축 단위 벡터 EI'의 내적값임.
  2. 제1항에 있어서,
    상기 외부 영역의 전체 결정립 중 결정립 C의 비율(C1)이 30% 내지 60%인 양극 활물질.
  3. 제1항에 있어서,
    상기 외부 영역의 전체 결정립 중 상기 결정립 C의 비율(C1)이 상기 내부 영역의 전체 결정립 중 상기 결정립 C의 비율(C2)보다 큰 것인 양극 활물질.
  4. 제3항에 있어서,
    상기 외부 영역의 전체 결정립 중 상기 결정립 C의 비율(C1)과 상기 내부 영역의 전체 결정립 중 상기 결정립 C의 비율(C2)의 차가 3% 이상인 양극 활물질.
  5. 제1항에 있어서,
    상기 양극 활물질은,
    상기 결정립 장축 배향도 DoA가 0.5 ~ 1이고, 상기 결정립 c축 배향도가 0.5 ~ 1인 결정립 A,
    상기 결정립 장축 배향도 DoA가 0.5 미만이고, 상기 결정립 c축 배향도가 0.5 ~ 1인 결정립 B, 및
    상기 결정립 장축 배향도 DoA가 0.5 미만이고, 상기 결정립 c축 배향도가 0.5 미만인 결정립 D를 더 포함하는 것인 리튬 이차전지용 양극 활물질.
  6. 제5항에 있어서,
    상기 외부 영역의 전체 결정립 중 결정립 C의 비율(C1)이 결정립 A의 비율(A1), 결정립 B의 비율(B1), 및 결정립 D의 비율(D1)보다 큰 것인 리튬 이차전지용 양극 활물질.
  7. 제5항에 있어서,
    상기 양극 활물질 입자 단면의 전체 결정립 중 결정립 A의 비율은 5% ~ 40%, 상기 결정립 B의 비율은 5% 내지 40%, 상기 결정립 C의 비율은 20% 내지 80%, 상기 결정립 D의 비율은 5% 내지 40%인 양극 활물질.
  8. 제1항에 있어서,
    상기 주사이온현미경 분석은, 상기 양극 활물질의 단면에 집속이온빔을 조사하여 주사이온현미경 이미지를 얻은 후, 딥 러닝을 이용하여 상기 주사이온현미경 이미지로부터 결정립 단위로 세그멘테이션(segmentation)된 데이터를 수득하고, 상기 세그멘테이션된 데이터로부터 상기 [식 1]로 표시되는 DoA를 계산하는 것인, 양극 활물질.
  9. 제1항에 있어서,
    상기 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 분석은, 상기 양극 활물질의 단면의 전자후방산란회절(Electron BackScatter Diffraction, EBSD) 측정을 통해 각 결정립의 위치 정보 및 오일러 각(Euler angle) 정보를 포함하는 EBSD 오일러 맵(Euler map) 데이터를 수득하고, 하기 [식 2]를 통해 상기 결정립의 결정 격자의 c축 회전 벡터 Rc(x, y, z)를 구하는 것인, 양극 활물질.
    [식 2]
    Figure pat00008

    상기 [식 2]에서,
    [X, Y, Z]는 (0, 0, 1)이고, 상기 Φ, θ, Ψ는 오일러 맵 데이터로부터 수득된 오일러 각(Euler angle)임.
  10. 제1항에 있어서,
    상기 양극 활물질은 하기 [화학식 1]로 표시되는 리튬 복합전이금속 산화물인 것인 양극 활물질.
    [화학식 1]
    Lix[NiaCobM1 cM2 d]O2-yAy
    상기 [화학식 1]에서,
    상기 M1은 Mn 및 Al으로 이루어진 군에서 선택된 1종 이상의 원소이고,
    상기 M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
    상기 A는 F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이고,
    0.98≤x≤1.20, 0<a<1, 0<b<1, 0<c<1, 0≤d≤0.2, 0≤y≤0.2임.
  11. 청구항 1 내지 10 중 어느 한 항의 양극 활물질을 포함하는 양극.
  12. 청구항 11의 양극을 포함하는 리튬 이차전지.
KR1020220035396A 2021-03-22 2022-03-22 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지 KR20220131856A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210036942 2021-03-22
KR1020210036942 2021-03-22

Publications (1)

Publication Number Publication Date
KR20220131856A true KR20220131856A (ko) 2022-09-29

Family

ID=83395902

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220035396A KR20220131856A (ko) 2021-03-22 2022-03-22 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지

Country Status (6)

Country Link
US (1) US20240145672A1 (ko)
EP (1) EP4283718A1 (ko)
JP (1) JP2024507562A (ko)
KR (1) KR20220131856A (ko)
CN (1) CN116888763A (ko)
WO (1) WO2022203348A1 (ko)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130138073A (ko) 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR102358438B1 (ko) * 2014-12-30 2022-02-04 삼성전자주식회사 복합 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬이차전지
KR20170115939A (ko) * 2016-04-08 2017-10-18 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
KR102117621B1 (ko) * 2016-12-28 2020-06-02 주식회사 엘지화학 리튬이차전지용 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
CN112752926B (zh) 2018-07-24 2024-03-29 威廉·布鲁克鲍尔 炉灶系统和用于向下排出烹饪烟气的烟气排出装置
KR102334909B1 (ko) * 2019-07-10 2021-12-03 주식회사 배터리솔루션 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 리튬이차전지
KR102118289B1 (ko) * 2019-08-22 2020-06-03 (주)이엠티 리튬이온 이차전지의 양극 활물질용 전구체, 이를 이용하여 제조한 양극 활물질, 이를 포함하는 양극 및 리튬이온 이차전지

Also Published As

Publication number Publication date
WO2022203348A1 (ko) 2022-09-29
EP4283718A1 (en) 2023-11-29
CN116888763A (zh) 2023-10-13
JP2024507562A (ja) 2024-02-20
US20240145672A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
KR20230051649A (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20220092450A (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20220103511A (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
CN114730867A (zh) 制造二次电池用正极材料的方法
EP4216311A1 (en) Cathode active material and lithium secondary battery comprising same
JP2023055674A (ja) 正極活物質及びこれを含むリチウム二次電池
JP7386988B2 (ja) 正極活物質、これを含む正極およびリチウム二次電池
KR20230025318A (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
EP4283718A1 (en) Cathode active material, and cathode and lithium secondary battery which comprise same
US20240088379A1 (en) Positive Electrode Active Material, Positive Electrode Including the Same, and Lithium Secondary Battery
KR20220100545A (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
KR20220131854A (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
KR102632381B1 (ko) 양극 활물질 및 이를 사용하는 리튬 이차전지
US20230369578A1 (en) Positive Electrode Active Material, Method of Preparing the Same, and Positive Electrode Material, Positive Electrode, and Lithium Secondary Battery Which Include the Same
KR20230025349A (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
KR20220169775A (ko) 양극 활물질 전구체, 이의 제조방법 및 이를 이용한 양극 활물질의 제조방법
US20230207803A1 (en) Positive electrode active material and lithium secondary battery comprising the same
US20230238530A1 (en) Positive electrode active material and lithium secondary battery comprising the same
JP2024512779A (ja) 正極材、その製造方法およびこれを含むリチウム二次電池
KR20240003646A (ko) 양극 활물질 및 양극 활물질 제조방법
KR20230162569A (ko) 양극 활물질 전구체, 이를 이용한 양극 활물질의 제조방법 및 양극 활물질
JP2024505835A (ja) 正極活物質およびその製造方法
KR20220092244A (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20230096894A (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
KR20230172338A (ko) 양극 활물질 및 양극 활물질 제조방법