KR20220127291A - 결합 내구성이 향상된 금속 합금 표면 개질 방법 및 관련 금속 합금 제품 - Google Patents
결합 내구성이 향상된 금속 합금 표면 개질 방법 및 관련 금속 합금 제품 Download PDFInfo
- Publication number
- KR20220127291A KR20220127291A KR1020227027766A KR20227027766A KR20220127291A KR 20220127291 A KR20220127291 A KR 20220127291A KR 1020227027766 A KR1020227027766 A KR 1020227027766A KR 20227027766 A KR20227027766 A KR 20227027766A KR 20220127291 A KR20220127291 A KR 20220127291A
- Authority
- KR
- South Korea
- Prior art keywords
- aluminum alloy
- laser
- treated
- liquid layer
- layer
- Prior art date
Links
- 229910001092 metal group alloy Inorganic materials 0.000 title abstract description 82
- 238000002715 modification method Methods 0.000 title 1
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 224
- 238000000034 method Methods 0.000 claims abstract description 183
- 239000007788 liquid Substances 0.000 claims abstract description 152
- 239000000758 substrate Substances 0.000 claims abstract description 75
- 239000010410 layer Substances 0.000 claims description 192
- 239000002245 particle Substances 0.000 claims description 78
- 238000012360 testing method Methods 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 30
- 239000000853 adhesive Substances 0.000 claims description 28
- 230000001070 adhesive effect Effects 0.000 claims description 28
- 239000000126 substance Substances 0.000 claims description 26
- 238000004140 cleaning Methods 0.000 claims description 25
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 24
- 229910052749 magnesium Inorganic materials 0.000 claims description 24
- 239000011777 magnesium Substances 0.000 claims description 24
- 230000007797 corrosion Effects 0.000 claims description 19
- 238000005260 corrosion Methods 0.000 claims description 19
- 239000003921 oil Substances 0.000 claims description 18
- 229930195733 hydrocarbon Natural products 0.000 claims description 17
- 150000002430 hydrocarbons Chemical class 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 17
- 238000005096 rolling process Methods 0.000 claims description 16
- 239000002344 surface layer Substances 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 15
- 239000007921 spray Substances 0.000 claims description 14
- 238000011282 treatment Methods 0.000 claims description 11
- 238000005498 polishing Methods 0.000 claims description 10
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 9
- 238000007739 conversion coating Methods 0.000 claims description 9
- 230000004048 modification Effects 0.000 claims description 9
- 238000012986 modification Methods 0.000 claims description 9
- 239000002689 soil Substances 0.000 claims description 9
- 238000004381 surface treatment Methods 0.000 claims description 9
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 239000000314 lubricant Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 238000005108 dry cleaning Methods 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000013532 laser treatment Methods 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 230000001476 alcoholic effect Effects 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 239000007822 coupling agent Substances 0.000 claims description 4
- 238000005238 degreasing Methods 0.000 claims description 4
- 235000011187 glycerol Nutrition 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 230000001680 brushing effect Effects 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims 1
- 239000010407 anodic oxide Substances 0.000 claims 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 claims 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 claims 1
- 229910000077 silane Inorganic materials 0.000 claims 1
- 239000000047 product Substances 0.000 description 83
- 230000007547 defect Effects 0.000 description 51
- 229910052751 metal Inorganic materials 0.000 description 45
- 239000002184 metal Substances 0.000 description 45
- 238000005266 casting Methods 0.000 description 41
- 239000000463 material Substances 0.000 description 38
- 229910045601 alloy Inorganic materials 0.000 description 32
- 239000000956 alloy Substances 0.000 description 32
- 238000005275 alloying Methods 0.000 description 32
- 239000000203 mixture Substances 0.000 description 18
- 210000002381 plasma Anatomy 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 239000002131 composite material Substances 0.000 description 16
- 229910044991 metal oxide Inorganic materials 0.000 description 15
- 150000004706 metal oxides Chemical class 0.000 description 15
- 238000009749 continuous casting Methods 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 230000003993 interaction Effects 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 230000000670 limiting effect Effects 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000035882 stress Effects 0.000 description 9
- 229910000861 Mg alloy Inorganic materials 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 239000011572 manganese Substances 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 8
- 239000005416 organic matter Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 238000002203 pretreatment Methods 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 238000003486 chemical etching Methods 0.000 description 7
- 238000005097 cold rolling Methods 0.000 description 7
- 238000005098 hot rolling Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 6
- 238000005422 blasting Methods 0.000 description 6
- 238000012876 topography Methods 0.000 description 6
- -1 Zr/Mo pretreatments Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920006332 epoxy adhesive Polymers 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000004626 scanning electron microscopy Methods 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 238000009828 non-uniform distribution Methods 0.000 description 4
- 229910052755 nonmetal Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 239000002318 adhesion promoter Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 235000011089 carbon dioxide Nutrition 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000010409 ironing Methods 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 150000002680 magnesium Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011858 nanopowder Substances 0.000 description 2
- 150000002843 nonmetals Chemical class 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000010336 energy treatment Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000009700 powder processing Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/56—Treatment of aluminium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/10—Aluminium or alloys thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Powder Metallurgy (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Metal Rolling (AREA)
- Laminated Bodies (AREA)
- Continuous Casting (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Laser Beam Processing (AREA)
- Chemically Coating (AREA)
Abstract
본 발명에서는 금속 합금 기판의 표면을 처리하는 방법 및 관련 금속 합금 제품이 기술된다. 상기 방법은 벌크 및 표면을 갖는 알루미늄 합금 제품을 제공하는 단계 및 상기 표면을 가로질러 고 에너지의 빔을 스캐닝하는 단계를 포함할 수 있다. 상기 방법은 고 에너지의 빔을 주사하기 전에 상기 표면 상에 액체 층을 도포하는 단계를 추가로 포함할 수 있다. 상기 고 에너지의 빔은 표면 및/또는 액체 층과 상호작용하여 처리된 표면을 형성할 수 있다. 상기 고 에너지의 빔은 표면 및/또는 액체 층과 상호작용하여 처리된 표면 아래층을 형성하도록 알루미늄 합금 제품의 적어도 일부를 물리적으로 변형시킬 수 있다.
Description
관련 출원에 대한 상호 참조
본 출원은 2020년 2월 19일에 출원된 미국 가출원 번호 62/978,767, 2020년 3월 3일에 출원된 미국 가출원 번호 62/984,555 및 2020년 3월 23일에 출원된 미국 가출원 번호 62/993,365의 이익 및 우선권을 주장하고, 이들 전체 내용이 본원에 참조로서 포함된다.
분야
본 발명은 일반적으로 야금(metallurgy)에 관한 것으로, 보다 구체적으로는 금속 합금 제품의 표면 상의 표면 근처 미세구조와 같은 금속 합금 제품의 표면 특성을 개질하는 기술에 관한 것이다.
알루미늄 합금 제품의 가공 중에, 결함을 포함할 수 있는 표면 근처 미세 구조가 발생할 수 있다. 예를 들어, 상기 결함은 압연된 산화물, 압연된 오일, 전사 크랙(crack), 표면 크랙, 내부 크랙, 균열(fissure), 금속간 입자, 또는 예를 들어 상기 알루미늄 합금 제품의 표면에 축적될 수 있는 합금 요소의 고밀도 집단일 수 있다. 상기 표면 근처 미세구조 내에서 발생하는 결함은 알루미늄 합금 제품의 습윤성 및/또는 접착 성능에 영향을 미칠 수 있다. 표면 근처 미세구조를 비롯한 표면 결함을 해결하는 기술은 부족한 상황이다.
요약
실시예 및 유사 용어는 본 개시내용 및 하기 청구범위의 모든 주제를 광범위하게 지칭하도록 의도된다. 이러한 용어를 포함하는 진술은 본원에 기술된 청구 주제를 제한하거나 아래 청구범위의 의미 또는 범위를 제한하지 않는 것으로 이해되어야 한다. 본원에서 다루는 본 개시내용의 실시양태들은 본 요약이 아니라 아래의 청구범위에 의해 정의된다. 본 요약은 본 개시내용의 다양한 양태에 대한 고도의 개요이고, 아래 상세한 설명 섹션에 추가로 기술되는 개념들 중 일부를 소개한다. 본 요약은 청구된 주제의 핵심 또는 필수적 특징을 식별하기 위한 것이 아니며 청구된 주제의 범위를 결정하기 위해 별도로 사용하려는 것도 아니다. 청구된 주제는 본 개시내용의 전체 명세서, 일부 또는 모든 도면 및 각 청구범위의 적절한 부분을 참조하여 이해되어야 한다.
하나의 양태에서, 금속 합금 기판의 표면을 처리하는 방법이 기술된다. 상기 양태의 방법은 벌크 및 제1 표면을 갖는 알루미늄 합금 제품을 제공하는 단계를 포함할 수 있다. 상기 방법은 또한 제1 표면을 가로질러 고 에너지 빔을 스캐닝하는 것을 포함할 수 있다. 상기 고 에너지 빔은 제1 표면과 상호작용할 수 있고 제1 표면을 물리적으로 개질하여 처리된 제1 표면을 형성할 수 있다. 실시양태에서, 금속 합금 기판의 표면을 처리하는 방법은 FLTM BV 101-07 표준 테스트인 접착 랩에 대한 응력 내구성 테스트(Stress Durability Test for Adhesive Lap-Sear Bonds(2017))에 따라 45 사이클 내지 125 사이클 또는 그 초과의 결합 내구성을 나타내는 처리된 제1 표면을 포함할 수 있다. 실시양태에서, 상기 알루미늄 합금 제품은 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 또는 7xxx 시리즈 알루미늄 합금을 포함할 수 있다.
다양한 실시양태에서, 상기 방법은 고 에너지 빔을 스캐닝하기 전에 상기 제1 표면 상에 제1 액체 층을 도포하는 단계를 추가로 포함할 수 있다. 상기 고 에너지 빔을 스캐닝하는 것은 상기 제1 액체 층을 가로지르고/가로지르거나 통과할 수 있다. 상기 고 에너지 빔은 상기 제1 액체 층과 상호작용하여 처리된 제1 표면을 형성할 수 있다. 상기 고 에너지의 빔은 상기 제1 액체 층과 상호작용하여 벌크의 적어도 일부를 물리적으로 개질하여 처리된 표면 아래층을 형성할 수 있다. 개질될 벌크 부분은 금속간 입자 및 알루미늄 합금의 입자를 포함하는 매트릭스를 포함할 수 있다. 예시적인 실시양태에서, 상기 처리된 표면 아래층은 고 에너지 빔에 의해 미리 용융된 알루미늄 합금의 재응고된 층을 포함할 수 있다. 상기 표면 아래층은 1μm 내지 10μm의 알루미늄 합금 제품 내 깊이를 차지(occupy)할 수 있다. 실시양태에서, 상기 처리된 표면 아래층 내의 금속간 입자의 제1 농도는 벌크 내의 금속간 입자의 제2 농도 미만일 수 있다. 일부 실시양태에서, 상기 제1 액체 층은 1nm 내지 1mm의 두께를 가질 수 있다. 다른 실시양태에서, 상기 제1 액체 층은 1mm 내지 5mm의 두께를 가질 수 있다.
실시양태에서, 금속 합금 기판의 표면을 처리하는 방법은 제2 표면에 제2 액체 층을 적용하는 단계를 추가로 포함할 수 있다. 상기 제2 표면은 상기 제1 표면과 대향할 수 있다. 일부 실시양태에서, 상기 제2 액체 층은 1nm 내지 1mm의 두께를 가질 수 있다. 다른 실시양태에서, 상기 제2 액체 층은 1mm 내지 5mm의 두께를 가질 수 있다. 상기 제2 액체 층은 상기 제1 액체 층과 동일할 수 있거나, 또는 대안적으로, 상기 제2 액체 층은 상기 제1 액체 층과 상이할 수 있다. 일부 실시양태에서, 상기 제1 액체 층 및 상기 제2 액체 층 중 적어도 하나는 수용액을 포함할 수 있다. 일부 실시양태에서, 상기 제1 액체 층 및 상기 제2 액체 층 중 적어도 하나는 비수성 용액을 포함할 수 있다. 일부 실시양태에서, 상기 제1 액체 층 및 상기 제2 액체 층 중 적어도 하나는 글리세린, 알코올 용액, 증기, 또는 이들의 임의의 조합을 포함할 수 있다. 예시적인 실시양태에서, 상기 제1 액체 층 및 상기 제2 액체 층 중 적어도 하나는 부식을 억제하고, 표면을 텍스처화하고/하거나 접착력을 증가시키도록 구성된 전처리 화학물질을 포함할 수 있다. 상기 전처리 화학물질은 유기포스폰산, 유기포스핀산, 실란, 커플링제, 중합체, 공중합체, Zr/Mo 전처리제, Mn계 전처리제, Ce계 전처리제, 접착 촉진제, 부식 억제제, 임의의 적합한 전처리 용액, 또는 이들의 조합으로부터 선택될 수 있다.
다양한 실시양태에서, 금속 합금 기판의 표면을 처리하는 방법은, 둘 이상의 도포기에 의해 상기 제1 액체 층 및 상기 제2 액체 층을 상기 제1 표면 및 상기 제2 표면 상에 도포하는 것을 포함할 수 있다. 상기 둘 이상의 도포기는 펄싱이 있거나 없는 스프레이 도포기, 저압 고용량 스프레이 도포기, 저압 저용량 스프레이 도포기, 회전 분무기, 정전 도포기, 롤 도포기, 또는 이들의 임의의 조합을 포함할 수 있다. 실시양태에서, 상기 둘 이상의 도포기는 연속 라인에 있을 수 있다. 실시양태에서, 상기 둘 이상의 도포기는 둘 이상의 도포기 배쓰로 구성될 수 있다.
실시양태에서, 상기 제1 표면 또는 상기 제1 액체 층을 가로질러 고 에너지 빔을 스캐닝하는 것은 레이저 에너지 빔을 상기 제1 액체 층 상으로 지향시키는 것을 포함할 수 있다. 상기 레이저 에너지 빔은 연속 레이저, 펄스 레이저, 나노초 펄스 레이저, 피코초 펄스 레이저, 펨토초 펄스 레이저, 단일 패스 구성, 이중 패스 구성, 연속파 레이저, 연속파 없는 레이저, 또는 이들의 임의의 조합에 의해 제공될 수 있다. 상기 레이저 에너지 빔은 이터븀 레이저, Nd-YAG 레이저, CO2 레이저, 엑시머 레이저, 금속 표면과 상호 작용하고 결합할 수 있는 에너지 수준을 가진 빛 또는 파동의 빔, 또는 이들의 임의의 조합에 의해 제공될 수 있다. 상기 레이저 에너지 빔은 일부 실시예들에서 약 200nm 내지 약 1500nm의 파장을 가질 수 있다.
일부 실시양태에서, 금속 합금 기판의 표면을 처리하는 방법은 상기 제1 액체 층을 가로지르고/가로지르거나 통과하여 고에너지 빔을 스캐닝하는 단계를 포함할 수 있다. 이는 제1 액체 층 상으로 적어도 하나의 레이저 에너지 빔을 지향시키는 것을 포함할 수 있다. 상기 방법은 레이저 에너지의 또 다른 적어도 하나의 빔을 상기 제2 액체 층 상으로 지향시키는 단계를 추가로 포함할 수 있다.
일부 실시양태에서, 상기 금속 합금 기판의 표면을 처리하는 방법은 미처리된 제1 표면인 제1 표면을 포함할 수 있다. 상기 미처리된 제1 표면은 그 위에 유기물, 오일, 탄화수소, 토양 또는 무기 잔류물 중 하나 이상을 가질 수 있다. 상기 처리된 제1 표면은 유기물, 오일, 탄화수소, 토양, 또는 무기 잔류물 중 하나 이상이 없거나 실질적으로 없을 수 있다. 일부 실시양태에서, 상기 미처리된 제1 표면은 화학적 에칭, 산성 또는 알칼리성 세정, 용매 세정, 증기 탈지, 기계적 표면 처리, 브러싱, 버핑, 기계적 표면 연마, 전기화학적 연마, 화학 연마, 계면 활성제 세정 및 전환 코팅으로부터 선택된 하나 이상의 습식 처리 단계를 거치지 않았을 수도 있다. 일부 실시양태에서, 상기 미처리된 제1 표면은 미처리된 제1 표면 상으로 상기 고에너지 빔을 지향시키기 전에 하나 이상의 습식 처리 단계를 거치지 않았을 수 있다. 일부 실시양태에서, 상기 미처리된 제1 표면은 그 위에 롤링 윤활제를 갖는 압연 표면에 해당될 수 있다. 실시양태에서, 상기 미처리된 제1 표면 상에 고에너지 빔을 지향시키는 것은 건식 세정 공정에 해당될 수 있고, 상기 처리된 제1 표면은 세정된 표면에 해당된다. 실시양태에서, 상기 미처리된 제1 표면 상에 고에너지 빔을 지향시키는 것은 건식 표면 개질 공정에 해당될 수 있다. 상기 처리된 제1 표면은 접착제와 결합하기에 적합한 활성화된 표면에 해당될 수 있다. 제1 표면은 표면 근처 미세구조를 포함할 수 있다. 상기 에너지 빔을 상기 제1 표면 상으로 지향시키는 것은 표면 근처 미세구조의 적어도 일부를 없애거나 제거할 수 있다. 상기 고에너지 빔을 상기 제1 표면 상으로 지향시키는 것은 표면 근처 미세구조를 열적으로 개질할 수 있다. 실시양태에서, 상기 처리된 제1 표면은 0.1 내지 0.5의 건조 정지 마찰 계수를 나타내지만, 이 범위 밖의 건조 정지 마찰 계수를 갖는 표면도 고려된다.
다른 양태에서, 처리된 표면을 갖는 금속 합금 제품이 설명된다. 압연 알루미늄 합금 기판과 같은 금속 합금 제품은 벌크 및 레이저 처리된 영역을 포함할 수 있다. 상기 벌크는 금속간 입자 및 알루미늄 합금의 입자를 포함하는 매트릭스를 포함할 수 있다. 상기 레이저 처리된 영역은 상기 벌크의 첫 번째 부분을 덮을 수 있다. 상기 레이저 처리된 영역은 처리된 표면 아래층을 포함할 수 있다. 상기 처리된 표면 아래층은 고에너지 빔에 의해 미리 용융된 알루미늄 합금의 재응고된 층을 포함할 수 있다. 상기 처리된 표면 아래층은 1μm 내지 10μm의 알루미늄 합금 제품의 깊이를 차지할 수 있다. 상기 처리된 표면 아래층에서 금속간 입자의 제1 농도는 상기 벌크 내의 금속간 입자의 제2 농도 미만일 수 있다. 상기 처리된 표면 아래층은 레이저 처리된 표면 층일 수 있거나 또는 추가로 포함할 수 있다. 상기 레이저 처리된 표면 층은 표면 근처 미세구조가 없거나 실질적으로 없을 수 있다. 상기 레이저 처리된 표면 층은 유기물, 오일, 탄화수소, 토양, 무기 잔류물, 압연 산화물 또는 양극 산화물 중 하나 이상이 없거나 실질적으로 없을 수 있다. 상기 레이저 가공된 표면층은 10nm 내지 300nm의 두께를 갖는 제1 산화층을 포함할 수 있다. 일부 실시예에서, 상기 레이저 처리된 영역은 FLTM BV 101-07 표준 테스트에 따라 45 사이클 내지 125 사이클 또는 그 이상의 결합 내구성을 나타낼 수 있다.
실시양태에서, 상기 알루미늄 합금은 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 또는 7xxx 시리즈 알루미늄 합금을 포함할 수 있다. 실시양태에서, 상기 알루미늄 합금에서 마그네슘의 농도는 10wt% 미만일 수 있다. 상기 벌크의 마그네슘 농도는 상기 처리된 표면 아래층보다 더 클 수 있다. 상기 벌크의 아연 농도는 상기 처리된 표면 아래층보다 더 클 수 있다. 다양한 실시양태에서, 상기 알루미늄 합금 제품은 그 위에 기능화된 층을 포함하지 않을 수 있다. 기능화된 층의 예는 인 함유 유기산 코팅 또는 전처리 층을 포함할 수 있다.
일부 실시양태에서, 상기 알루미늄 합금은 상기 벌크의 제2 부분을 덮는 미처리된 영역을 추가로 포함할 수 있다. 상기 미처리된 영역은 레이저 처리 과정을 거치지 않거나 거치지 않았을 수 있다. 실시양태에서, 상기 레이저 처리된 영역의 제1 산술 평균 높이(Spk)는 상기 미처리 영역의 제2 산술 평균 높이보다 작을 수 있다. 실시양태에서, 상기 레이저 처리된 영역은 0.1μm 내지 10μm의 산술 평균 높이(Sa)를 나타낸다. 실시양태에서, 상기 레이저-처리된 영역은 0.1% 내지 80%의 복잡도(Sdr)를 나타낼 수 있다.
다양한 실시양태에서, 상기 레이저 처리된 영역은 예를 들어 최대 3개월 또는 최대 6개월의 표면 안정성을 나타낼 수 있으며, 이는 상기 레이저 처리된 영역이 표면이 안정적인 동안 언제든 다른 제품에 결합하기에 적합하다는 것을 나타낼 수 있다. 다시 말해서, 상기 레이저 처리 영역은 최대 3개월 또는 최대 6개월까지 안정적일 수 있으며, FLTM BV 101-07 표준 테스트 또는 기타 표준 테스트에 따라 최대 3개월 또는 최대 6개월 동안 초기 접착을 하지 않았음에도 불구하고, 45 사이클 내지 125사이클 또는 그 초과의 접착 내구성을 나타낼 수 있다. 이러한 표면 안정성은 상기 생성된 결합의 내구성이 조기에 손상되거나 저하되지 않으면서 저장, 및/또는 준비 및 다른 제품에 대한 결합 사이의 약간의 지연을 허용할 수 있다.
다른 목적 및 이점은 비제한적인 예에 대한 다음의 상세한 설명으로부터 명백할 것이다.
본 명세서는 이하의 첨부된 도면을 참조하며, 여기서 상이한 도면에서 유사한 참조 번호의 사용은 비슷하거나 유사한 구성요소를 예시하기 위한 것이다.
도 1은 금속 합금 제품을 제조하는 방법의 개략도를 제공한다.
도 2는 하나 이상의 결함을 포함하는 표면 근처 미세구조를 갖는 금속 합금 제품의 개략도를 제공한다.
도 3a는 미처리된 표면 및 하나 이상의 결함을 포함하는 표면 근처 미세구조를 갖는 금속 합금 제품의 단면의 개략도를 제공한다.
도 3b는 상기 표면 근처 미세구조에 영향을 미치고 깨끗한 표면을 제공하기 위해 표면 상으로 지향되는 고 에너지 빔을 갖는, 도 3a에 도시된 단면의 개략도를 제공한다.
도 3c는 상기 표면 근처 미세구조에 영향을 미치고 텍스처화된 표면을 제공하기 위해 세정된 표면 상으로 지향되는 고 에너지 빔을 갖는, 도 3b에 도시된 단면의 개략도를 제공한다.
도 4a는 금속 산화물 입자 및 금속간 입자를 포함하는 하나 이상의 결함을 포함하는 표면 근처 미세구조 및 미처리된 표면을 갖는, 금속 합금 제품의 단면의 개략도를 제공한다.
도 4b는 상기 표면 근처 미세구조에 영향을 미치고 깨끗한 표면을 제공하기 위해 상기 미처리된 표면 상으로 지향되는 고 에너지 빔을 갖는, 도 4a에 도시된 단면의 개략도를 제공한다.
도 4c는 상기 표면 근처 미세구조에 영향을 미치고 금속 산화물 입자 및 금속간 입자가 없는 활성화된 표면을 제공하기 위해 세정된 표면으로 지향되는 고 에너지 빔을 갖는, 도 4b에 도시된 단면의 개략도를 제공한다.
도 5는 제품은 개질된 표면을 갖고 접착제에 의해 다른 제품에 결합된, 형성된 금속 합금 제품의 개략도를 제공한다.
도 6a는 금속 산화물 입자 및 금속간 입자를 포함하는 하나 이상의 결함을 포함하는 표면 근처 미세구조 및 미처리된 표면을 갖는 금속 합금 제품의 단면의 개략도를 제공한다.
도 6b는 상기 미처리된 표면 위에 적용된 높은 열전도율의 응축된 증기층을 갖는 도 6a에 도시된 단면의 개략도를 제공한다.
도 6c는 표면 근처 미세구조에 영향을 미치고 금속 산화물 입자 및 금속간 입자가 없는 활성화된 표면을 제공하기 위해 응축된 증기층으로 지향되는 고 에너지 빔을 갖는, 도 6b에 도시된 단면의 개략도를 제공한다.
도 7은 고 에너지 빔을 각 면으로 향하게 하기 전에 서로 대향하는 2개의 면 각각에 적용된 응축된 증기층을 갖는, 알루미늄 합금 제품을 제조하기 위한 연속 코일 라인 공정의 개략도를 제공한다.
도 8은 다른 실시양태에서 응축된 증기 층이 제품의 각 면으로 향하는 고 에너지 빔을 갖기 전에 동시에 제품의 각 면에 적용되는 알루미늄 합금 제품을 제조하기 위한 연속 코일 라인 공정의 개략도를 제공한다.
도 9는 응축된 증기층으로 지향되는 고 에너지 빔을 갖기 전에 연속하여 제품의 각 면에 적용되거나 결합되는, 응축된 증기 또는 수성 또는 비수성 용액과 같은 더 두꺼운 층을 갖는, 알루미늄 합금 제품을 제조하기 위한 연속 코일 라인 공정의 개략도를 제공한다.
도 10a는 알루미늄 합금 제품의 텍스처화된 표면의 제1 예의 이미지를 제공한다.
도 10b는 알루미늄 합금 제품의 텍스처화된 표면의 제2 예의 이미지를 제공한다.
도 10c는 알루미늄 합금 제품의 텍스처화된 표면의 제3 예의 이미지를 제공한다.
도 10d는 알루미늄 합금 제품의 텍스처화된 표면의 제4 예의 이미지를 제공한다.
도 10e는 알루미늄 합금 제품의 텍스처화된 표면의 제5 예의 이미지를 제공한다.
도 11a는 알루미늄 합금 제품에 대한 다양한 레이저 에너지 밀도에서의 접촉각을 나타내는 그래프를 제공한다.
도 11b는 다른 알루미늄 합금 제품에 대한 다양한 레이저 에너지 밀도에서의 접촉각을 나타내는 그래프를 제공한다.
도 12a는 미처리된 표면을 갖는 알루미늄 합금 제품에 대한 지형 분석을 제공한다.
도 12b는 패스 사이의 25% 중첩에서 레이저로 처리된 표면을 갖는 알루미늄 합금 제품에 대한 지형 분석을 제공한다.
도 12c는 패스 사이의 50% 중첩에서 레이저로 처리된 표면을 갖는 알루미늄 합금 제품에 대한 지형 분석을 제공한다.
도 13은 미처리된 표면을 갖고 금속 산화물 층을 포함하는 표면 근처 미세구조를 나타내는 알루미늄 합금 제품의 단면의 전자현미경 사진이다.
도 14는 상기 표면 근처 미세구조에서 금속간 입자를 나타내는 낮은 배율의 도 13의 단면의 전자현미경 사진이다.
도 15는 더 적은 표면 근처 미세구조를 갖는 표면 부근의 미세구조를 보여주는 50% 중첩에서 레이저로 처리된 표면을 가진 알루미늄 합금 제품의 단면의 전자현미경 사진이다.
도 16은 더 낮은 배율에서 표면 근처 미세구조에서 더 적은 수의 금속간 입자를 보여주는 도 15의 단면의 전자현미경 사진이다.
도 1은 금속 합금 제품을 제조하는 방법의 개략도를 제공한다.
도 2는 하나 이상의 결함을 포함하는 표면 근처 미세구조를 갖는 금속 합금 제품의 개략도를 제공한다.
도 3a는 미처리된 표면 및 하나 이상의 결함을 포함하는 표면 근처 미세구조를 갖는 금속 합금 제품의 단면의 개략도를 제공한다.
도 3b는 상기 표면 근처 미세구조에 영향을 미치고 깨끗한 표면을 제공하기 위해 표면 상으로 지향되는 고 에너지 빔을 갖는, 도 3a에 도시된 단면의 개략도를 제공한다.
도 3c는 상기 표면 근처 미세구조에 영향을 미치고 텍스처화된 표면을 제공하기 위해 세정된 표면 상으로 지향되는 고 에너지 빔을 갖는, 도 3b에 도시된 단면의 개략도를 제공한다.
도 4a는 금속 산화물 입자 및 금속간 입자를 포함하는 하나 이상의 결함을 포함하는 표면 근처 미세구조 및 미처리된 표면을 갖는, 금속 합금 제품의 단면의 개략도를 제공한다.
도 4b는 상기 표면 근처 미세구조에 영향을 미치고 깨끗한 표면을 제공하기 위해 상기 미처리된 표면 상으로 지향되는 고 에너지 빔을 갖는, 도 4a에 도시된 단면의 개략도를 제공한다.
도 4c는 상기 표면 근처 미세구조에 영향을 미치고 금속 산화물 입자 및 금속간 입자가 없는 활성화된 표면을 제공하기 위해 세정된 표면으로 지향되는 고 에너지 빔을 갖는, 도 4b에 도시된 단면의 개략도를 제공한다.
도 5는 제품은 개질된 표면을 갖고 접착제에 의해 다른 제품에 결합된, 형성된 금속 합금 제품의 개략도를 제공한다.
도 6a는 금속 산화물 입자 및 금속간 입자를 포함하는 하나 이상의 결함을 포함하는 표면 근처 미세구조 및 미처리된 표면을 갖는 금속 합금 제품의 단면의 개략도를 제공한다.
도 6b는 상기 미처리된 표면 위에 적용된 높은 열전도율의 응축된 증기층을 갖는 도 6a에 도시된 단면의 개략도를 제공한다.
도 6c는 표면 근처 미세구조에 영향을 미치고 금속 산화물 입자 및 금속간 입자가 없는 활성화된 표면을 제공하기 위해 응축된 증기층으로 지향되는 고 에너지 빔을 갖는, 도 6b에 도시된 단면의 개략도를 제공한다.
도 7은 고 에너지 빔을 각 면으로 향하게 하기 전에 서로 대향하는 2개의 면 각각에 적용된 응축된 증기층을 갖는, 알루미늄 합금 제품을 제조하기 위한 연속 코일 라인 공정의 개략도를 제공한다.
도 8은 다른 실시양태에서 응축된 증기 층이 제품의 각 면으로 향하는 고 에너지 빔을 갖기 전에 동시에 제품의 각 면에 적용되는 알루미늄 합금 제품을 제조하기 위한 연속 코일 라인 공정의 개략도를 제공한다.
도 9는 응축된 증기층으로 지향되는 고 에너지 빔을 갖기 전에 연속하여 제품의 각 면에 적용되거나 결합되는, 응축된 증기 또는 수성 또는 비수성 용액과 같은 더 두꺼운 층을 갖는, 알루미늄 합금 제품을 제조하기 위한 연속 코일 라인 공정의 개략도를 제공한다.
도 10a는 알루미늄 합금 제품의 텍스처화된 표면의 제1 예의 이미지를 제공한다.
도 10b는 알루미늄 합금 제품의 텍스처화된 표면의 제2 예의 이미지를 제공한다.
도 10c는 알루미늄 합금 제품의 텍스처화된 표면의 제3 예의 이미지를 제공한다.
도 10d는 알루미늄 합금 제품의 텍스처화된 표면의 제4 예의 이미지를 제공한다.
도 10e는 알루미늄 합금 제품의 텍스처화된 표면의 제5 예의 이미지를 제공한다.
도 11a는 알루미늄 합금 제품에 대한 다양한 레이저 에너지 밀도에서의 접촉각을 나타내는 그래프를 제공한다.
도 11b는 다른 알루미늄 합금 제품에 대한 다양한 레이저 에너지 밀도에서의 접촉각을 나타내는 그래프를 제공한다.
도 12a는 미처리된 표면을 갖는 알루미늄 합금 제품에 대한 지형 분석을 제공한다.
도 12b는 패스 사이의 25% 중첩에서 레이저로 처리된 표면을 갖는 알루미늄 합금 제품에 대한 지형 분석을 제공한다.
도 12c는 패스 사이의 50% 중첩에서 레이저로 처리된 표면을 갖는 알루미늄 합금 제품에 대한 지형 분석을 제공한다.
도 13은 미처리된 표면을 갖고 금속 산화물 층을 포함하는 표면 근처 미세구조를 나타내는 알루미늄 합금 제품의 단면의 전자현미경 사진이다.
도 14는 상기 표면 근처 미세구조에서 금속간 입자를 나타내는 낮은 배율의 도 13의 단면의 전자현미경 사진이다.
도 15는 더 적은 표면 근처 미세구조를 갖는 표면 부근의 미세구조를 보여주는 50% 중첩에서 레이저로 처리된 표면을 가진 알루미늄 합금 제품의 단면의 전자현미경 사진이다.
도 16은 더 낮은 배율에서 표면 근처 미세구조에서 더 적은 수의 금속간 입자를 보여주는 도 15의 단면의 전자현미경 사진이다.
본원에 설명되는 것은 주조 및/또는 압연 가공에 의해 생성된 금속 및 금속 합금 제품 및 이러한 제품을 생성하는 방법으로서, 미처리된 표면을 갖는 제품의 표면 근처 미세구조가 고 에너지 빔에 의해 영향을 받아 세정, 텍스처화, 활성화 또는 달리 준비 또는 처리된 표면이 될 수 있는 개질된 표면을 제공한다. 상기 미처리된 표면은 제품의 벌크 내 깊이에 영역을 차지할 수 있고 하나 이상의 결함을 포함할 수 있는 표면 근처 미세구조를 나타낼 수 있다. 몇몇 경우에는, 고 에너지 빔으로 처리하여 상기 표면 근처 미세구조 또는 결함을 줄이거나 제거할 수 있다. 상기 고 에너지 빔은 선택적으로 상기 금속 합금 제품의 표면과 접촉하는 액체 층으로 지향할 수 있으며, 상기 고에너지 빔, 상기 선택적인 액체 층 및 상기 표면 사이의 상호 작용은 상기 금속 합금 제품의 표면의 변형을 초래할 수 있다. 상기 개질된 표면은 미처리된 표면을 갖는 제품의 표면 근처 미세구조의 조성과 상이한 조성을 가질 수 있다. 이점으로는 향상된 페인트 접착력 및/또는 내부식성 뿐만 아니라 더 긴 팁 수명과 함께 더 나은 용접성(예컨대, 스폿 용접성)이 포함될 수 있다. 상기 개질된 표면은 미처리된 표면을 갖는 제품과 비교하여 개선된 습윤성 및/또는 결합 내구성 특성을 가질 수 있다. 예를 들어, 상기 개질된 표면은 상기 미처리된 표면과 비교하여 개선된 결합 내구성 조건을 나타낼 수 있다.
정의 및 설명
본원에 사용된 바와 같이, "발명", "상기 발명", "본 발명" 및 "상기 본 발명"이라는 용어는 본 특허 출원 및 하기 청구범위의 모든 주제를 광범위하게 지칭하도록 의도된다. 이러한 용어를 포함하는 설명은 본원에 설명된 주제를 제한하거나 하기 특허 청구범위의 의미 또는 범위를 제한하지 않는 것으로 이해되어야 한다.
본 설명에서는 AA 번호 및 "시리즈" 또는 "7xxx"와 같은 기타 관련 명칭으로 식별되는 합금을 참조한다. 알루미늄과 이의 합금을 명명하고 식별하는 데 가장 일반적으로 사용되는 번호 지정 시스템에 대한 이해를 위해서는, 둘 다 The Aluminum Association에서 발행된 "International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys" 또는 "Registration Record of Aluminum Association Alloy Designations and Chemical Compositions Limits for Aluminum Alloys in the Form of Castings and Ingot"을 참조하라.
본원에 사용된 바와 같이, 플레이트는 일반적으로 약 15mm 초과의 두께를 가진다. 예를 들어, 플레이트는 약 15mm 초과, 약 20mm 초과, 약 25mm 초과, 약 30mm 초과, 약 35mm 초과, 약 40mm 초과, 약 45mm 초과, 약 50mm 초과, 또는 약 100mm 초과의 두께를 갖는 알루미늄 제품을 지칭할 수 있다.
본원에 사용된 바와 같이, 셰이트(시트 플레이트로도 지칭됨)는 일반적으로 약 4mm 내지 약 15mm의 두께를 가진다. 예를 들어, 셰이트는 약 4mm, 약 5mm, 약 6mm, 약 7mm, 약 8mm, 약 9mm, 약 10mm, 약 11mm, 약 12mm, 약 13mm, 약 14mm, 또는 약 15mm의 두께를 가질 수 있다.
본원에 사용된 바와 같이, 시트는 일반적으로 약 4mm 미만의 두께를 갖는 알루미늄 제품을 지칭한다. 예를 들어, 시트는 약 4mm 미만, 약 3mm 미만, 약 2mm 미만, 약 1mm 미만, 약 0.5mm 미만, 또는 약 0.3mm 미만(예컨대, 약 0.2mm)의 두께를 가질 수 있다.
본 출원에서 합금 템퍼 또는 조건에 대한 참조가 이루어질 수 있다. 가장 일반적으로 사용되는 합금 템퍼 설명에 대한 이해는 "American National Standards (ANSI) H35 on Alloy and Temper Designation Systems"를 참조하라. F 조건 또는 템퍼는 가공된 알루미늄 합금을 나타낸다. O 조건 또는 템퍼는 어닐링 후의 알루미늄 합금을 나타낸다. 본원에 H 템퍼로도 지칭되는 Hxx 조건 또는 템퍼는 열처리(예컨대, 어닐링)를 포함하거나 포함하지 않는 냉간 압연 후에 열처리 불가능한 알루미늄 합금을 지칭한다. 적합한 H 템퍼는 HX1, HX2, HX3 HX4, HX5, HX6, HX7, HX8 또는 HX9 템퍼를 포함한다. T1 조건 또는 템퍼는 열간 가공에서 냉각되고 자연적으로 시효되는(예컨대, 실온에서) 알루미늄 합금을 나타낸다. T2 조건 또는 템퍼는 열간 가공, 냉간 가공 및 자연 시효로 냉각된 알루미늄 합금을 나타낸다. T3 조건 또는 템퍼는 열처리, 냉간 가공 및 자연 시효 처리된 알루미늄 합금 용액을 나타낸다. T4 조건 또는 템퍼는 열처리 및 자연 시효 처리된 알루미늄 합금 용액을 나타낸다. T5 조건 또는 템퍼는 열간 가공에서 냉각되고 인공 시효 처리된(높은 온도에서) 알루미늄 합금을 나타낸다. T6 조건 또는 템퍼는 열처리 및 인공 시효 처리된 알루미늄 합금 용액을 나타낸다. T7 조건 또는 템퍼는 열처리되고 인공 과시효 처리된 알루미늄 합금 용액을 나타낸다. T8x 조건 또는 템퍼는 열처리, 냉간 가공 및 인공 시효 처리된 알루미늄 합금 용액을 나타낸다. T9 조건 또는 템퍼는 열처리, 인공 시효 및 냉간 가공된 알루미늄 합금 용액을 나타낸다. W 상태 또는 템퍼는 용체화 열처리 후 알루미늄 합금을 나타낸다.
본원에 사용된 바와 같이, "금속 주조 제품", "주조 제품", "주조 알루미늄 합금 제품" 등과 같은 용어는 상호 교환 가능하며, 직접 칠 주조(직접 공주조 포함) 또는 반-연속 주조, 연속 주조(예컨대, 트윈 벨트 주조기, 트윈 롤 주조기, 블록 주조기 또는 기타 연속 주조기 사용 포함), 전자기 주조, 핫탑 주조 또는 기타 주조 방법에 의해 제조된 제품을 지칭한다.
본원에 사용된 "실온"의 의미는 약 15℃ 내지 약 30℃, 예를 들어 약 15℃, 약 16℃, 약 17℃, 약 18℃, 약 19℃, 약 20℃, 약 21℃, 약 22℃, 약 23℃, 약 24℃, 약 25℃, 약 26℃, 약 27℃, 약 28℃, 약 29℃ 또는 약 30℃의 온도를 포함할 수 있다. 본원에 사용된 "주변 조건"의 의미는 약 실온의 온도, 약 20% 내지 약 100%의 상대 습도, 및 약 975 밀리바(mbar) 내지 약 1050mbar의 기압을 포함할 수 있다. 예를 들어, 상대 습도는 약 20%, 약 21%, 약 22%, 약 23%, 약 24%, 약 25%, 약 26%, 약 27%, 약 28%, 약 29%, 약 30%, 약 31%, 약 32%, 약 33%, 약 34%, 약 35%, 약 36%, 약 37%, 약 38%, 약 39%, 약 40%, 약 41%, 약 42%, 약 43%, 약 44%, 약 45%, 약 46%, 약 47%, 약 48%, 약 49%, 약 50%, 약 51%, 약 52%, 약 53%, 약 54%, 약 55%, 약 56%, 약 57%, 약 58%, 약 59%, 약 60%, 약 61%, 약 62%, 약 63%, 약 64%, 약 65%, 약 66%, 약 67%, 약 68%, 약 69%, 약 70%, 약 71%, 약 72%, 약 73%, 약 74%, 약 75%, 약 76%, 약 77%, 약 78%, 약 79%, 약 80%, 약 81%, 약 82%, 약 83%, 약 84%, 약 85%, 약 86%, 약 87%, 약 88%, 약 89%, 약 90%, 약 91%, 약 92%, 약 93%, 약 94%, 약 95%, 약 96%, 약 97%, 약 98%, 약 99%, 약 100%, 또는 그 사이의 임의의 범위일 수 있다. 예를 들어, 기압은 약 975mbar, 약 980mbar, 약 985mbar, 약 990mbar, 약 995mbar, 약 1000mbar, 약 1005mbar, 약 1010mbar, 약 1015mbar, 약 1020mbar, 약 1025mbar, 약 1030mbar, 약 1035 mbar, 약 1040mbar, 약 1045mbar, 약 1050mbar, 또는 그 사이의 임의의 범위일 수 있다.
본원에 개시된 모든 범위는 그 안에 포함된 임의의 모든 하위 범위를 포함하는 것으로 이해되어야 한다. 예를 들어, "1 내지 10"의 명시된 범위는 최소값 1과 최대값 10(포함) 사이의 모든 하위 범위를 포함하는 것으로 간주되어야 하고, 즉, 모든 하위 범위가 최소값이 1 또는 그 초과, 예를 들어, 1 내지 6.1로 시작하고 최대값이 10 또는 그 미만, 예를 들어, 5.5 내지 10으로 끝나는 것이다. 달리 명시되지 않는 이상, 요소의 조성량을 지칭할 때의 “최대”의 표현은 요소가 선택 사항이며 해당 특정 요소의 0% 조성을 포함한다는 것을 의미한다. 달리 명시되지 않는 한, 모든 조성 백분율은 중량%(wt%)로 표시된다.
본 명세서에 사용된 바와 같이, "a", "an" 및 "the"의 의미는 문맥이 명백하게 달리 지시하지 않는 한 단수 및 복수 참조를 포함한다.
본 발명의 기술에서, 알루미늄 합금 제품 및 이의 구성요소는 이들의 요소 조성이 중량%(wt%)의 단위로 기술될 수 있다. 각 합금에서, 나머지는 알루미늄이며 모든 불순물의 합에 대해 최대 중량%는 0.15%이다.
입자 미세화제 및 탈산제, 또는 기타 첨가제와 같은 부수적 요소가 본 발명에 존재할 수 있으며, 본원에 기재된 합금 또는 본원에 기재된 합금의 특성으로부터 벗어나거나 크게 변경되지 않고 그 자체로 다른 특성을 추가할 수 있다.
물질 및 요소를 비롯한 불가피한 불순물은 알루미늄 고유의 특성 또는 가공장비와의 접촉으로 인한 침출로 인하여 합금에 소량 존재할 수 있다. 기술된 바와 같이, 일부 합금은 합금 요소, 부수적 요소 및 불가피한 불순물들을 제외한 임의의 요소를 약 0.25wt% 이하로 함유할 수 있다.
상기 합금 및 알루미늄 합금 제품의 제조 방법
본원에 기재된 합금은 당업자에게 공지된 임의의 적합한 주조 방법을 사용하여 주조될 수 있다. 몇 가지 비제한적인 예로서, 상기 주조 공정은 직접 냉각(DC) 주조 공정 또는 연속 주조(CC) 공정을 포함할 수 있다. 상기 연속 주조 공정은 한 쌍의 이동 대향 주조 표면(예컨대, 이동 대향 벨트, 롤 또는 블록), 한 쌍의 이동 대향 주조 표면 사이의 주조 공동, 및 용융 금속 주입기를 갖는 연속 주조 시스템을 포함할 수 있다. 상기 용융 금속 주입기는 용융 금속이 상기 용융 금속 주입기를 빠져나와 상기 주조 공동 내로 주입될 수 있는 단부 개구를 가질 수 있다.
주조 잉곳, 주조 슬래브 또는 기타 주조 제품은 임의의 적절한 방법으로 처리될 수 있다. 선택적인 처리 단계는 균질화, 열간 압연, 냉간 압연, 용체화 열처리 및 선택적인 사전 에이징 단계를 포함하지만 이에 국한되지 않는다. 주조 잉곳 또는 기타 주조 제품과 같은 주조 알루미늄 합금 제품은 당업자에게 공지된 임의의 수단에 의해 처리될 수 있다. 선택적으로 상기 처리 단계를 사용하여 시트를 제조할 수 있다.
본원에 기술된 주조 제품은 시트, 판 또는 기타 적합한 제품의 형태로 제품을 제조하는 데 사용될 수 있다. 예를 들어, 본원에 기재된 바와 같은 제품을 포함하는 플레이트는 균질화 단계에서 잉곳을 처리하거나 연속 주조기에서 제품을 주조한 후 열간 압연 단계에 의해 제조될 수 있다. 상기 열간 압연 단계에서, 상기 주조 제품은 200mm 두께 게이지 또는 그 이하(예컨대, 약 10mm 내지 약 200mm)로 열간 압연될 수 있다. 예를 들어, 상기 주조 제품은 약 10mm 내지 약 175mm, 약 15mm 내지 약 150mm, 약 20mm 내지 약 125mm, 약 25mm 내지 약 100mm, 약 30mm 내지 약 75mm, 또는 약 35mm 내지 약 50mm의 최종 게이지 두께를 갖는 플레이트로 열간 압연될 수 있다. 어떤 경우에는, 플레이트는 시트와 같이 더 얇은 금속 제품으로 압연될 수 있다.
도 1은 금속 합금 제품을 제조하는 예시적인 방법의 개요를 제공한다. 도 1의 방법은 도 1은 금속 합금(106)이 잉곳 또는 다른 주조 제품과 같은 주조 금속 합금 제품(107)을 생성하도록 주조되는 단계(105)에서 시작한다. 선택적 단계(110)에서, 주조 알루미늄 합금 제품일 수 있는 상기 주조 금속 합금 제품(107)은 균질화되어 균질화된 금속 합금 제품(111)을 생성한다. 단계(115)에서, 상기 균질화된 금속 합금 제품(111)은 하나 이상의 열간 압연 패스 및/또는 하나 이상의 냉간 압연 패스를 거쳐서, 알루미늄 합금 플레이트, 알루미늄 합금 판재 또는 알루미늄 합금 시트와 같은 알루미늄 합금 제품에 대응할 수 있는 압연된 금속 합금 제품(112)를 생성한다. 선택적으로, 상기 압연된 금속 합금 제품(112)은 금속 합금 제품을 형성하기 위해 하나 이상의 성형 또는 스탬핑 공정을 거친다.
알루미늄 합금일 수 있는 본원에 기재된 금속 또는 금속 합금은 임의의 적합한 주조 방법을 사용하여 주조될 수 있다. 예시적인 주조 공정에는 직접 냉각 주조(직접 냉각 공동 주조 포함), 반연속 주조, 연속 주조(예를 들어, 트윈 벨트 주조기, 트윈 롤 주조기, 블록 주조기 또는 기타 연속 주조기 사용 포함), 전자기 주조, 핫 탑 주조 또는 기타 주조 방법을 포함한다. 몇 가지 비제한적인 예로서, 상기 주조 공정은 직접 냉각(DC) 주조 공정 또는 연속 주조(CC) 공정을 포함할 수 있다. 예를 들어, 도 1은 단계(105)에서의 DC 주조 공정의 개략도를 도시한다. 연속 주조 시스템은 한 쌍의 이동하는 대향 주조 표면(예컨대, 이동 대향 벨트, 롤 또는 블록), 한 쌍의 이동 대향 주조 표면 사이의 주조 공동, 및 용융 금속 주입기를 포함할 수 있다. 상기 용융 금속 주입기는 용융 금속이 용융 금속 주입기를 빠져나와 상기 주조 공동 내로 주입될 수 있는 단부 개구를 가질 수 있다.
도 2는 금속 합금 제품(200)을 개략적으로 도시한다. 상기 금속 합금 제품(200)은 예를 들어, 플레이트, 셰이트 또는 시트일 수 있다. 상기 금속 합금 제품(200)은 압연 제품을 포함하거나 이에 상응할 수 있다. 상기 압연 제품은 상기 주조 공정 및/또는 상기 금속 합금 제품(200)의 용도에 따라 냉간 압연 제품 또는 열간 압연 제품일 수 있다. 상기 금속 합금 제품(200)은 상기 기술된 바와 같은 임의의 적합한 주조 및/또는 압연 공정에 의해 생산될 수 있다. 실시양태에서, 상기 압연 제품은 상기 금속 합금 제품(200)의 적용에 기초하여 선택될 수 있는 폭 및 두께를 갖는 단면이 비교적 직사각형일 수 있다. 상기 금속 합금 제품(200)은 예를 들어 판, 셰이트 또는 시트의 형태의 압연된 알루미늄 합금 제품일 수 있다.
상기 압연 제품은 표면 근처 미세구조(220) 및 벌크(230)를 포함할 수 있다. 압연 공정 동안, 압연 제품의 일부로서 표면 근처 미세구조(220)가 생성될 수 있다. 상기 표면 근처 미세구조(220)는 압연 제품의 표면 아래층에서 발생할 수 있고 표면 아래층의 일부 또는 실질적으로 전체를 차지할 수 있다. "표면 층" 또는 "베일비(Beilby) 층"으로도 알려진 표면 아래층은 상기 압연 제품의 표면으로부터 상기 압연 제품 두께의 깊이까지의 공간을 차지하는 압연 제품의 일부를 포함할 수 있다. 실시양태에서, 상기 압연 제품은 하나 초과의 표면을 포함할 수 있고/있거나 하나 초과의 표면 아래층을 가질 수 있다. 이러한 실시양태에서, 표면 근처 미세구조(220)는 각각의 표면 아래층에서 발생할 수 있다. 예를 들어, 상기 압연 제품은 두 개의 표면이 생성되도록 하는 두께를 가질 수 있는데, 하나의 표면은 상기 압연 제품의 상부에 있고 다른 하나는 상기 압연 제품의 바닥에 있으며, 각각의 표면은 서로 직접 대향한다. 상기 압연 제품의 측면에 대해 원주방향으로 연장되는 상기 압연 제품의 다른 4개의 측면은, 적어도 상기 상단 및 하단 표면과 동일하지 않을 정도로, 표면 아래층을 생성할 만큼 충분히 두껍지 않을 수 있고/있거나 표면 근처 미세구조를 생성하기에 충분한 압연 공정을 거치지 않을 수 있다. 그러한 예에서, 상기 2개의 표면 각각은 대응하는 표면 아래층을 가질 수 있다. 상기 대응하는 각각의 표면 아래층에는 표면 근처 미세구조(220)가 존재할 수 있다. 따라서, 다양한 실시양태에서, 상기 압연 제품은 다수의 표면 상에 또는 표면 상의 다수의 영역에서 표면 근처 미세구조(220)를 가질 수 있다.
실시양태에서, 상기 표면 근처 미세구조(220)는 표면 아래층 전체를 점유할 수 있지만, 일부 경우에 상기 표면 근처 미세구조(220)는 표면 아래층의 일부만을 점유할 수 있다. 상기 표면 근처 미세구조(220)는 상기 압연 제품의 표면으로부터 벌크(230)까지 제품 내부의 깊이까지 공간을 차지할 수 있다. 상기 표면 근처 미세구조(220)의 금속 합금 제품(200)으로의 깊이는 200nm 내지 400nm, 300nm 내지 500nm, 400nm 내지 600nm, 200nm 내지 600nm, 500nm 내지 700nm, 500nm 내지 800nm, 200nm 내지 800nm, 800nm 내지 1μm, 1μm 내지 5μm, 5μm 내지 10μm, 10μm 내지 15μm, 15μm 내지 20μm, 200nm 내지 20μm, 또는 이들의 임의의 하위 범위일 수 있다.
경계(225)는 표면 근처 미세구조(220)와 벌크(230) 사이에 존재할 수 있다. 상기 경계(225)는 상기 금속 합금 제품(200)의 조성이 벌크 조성으로도 지칭되는 벌크(230)의 조성으로 전이되는 깊이를 나타낼 수 있다. 상기 경계(225)는 상기 금속 합금 제품(200) 내에서 표면 근처 미세구조(220)가 존재하는 깊이에 존재할 수 있다. 상기 경계(225)는 상기 금속 합금 제품(200)의 표면에 평행하게 연장되거나 또는 일반적으로 평행할 수 있고, 상기 금속 합금 제품(200)의 전체 폭을 통해 연장될 수 있지만, 반드시 그럴 필요는 없다. 일부 실시양태에서, 상기 경계(225)는 별개의 깊이에서 발생할 수 있거나 깊이의 범위에 걸쳐 발생할 수 있다. 실시양태에서, 상기 경계(225)는 상기 표면 근처 미세구조(220)와 상기 벌크(230) 사이의 결정립계이거나, 그 위치에서 발생하거나 또는 이를 나타낼 수 있다. 상기 결정립계는 하나는 표면 근처 미세구조(220)에 대응하고 다른 하나는 벌크(230)에 대응하는 2개의 상이한 결정립 구조 사이를 묘사하는 경계일 수 있다. 예를 들어, 상기 표면 근처 미세구조(220)는 크고 작은 입자 크기 모두의 불균일한 분포와 같은 불균질한 입자 구조를 가질 수 있다. 대조적으로, 상기 벌크(230)는 크거나 작을 수 있는 균일한 입자 크기 분포와 같은 균질한(예를 들어, 균일하게 분포된) 입자 구조를 가질 수 있다. 이러한 예에서, 상기 경계(225)는 표면 근처 미세구조(220)의 불균일한 결정립 구조와 벌크(230)의 균질한 결정립 구조 사이의 결정립계일 수 있다. 실시양태에서, 상기 벌크(230)는 합금 및 가공 이력에 따라 상기 금속 합금 제품(200)에 내에 10μm 내지 45μm 사이의 표면으로부터의 깊이로 발생할 수 있다. 일부 경우에서, 균질한 입자 구조는 상기 벌크(230)의 임의의 주어진 부피의 특정 백분율이 동일하거나 거의 동일한 입자 크기를 가질 수 있음을 의미할 수 있다. 예를 들어, 균질한 그레인 구조는 상기 벌크(230)의 임의의 주어진 부피의 대략 70% 이상이 5nm 내지 200nm 범위 내의 평균 입자 크기와 같이 대략 동일한 입자 크기를 가진다는 것을 의미할 수 있다. 상이한 결정립 구조 균질성은 상기 표면 근처 미세구조(220) 및 상기 벌크(230)에 대한 상이한 충전 패턴에 의해 도2 및 다른 도면에서 표시될 수 있다.
상기 표면 근처 미세구조(220)는 상기 벌크의 조성과 상이한 조성을 가질 수 있다. 예를 들어, 상기 표면 근처 미세구조(220)의 조성은 하나 이상의 결함(240a 내지 240g)(집합적으로, 결함(240))을 포함할 수 있다. 상기 하나 이상의 결함(240)은 상기 알루미늄 합금 제품(212)의 기계적 및/또는 화학적 성능에 영향을 미칠 수 있다. 예를 들어, 하나 이상의 결함(240)은 알루미늄 합금 제품(212)의 부식 민감성을 증가시키고, 결합 내구성 성능을 감소시키고/시키거나 인장 및 전단 강도를 감소시킬 수 있다.
도 2에 도시된 바와 같이, 상기 하나 이상의 결함(240)은 다양한 결함을 포함할 수 있다. 예를 들어, 상기 결함(240)은 하나 이상의 내부 크랙(240a) 또는 표면 크랙(240d)을 포함할 수 있다. 상기 내부 크랙(240a) 및 상기 표면 크랙(240d)은 전사 크랙, 균열 및 미세 크랙을 포함할 수 있다. 상기 내부 크랙(240a) 및 상기 표면 크랙(240d)은 롤러에 의해 압연 제품에 가해지는 수직 전단 응력과 같은 압연 공정 중 압연 제품에 가해지는 응력 또는 변형 조건에 의해 발생할 수 있다. 도 2에 도시된 바와 같이, 상기 표면 크랙(240d)은 상기 표면 근처 미세구조(220)의 표면에서 발생하여 표면이 요철이거나 또는 불규칙하게 나타날 수 있다. 대조적으로, 상기 내부 크랙(240a)은 표면 근처 미세구조(220) 내에서 발생할 수 있다. 실시양태에서, 상기 내부 크랙(240a)은 상기 표면 근처 미세구조(220)의 표면에 평행하거나 또는 상기 표면 근처 미세구조(220)의 표면과 상대적으로 다른 방향에서, 상기 표면 근처 미세구조(220)를 통해 수평으로 연장될 수 있다.
실시양태에서, 공극(240b)은 상기 내부 크랙(240a) 및 상기 표면 크랙(240d)의 발달을 유도할 수 있다. 상기 공극(240b)과 같은 결함(240)에 의해 생성된 약한 부위는 크랙 개시를 위한 보다 활성인 부위를 제공할 수 있다. 상기 공극(240b)는 임의의 재료가 없는 상기 표면 근처 미세구조(220) 내의 공간을 포함하거나 이로 구성될 수 있다. 임의의 재료의 부재는 처리 동안 표면 근처 미세구조(220)로의 증기 혼입의 결과일 수 있거나, 상기 압연 제품 재료의 기계적 구조 및/또는 입자 조성의 결과일 수 있다.
하나 이상의 결함(240)은 또한 압연된 재료(240c)를 포함할 수 있다. 상기 압연된 재료(240c)는 예를 들어 압연된 산화물 및/또는 압연된 오일과 같은 열간 압연기 픽업을 포함할 수 있다. 상기 압연된 재료(240c)는 압연 공정 동안 표면 근처 미세구조(220) 내에 혼입된 갇힌 산화물 및 윤활제, 및 선택적으로 다른 압연된 불순물을 포함할 수 있다. 예를 들어, 압연 윤활제는 상기 압연 제품(212)의 압연 동안 상기 표면 근처 미세구조(220)에 혼입될 수 있다. 상기 표면 근처 미세구조(220)에 포획된 비정질 탄소 및/또는 탄화알루미늄은 압연 윤활제를 나타내거나 이에 상응할 수 있다. 압연된 산화물은 예를 들어 산화알루미늄 또는 산화마그네슘과 같은 금속 산화물을 포함할 수 있다. 금속 산화물은 상기 압연 제품의 표면 또는 근처에 있는 금속 요소가 가공 중에 산화되어 압연 제품에 포함될 때 생성될 수 있다. 압연된 재료(240c)는 또한 먼지, 오물, 물, 유기물, 무기물, 또는 상기 금속 합금 제품(200)의 표면 또는 접촉 표면(예컨대, 롤러 표면) 상에 존재하거나 침착될 수 있고, 예를 들어 열간 압연 또는 냉간 압연 동안, 표면 근처 미세구조(220)에 혼입되어진 기타 물질과 같은 다른 오염물을 포함할 수 있다.
상기 경계(225) 근처에 공극(240b) 및/또는 압연된 재료(240c)의 존재는 크랙 전파를 유도할 수 있다. 상기 공극(240b) 및 압연된 재료(240c)와 같은 경계(225)의 약한 지점은 상기 표면 근처 미세구조(220)와 상기 벌크(230) 사이에 크랙 전파 경로를 제공할 수 있다. 결함 사이의 경로는 우선적인 크랙 전파 경로일 수 있어서, 임의의 응력 조건은 상기 표면 근처 미세구조(220)와 상기 벌크(230) 사이에 내부 크랙(240a)의 생성을 유도할 수 있다. 응력 노출은 상기 벌크(230)로부터 상기 표면 근처 미세구조(220)의 부분적 또는 완전한 전단을 초래할 수 있다. 추가적으로, 임의의 내부 크랙(240a)은 추가적인 크랙을 유발할 수 있다. 따라서, 결함(240)의 존재는 상기 표면 근처 미세구조(220) 내에서 그리고 가능하게는 상기 벌크(230) 내로의 결함 생성의 해로운 연쇄 반응을 생성할 가능성이 있다.
실시양태에서, 상기 벌크(230)는 주로 알루미늄 및 합금 요소(250)를 포함할 수 있는 "벌크 조성"으로 본원에서 지칭되는 조성을 가질 수 있다. 알루미늄 합금 제품(200)의 비제한적인 예에 대한 예시적인 합금 요소(250)는 아연, 마그네슘, 구리, 크롬, 규소, 철 및/또는 망간을 포함하며 특정 합금에 의존하거나 정의될 수 있다. 도 2에 도시된 바와 같이, 상기 합금 요소(250)는 상기 벌크(230) 내에 공간적으로 균일하게(예컨대, 동일하게) 분포될 수 있다. 도 2에 묘사된 합금 요소(250)의 균질한 분포는 합금 요소(250)의 집합체가 발생하거나 합금 요소(250)가 재료의 입자 또는 덩어리로서 존재한다는 것을 의미하거나 요구하지 않을 수 있다. 오히려, 도 2에 묘사된 합금 요소(250)의 분포는 상기 합금 요소가 전체적으로 균일하게 분포된 알루미늄 고용체를 나타내는 것과 같이, 상기 합금 요소(250)의 균일한 분포의 개략도를 의미한다. 상기 합금 요소(250)의 균일한 분포는 상기 벌크 조성물의 임의의 주어진 부피의 특정 백분율이 동일한 부피의 임의의 다른 샘플과 동일하거나 실질적으로 동일한 양의 합금 요소(250)를 함유할 수 있음을 의미할 수 있다.
다양한 실시양태에서, 결함(240) 중 하나는 상기 합금 요소(250)의 불균일한 분포를 포함할 수 있다. 상기 합금 요소(250)의 고밀도 집단(240e)은 주조 및/또는 압연 공정 동안 표면 근처 미세구조(220) 내에서 발생할 수 있다. 상기 합금 요소(250) 중 일부는 서로 다른 확산 계수를 나타낼 수 있으며, 결과적으로 다른 합금 요소에 대한 확산 속도가 다르다. 즉, 상기 합금 요소(250)의 일부는 다른 합금 요소(250)와 상이한 속도로 확산될 수 있다. 따라서, 상기 압연 제품의 주조 및/또는 압연 동안, 특정 합금 요소는 상기 벌크(230) 내에 존재하는 다른 요소들보다 빠른 속도로, 상기 벌크(230)에서 표면으로 또는 상기 표면 근처 미세구조(220) 내로 확산될 수 있다. 특정 합금 요소(250)의 더 빠른 확산 속도는 상기 표면 근처 미세구조(220) 내에서 상기 합금 요소(250)의 불균등한 분포를 생성할 수 있다. 예를 들어, 일부 실시양태에서, 아연의 고밀도 집단(240e)은 상기 표면 근처 미세구조(220) 내에서 발생할 수 있는데, 이는 아연이 다른 합금 요소보다 처리 조건 하에서 더 높은 확산 속도를 가질 수 있기 때문이다. 다시 말하면, 도 2에 도시된 상기 고밀도 집단(240e)을 단지 도면으로 나타내는 것이고, 일부 경우에 합금 요소(250)의 클러스터가 존재할 수 있지만, 상기 합금 요소(250)의 고밀도 집단을 도시된 바와 같은 합금 요소의 클러스터로 제한하지 않는다는 것이 이해될 것이다. 오히려, 상기 표면 근처 미세구조(220)에서 고밀도 집단(240e)이 존재한다는 것은 상기 표면 근처 미세구조(220)에서 합금 요소의 농도가 평균적으로 상기 벌크(230)와 상이할 수 있음(예컨대, 더 높음)을 나타낼 수 있다.
다른 결함(240) 뿐만 아니라 상기 합금 요소의 불균일한 분포는 상기 금속 합금 제품(212)의 화학적 성능에 영향을 미칠 수 있다. 예를 들어, 상기 표면 근처 미세구조(220) 내의 결함(240)의 존재는 불완전한 커버리지 또는 고르지 못한 전처리 적용을 유발할 수 있다. 상기 결함(240)은 또한 결함(240) 및 합금 요소(250)의 불균일한 분포가 에칭 과정을 위한 일관되지 않은 매개물을 발생시킬 수 있기 때문에 에칭 전처리를 방해할 수 있다.
상기 고밀도 집단(240e)은 또한 또는 대안적으로 상기 금속 합금 제품(212)의 부식 감도를 증가시킬 수 있다. 상기 표면에서 또는 표면 근처에서, 낮은 활성화 에너지와 다른 결함(240)의 존재로 인해 상기 합금 요소(250)의 확산 속도가 1배 또는 2배 증가할 수 있다. 따라서, 상기 고밀도 집단(240e)은 부식을 개시할 가능성이 있는 표면 근처 미세구조(220) 내로 반응성 포켓 또는 영역을 전파할 수 있다. 특정 알루미늄 합금은 상기 합금 요소(250)의 고밀도 집단(240e)으로 인해 부식 민감성을 더 느끼기 쉬울 수 있다. 예를 들어, 7xxx 시리즈 알루미늄 합금은 더 높은 합금 요소(250) 조성으로 인해 고밀도 집단(240e)을 생성하는데 더 민감할 수 있다. 다른 알루미늄 합금 시리즈는 3 내지 4% 합금 요소를 포함할 수 있지만, 7xxx 시리즈 알루미늄 합금은 예를 들어 10% 이상의 합금 요소를 포함할 수 있다.
하나 이상의 결함(240)은 또한 금속간 입자(240f)를 포함할 수 있다. 주조 공정 동안, 철(Fe) 및 망간(Mn)을 함유하는 알루미늄 합금 제품은 알루미늄 및 철 또는 망간 중 하나 이상을 포함하는 금속간 입자(240f)를 생성할 수 있으며, 이는 예를 들어 압연 알루미늄 합금 제품(212)에 대해, 본원에서 Al-(Fe,Mn) 금속간 입자 또는 β-상 금속간 입자로 지칭될 수 있다. 규소(Si)가 존재할 때, 알루미늄, 규소, 및 본원에서 Al-(Fe,Mn)-Si 금속간 입자 또는 α-상 금속간 입자라고도 하는 철 또는 망간 중 하나 이상을 포함하는 금속간 입자가 또한 생성될 수 있다. 거의 모든 알루미늄 합금에는 일반적으로 일정량의 철과 규소가 존재하기 때문에, 많은 알루미늄 합금은 주조 시 이러한 금속간 입자를 포함할 수 있다.
이러한 입자 유형 각각은 다른 특성을 나타내며 상기 알루미늄 합금의 구조에 다른 방식으로 기여한다. 예를 들어, β-상 입자는 일반적으로 α-상 입자보다 더 크고 더 덩어리지거나 기하학적인 경향이 있는 반면, α-상 입자는 더 단단하고 일반적으로 β-상 입자보다 작은 경향이 있다. 열간 압연 및 냉간 압연 중에, 금속간 입자가 파손되어 예를 들어 이들의 크기, 분포 및 개수 밀도에 영향을 줄 수 있다.
주조 알루미늄 합금 제품에 금속간 입자가 있으면 유리할 수 있다. 예를 들어, 금속간 입자를 포함하는 알루미늄 합금은 상기 금속간 입자가 상기 알루미늄 합금 제품의 다른 부분보다 훨씬 더 단단할 수 있기 때문에 알루미늄 음료 용기를 생성하는 데 유리할 수 있다. 드로잉, 아이어닝 및 네킹 동안, 상기 단단한 금속간 입자는 다이 표면을 청소하는 데 기여하여 골링(galling)을 줄일 수 있다. 예를 들어, 상기 금속간 입자는 드로잉, 아이어닝 및 네킹 다이를 마모시키고, 다이 표면에 축적된 금속을 감소시키거나 제거할 수 있다. 다른 금속 합금 제품에서는, 표면 근처 미세구조(220)에 금속간 입자(240f)를 갖지 않는 것이 바람직할 수 있다.
하나 이상의 결함(240)은 또한 유기물, 오일, 탄화수소 및 기타 오염 물질(240g)을 포함할 수 있다. 주조 공정 및/또는 압연 공정 동안, 유기물, 오일, 탄화수소 및 기타 오염 물질(240g)이 도 2에 도시된 바와 같이 표면 근처 미세구조(220) 및/또는 벌크(230)에 도입될 수 있다. 이는 상기 금속 합금 제품(200) 제조와 관련된 공정에서 통상적으로 사용되는 윤활제 때문이다. 금속 합금 제품에서는, 표면 근처 미세구조(220)에서 유기물, 오일, 탄화수소 및 기타 오염 물질(240g)이 없는 것이 바람직할 수 있다.
결함(240)의 존재는 알루미늄 합금 제품이 에폭시 접착제와 같은 접착제를 사용하여 다른 제품 또는 재료에 접합되는 경우와 같이, 불량한 접합 성능에 기여할 수 있다. 결합 내구성 테스트는 상기 접합된 제품 사이에 생성된 결합의 강도를 평가하고, 알루미늄 합금 제품의 표면 근처 미세 구조가 장기간 사용 및 부식 조건 또는 주변 조건과 다른 조건 하에서 접착제와 강하게 결합하는 능력을 나타낼 수 있다. 테스트 중에, 예를 들어 에폭시 접착제에 의해 두 개의 알루미늄 합금 제품 사이에 접합이 생성된다. 그런 다음, 접합된 알루미늄 합금 제품은 변형 및/또는 기타 조건을 받는다. 예를 들어, 상기 결합된 알루미늄 합금 제품은 습한 조건 또는 건조 조건에 따라 염 용액에 침지될 수 있다. 하나 이상의 조건에서 일련의 사이클 후에 상기 알루미늄 합금 제품 간의 결합은 화학적 및 기계적 결함에 대해 평가된다. 알루미늄 합금 제품의 결합 내구성 성능은 상기 제품의 표면 근처 미세 구조의 반응성 및 부식 민감도를 나타내거나 이의 함수일 수 있다.
개시된 알루미늄 합금 제품의 사용 방법
본원에 설명된 알루미늄 합금 제품은 자동차 응용 분야 및 항공기 및 철도 응용 분야를 비롯한 기타 운송 응용 분야에 사용될 수 있다. 예를 들어, 상기 개시된 알루미늄 합금 제품은 성형 금속 제품 및 자동차 구조 부품, 예컨대 범퍼, 사이드 빔, 루프 빔, 크로스 빔, 필러 보강재(예컨대, A-필러, B-필러 및 C-필러), 내부 패널, 외부 패널, 측면 패널, 내부 후드, 외부 후드 또는 트렁크 리드 패널을 제조하는 데 사용될 수 있다. 본원에 설명된 알루미늄 합금 제품 및 방법은 또한 항공기 또는 철도 차량 응용 분야에서 예를 들어 외부 및 내부 패널을 제조하는 데 사용될 수 있다.
본원에 설명된 알루미늄 합금 제품 및 방법은 또한 전자 응용 분야에서도 사용될 수 있다. 예를 들어, 본원에 설명된 알루미늄 합금 제품 및 방법은 휴대폰 및 태블릿 컴퓨터를 포함하는 전자 장치용 하우징을 제조하는 데 사용될 수 있다. 일부 예에서, 상기 알루미늄 합금 제품은 휴대폰(예컨대, 스마트폰), 태블릿 바닥 섀시 및 기타 휴대용 전자 장치의 외부 케이싱을 위한 하우징을 제조하는 데 사용될 수 있다.
본원에 설명된 알루미늄 합금 제품 및 방법은 임의의 다른 원하는 응용 분야에서 사용될 수 있다.
금속 및 금속 합금 처리 방법
특히, 알루미늄, 알루미늄 합금, 마그네슘, 마그네슘 합금, 마그네슘 복합재 및 강철을 비롯한 금속 및 금속 합금, 및 생성된 처리된 금속 및 금속 합금을 처리하는 방법이 본원에 기재되어 있다. 일부 예에서, 본원에 기재된 방법에 사용하기 위한 금속은 알루미늄 합금, 예를 들어 1xxx 시리즈 알루미늄 합금, 2xxx 시리즈 알루미늄 합금, 3xxx 시리즈 알루미늄 합금, 4xxx 시리즈 알루미늄 합금, 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 7xxx 시리즈 알루미늄 합금 또는 8xxx 시리즈 알루미늄 합금을 포함한다. 일부 예에서, 본원에 기재된 방법에 사용하기 위한 재료는 알루미늄, 알루미늄 합금, 마그네슘, 마그네슘계 재료, 마그네슘 합금, 마그네슘 복합재, 티타늄, 티타늄계 재료, 티타늄 합금, 구리, 구리계 재료, 복합재, 복합재에 사용되는 시트 또는 기타 적절한 금속, 비금속 또는 재료의 조합을 포함한다. 롤 접합된 재료, 클래드 합금, 클래드 층, 탄소 섬유 함유 재료와 같은(이에 국한되지 않음) 복합 재료 또는 다양한 기타 재료와 같은 비일체형 및 일체형도 본원에 설명된 방법에 유용하다. 일부 예에서, 철을 함유하는 알루미늄 합금은 본원에 기재된 방법에 유용하다.
비제한적인 예로서, 본원에 기재된 방법에 사용하기 위한 예시적인 1xxx 시리즈 알루미늄 합금은 AA1100, AA1100A, AA1200, AA1200A, AA1300, AA1110, AA1120, AA1230, AA1230A, AA1235, AA1435, AA1145, AA1345, AA1445, AA1150, AA1350, AA1350A, AA1450, AA1370, AA1275, AA1185, AA1285, AA1385, AA1188, AA1190, AA1290, AA1193, AA1198, 또는 AA1199를 포함할 수 있다.
본원에 기재된 방법에 사용하기 위한 비제한적인 예시적인 2xxx 시리즈 알루미늄 합금은 AA2001, A2002, AA2004, AA2005, AA2006, AA2007, AA2007A, AA2007B, AA2008, AA2009, AA2010, AA2011, AA2011A, AA2111, AA2111A, AA2111B, AA2012, AA2013, AA2014, AA2014A, AA2214, AA2015, AA2016, AA2017, AA2017A, AA2117, AA2018, AA2218, AA2618, AA2618A, AA2219, AA2319, AA2419, AA2519, AA2021, AA2022, AA2023, AA2024, AA2024A, AA2124, AA2224, AA2224A, AA2324, AA2424, AA2524, AA2624, AA2724, AA2824, AA2025, AA2026, AA2027, AA2028, AA2028A, AA2028B, AA2028C, AA2029, AA2030, AA2031, AA2032, AA2034, AA2036, AA2037, AA2038, AA2039, AA2139, AA2040, AA2041, AA2044, AA2045, AA2050, AA2055, AA2056, AA2060, AA2065, AA2070, AA2076, AA2090, AA2091, AA2094, AA2095, AA2195, AA2295, AA2196, AA2296, AA2097, AA2197, AA2297, AA2397, AA2098, AA2198, AA2099, 또는 AA2199를 포함할 수 있다.
본원에 기재된 방법에 사용하기 위한 비제한적인 예시적인 3xxx 시리즈 알루미늄 합금은 AA3002, AA3102, AA3003, AA3103, AA3103A, AA3103B, AA3203, AA3403, AA3004, AA3004A, AA3104, AA3204, AA3304, AA3005, AA3005A, AA3105, AA3105A, AA3105B, AA3007, AA3107, AA3207, AA3207A, AA3307, AA3009, AA3010, AA3110, AA3011, AA3012, AA3012A, AA3013, AA3014, AA3015, AA3016, AA3017, AA3019, AA3020, AA3021, AA3025, AA3026, AA3030, AA3130, 또는 AA3065를 포함할 수 있다.
본원에 기재된 방법에 사용하기 위한 비제한적인 예시적인 4xxx 시리즈 알루미늄 합금은 AA4004, AA4104, AA4006, AA4007, AA4008, AA4009, AA4010, AA4013, AA4014, AA4015, AA4015A, AA4115, AA4016, AA4017, AA4018, AA4019, AA4020, AA4021, AA4026, AA4032, AA4043, AA4043A, AA4143, AA4343, AA4643, AA4943, AA4044, AA4045, AA4145, AA4145A, AA4046, AA4047, AA4047A, 또는 AA4147를 포함할 수 있다.
본원에 기재된 방법에 사용하기 위한 비제한적인 예시적인 5xxx 시리즈 알루미늄 합금은 AA5182, AA5183, AA5005, AA5005A, AA5205, AA5305, AA5505, AA5605, AA5006, AA5106, AA5010, AA5110, AA5110A, AA5210, AA5310, AA5016, AA5017, AA5018, AA5018A, AA5019, AA5019A, AA5119, AA5119A, AA5021, AA5022, AA5023, AA5024, AA5026, AA5027, AA5028, AA5040, AA5140, AA5041, AA5042, AA5043, AA5049, AA5149, AA5249, AA5349, AA5449, AA5449A, AA5050, AA5050A, AA5050C, AA5150, AA5051, AA5051A, AA5151, AA5251, AA5251A, AA5351, AA5451, AA5052, AA5252, AA5352, AA5154, AA5154A, AA5154B, AA5154C, AA5254, AA5354, AA5454, AA5554, AA5654, AA5654A, AA5754, AA5854, AA5954, AA5056, AA5356, AA5356A, AA5456, AA5456A, AA5456B, AA5556, AA5556A, AA5556B, AA5556C, AA5257, AA5457, AA5557, AA5657, AA5058, AA5059, AA5070, AA5180, AA5180A, AA5082, AA5182, AA5083, AA5183, AA5183A, AA5283, AA5283A, AA5283B, AA5383, AA5483, AA5086, AA5186, AA5087, AA5187, 또는 AA5088를 포함할 수 있다.
본원에 기재된 방법에 사용하기 위한 비제한적인 예시적인 6xxx 시리즈 알루미늄 합금은 AA6101, AA6101A, AA6101B, AA6201, AA6201A, AA6401, AA6501, AA6002, AA6003, AA6103, AA6005, AA6005A, AA6005B, AA6005C, AA6105, AA6205, AA6305, AA6006, AA6106, AA6206, AA6306, AA6008, AA6009, AA6010, AA6110, AA6110A, AA6011, AA6111, AA6012, AA6012A, AA6013, AA6113, AA6014, AA6015, AA6016, AA6016A, AA6116, AA6018, AA6019, AA6020, AA6021, AA6022, AA6023, AA6024, AA6025, AA6026, AA6027, AA6028, AA6031, AA6032, AA6033, AA6040, AA6041, AA6042, AA6043, AA6151, AA6351, AA6351A, AA6451, AA6951, AA6053, AA6055, AA6056, AA6156, AA6060, AA6160, AA6260, AA6360, AA6460, AA6460B, AA6560, AA6660, AA6061, AA6061A, AA6261, AA6361, AA6162, AA6262, AA6262A, AA6063, AA6063A, AA6463, AA6463A, AA6763, A6963, AA6064, AA6064A, AA6065, AA6066, AA6068, AA6069, AA6070, AA6081, AA6181, AA6181A, AA6082, AA6082A, AA6182, AA6091, 또는 AA6092를 포함할 수 있다.
본원에 기재된 방법에 사용하기 위한 비제한적인 예시적인 7xxx 시리즈 알루미늄 합금은 AA7011, AA7019, AA7020, AA7021, AA7039, AA7072, AA7075, AA7085, AA7108, AA7108A, AA7015, AA7017, AA7018, AA7019A, AA7024, AA7025, AA7028, AA7030, AA7031, AA7033, AA7035, AA7035A, AA7046, AA7046A, AA7003, AA7004, AA7005, AA7009, AA7010, AA7011, AA7012, AA7014, AA7016, AA7116, AA7122, AA7023, AA7026, AA7029, AA7129, AA7229, AA7032, AA7033, AA7034, AA7036, AA7136, AA7037, AA7040, AA7140, AA7041, AA7049, AA7049A, AA7149,7204, AA7249, AA7349, AA7449, AA7050, AA7050A, AA7150, AA7250, AA7055, AA7155, AA7255, AA7056, AA7060, AA7064, AA7065, AA7068, AA7168, AA7175, AA7475, AA7076, AA7178, AA7278, AA7278A, AA7081, AA7181, AA7185, AA7090, AA7093, AA7095, 또는 AA7099를 포함할 수 있다.
본원에 기재된 방법에 사용하기 위한 비제한적인 예시적인 8xxx 시리즈 알루미늄 합금은 AA8005, AA8006, AA8007, AA8008, AA8010, AA8011, AA8011A, AA8111, AA8211, AA8112, AA8014, AA8015, AA8016, AA8017, AA8018, AA8019, AA8021, AA8021A, AA8021B, AA8022, AA8023, AA8024, AA8025, AA8026, AA8030, AA8130, AA8040, AA8050, AA8150, AA8076, AA8076A, AA8176, AA8077, AA8177, AA8079, AA8090, AA8091, 또는 AA8093을 포함할 수 있다.
본 개시내용에 따른 방법은 표준적인 기술, 예컨대 화학적 또는 습식 에칭 기술, 전환 코팅, 건식 세정 공정, 예컨대 마이크로 블라스팅, 매크로 블라스팅, 이산화탄소 드라이아이스 충격 및 블라스팅, 또는 이들의 조합과 같은 임의의 기계적 표면 준비를 사용하지 않고, 알루미늄 합금 제품의 표면을 개질하여, 예를 들어 표면에 존재하는 표면 근처 미세구조를 제거하거나 변경한다. 유리하게는, 상기 개시된 방법은 사용을 위해 세정 및/또는 활성화된 것과 같이 개질된 알루미늄 합금 제품 상에 표면을 생성할 수 있고, 우수한 코팅 침착 및 접착력, 페인트 접착력, 매우 내구성 있는 접착 결합 등을 나타낼 수 있다. 또한, 상기 개시된 방법은 화학적 에칭, 세정 및/또는 전환 코팅에 일반적으로 사용되는 습식 섹션을 사용하지 않고 이러한 조건을 달성할 수 있어 알루미늄 합금 제품 처리가 단순화되고 또한 바람직하지 않고, 값 비싸고, 및/또는 어떤 경우에는 위험하거나 독성이 있는 화학 물질의 사용을 줄이거나 제거할 수 있다. 어떤 경우에는, 화학적 에칭, 세정, 기계적 표면 준비 및/또는 전환 코팅에 일반적으로 사용되는 습식 섹션이 여전히 사용될 수 있다. 어떤 경우에는 건식 처리 또는 화학적 전처리가 필요 없는 기술만 사용된다.
도 3a 내지 도 3c는 금속 합금 기판(300) 상에 존재하는 표면 근처 미세구조를 변형시키는 방법을 예시한다. 기판(300)은 압연 알루미늄 합금 제품과 같은 전술한 바와 같은 금속 합금 제품일 수 있다. 도 3에서, 기판(300)은 도 2에서 표면 근처 미세구조(220) 및 벌크(230) 각각에 대해 유사하게 설명된 바와 같이, 표면 근처 미세구조(320) 및 벌크 미세구조(330)를 가진다. 표면 근처 미세구조(320)는 미처리된 표면(305)을 포함한다. 미처리된 표면은 화학적 또는 습식 에칭 기술, 기계적 표면 준비 기술, 및/또는 전처리(예컨대, 전환 코팅) 기술을 비롯한 표면 처리 또는 개질을 거치지 않은 압연 표면에 해당할 수 있으나, 이에 국한되지 않는다. 일부 실시양태에서, 기판(300)의 적어도 하나의 표면(305), 또는 일부 노출된 표면, 또는 모든 노출된 표면이 처리되지 않는다. 기판(300)의 표면 근처 미세구조(320)는, 도 2와 관련하여 설명된 결함(240a 내지 240g)과 유사하게, 도 3a에 도시된 바와 같이 결함(340a 내지 340g) 중 적어도 일부를 포함한다.
도 3b에 도시된 바와 같이, 고에너지 빔(355)은 (도 3a의) 표면(305)을 물리적으로 개질하고 결함(340) 중 적어도 일부가 없는 세정된 표면(306)을 제공하기 위해 미처리된 표면(305) 상으로 지향된다. 실시양태에서, 상기 세정된 표면(306)은 표면 근처 미세구조(321)를 여전히 포함할 수 있지만, 결함(340)은 실질적으로 없다. 특히, 상기 세정된 표면(306)은 예를 들어 유기물, 오일 및 탄화수소(340g)가 실질적으로 없을 수 있다.
도 3a의 표면 근처 미세구조(320)는 두께 t1을 가진다. 도 3b의 표면 근처 미세구조(321)는 두께는 t2를 가진다. 고에너지 빔(355)은 상기 표면 근처 미세구조(320)의 적어도 일부를 제거할 수 있다. 다시 말해서, 상기 고에너지 빔(355)을 미처리된 표면(305) 상으로 지향시킨 후, 세정된 표면(306)과 관련된 표면 근처 미세구조(321)의 두께 t2는 미처리된 표면(305)과 관련된 표면 근처 미세구조(320)의 두께 t1에 비해 감소될 수 있다.
상기 고에너지 빔(355)은 도 3c에 도시된 바와 같이 텍스처화된 표면(307)을 제공하도록 표면을 추가로 개질하기 위해 (도 3b의) 세정된 표면(306) 상으로 지향될 수 있다. 도 3c의 텍스처화된 표면(307)과 함께 표면 근처 미세구조(322)는 두께 t3를 가진다. 고에너지 빔(355)을 세정된 표면(306) 상으로 지향시킨 후, 텍스처화된 표면(307)과 관련된 표면 근처 미세구조(322)의 두께 t3는 세정된 표면(306)과 관련된 표면 근처 미세구조(321)의 두께 t2에 비해 더 감소될 수 있다. 선택적으로, 상기 표면 근처 미세구조(322)는 0의 두께 t3를 제공하도록 완전히 제거되거나 개질될 수 있어, 벌크(330)가 상부 표면으로서 노출될 수 있고 텍스처화된 표면(307)을 포함하거나 이와 연관될 수 있다. 일부 실시양태에서, 두께 t3 ≤ 두께 t2 ≤ 두께 t1이다. 상기 텍스처화된 표면(307)은 텍스처 요소의 메쉬, 스트라이프, 물결선, 피트 홈, 표면 요철 중 적어도 하나, 또는 이들의 조합을 포함할 수 있다. 상기 텍스처화된 표면(307)을 개질/최적화하기 위한 변수는 스폿 크기, 중첩, 빔 에너지, 래스터 패턴, 래스터 속도 및 펄스 주파수와 같은 레이저 파라미터를 포함할 수 있다. 텍스처는 Sa(3D 표면 거칠기 측정), Sdr(복잡도는 투영된 표면적에 대한 실제 현상된 표면의 면적 또는 현상된 계면 면적 비율로 정의됨), Spk(3D 표면 피크 높이 측정), Spc 피크 수, Sv 또는 Sz(텍스처화 깊이), 왜도 등으로 정의될 수 있다.
유리하게는, 고 에너지의 빔(355)에 대한 노출에 의해 세정된 표면(306) 또는 텍스처화된 표면(307)을 생성하도록 상기 표면(305)을 개질하는 것은 표면의 습윤성 특성을 상대적으로 덜 습윤성에서 상대적으로 더 습윤성으로 변경할 수 있다. 추가적으로 또는 대안적으로, 고에너지 빔(355)에 노출에 의해 세정된 표면(306) 또는 텍스처화된 표면(307)을 생성하도록 표면(305)을 개질하는 것은 상대적으로 더 약한 결합에서 상대적으로 더 강한 결합으로 표면에 대한 접착제의 결합을 강화할 수 있다. 추가적으로 또는 대안적으로, 고에너지 빔(355)에 노출되어 세정된 표면(306) 또는 텍스처화된 표면(307)을 생성하도록 표면(305)을 개질하는 것은 상대적으로 더 부식성인 활성 수준에서 상대적으로 덜 부식성 있는 활성 수준으로 표면의 부식 가능성을 감소시킬 수 있다. 추가적으로 또는 대안적으로, 고에너지 빔(355)의 노출에 의해 세정된 표면(306) 또는 텍스처화된 표면(307)을 생성하도록 표면(305)을 개질하는 것은 상대적으로 더 높은 부식 전위에서 상대적으로 더 낮은 부식 전위로 표면의 부식 전위를 감소시킬 수 있다. 추가적으로 또는 대안적으로, 고에너지 빔(355)의 노출에 의해 세정된 표면(306) 또는 텍스처화된 표면(307)을 생성하도록 표면(305)을 개질하는 것은 표면과 다른 제품 사이의 결합의 결합 내구성을 상대적으로 더 작은 결합 내구성에서 상대적으로 더 큰 결합 내구성 또는 더 높은 성능의 결합 내구성으로 변경시킬 수 있다. 실시양태에서, 도 3c에서와 같은 텍스처화된 표면(307)은 FLTM BV 101-07 표준 테스트 또는 기타 표준 테스트에 따라, 적어도 35 사이클, 또는 적어도 40 사이클, 또는 적어도 45 사이클, 또는 적어도 50 사이클, 또는 적어도 55 사이클, 또는 적어도 60 사이클, 또는 적어도 65 사이클, 또는 적어도 70 사이클, 또는 적어도 75 사이클, 또는 적어도 80 사이클, 또는 적어도 85 사이클, 또는 적어도 90 사이클, 또는 적어도 95 사이클, 또는 적어도 100 사이클, 또는 적어도 105 사이클, 또는 적어도 110 사이클, 또는 적어도 115 사이클, 또는 적어도 120 사이클, 또는 적어도 125 사이클, 또는 그 이상의 결합 내구성을 나타낼 수 있다.
기판(300)은 알루미늄, 알루미늄 합금, 마그네슘, 마그네슘계 재료, 마그네슘 합금, 마그네슘 복합재, 티타늄, 티타늄계 재료, 티타늄 합금, 구리, 구리계 재료, 복합재, 복합재에 사용된 시트를 포함하는 비철 재료, 또는 사용된 특정 합금 또는 금속에 따라 복합재 또는 기타 적절한 금속, 비금속 또는 재료의 조합을 포함할 수 있다. 일부 실시양태에서, 기판(300)은 알루미늄 합금, 마그네슘 합금, 마그네슘 복합재, 강철, 또는 이들의 임의의 조합을 포함한다. 일부 실시양태에서, 기판(400)은 알루미늄 합금이다. 유용한 알루미늄 합금은 이전에 설명된 것들 중 임의의 것, 예를 들어 1xxx 시리즈 알루미늄 합금, 2xxx 시리즈 알루미늄 합금, 3xxx 시리즈 알루미늄 합금, 4xxx 시리즈 알루미늄 합금, 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 7xxx 시리즈 알루미늄 합금 또는 8xxx 시리즈 알루미늄 합금을 포함한다.
도 3b 및 도 3c에 도시된 바와 같이, 상기 고에너지 빔(355)은 레이저에 의해 제공될 수 있다. 상기 레이저는 연속 레이저, 펄스 레이저, 나노초 펄스 레이저, 피코초 펄스 레이저 및/또는 펨토초 펄스 레이저 중에서 선택된 적어도 하나일 수 있다. 상기 레이저는 이테르븀, Nd-YAG, CO2 또는 엑시머로부터 선택된 적어도 하나일 수 있거나, 원하는 에너지 밀도를 제공하는 임의의 적합한 레이저일 수 있다.
도 3b 및 3c에 도시된 바와 같이, 상기 고에너지 빔(355)은 예를 들어 10 mJ/mm2 내지 150 mJ/mm2의 에너지 밀도를 가질 수 있다. 상기 에너지 밀도는 선택적으로 10 mJ/mm2 내지 30 mJ/mm2, 20 mJ/mm2 내지 40 mJ/mm2, 30 mJ/mm2 내지 50 mJ/mm2, 40 mJ/mm2 내지 60 mJ/mm2, 50 mJ/mm2 내지 70 mJ/mm2, 60 mJ/mm2 내지 80 mJ/mm2, 70 mJ/mm2 내지 90 mJ/mm2, 80 mJ/mm2 내지 100 mJ/mm2, 90 mJ/mm2 내지 110 mJ/mm2, 100 mJ/mm2 내지 120 mJ/mm2, 110 mJ/mm2 내지 130 mJ/mm2, 120 mJ/mm2 내지 140 mJ/mm2, 130 mJ/mm2 내지 150 mJ/mm2, 또는 이들의 임의의 하위 범위일 수 있다.
표면과 액체, 예컨대 물, 액체 접착제, 또는 유기 또는 무기 윤활제 사이의 접촉각이 결정될 수 있고, 예를 들어 습윤성을 평가하기 위해 표면을 처리하는 데 사용되는 에너지 빔의 에너지 밀도에 따라 선택적으로 달라질 수 있다. 본원에 언급된 접촉각은 일반적으로 표면과 물의 접촉각으로 표현된다. 어떤 경우에는 상기 고에너지 빔의 에너지 밀도가 증가함에 따라 상기 접촉각이 원래 표면에 비해 감소한다. 예를 들어, 원본 기판은 약 75도의 접촉각을 가질 수 있으며, 이 각도는 레이저 광과 같은 고에너지 빔에 노출되어 표면이 처리됨에 따라 감소할 수 있다. 낮은 접촉각은 개선된 표면 습윤성을 반영하고 또한 상기 개질된 표면을 다른 기판 또는 제품과 결합하기 위한 결합 내구성 특성의 개선을 반영할 수 있다. 실시양태에서, 상기 고에너지 빔의 에너지 밀도는 고에너지 빔에 노출될 때 상기 표면의 접촉각을 감소시키기에 충분하다. 일부 실시양태에서, 상기 개질된 표면의 접촉각은 최대 20도, 최대 15도, 또는 최대 10도이다. 일부 실시양태에서, 상기 텍스처화된 표면의 접촉각은 최대 20도, 최대 15도, 또는 최대 10도이다. 선택적으로, 물방울과 표면의 접촉각은 0도 내지 20도, 예를 들어 0도 내지 5도, 0도 내지 10도, 0도 내지 15도, 5도 내지 10도, 5도에서 15도, 5도에서 20도, 10도에서 15도, 10도에서 20도, 또는 15도에서 20도, 또는 그 사이의 어느 곳일 수 있다.
본 개시내용에 따른 다른 방법은 화학적 또는 습식 에칭 기술, 기계적 표면 준비 기술, 및/또는 전환 코팅을 사용하지 않고 표면 근처 미세구조를 개질한다. 도 4a 내지 도 4c는 표면 근처 미세구조를 개질하는 방법을 예시한다. 도 4a에 도시된 바와 같이, 금속 합금 기판(400)이 제공된다. 기판(400)은 알루미늄 합금 제품과 같이 전술한 바와 같은 금속 합금 제품일 수 있다. 기판(400)은 도 2 및 도 3a와 관련하여 유사하게 설명된 바와 같이 표면 근처 미세구조(420) 및 벌크 미세구조(430)를 갖는다. 상기 표면 근처 미세구조(420)는 미처리된 표면(405)을 포함한다. 미처리된 표면(405)은 화학적 또는 습식 에칭 기술, 기계적 표면 준비 기술 및/또는 전환 코팅을 포함하지만 이에 제한되지 않는 어떠한 표면 처리 또는 변형도 겪지 않았다. 일부 실시양태에서, 기판(400)의 적어도 하나의 표면(405), 또는 일부 노출된 표면, 또는 모든 노출된 표면이 처리되지 않는다. 기판(400)의 표면 근처 미세구조(420)는, 도 2에 대하여 설명된 결함(240a 내지 240g)과 유사하게, 도 4a에 도시된 바와 같이 결함(440a 내지 440g) 중 적어도 일부를 포함한다. 도 4a에 도시된 바와 같이, 표면 근처 미세구조(420)는 결함(440)을 포함한다. 결함(440)은 복수의 금속 산화물(440c), 복수의 금속간 입자(440f), 및 유기물, 오일 및 탄화수소(440g)를 포함하는 압연된 재료를 포함한다. 결함(440)은 또한 내부 크랙(440a), 공극(440b), 표면 크랙(440d), 및 합금 요소(440e)의 고밀도 집단을 포함하는 결함을 포함할 수 있다.
도 4b에 도시된 바와 같은 고에너지 빔(455)은 (도 4a의) 미처리된 표면(405) 상으로 향하여 결함(440)의 적어도 일부가 없는 세정된 표면(406)을 제공하도록 표면을 물리적으로 개질한다. 실시양태에서, 상기 세정된 표면(406)은 표면 근처 미세구조(421)을 여전히 포함할 수 있지만, 그러나 실질적으로 결함(440g)은 없다. 구체적으로, 상기 세정된 표면(406)은 유기물, 오일 및 탄화수소(440g)가 실질적으로 없을 수 있다.
도 4a의 표면 근처 미세구조(420)는 두께 t4를 가진다. 도 4b의 표면 근처 미세구조(421)는 두께 t5를 가진다. 고에너지 빔(455)은 상기 표면 근방 미세구조(420)의 적어도 일부를 제거할 수 있다. 다시 말해서, 고 에너지빔(455)를 미처리된 표면(405) 상에 지행시킨 후에, 세정된 표면(406)과 관련된 표면 근방 미세구조(420)의 두께 t5는 미처리된 표면(405)와 관련된 표면 근처 미세구조(420)의 두께 t4에 비해 감소될 수 있다.
고 에너지의 빔(455)은, 선택적으로 표면 근처 미세구조(422)를 갖는 도 4c에 도시된 바와 같은 활성화된 표면(407)을 제공하도록 표면을 추가로 개질하기 위해 (도 4b의) 세정된 표면(406) 상으로 지향될 수 있다. 상기 세정된 표면(406) 상으로 지향된 고에너지 빔은 복수의 금속 산화물(440c) 및 복수의 금속간 입자(440f) 중 적어도 하나를 용융함으로써 상기 표면 근처 미세구조에 영향을 미친다. 상기 용융된 입자는 벌크 조성물에 혼입될 수 있다. 표면 근처 미세구조(422)와 관련된 활성화된 표면(407)에는 복수의 금속 산화물(440c) 및 복수의 금속간 입자(440f) 중 적어도 하나가 실질적으로 없다. 실시양태에서, 상기 표면 근처 미세구조(422)와 관련된 활성화된 표면(407)에는 금속 산화물(440c) 및 금속간 입자(440f)가 실질적으로 없다. 실시양태에서, 도 4c의 상기 활성화된 표면(407)과 함께 상기 표면 근처 미세구조(422)는 두께 t6을 가진다. 상기 고에너지 빔(455)을 세정된 표면(406) 상으로 지향시킨 후, 활성화된 표면(407)과 관련된 표면 근처 미세구조(422)의 두께 t6는 세정된 표면(406)과 관련된 표면 근처 미세구조(421)의 두께 t5 에 비해 더 감소될 수 있다. 선택적으로, 상기 표면 근처 미세구조(420, 421, 422)는 0의 두께 t6를 제공하도록 완전히 제거되거나 개질될 수 있어, 벌크(430)가 상부 표면으로서 노출될 수 있고 이를 포함하거나 활성화된 표면(407)과 관련될 수 있다. 일부 실시양태에서, 두께 t6 ≤ 두께 t5 ≤ 두께 t4이다. 실시양태에서, 상기 표면 근처 미세구조는 약 10μm의 깊이까지 제거된다. 다른 실시양태에서, 상기 표면 근처 미세구조는 약 5μm의 깊이까지 제거된다. 다시 말해서, 두께 t6은 상기 기판 표면에 고에너지 빔(455)을 지향한 결과 두께 t4 보다 최대 약 10μm, 또는 최대 약 5μm 만큼 작다.
유리하게는, 고 에너지의 빔(455)에 대한 노출에 의해 세정된 표면(406) 또는 활성화된 표면(407)을 생성하도록 상기 표면(405)을 개질하는 것은 상기 표면의 습윤성 특성을 상대적으로 덜 습윤성에서 상대적으로 더 습윤성으로 변경할 수 있다. 추가적으로 또는 대안적으로, 고에너지 빔(455)의 노출에 의해 세정된 표면(406) 또는 활성화된 표면(407)을 생성하도록 표면(405)을 개질하는 것은 상대적으로 약한 결합에서 상대적으로 더 강한 결합으로 표면에 대한 접착제의 결합을 강화할 수 있다. 추가적으로 또는 대안적으로, 고에너지 빔(455)에 노출되어 세정된 표면(406) 또는 활성화된 표면(407)을 생성하도록 표면(405)을 개질하는 것은 상대적으로 부식성이 높은 활성 수준에서 상대적으로 덜 부식성인 활성 수준으로 표면의 부식 가능성을 감소시킬 수 있다. 추가적으로 또는 대안적으로, 고에너지 빔(455)에 노출되어 세정된 표면(406) 또는 활성화된 표면(407)을 생성하도록 표면(405)을 개질하는 것은 표면의 부식 전위를 상대적으로 더 높은 부식 전위에서 상대적으로 더 낮은 부식 전위로 감소시켜 상기 표면을 전기화학적으로 더 불활성으로 만들 수 있다. 추가적으로 또는 대안적으로, 고에너지 빔(455)의 노출에 의해 세정된 표면(406) 또는 활성화된 표면(407)을 생성하도록 표면(405)을 개질하는 것은 표면과 다른 제품 사이의 결합의 결합 내구성을 상대적으로 더 작은 결합 내구성에서 상대적으로 더 큰 결합 내구성 또는 더 높은 성능의 결합 내구성으로 변경할 수 있다. 실시양태에서, 도 4c에서와 같은 활성화된 표면(407)은 FLTM BV 101-07 표준 테스트 또는 기타 표준 테스트에 따라, 적어도 35 사이클, 또는 적어도 40 사이클, 또는 적어도 45 사이클, 또는 적어도 50 사이클, 또는 적어도 55 사이클, 또는 적어도 60 사이클, 또는 적어도 65 사이클, 또는 적어도 70 사이클, 또는 적어도 75 사이클, 또는 적어도 80 사이클, 또는 적어도 85 사이클, 또는 적어도 90 사이클, 또는 적어도 95 사이클, 또는 적어도 100 사이클, 또는 적어도 105 사이클, 또는 적어도 110 사이클, 또는 적어도 115 사이클, 또는 적어도 120 사이클, 또는 적어도 125 사이클, 또는 그 이상의 결합 내구성을 나타낼 수 있다.
기판(400)은 알루미늄, 알루미늄 합금, 마그네슘, 마그네슘계 재료, 마그네슘 합금, 마그네슘 합성물, 티타늄, 티타늄계 재료, 티타늄 합금, 구리, 구리계 재료, 복합재, 복합재에 사용되는 시트를 포함하는 비철 재료, 또는 사용된 특정 합금 또는 금속에 따라 기타 적절한 금속, 비금속 또는 재료의 조합을 포함할 수 있다. 일부 실시양태에서, 기판(400)은 알루미늄 합금, 마그네슘, 마그네슘 합금, 마그네슘 복합재, 강철, 또는 이들의 임의의 조합을 포함한다. 일부 실시양태에서, 기판(400)은 알루미늄 합금이다. 유용한 알루미늄 합금은 이전에 설명된 것들 중 임의의 것, 예를 들어 1xxx 시리즈 알루미늄 합금, 2xxx 시리즈 알루미늄 합금, 3xxx 시리즈 알루미늄 합금, 4xxx 시리즈 알루미늄 합금, 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 7xxx 시리즈 알루미늄 합금 또는 8xxx 시리즈 알루미늄 합금을 포함한다.
상기 고에너지 빔(455)은 도 4b 및 도 4c에 도시된 바와 같이, 레이저에 의해 제공될 수 있다. 상기 레이저는 연속 레이저, 펄스 레이저, 나노초 펄스 레이저, 피코초 펄스 레이저 또는 펨토초 펄스 레이저 중에서 선택된 적어도 하나일 수 있다. 상기 레이저는 이테르븀, Nd-YAG, CO2 및 엑시머 중에서 선택된 적어도 하나일 수 있으며, 원하는 에너지 밀도를 제공하는 임의의 적합한 레이저일 수 있다. 상기 레이저는 약 200nm 내지 약 1500nm와 같은 임의의 적합한 파장을 가질 수 있다. 레이저에 의한 처리는 경우에 따라 레이저 제거 처리라고 할 수 있다.
상기 고에너지 빔(455)은 도 4b 및 도 4c에 도시된 바와 같이, 적어도 10 mJ/mm2 내지 최대 200 mJ/mm2의 범위의 에너지 밀도를 가질 수 있다. 상기 에너지 밀도는 10 mJ/mm2 내지 30 mJ/mm2, 20 mJ/mm2 내지 40 mJ/mm2, 30 mJ/mm2 내지 50 mJ/mm2, 40 mJ/mm2 내지 60 mJ/mm2, 50 mJ/mm2 내지 70 mJ/mm2, 60 mJ/mm2 내지 80 mJ/mm2, 70 mJ/mm2 내지 90 mJ/mm2, 80 mJ/mm2 내지 100 mJ/mm2, 90 mJ/mm2 내지 110 mJ/mm2, 100 mJ/mm2 내지 120 mJ/mm2, 110 mJ/mm2 내지 130 mJ/mm2, 120 mJ/mm2 내지 140 mJ/mm2, 130 mJ/mm2 내지 150 mJ/mm2, 140 mJ/mm2 내지 160 mJ/mm2, 150 mJ/mm2 내지 170 mJ/mm2, 160 mJ/mm2 내지 180 mJ/mm2, 170 mJ/mm2 내지 190 mJ/mm2, 180 mJ/mm2 내지 200 mJ/mm2 범위, 또는 이들의 임의의 하위 범위를 가질 수 있다. 실시양태에서, 상기 고에너지 빔은 적어도 7 W 내지 최대 1000 W 범위의 전력을 가질 수 있다. 상기 고에너지 전력 빔은 7 W 내지 100 W, 50 W 내지 150 W, 100 W 내지 200 W, 150 W 내지 250 W, 200 W 내지 300 W, 250 W 내지 350 W, 300 W 내지 400 W, 350 W 내지 450 W, 400 W 내지 500 W, 450 W 내지 550 W, 500 W 내지 600 W, 550 W 내지 650 W, 600 W 내지 700 W, 650 W 내지 750 W, 700 W 내지 800 W, 750 W 내지 850 W, 800 W 내지 900 W, 850 W 내지 950 W, 900 W 내지 1000 W, 또는 이들의 하위 범위일 수 있다. 일부 실시양태에서, 상기 고에너지 전력의 빔은 약 300W이다.
도 5는 표면이 예를 들어 세정된 표면, 텍스처화된 표면 또는 활성화된 표면과 같은 개질된 표면을 제공하기 위해, 상기 개시된 방법에 따라 개질된 금속 합금 제품(500)의 개략도를 제공한다. 예시된 바와 같이, 제1 제품(500)은 표면(510)을 갖는 성형된 금속 합금 제품이다. 표면(510)은 상기 설명된 세정된 표면, 텍스처화된 표면, 또는 활성화된 표면 중 임의의 하나와 유사할 수 있다. 표면(560)을 갖는 제2 제품(550)은 선택적으로 다른 재료를 포함할 수 있고, 표면(560)은 미처리된 표면, 개질된 표면, 세정된 표면, 텍스처화된 표면, 또는 활성화된 표면일 수도 있고 아닐 수도 있다. 금속 합금 제품(500) 및 제2 제품(550)이 도 5에 형성된 구성으로 도시되어 있지만, 금속 합금 제품(500) 및 제2 제품(550) 중 하나 또는 둘 모두는 선택적으로 미성형(예컨대, 평면) 구성일 수 있다. 유리하게는, 접착제(545)는 표면(510)을 표면(560)에 강하게 결합할 수 있고, 금속 합금 제품(500)과 제2 제품(550) 사이의 고강도 접합을 제공할 수 있다. 금속 합금 제품을 다른 제품에 결합하는 데 유용한 예시적인 접착제는 에폭시 접착제, 아크릴레이트 접착제, 페놀계 접착제, 및 폴리우레탄 접착제 등을 들 수 있다.
본 개시내용에 따른 표면, 즉 세정된 표면(306), 텍스처화된 표면(307), 및 활성화된 표면(407)은 도 5의 표면(510)으로 나타낸 바와 같은 결합 표면일 수 있다. 결합 표면은 유리하게 다른 표면, 기재 또는 제품에 대한 즉각적인 결합을 필요로 하지 않으며, 결합 표면이 접착제를 사용하여 다른 제품에 접합될 수 있는 지속시간에 상응하는 표면 안정성 또는 대기 기간을 특징으로 할 수 있고, 생성된 결합 제품은 참고로 여기에 포함되거나 다른 표준 테스트 FLTM BV 101-07 표준 시험, 접착제 랩-시어 접합에 대한 응력 내구성 시험(Stress Durability Test for Adhesive Lap-Sear Bonds(2017))에 따른 접합 내구성 시험을 받을 때, 적어도 45 사이클의 접합 내구성을 나타내는 것과 같은 높은 접합 내구성을 나타낼 것이다. 이와 같이 상기 결합 표면은 다른 표면, 기판 또는 제품에 접합되기 전에 대기 기간과 연관될 수 있다. 예를 들어 표면 안정성 및/또는 대기 기간은 1분 내지 6개월, 예를 들어 1시간, 2시간, 3시간, 4시간, 5시간, 6시간, 7시간, 8시간, 9시간, 10시간, 11시간, 12시간, 13시간, 14시간, 15시간, 16시간, 17시간, 18시간, 19시간, 20시간, 21시간, 22시간, 23시간, 24시간, 약 1일 이하, 약 3일 이하, 약 1주 이하, 약 2주 이하, 3주 이하, 약 4주 이하, 약 1개월 이하, 약 2개월 이하, 약 3개월 이하, 약 4개월 이하, 약 5개월 이하, 약 6개월 이하, 1시간 내지 6개월, 8시간 내지 6개월, 12시간 내지 6개월, 1일 내지 6개월, 3일 내지 6개월, 1주 내지 6개월, 2주 내지 6개월, 1개월 내지 6개월, 2개월 내지 6개월, 3개월 내지 6개월, 4개월 내지 6개월, 5개월 내지 6개월, 1시간 내지 5개월, 8시간 내지 5개월, 12시간 내지 5개월, 1일 내지 5개월, 3일 내지 5개월, 1주 내지 5개월, 2주 내지 5개월, 1개월 내지 5개월, 2개월 내지 5개월, 3개월 내지 5개월, 4개월 내지 5개월, 1시간 내지 4개월, 8시간 내지 4개월, 12시간 내지 4개월, 1일 내지 4개월, 3일 내지 4개월, 1주 내지 4개월, 2주 내지 4개월, 1개월 내지 4개월, 2개월 내지 4개월, 3개월 내지 4개월, 1시간 내지 3개월, 8시간 내지 3개월, 12시간 내지 3개월, 1일 내지 3개월, 3일 내지 3개월, 1주 내지 3개월, 2주 내지 3개월, 1개월 내지 3개월, 2개월 내지 3개월, 1시간 내지 2개월, 8시간 내지 2개월, 12시간 내지 2개월, 1일 내지 2개월, 3일 내지 2개월, 1주 내지 2개월, 2주 내지 2개월, 1개월 내지 2개월, 1시간 내지 1개월, 8시간 내지 1개월 12시간 내지 1개월, 1일 내지 1개월, 3일 내지 1개월, 1주 내지 1개월, 2주 내지 1개월, 1시간 내지 2주, 8시간 내지 2주, 12시간 내지 2주, 1일 내지 2주, 3일 내지 2주, 1주 내지 2주, 1시간 내지 1주, 8시간 내지 1주, 12시간 내지 1주, 1일 내지 1주, 또는 3일 내지 1주일 수 있다.
예를 들어, 3개월 이상의 대기 기간 동안 표면은 접착제, 페인트 또는 용접 접합을 적용하기 전에 공기 플라즈마, 진공 플라즈마 또는 기타 알려진 플라즈마 기술로 대안적으로 활성화될 수 있다. 고에너지 빔 적용 후 또는 그 이전에, 플라즈마 반응기는 이온 및 화학적 반응성 종을 생성하고 금속, 플라스틱, 세라믹 등과 같은 단단한 표면에 방출할 수 있다. 상기 표면 상의 이러한 이온 및 종은 에칭 및/또는 개선된 습윤을 위한 강화된 표면 에너지로 딥 클리닝을 유도할 수 있다. 바람직하게는 실온 근처 및 대기압에서 생성된 저 에너지 플라즈마(저온 플라즈마)가 세정 동안 기판 표면 온도를 낮게 유지하기 위해 바람직하지만, 플라즈마 토치, 융합 플라즈마, 플라즈마에 사용되는 것과 같은 고에너지 플라즈마(고온 플라즈마) 스프레이, 아크 방전 플라즈마 등이 또한 본 개시내용에 따라 고려된다. 저 에너지 플라즈마는 또한 세정 단계 동안 또는 후에 유기, 무기 또는 하이브리드 접착 촉진제의 증착에 사용될 수 있다. 대기압 플라즈마, 코로나 방전, 저압 플라즈마(DC 플라즈마, DC 글로우 방전), 저주파에서 중간 주파수(RF - 용량성 또는 유도 결합), 고주파수(마이크로파 - 전자 사이클로트론 공명) 및 화염과 같은 모든 플라즈마 방전 소스가 본 개시내용에 따라 고려된다.
유사하게, 하이빔 적용 이후 또는 이전에, 진공 아크와 같은 다른 건식 세정 방법은 단독으로 또는 고에너지, 레이저, 플라즈마 시스템 또는 이들의 임의의 조합의 다른 빔과 조합하여 사용될 수 있다. 건식 세정 프로세스에는 마이크로 블라스팅, 매크로 블라스팅, 이산화탄소 드라이 아이스 충격 및 블라스팅 또는 이들의 조합과 같은 기계적 표면 준비가 포함될 수 있다. 특히, 진공 아크 시스템은 비용이 많이 들고, 전체 코일이 진공 챔버에 로드될 수 있는 배치 프로세스에 더 도움이 되며, 연속 압연 제품을 실행하는 플랜트 작업에 상당한 단점이 있을 수 있다. 예를 들어, 코일을 주변 환경에서 진공 챔버로 연속적으로 이동시키는 것은 상대적으로 적당한 진공 수준을 달성하기 위해서라도 엄청난 펌핑 능력을 필요로 하므로, 일반적으로 진공 처리에서 파생되는 이점이 크게 제한될 수 있다.
주어진 최종 제품 또는 공정에 대해 원하는 표면 특성을 제공하기 위해 본원에 설명된 표면 준비 및 처리 공정의 임의의 조합을 사용하여 조정될 수 있다. 예를 들어, 이산화탄소 스프레이 처리는 금속 또는 금속 합금 표면에 고에너지 빔을 보내기 전에 탄화수소 오염과 함께 미세 입자 및 기타 느슨한 파편을 제거하는 데 사용될 수 있다. 상기 표면의 초음파 또는 무선 주파수(RF) 활성화는 설명된 건식 세정 방법을 사용하여 설명된 효과 중 어느 하나를 향상시키기 위해 적용될 수 있는 본 개시내용에 따라 고려된다.
경우에 따라 상기 제거 효율이나 표면 개질 효율이 위의 상세한 제품 및 방법보다 향상될 수 있다. 본 개시내용에 따른 또 다른 방법은 금속 합금 기재 상에 적용된 액체 또는 응축 증기 층을 사용하여 본원에 기재된 합금의 표면 근처 미세구조를 개질하며, 여기서 상기 층은 기재 표면과 고에너지 빔의 상호작용을 증가시켜 제거 효율을 유리하게 개선시킨다. 기판 표면에 의도적으로 적용된 액체 층과의 하이빔 또는 에너지(예컨대, 레이저 광) 상호작용을 활용함으로써, 접착 내구성 성능은 예를 들어 레이저 처리가 없는 5사이클과 비교하여, 파괴 전 최소 75사이클 이상으로 증가할 수 있다. 여기에 설명된 방법은 유리하게는 예를 들어 자동차 제조에서와 같이 제조 라인에서 사용되는 접착제와의 더 강한 결합을 제공하기 위해 화학적 반응성 종으로 증착되고/되거나 깨끗한 처리된 금속 또는 금속 합금 표면을 제공한다. 개선된 결합 내구성 강도는 미처리 표면과 비교하여, 더 매끄러운 표면 거칠기 및 더 매끄러운 표면 지형을 포함하여 개선된 용접성, 도색성 및 기타 적용 관련 요구사항을 야기할 수 있다. 본원에 설명된 방법은 또한, 액체 층으로 덮인 금속 또는 금속 합금 표면의 높은 에너지 처리 빔으로 인한 잔류 열 손상을 줄이고 열 영향(또는 처리) 영역을 줄이기 위해, 공기보다 높은 열 전도성을 갖는 액체 층을 도입함으로써 제거 효율을 향상시킬 수 있다. 제거 효율은 광학 자극 전자 방출(OSEE) 도구를 사용한 청정도 측정에 의해 간접적으로 특성화될 수 있다. 일부 실시양태에서, 액체 층의 존재는 레이저 제거에서와 같이 높은 에너지 빔을 지향하기 전에, 액체 층을 갖지 않는 표면과 비교할 때, OSEE로 측정했을 때 비교적 깨끗한 표면을 제공하는 것으로 나타났다.
도 6a 내지 도 6c는 표면 근처 미세구조를 포함하는 표면과 같은 금속 합금 제품의 표면을 개질하는 방법을 예시한다. 도 6a에 도시된 바와 같이, 금속 합금 기판(600)이 제공된다. 기판(600)은 알루미늄 합금 제품과 같은 전술한 바와 같은 금속 합금 제품일 수 있다. 기판(600)은 도 2, 도 3a 및 도 4a과 관련하여 유사하게 설명된 바와 같이, 표면 근처 미세구조(620) 및 벌크 미세구조(630)를 갖는다. 상기 표면 근처 미세구조(620)는 미처리된 표면(605)을 함유하거나 포함한다. 미처리된 표면(605)은 화학적 또는 습식 에칭 기술 및/또는 전환 코팅을 포함하지만 이에 제한되지 않는 어떠한 표면 처리 또는 개질도 겪지 않았다. 선택적으로, 표면(605)은 화학적 세정, 물 세정(실온 또는 승온에서), 기계적 표면 세정, 활성화 또는 텍스처화, 또는 필요에 따라 임의의 다른 세정 방법을 거칠 수 있다. 일부 실시예에서, 기판(600)의 적어도 하나의 표면(605), 또는 일부 노출된 표면, 또는 모든 노출된 표면이 처리되지 않는다. 기판(600)의 표면 근처 미세구조(620)는 도 2와 관련하여 설명된 결함(240a 내지 240g) 및 도 4a에 도시된 결함(440a 내지 440g)과 유사하게, 도 6a에 도시된 바와 같이 결함(640a 내지 640g) 중 적어도 일부를 포함한다. 도 6a에 도시된 바와 같이, 표면 근처 미세구조(620)는 결함(640)을 포함한다. 결함(640)은 복수의 금속 산화물(640c), 복수의 금속간 입자(640f), 및 유기물, 오일, 및 탄화수소(640g)를 포함하는 압연 재료를 포함한다. 결함(640)은 또한 내부 크랙(640a), 공극(640b), 표면 크랙(640d), 및 합금 요소(640e)의 고밀도 집단을 포함하는 결함을 포함할 수 있다.
액체는 도 6a의 미처리 표면(605)에 도포되어 도 6b에서와 같은 층(635)을 형성한다. 일부 실시양태에서 다른 표면, 대향 표면(606)은 또한 금속 합금 기판(600)의 양면이 액체 층(635)을 포함하도록 적용된 액체를 갖는다. 액체는 액체 층(635) 또는 필름을 형성하기 위한 응축 증기일 수 있다. 일부 실시양태에서, 제1 액체 층이 표면(605)에 적용되고 제2 액체 층이 표면(685)에 적용되며, 여기서 제1 및 제2 액체 층은 동일하거나 상이할 수 있다. 액체 층(635)의 존재는, 공기 또는 액체 층이 없는 것과 비교하여, 실시양태에서 지향된 에너지 빔(도 6c에 도시됨)으로 에너지 결합 효율을 향상시킬 수 있다. 도 6b에 도시된 바와 같은 액체 층(635)은 수용액 또는 비수성 용액을 포함할 수 있다. 적합한 용액은 글리세린, 알코올 용액, 증기 또는 이들의 조합을 포함하거나 이를 사용하여 생성될 수 있다. 용액은 선택적으로 전처리 화학물질, 양극 및/또는 음극 부식 억제제, 또는 이들의 조합을 포함할 수 있다. 전처리 화학물질은 부식을 억제하고, 표면을 텍스처화하고, 표면 화학 및/또는 기계적 상태를 변화시켜 접착력을 증가시키는 것 중 적어도 하나를 수행하도록 구성될 수 있다. 용액에 첨가하기에 적합한 전처리 화학물질은 유기포스폰산, 유기포스핀산, 실란, 커플링제, 중합체, 공중합체, 지르코늄/몰리브덴(Zr/Mo)을 포함하는 전처리제, 망간(Mn)을 포함하는 전처리제, 세륨(Ce)을 포함하는 전처리제, 접착 촉진제, 또는 화학적, 기계적 및/또는 전기화학적 방법, 또는 이들의 임의의 조합에 의해 표면을 변경 및/또는 기능화하기 위한 임의의 적합한 화학물질 또는 기계적 기술로부터 선택될 수 있다. 선택적인 전처리 화학물질을 포함함으로써, 상기 금속 또는 금속 합금 표면을 동시에 세정하는 동시에 향상된 접착 내구성 및 코팅 접착 성능을 위해 맞춤화된 표면을 추가로 제공할 수 있다. 일부 실시양태에서, 상기 금속 또는 금속 합금 표면은 건식 기술을 통해 또는 금속 또는 금속 합금 표면 상에 존재하는 증기, 수성 또는 비수성 박막으로 텍스처화하는 동안, 동시 세정, 활성화 및 기능화를 포함하는 임의의 사전 세정 단계 없이 처리될 수 있다. 일부 실시양태에서, 액체 층과 높은 에너지 빔을 갖는 금속 표면의 상호작용의 향상은 처리된 표면 상에 증착된 화학적 반응성 종으로 더욱 향상된다. 슬러리, 겔 또는 페이스트와 같은 코팅도 고려된다. 적절한 코팅은 층(635)과의 높은 에너지 상호작용을 향상시키기 위해 금속, 중합체 또는 세라믹을 포함하거나 선택될 수 있다.
도 6b에서와 같이 층(635)의 도포는 도포기에 의해, 또는 둘 이상의 도포기에 의해 제공될 수 있다. 두 개 이상의 도포기를 사용함으로써, 기판 표면(들)이 기판 표면 중 하나 또는 양쪽 표면에서 액체 층 또는 필름으로 덮이는 속도가 크게 증가될 수 있다. 2개 이상의 도포기를 사용하는 것은 도 7 내지 도 9에 도시된 바와 같은 비제한적인 연속 라인 실시예에 적합하다. 상기 도포기(들)은 펄스가 있거나 없는 스프레이 도포기, 저압 고용량 스프레이 도포기, 저압 저체적 스프레이 도포기, 회전 분무기, 정전기 도포기, 롤 도포기, 또는 이들의 조합으로부터 선택되는 적어도 하나일 수 있다.
도 6c에 도시된 바와 같이, 고에너지 빔(655)은 표면을 물리적 및 화학적으로 개질하기 위해, (도 6b의) 액체 층(605)을 포함하는 표면(606) 상으로 지향되어, 결함(640) 중 적어도 일부가 결여된 도 6c에서와 같이 활성화된 표면(607)을 제공한다.
도 6a의 표면 근처 미세구조(620)는 두께 t7을 가진다. 도 6b의 액체 층(635)은 두께 t8을 가진다. 상기 고에너지 빔(655)은 표면 근처 미세구조(620)의 적어도 일부를 제거할 수 있다. 다시 말해서, 상기 고에너지 빔(655)를 상기 표면(606) 상으로 지향시킨 후, 세정된 표면(607)과 관련된 표면 근방 미세구조(620)의 두께 t9은 미처리 표면(605)과 관련된 표면 근처 미세구조(620)의 두께 t7에 비해 감소될 수 있다.
(도 6b의) 표면(606) 상으로 지향된 고에너지 빔(655)은, 선택적으로 표면 근처 미세구조(622)를 갖는 도 6c에 도시된 바와 같은 활성화된 표면(607)을 제공할 수 있다. 표면(606)을 갖는 액체 층(635) 상으로 지향되는 고에너지 빔은 복수의 금속 산화물(640c) 및 복수의 금속간 입자(640f)로 중 적어도 하나를 용융시킬 수 있는 액체 층과의 에너지 상호작용 또는 하이빔을 통해 표면 근처 미세구조에 영향을 미칠 수 있다. 상기 용융된 입자는 벌크 조성물에 혼입될 수 있다. 표면 근처 미세구조(622)와 관련된 활성화된 표면(607)에는 복수의 금속 산화물(640c) 및 복수의 금속간 입자(640f) 중 적어도 하나가 실질적으로 없다. 실시양태에서, 표면 근처 미세구조(622)와 관련된 활성화된 표면(607)은 금속 산화물(640c) 및 금속간 입자(640f)가 실질적으로 없다. 실시양태에서, 도 6c의 활성화된 표면(607)과 함께 표면 근처 미세구조(622)가 두께 t9를 가진다. 고에너지 빔(655)을 두께 t7을 갖는 표면 근처 미세구조(620) 위의 두께 t8를 갖는 표면(606) 상으로 지향시킨 후, 두께 t9는 두께 t7에 비해 감소된다. 선택적으로, 표면 근처 미세구조(620 또는 622)는 0의 두께(t9)를 제공하도록 완전히 제거되거나 개질될 수 있어서, 벌크(630)가 상부 표면으로서 노출될 수 있고 활성화된 표면(607)을 포함하거나 이와 연관될 수 있다. 일부 실시양태에서, 두께 t9는 두께 t7 미만이거나 같다. 실시양태에서, 표면 근처 미세구조는 최대 약 10μm, 또는 최대 약 5μm의 깊이까지 제거된다. 일부 실시예에서, 2mm 두께의 탈이온수 층이 본원의 방법에 따라 표면 처리를 위해 6xxx 시리즈 알루미늄 합금에 적용되어, 표면 근처 미세구조 층의 약 5μm 또는 약 10μm가 제거될 수 있다. 다시 말해서, 상기 기판 표면에 고에너지 빔(655)을 지향시킨 결과, 두께 t9는 두께 t7 보다 약 10μm, 또는 5μm 정도 작다.
유리하게는, 액체 층(635)의 존재 하에 고에너지 빔(655)에 노출시켜 활성화된 표면(607)을 생성하도록 표면(605)을 개질하는 것은, 상기 표면과 다른 제품 사이의 결합 내구성을 상대적으로 더 짧은 결합 내구성에서 상대적으로 더 긴 것 또는 더 높은 성능의 결합 내구성으로 변경할 수 있다. 실시양태에서, 도 6c에서와 같은 활성화된 표면(607)은 적어도 35 사이클, 적어도 40 사이클, 적어도 45 사이클, 적어도 50 사이클, 또는 그 이상의 결합 내구성을 나타낼 수 있다. 또한, 상기 레이저 및 금속 또는 금속 합금 표면 결합은 액체 층을 포함하지 않는 제거된 표면과 비교하여 더 깨끗하고 매끄러운 표면을 제공한다. 상기 개선된 표면은 고에너지 레이저 빔과 금속 또는 금속 합금 표면 사이의 강력한 결합 동안, 유도된 열 대류 및 기포 운동에 의해 실현되는 효율적인 파편 제거의 결과일 수 있다.
추가적으로, 본원에 기술된 방법은 표면 및 적어도 부분적으로 임의의 하부층을 제거하기 위해, 표면 및 표면 근방 미세구조를 실질적으로 또는 완전히 제거할 수 있다. 이로 인해 풍부한 산화물 형성 및 하이드록실 화학 종으로 기능화된 깨끗한 표면이 생성될 수 있다. 이것은 공기 중의 산소가 레이저에 의해 생성된 고온에서 금속 표면과 반응하여 풍부한 산화물 층을 형성하도록 공기 중에서 수행될 수 있으며, 이는 미처리된 표면의 표면 근처 미세구조와 뚜렷하게 다르다. 상기 풍부한 산화물 층은 표면의 잔류 물이나 습한 공기에 의해 수화될 수 있다. 풍부한 산화물 형성 및 하이드록실 화학종으로 기능화된 금속 또는 금속 합금 표면은 확장된 BD 성능을 제공하기 위해, 접착제와 쉽게 반응하고 결합을 제공할 수 있다.
기판(600)은 알루미늄, 알루미늄 합금, 마그네슘, 마그네슘계 재료, 마그네슘 합금, 마그네슘 복합재, 티타늄, 티타늄계 재료, 티타늄 합금, 구리, 구리계 재료, 복합재, 시트를 포함하는 비철 재료, 사용된 특정 합금 또는 금속에 따라 복합재 또는 기타 적절한 금속, 비금속 또는 재료의 조합을 포함할 수 있다. 일부 실시예에서, 기판(600)은 알루미늄 합금, 마그네슘, 마그네슘 합금, 마그네슘 복합재, 강철, 또는 이들의 임의의 조합을 포함한다. 일부 실시양태에서, 기판(600)은 알루미늄 합금이다. 유용한 알루미늄 합금은 이전에 설명된 것들 중 임의의 것, 예를 들어 1xxx 시리즈 알루미늄 합금, 2xxx 시리즈 알루미늄 합금, 3xxx 시리즈 알루미늄 합금, 4xxx 시리즈 알루미늄 합금, 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 7xxx 시리즈 알루미늄 합금 또는 8xxx 시리즈 알루미늄 합금을 포함한다.
도 6c에서와 같이 고에너지 빔(655)은 하나의 레이저 또는 2개 이상의 레이저에 의해 제공될 수 있다. 2개 이상의 레이저 유닛을 사용함으로써, 기판 표면 중 하나 또는 양쪽에 액체 층을 갖는 기판 표면(들)이 처리될 수 있는 속도가 크게 증가된다. 2개 이상의 레이저를 사용하는 것은 도 7 내지 도 9에 도시된 바와 같은 비제한적인 연속 라인 실시예에 적합하다. 상기 레이저(들)은, 연속파가 있거나 또는 없이, 연속 레이저, 펄스 레이저, 나노초 펄스 레이저, 피코초 펄스 레이저, 또는 펨토초 펄스 레이저, 단일 및/또는 이중 패스 구성에서 선택되는 적어도 하나일 수 있다. 상기 레이저는 이테르븀, Nd-YAG, CO2 또는 엑시머로부터 선택된 적어도 하나일 수 있거나, 원하는 에너지 밀도를 제공하는 임의의 적합한 레이저일 수 있다. 상기 레이저는 약 200nm 내지 약 1500nm와 같은 임의의 적합한 파장을 가질 수 있다. 파장, 주파수, 작업 거리, 레이저 광 입사각 및 에너지 레벨은 일부 실시양태에 따라 조정될 수 있다.
상기 고에너지 빔(655)은 도 6c에 도시된 바와 같이, 적어도 10 mJ/mm2 내지 최대 200 mJ/mm2의 범위의 에너지 밀도를 가질 수 있다. 상기 에너지 밀도는 10 mJ/mm2 내지 30 mJ/mm2, 20 mJ/mm2 내지 40 mJ/mm2, 30 mJ/mm2 내지 50 mJ/mm2, 40 mJ/mm2 내지 60 mJ/mm2, 50 mJ/mm2 내지 70 mJ/mm2, 60 mJ/mm2 내지 80 mJ/mm2, 70 mJ/mm2 내지 90 mJ/mm2, 80 mJ/mm2 내지 100 mJ/mm2, 90 mJ/mm2 내지 110 mJ/mm2, 100 mJ/mm2 내지 120 mJ/mm2, 110 mJ/mm2 내지 130 mJ/mm2, 120 mJ/mm2 내지 140 mJ/mm2, 130 mJ/mm2 내지 150 mJ/mm2, 140 mJ/mm2 내지 160 mJ/mm2, 150 mJ/mm2 내지 170 mJ/mm2, 160 mJ/mm2 내지 180 mJ/mm2, 170 mJ/mm2 내지 190 mJ/mm2, 180 mJ/mm2 내지 200 mJ/mm2 범위, 또는 이들의 임의의 하위 범위를 가질 수 있다. 실시양태에서, 상기 고에너지 빔은 적어도 7 W 내지 최대 1000 W 범위의 전력을 가질 수 있다. 상기 고에너지 전력 빔은 7 W 내지 100 W, 50 W 내지 150 W, 100 W 내지 200 W, 150 W 내지 250 W, 200 W 내지 300 W, 250 W 내지 350 W, 300 W 내지 400 W, 350 W 내지 450 W, 400 W 내지 500 W, 450 W 내지 550 W, 500 W 내지 600 W, 550 W 내지 650 W, 600 W 내지 700 W, 650 W 내지 750 W, 700 W 내지 800 W, 750 W 내지 850 W, 800 W 내지 900 W, 850 W 내지 950 W, 900 W 내지 1000 W, 또는 이들의 하위 범위일 수 있다.
선택적으로, 접착 조인트를 위한 표면을 준비하기 위해 표면에 고에너지 빔을 보낸 후 증기 또는 다른 가스 또는 방법을 사용할 수 있다. 유리하게는, 금속 부산물이 생성될 수 있고 본원에 개시된 일부 실시양태에 따른 알루미늄 합금 기판 또는 시트의 레이저 제거 동안 형성된 금속 나노분말을 포함할 수 있다. 이러한 금속 나노분말은 금속 분말 공정 또는 기타 공정에 사용하기 위해 여과 및 건조를 통해 포획될 수 있다. 도 7 내지 도 9를 참조하면, 본원에 개시된 방법에 따른 연속 라인 실시양태가 도시되어 있다. 도 7은 (시트 형태로 도시된) 기판의 양면이 도포기(765A 및 765B)로부터의 제1 및 제2 액체로 도포되는 연속 라인 공정의 일 실시양태를 개략적으로 도시한다. 상기 연속 라인 공정은 흐름 화살표 F로 표시된 방향으로 기판 또는 기판 시트(700)를 이동한다. 적어도 하나의 액체(735A 및 735B)의 적용은 하나 이상의 기판 표면에 제1 레이저(755A) 및 제2 레이저(755B)로부터의 고에너지 지향 빔과 동시에 수행된다. 예를 들어, 도포기(765A)는 액체(735A)로 기재 표면(705)을 도포하고, 도포기(765B)는 액체(735B)로 기재 표면(785)을 도포한다. 동시에, 고에너지 빔은 레이저(755A)에 의해 기판 표면(705)에 전달되고 고에너지 빔은 레이저(755B)에 의해 기판 표면(785)에 전달된다. 레이저 에너지와 표면(705 및 785)에서의 액체(735A 및 735B) 사이의 상호작용은 각각 흐름 화살표로 표시된 바와 같이 연속선 프로세스를 따라 처리된 표면(707A 및 707B)을 초래한다. 도 7에 도시된 실시양태의 경우, 층(735A 및 735B)의 두께는 시트의 완전한 표면 피복을 위해 분자 수준의 응축 증기로부터 최대 5mm의 액체 층까지의 범위이다. 액체 층(735A 및 735B)은 동일하거나 상이할 수 있다.
도 8은 연속 라인 공정의 다른 실시양태를 개략적으로 도시한다. 기판(800)의 양면에는 도포기(865A 및 865B)로부터의 제1 및 제2 액체(예를 들어, 835A 및 835B)가 도포된다. 선택적으로 상기 기판은 화학적, 물 세정, 또는 상자(899)에서 당업계에 알려진 기타 세정 또는 세정 방법에 의해 세정된다. 상기 세정은 실온 또는 약 90℃까지의 승온에서 수행될 수 있다. 일부 실시양태에서, 세정은 수성 세정제에 대한 임의의 증발 손실을 최소화하고 제어하기 위해 50℃ 미만에서 수행된다. 비수성 세정제에도 유사한 온도를 사용할 수 있다. 증기 탈지는 레이저 기능화 및 코일 표면 텍스처화 전에 유용할 수 있다. 연속 라인 공정은 화살표(890)로 표시된 방향으로 기판 또는 기판 시트(800)를 이동시킨다. 적어도 하나의 액체(835)의 도포는 레이저(855A 및 855B)로부터 고에너지 빔을 지향하기 전에 수행될 수 있다. 예를 들어, 도포기(865A)는 액체(835A)로 기재 표면(805)을 도포하고, 도포기(865B)는 액체(835B)로 기재 표면(885)을 도포한다. 고에너지 빔은 레이저(855A)에 의해 기판 표면(805)에 전달될 수 있고, 고에너지 빔은 레이저(855B)에 의해 기판 표면(885)에 전달될 수 있다. 상기 레이저 에너지와 표면(805 및 885)을 각각 덮는 액체(835A 및 835B) 사이의 상호작용은 처리된 표면(807A 및 807B)을 초래한다. 도 8에 도시된 실시양태의 경우, 층(835A 및 835B)의 두께는 시트의 완전한 표면 피복을 위해 분자 수준의 응축 증기로부터 최대 5mm의 액체 층까지의 범위이다. 액체 층(835A 및 835B)은 동일하거나 상이할 수 있다.
도 9는 연속 라인 공정의 또 다른 실시양태를 개략적으로 도시한다. 도 9에 도시된 실시양태의 경우, 층(935A 및 935B)의 두께는 최대 5mm이다. 일부 실시양태에서, 상기 층의 두께는, 필름 두께가 일정하고 원하는 특성을 얻기 위해 기능화하고 텍스처화하기 위해 레이저와 금속 또는 금속 합금 표면 사이의 상호작용 및 결합을 허용한다면, 5mm 초과일 수 있다. 기판(900)은 도포기 배쓰(995A 및 995B)로부터 90℃ 미만, 바람직하게는 50℃ 미만, 보다 바람직하게는 실온의 온도에서 제1 및 제2 액체(예컨대, 935A 및 935B)로 도포된다. 상기 연속 라인 공정은 화살표(990)로 표시된 방향으로 기판 또는 기판 시트(900)를 이동시킨다. 적어도 하나의 액체(935)의 도포는 레이저의 배치를 조정함으로써, 동시에(도 9에 도시된 바와 같이) 또는 레이저(955A 및 955B)로부터의 고에너지 빔을 지향하기 전에 수행될 수 있다. 예를 들어, 도포기 배쓰(995A)는 액체(935A)로 기재 표면(905)을 도포하고, 도포기 배쓰(995B)는 액체(935B)로 기재 표면(985)을 도포한다. 고에너지 빔은 레이저(955A)에 의해 기판 표면(905)에 전달될 수 있고, 고에너지 빔은 레이저(955B)에 의해 기판 표면(985)에 전달될 수 있다. 상기 레이저 에너지와 표면(905 및 985)을 각각 덮는 액체(935A 및 935B) 사이의 상호작용은 처리된 표면(907A 및 907B)을 제공한다. 액체 층(935A 및 935B)은 동일하거나 상이할 수 있다. 일부 실시양태에서, 배쓰(995A 및 995)의 액체 층(935A 및 935B)은 양면(905 및 985)에 대한 커버리지를 제공할 수 있다. 도 9에 도시된 실시양태의 경우, 층(935A 및 935B)의 두께는 최대 약 5mm이다. 일부 실시양태에서, 층의 두께는 필름 두께가 일정하고 원하는 특성을 얻기 위해 기능화하고 텍스처화하기 위해 레이저와 금속 또는 금속 합금 표면 사이의 상호작용 및 결합을 허용한다면 5mm 초과일 수 있다.
도 7 내지 9에서와 같은 처리된 표면(707A, 707B, 807A, 807B, 907A 및 907B) 접착에 적합하며, 예를 들어 자동 시트 제품으로 유용할 수 있다. 자동 시트 제품은 예를 들어 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 또는 7xxx 시리즈 알루미늄 합금을 포함할 수 있지만 이에 국한되지 않는다. 자동 시트 제품은 DC 캐스트 또는 CC 캐스트 또는 클래딩 등이 될 수 있다.
하기 실시예는 본 발명을 추가로 예시하는 동시에 본 발명을 제한하지 않는 역할을 할 것이다. 반대로, 본 명세서의 설명을 읽은 후, 본 발명의 정신을 벗어나지 않고 당업자에게 제안할 수 있는 다양한 실시양태, 수정 및 등가물에 의지할 수 있음이 명백히 이해되어야 한다. 하기 실시예에 기술된 연구 동안, 달리 명시되지 않는 한 통상적인 절차를 따랐다. 일부 절차는 설명을 위해 하기 설명되어 있다.
실시예 1
알루미늄 합금 제품 샘플을 직접 냉각(DC) 주조, 열간 압연, 냉간 압연 및 용액 열처리에 의해 준비하여, 0.9mm 내지 2.0mm의 최종 게이지 두께에서 AA5182 시트 샘플(O 템퍼에서 테스트됨) 및 AA6451 시트 샘플(T4 템퍼에서 테스트됨)을 생성하였다. 그런 다음 시트 샘플을 40ns의 펄스 지속 시간, 30% 중첩, 최대 1000W, 0.85mm 또는 1.4mm 스폿 크기, 10kHz 또는 20kHz의 주파수에서, 나노초 이테르븀 레이저(모델 YLPN, 1064nm, IPG Photonics)에 표면을 노출하도록 배치시키고, 상기 레이저 빔 설정 및 표면 조정 매개변수를 조정하여, AA5182 샘플의 경우 도 10a, 도 10b, 도 10c, 및 AA6451 샘플의 경우 도 10d 및 도 10e 에 도시된 바와 같이 서로 다른 표면 질감에 영향을 미쳤다. 도 10a는 0.85mm의 스폿 크기로 10kHz에서 100W 내지 1000W로 처리된 AA5182 합금에 대한 표면 질감 변화를 보여준다. 유사하게, 도 10b는 1.4mm의 스폿 크기로 10kHz에서 100W 내지 1000W로 처리된 AA5182 합금에 대한 표면 질감 변화를 보여준다. 도 10c는 1.4mm의 스폿 크기로 20kHz에서 100W 내지 1000W로 처리된 AA5182 합금에 대한 표면 질감 변화를 보여준다. AA6451 샘플의 경우 10d 내지 도 10e는 10kHz 및 20kHz에서 각각 1.4mm의 스폿 크기로 상단에서 100 W내지 하단에서 1000 W까지 표시된 것처럼, 10 가지 서로 다른 전력 영역에서 표면 텍스처 진화를 보여준다. 표시된 표면의 질감은 출력이 증가함에 따라 증가한다. 레이저 빔 에너지의 함수로 생성된 표면과 물의 접촉각은 고착 낙하 접촉각(Sessile drop contact angle) 측정을 사용하는 표준 기술에 의해 획득되었다.
도 11a는 이테르븀 레이저의 에너지 밀도(mJ/mm2)에 대응하는 x축 및 생성된 샘플 표면에 대한 접촉각(도)에 대응하는 y축을 포함하는 그래프를 도시한다. 원래 AA5182 표면은 76도의 접촉각을 갖는 것으로 측정되었다. 상기 레이저의 에너지 밀도가 0에서 약 15 mJ/mm2로 증가함에 따라, 접촉각은 10도 미만으로 급격히 감소하였다. 더 낮은 접촉각은 개선된 습윤성과 우수한 접착 내구성 거동을 나타낸다. 에너지 밀도를 약 15 mJ/mm2이상으로 추가로 증가시키면 접촉각이 약 15 mJ/mm2에서 100 mJ/mm2 초과 까지의 에너지 밀도에서 약 5도에서 꾸준히 낮게 유지됨을 보여주었다.
도 11b는 상기 이테르븀 레이저의 에너지 밀도(mJ/mm2)에 대응하는 x축 및 생성된 샘플 표면에 대한 접촉각(도)에 대응하는 y축을 포함하는 그래프를 도시한다. 원래 AA6451 표면의 접촉각이 75도인 것으로 측정되었다. 상기 레이저의 에너지 밀도가 0에서 약 15 mJ/mm2로 증가함에 따라 접촉각은 약 10도로 급격히 감소하였다. 에너지 밀도를 약 15 mJ/mm2 초과로 추가로 증가시키면 접촉각이 약 52 mJ/mm2에서 약 5도로 감소하는 것으로 나타났다.
15 mJ/mm2, 23.1 mJ/mm2, 57.8 mJ/mm2로 처리되고 표면 텍스처화된 AA5182 시트 샘플은 각각 1.4mm 스폿 크기를 가지고, 접착식으로 접착되어, 접착 내구성을 결정하기 위한 FLTM BV 101-07 표준 테스트, 접착 랩 전단 조인트에 대한 응력 내구성 테스트(Stress Durability Test for Adhesive Lap Shear Joints(2017))의 표준 테스트의 예시에 따라 접착 내구성 테스트를 거쳤다. 접착 내구성 테스트 동안, 각 샘플은 동일한 조건에서 준비 및 처리된 두 개의 알루미늄 합금 제품 시트로 구성되었으며, 에폭시 접착제를 사용하여 6개의 접착 위치에서 함께 접착되었다. 다음으로, 각각의 샘플은 염 용액에의 침지, 습한 조건에의 노출, 건조 조건에의 노출, 및/또는 응력 또는 변형을 유도하는 힘의 적용 중 하나 이상을 포함하는 다양한 테스트 조건에 적용되었다. 각 샘플은 이러한 테스트 조건에서 수많은 접착 내구성 주기를 거쳤다. 샘플에 적용된 사이클 수는 기계적 고장에 도달하는 사이클 수 또는 60 사이클 이상이었다. 15 mJ/mm2로 표면 처리된 AA5182 샘플에 대한 접착 내구성 성능 테스트는 평균 60 사이클의 결과를 가져왔고, 23.1 mJ/mm2로 표면 처리되고 질감 처리된 AA5182 합금 샘플은 115 사이클의 향상된 접착 내구성 성능을 보였다. 57.8 mJ/mm2의 높은 에너지 수준에서 준비된 AA5182 샘플은 10 사이클 미만에서 조기 고장을 초래했다.
실시예 2
알루미늄 합금 제품 샘플은 열간 성형 온도를 시뮬레이션하기 위해, DC 주조, 열간 압연, 냉간 압연, 480℃에서 5분 동안 실험실 열처리시키고, 125℃에서 24시간 동안 T6 템퍼로 인위적으로 에이징시켜서 약 2.8mm의 최종 게이지를 갖는 AA7075 시트 샘플을 생성하였다. 그 다음 상기 시트 샘플의 표면을 15kHz 내지 40kHz의 주파수 범위를 갖는 CL300 와트 고강도 레이저(Adapt Laser, LLC)에 노출시켰다. 상기 레이저는 300W에서 및 428μm의 스폿 크기에서 후속 펄스당 다양한 수준의 중첩(25% 및 50%)으로 표면에 걸쳐 펄스되었다. 레이저 처리 전과 후의 시료 표면의 형상을 도 12a 내지 도 12c에 도시된 바와 같이 측정하였다. 비교예로서, 도 12a는 AA7075 시트 샘플에 대한 원래의 밀 마감 표면 또는 '미처리' 표면에서 측정된 지형을 보여준다. 도 12b는 AA7075 시트 샘플의 표면에서 측정된 지형을 나타내며, 여기서 고에너지의 펄스 레이저 빔은 펄스 사이에 25% 중첩으로 노출된 표면으로 향하게 된다. 도 12c는 AA7075 시트 샘플의 표면에서 측정된 지형을 보여주며, 고에너지의 펄스 레이저 빔이 펄스 사이에 50% 중첩으로 노출된 표면으로 향하게 된다. 25%에서 50%로 증가된 중첩으로 인해 측정된 지형의 색상 출력 범위에서 알 수 있듯이 더 거친 표면 지형이 생성되었다. 결과는 중첩 비율을 증가시키면 더 높은 표면 거칠기(3D로 측정된 Sa)가 생성된다는 것을 보여주었다. Sa 값은 미처리된 표면(도 12a에 도시됨)의 경우 0.3μm, 펄스 간 25% 중첩으로 레이저 처리된 표면(도 12b에 도시됨)의 경우 약 1.1μm, 펄스 사이의 50% 중첩으로 레이저 처리된 표면(도 12c에 도시됨)의 경우 약 1.4μm로 측정되었다.
상기 실시예 1에서 기술된 바와 같이 표준 시험 방법 FLTM BV 101-07에 따라 샘플을 접착식으로 접착하고 접착 내구성 시험을 실시하였다. 접착 내구성 시험 동안, 각 샘플은 2개의 알루미늄 합금 제품으로 만들어졌으며, 에폭시 접착제를 사용하여 6개의 접합 부위를 통해 함께 접합되는 동일한 조건에서 제조 및 처리되었다. 다음으로, 각 샘플은 다양한 테스트 조건을 거쳤다. 예를 들어, 상기 테스트 조건에는 염 용액에 담그기, 습한 조건에 노출, 건조한 조건에 노출 또는 응력 또는 변형을 유발하는 힘의 적용 중 하나 이상이 포함되었다. 각 샘플은 이러한 테스트 조건을 여러 번 반복했다. 샘플에 적용된 사이클 수는 기계적 고장에 도달하는 사이클 수 또는 이 특정 표준 테스트에 사용된 최대 사이클 수인 60 사이클이었다. 기계적 파손에는 접착 파손 또는 접착제 파손이 포함된다. 템퍼 T6을 사용하는 AA7075에 대한 접착 내구성 성능 테스트에는 15kHz에서 레이저 CL300으로 50% 중첩으로 표면처리된 샘플이 포함되어 테스트된 12개 샘플 모두에 대해 최대 60 사이클이 발생했다. 20% 중첩에서 레이저 CL300으로 15kHz에서 표면 처리된 AA7075(T6) 샘플은 테스트한 5개 샘플에 대해 최대 60사이클이었으며 여섯 번째 샘플은 43사이클에서 실패했다. 3개월 동안 에이징된 AA7075(T6)는 50% 중첩에서 테스트한 12개 샘플에 대해 평균 95사이클의 접착 내구성을 나타냈다. 6개월 동안 에이징된 AA7075(T6)는 50% 중첩에서 테스트한 12개 샘플 중 10개에 대해 테스트한 최대 60회 주기의 접착 내구성을 나타냈고, 열한 번째 샘플은 51 사이클에서 실패하고, 열두 번째 샘플은 60 사이클에서 실패했다.
도 13은 원래 밀 마감 표면(표면 처리 없음)이 있는 AA7075의 비교예에 대해 20μm의 전체 폭 시야, 20K 배율에서 주사 전자 현미경(SEM)을 사용하여 얻은 이미지이다. 압연된 산화물, 금속간 입자 및 공극과 같은 표면 근처 미세구조(1320)는 표면(1305) 아래의 미세 입자 형태에 의해 분명하다. 표면(1305)은 SEM을 사용한 이미징 목적을 위해 금(Au)으로 코팅된다. 금속간 입자(1340f)는 밝은 색상으로 나타나며 표면 근처 미세구조(1320) 전체에 분포된다. 도 14는 10K X 배율에서 40μm의 전체 폭 시야에서 SEM으로 얻은 이미지로, 미처리된 밀 마감 표면(1405)의 표면에 대한 금속간 입자(1440f)의 근접성을 보여준다.
도 15는 20μm의 전폭 시야각, 20K X 배율에서 SEM을 사용하여 얻은 이미지이고, 도 16은 표면이 펄스 간 50% 중첩으로 레이저 제거된(300W 및 428μm의 스폿 크기에서 후속 펄스당 중첩 50%에서 CL300와트 고강도 레이저) AA7075의 예에 대해 10K X 배율에서 40μm의 전체 너비 시야에서 SEM으로 얻은 이미지이다. 도 15에 도시된 바와 같이, 압연된 산화물, 금속간 입자(1540f) 및 공극과 같은 표면 근처 미세구조는 미세 입자 형태가 없기 때문에 레이저 처리된 표면의 경우 표면(1505) 아래에서 더 적거나 전혀 분명하지 않다. 도 16에 도시된 바와 같이, 도 14에 도시된 비교예의 밀 마감 표면의 표면과 비교하여 표면(1605)으로부터 약 5μm의 깊이로 명백한 금속간 입자(1640f)가 더 적다.
예시적인 양태
아래에 사용된 바와 같이, 일련의 양태(예컨대, "양태 1 내지 4") 또는 열거되지 않은 그룹의 양태(예컨대, "임의의 이전 또는 후속 양태")에 대한 참조는, 양태를 분리하여(예컨대, "양태 1 내지 4"는 "양태 1, 2, 3, 또는 4" 로 이해해야 함) 이들 각각에 대한 참조로 이해되어야 한다.
양태 1은 벌크 및 제1 표면을 갖는 알루미늄 합금 제품을 제공하는 단계, 제1 표면을 가로질러 고에너지 빔을 주사하는 단계를 포함하는 방법으로서, 상기 고에너지 빔이 제1 표면과 상호작용하여 제1 표면을 물리적으로 변형시켜 처리된 첫 번째 표면을 형성한다.
양태 2는 임의의 이전 후속 양태의 방법으로서, 고에너지 빔을 스캐닝하기 전에 제1 표면 상에 제1 액체 층을 적용하는 단계를 추가로 포함하되, 고 에너지 빔 스캐닝은 제1 액체 층을 가로질러 이루어지고 상기 고 에너지 빔은 제1 액체 층과 상호작용하여 처리된 제1 표면을 형성한다.
양태 3은 임의의 이전 후속 측면의 방법으로서, 상기 처리된 제1 표면은 FLTM BV 101-07 표준 테스트에 따라 45 사이클 내지 125 사이클 또는 그 초과의 접합 내구성을 나타낸다.
양태 4는 임의의 이전 후속 양태의 방법으로서, 알루미늄 합금 제품은 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 또는 7xxx 시리즈 알루미늄 합금을 포함한다.
양태 5는 임의의 이전 후속 측면의 방법으로서, 상기 고에너지 빔은 벌크의 적어도 일부를 물리적으로 변형시키기 위해 제1 액체 층과 상호작용하고, 상기 벌크는 금속간 입자 및 알루미늄 합금 입자를 포함하는 매트릭스를 포함하여, 처리된 표면 아래층을 형성한다.
양태 6은 임의의 이전 후속 양태의 방법으로서, 상기 처리된 하부 표면 층은 고에너지 빔에 의해 사전에 용융된 알루미늄 합금의 재응고된 층을 포함하되, 상기 하부 표면 층은 1μm 내지 10μm의 알루미늄 합금 내로 깊이를 점유하고, 처리된 표면 아래층의 금속간 입자의 제1 농도는 벌크의 금속간 입자의 제2 농도 미만이다.
양태 7은 임의의 이전 후속 양태의 방법으로서, 제1 액체 층이 1nm 내지 1mm의 두께를 갖는다.
양태 8은 임의의 이전 후속 양태의 방법으로서, 제1 액체 층이 1mm 내지 5mm의 두께를 갖는다.
양태 9는 임의의 이전 후속 양태의 방법으로서, 제2 액체 층을 제2 표면에 적용하는 단계를 더 포함하되, 상기 제2 표면은 제1 표면에 대해 대향한다.
양태 10은 임의의 이전 후속 양태의 방법으로서, 제2 액체가 1nm 내지 1mm의 두께를 갖는다.
양태 11은 임의의 이전 후속 양태의 방법으로서, 제2 액체 층이 1mm 내지 5mm의 두께를 갖는다.
양태 12는 임의의 이전 후속 양태의 방법으로서, 제2 액체 층이 제1 액체 층과 동일하다.
양태 13은 임의의 이전 후속 양태의 방법으로서, 제2 액체 층이 제1 액체 층과 상이하다.
양태 14는 임의의 이전 후속 양태의 방법으로서, 제1 액체 층 및 제2 액체 층 중 적어도 하나는 응축 증기를 포함한다.
양태 15는 임의의 이전 후속 양태의 방법으로서, 제1 액체 층 및 제2 액체 층 중 적어도 하나는 수용액을 포함한다.
양태 16은 임의의 이전 후속 양태의 방법으로서, 제1 액체 층 및 제2 액체 층 중 적어도 하나는 비수성 용액을 포함한다.
양태 17은 임의의 이전 후속 양태의 방법으로서, 제1 액체 층 및 제2 액체 층 중 적어도 하나는 글리세린, 알코올 용액, 증기, 또는 이들의 임의의 조합을 포함한다.
양태 18은 임의의 이전 후속 양태의 방법으로서, 제1 액체 층 및 제2 액체 층 중 적어도 하나는 부식 억제, 표면 텍스처화, 및 접착 증가 중 적어도 하나에 대해 구성된 전처리 화학물질을 포함하고, 상기 전처리 화학물질은 유기포스폰산, 유기 포스핀산, 실란, 커플링제, 중합체, 공중합체, Zr/Mo 전처리제, Mn계 전처리제, Ce계 전처리제, 또는 이들의 조합으로부터 선택된다.
양태 19는 임의의 이전 후속 양태의 방법으로서, 상기 제1 액체 층 및 제2 액체 층이 2개 이상의 도포기에 의해 제1 표면 및 제2 표면 상에 도포된다.
양태 20은 임의의 이전 후속 양태의 방법으로서, 상기 2개 이상의 도포기는 펄스가 있거나 없는 스프레이 도포기, 저압 대용량 스프레이 도포기, 저압 저용량 스프레이 도포기, 회전 분무기, 정전 도포기, 롤 도포기, 또는 이들의 임의의 조합을 포함한다.
양태 21은 임의의 이전 후속 양태의 방법으로서, 둘 이상의 도포기는 연속 라인에 있다.
양태 22는 임의의 이전 후속 양태의 방법으로서, 상기 2개 이상의 도포기는 2개 이상의 도포기 배쓰로서 구성된다.
양태 23은 임의의 이전 후속 양태의 방법으로서, 제1 액체 층을 가로질러 고에너지 빔을 스캐닝하는 단계는 제1 액체 층 상으로 레이저 에너지 빔을 지향시키는 단계를 포함한다.
양태 24는 임의의 이전 후속 양태의 방법으로서, 상기 레이저 에너지 빔은 연속 레이저, 펄스 레이저, 나노초 펄스 레이저, 피코초 펄스 레이저, 펨토초 펄스 레이저, 단일 패스 구성, 이중 패스 구성, 연속파가 있는 레이저, 연속파가 없는 레이저 또는 이들의 조합에 의해 제공된다.
양태 25는 임의의 이전 후속 양태의 방법으로서, 상기 레이저 에너지 빔은 이테르븀 레이저, Nd-YAG 레이저, CO2 레이저, 엑시머 레이저, 또는 이들의 임의의 조합에 의해 제공된다.
양태 26은 임의의 이전 후속 양태의 방법이며, 상기 레이저 에너지 빔은 약 200nm 내지 약 1500nm의 파장을 갖는다.
양태 27은 임의의 이전 후속 양태의 방법으로서, 제1 액체 층을 가로질러 고에너지 빔을 스캐닝하는 단계는 제1 액체 층 상으로 적어도 하나의 레이저 에너지 빔을 지향시키는 단계를 포함하고, 상기 방법은 두 번째 액체 층 상으로 레이저 에너지의 다른 적어도 하나의 빔을 지향시키는 단계를 추가로 포함한다.
양태 28은 임의의 이전 후속 양태의 방법으로서, 제1 표면이 미처리된 제1 표면이다.
양태 29는 임의의 이전 후속 양태의 방법으로서, 상기 미처리된 제1 표면은 그 위에 유기물, 오일, 탄화수소, 토양, 또는 무기 잔류물 중 하나 이상을 갖고, 상기 처리된 제1 표면에는 유기물, 오일, 탄화수소, 토양 또는 무기 잔류물 중 하나 이상이 없거나 실질적으로 없다.
양태 30은 임의의 이전 후속 양태의 방법으로서, 상기 미처리된 제1 표면은 화학적 에칭, 산성 또는 알칼리성 세정, 용제 세정, 증기 탈지, 기계적 표면 처리, 브러싱, 버핑, 기계적 표면 연마, 전기 화학적 연마, 화학적 연마, 계면 활성제 세정 및 변환 코팅으로부터 선택된 하나 이상의 습식 처리 단계를 거치지 않는다.
양태 31은 임의의 이전 후속 양태의 방법으로서, 상기 미처리된 제1 표면에 고에너지 빔을 미처리된 제1 표면으로 지향시키기 전에 하나 이상의 습식 처리 단계를 거치지 않는다.
양태 32는 임의의 이전 후속 양태의 방법으로서, 상기 미처리된 제1 표면은 그 위에 압연 윤활제를 갖는 압연 표면에 대응한다.
양태 33은 임의의 이전 후속 양태의 방법으로서, 상기 미처리된 제1 표면 상에 고에너지 빔을 지향시키는 것은 드라이 클리닝 공정에 대응하고, 상기 처리된 제1 표면은 세정된 표면에 대응한다.
양태 34는 임의의 이전 후속 양태의 방법으로서, 상기 미처리된 제1 표면 상으로 고에너지 빔을 지향시키는 것은 건식 표면 개질 공정에 대응하고, 상기 처리된 제1 표면은 접착제와의 결합에 적합한 활성화된 표면에 대응한다.
양태 35는 임의의 이전 후속 양태의 방법으로서, 상기 제1 표면은 표면 근처 미세구조를 포함하고, 에너지 빔을 제1 표면 위로 지향시키는 것은 상기 표면 근처 미세구조의 적어도 일부를 제거하거나 제거한다.
양태 36은 임의의 이전 후속 양태의 방법으로서, 제1 표면 상으로 고에너지 빔을 지향시키는 것은 표면 근처 미세구조를 열적으로 개질한다.
양태 37은 임의의 이전 후속 양태의 방법으로서, 상기 처리된 제1 표면이 0.1 내지 0.5의 건조 정지 마찰 계수를 나타낸다.
양태 38은 압연 알루미늄 합금 기재를 포함하는 알루미늄 합금 제품으로서, 상기 압연 알루미늄 합금 기재는, 금속간 입자 및 알루미늄 합금의 입자를 포함하는 매트릭스를 포함하는 벌크; 상기 벌크의 제1 부분을 덮는 레이저-처리된 영역을 포함하되, 상기 레이저-처리된 영역은 처리된 표면 아래층, 및 레이저 가공된 표면 층을 포함하되, 처리된 표면 아래층은 빔에 의해 미리 용융된 알루미늄 합금의 재응고된 층을 포함하고, 처리된 표면 아래층은 1μm 내지 10μm의 알루미늄 합금 제품 내로 깊이를 점유하고, 처리된 표면 아래층의 금속간 입자의 제1 농도는 금속간 화합물의 제2 농도 미만이고, 상기 레이저 가공된 표면 층은 유기물, 오일, 탄화수소, 토양, 무기 잔류물, 압연된 산화물 또는 양극 산화물 중 하나 이상 및 표면 근처 미세구조가 실질적으로 없고, 상기 레이저 가공된 표면 층은 10nm 내지 300nm의 두께를 갖는 제1 산화물 층을 포함한다.
양태 39는 임의의 이전 후속 양태의 알루미늄 합금 제품으로서, 상기 알루미늄 합금은 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 또는 7xxx 시리즈 알루미늄 합금을 포함한다.
양태 40은 임의의 이전 후속 양태의 알루미늄 합금 제품으로서, 알루미늄 합금 중 마그네슘의 농도는 10 중량% 미만이다.
양태 41은 임의의 이전 후속 양태의 알루미늄 합금 제품으로서, 상기 벌크 내의 마그네슘 농도는 처리된 하부-표면 층에서 보다 더 크거나 벌크 내의 아연의 농도는 처리된 하부-표면 층에서 보다 더 크다.
양태 42는 임의의 이전 후속 양태의 알루미늄 합금 제품으로서, FLTM BV 101-07 표준 테스트에 따라 레이저 처리된 영역은 45 사이클 내지 125 사이클 또는 그 이상의 접합 내구성을 나타낸다.
양태 43은 임의의 이전 후속 양태의 알루미늄 합금 제품으로서, 상기 알루미늄 합금 제품은 그 위에 인 함유 유기산 코팅과 같은 기능화된 층을 포함하지 않는다.
양태 44는 상기 벌크의 제2 부분을 덮는 미처리된 영역을 추가로 포함하는 임의의 이전 후속 양태의 알루미늄 합금 제품으로서, 상기 미처리된 영역은 레이저 처리 공정을 거치지 않았거나 받지 않았다.
양태 45는 임의의 이전 후속 양태의 알루미늄 합금 제품으로서, 상기 레이저 처리된 영역의 제1 산술 평균 높이(Spk)는 미처리된 영역의 제2 산술 평균 높이보다 작다.
양태 46은 임의의 이전 후속 양태의 알루미늄 합금 제품으로서, 상기 레이저 처리된 영역은 0.1μm 내지 10μm의 산술 평균 높이(Sa)를 나타낸다.
양태 47은 임의의 이전 후속 양태의 알루미늄 합금 제품으로서, 레이저 처리된 영역은 0.1% 내지 80%의 복잡성(Sdr)을 나타낸다.
양태 48은 임의의 이전 양태의 알루미늄 합금 제품으로서, 상기 레이저 처리된 영역은 최대 3개월의 표면 안정성을 나타낸다.
위에 인용된 모든 특허, 간행물 및 초록은 전체가 참고로 여기에 포함된다. 예시된 실시양태를 포함하는 실시양태에 대한 전술한 설명은 예시 및 설명의 목적으로만 제시되었으며, 개시된 정확한 형태를 망라하거나 제한하려는 의도가 아니다. 수많은 수정, 개조 및 사용이 당업자에게 자명할 것이다.
Claims (47)
- 방법으로서,
벌크 및 제1 표면을 갖는 알루미늄 합금 제품을 제공하는 단계,
상기 제1 표면 상에 제1 액체 층을 도포하는 단계,
상기 제1 액체 층 및 상기 제1 표면을 가로질러 높은 에너지의 빔을 스캐닝하는 단계를 포함하며,
상기 고 에너지의 빔은 상기 제1 표면 및 상기 제1 액체 층과 상호작용하여 상기 제1 표면을 물리적으로 개질하여 처리된 제1 표면을 형성하는, 방법. - 제1항에 있어서, 상기 처리된 제1 표면은 FLTM BV 101-07 표준 시험에 따라 45 사이클 내지 125 사이클, 또는 그 초과의 결합 내구성을 나타내는, 방법.
- 제1항에 있어서, 상기 알루미늄 합금 제품은 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 또는 7xxx 시리즈 알루미늄 합금을 포함하는, 방법.
- 제1항에 있어서, 상기 고 에너지의 빔은 상기 제1 액체 층과 상호작용하여 상기 벌크의 적어도 일부를 물리적으로 개질하여 처리된 표면 아래층을 형성하되,상기 벌크는 금속간 입자 및 알루미늄 합금의 그레인을 포함하는 매트릭스를 포함하는, 방법.
- 제4항에 있어서, 상기 처리된 표면 아래층은 고 에너지의 빔에 의해 미리 용융되는 알루미늄 합금의 재응고된 층을 포함하되, 상기 표면 아래층은 1μm 내지 10μm의 알루미늄 합금 제품 내로 깊이를 차지(occupy)하며, 상기 처리된 표면 아래층 내의 금속간 입자의 제1 농도는 상기 벌크 내의 금속간 입자의 제2 농도 미만인, 방법.
- 제1항에 있어서, 상기 제1 액체 층은 1nm 내지 1mm의 두께를 갖는 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 제1 액체 층은 1mm 내지 5mm의 두께를 갖는 것을 특징으로 하는 방법.
- 제1항에 있어서, 제2 표면에 제2 액체 층을 도포하는 단계를 추가로 포함하고, 상기 제2 표면은 상기 제1 표면과 대향하는, 방법.
- 제8항에 있어서, 상기 제2 액체는 1nm 내지 1mm의 두께를 갖는, 방법.
- 제8항에 있어서, 상기 제2 액체 층은 1mm 내지 5mm의 두께를 갖는, 방법.
- 제8항에 있어서, 상기 제2 액체 층은 상기 제1 액체 층과 동일한, 방법.
- 제8항에 있어서, 상기 제2 액체 층은 상기 제1 액체 층과 상이한, 방법.
- 제8항에 있어서, 상기 제1 액체 층 및 상기 제2 액체 층 중 적어도 하나는 응축된 증기를 포함하는, 방법.
- 제8항에 있어서, 상기 제1 액체 층 및 상기 제2 액체 층 중 적어도 하나는 수용액을 포함하는, 방법.
- 제8항에 있어서, 상기 제1 액체 층 및 상기 제2 액체 층 중 적어도 하나는 비수성 용액을 포함하는, 방법.
- 제8항에 있어서, 상기 제1 액체 층 및 상기 제2 액체 층 중 적어도 하나는 글리세린, 알코올 용액, 증기, 또는 이들의 임의의 조합을 포함하는, 방법.
- 제8항에 있어서, 상기 제1 액체 층 및 상기 제2 액체 층 중 적어도 하나는 부식, 표면 처리, 및 접착 증가 중 적어도 하나로 구성된 전처리 화학물질을 포함하며, 상기 전처리 화학물질은 유기포스폰산, 유기포스핀산, 실란, 커플링제, 중합체, 공중합체, Zr/Mo 전처리제, Mn계 전처리제, Ce계 전처리제, 또는 이들의 조합으로부터 선택되는 것인, 방법.
- 제8항에 있어서, 상기 제1 액체 층 및 상기 제2 액체 층은 둘 이상의 도포기에 의해 상기 제1 표면 및 상기 제2 표면 상에 도포되는, 방법.
- 제18항에 있어서, 상기 둘 이상의 도포기는 펄싱이 있거나 없는 스프레이 도포기, 저압 고용량 스프레이 도포기, 저압 저용량 스프레이 도포기, 회전 분무기, 정전 도포기, 롤 도포기, 또는 이들의 임의의 조합을 포함하는, 방법.
- 제18항에 있어서, 상기 둘 이상의 도포기는 연속적인 라인인 것을 특징으로 하는 방법.
- 제18항에 있어서, 상기 둘 이상의 도포기는 둘 이상의 도포기 배쓰로서 구성되는, 방법.
- 제1항에 있어서, 상기 제1 액체 층을 가로지르는 고 에너지의 빔을 스캐닝하는 단계는 레이저 에너지의 빔을 상기 제1 액체 층 상으로 지향시키는 단계를 포함하는, 방법.
- 제22항에 있어서, 상기 레이저 에너지의 빔은 연속 레이저, 펄스 레이저, 나노초 펄스 레이저, 피코초 펄스 레이저, 펨토초 펄스 레이저, 단일 패스 구성, 이중 패스 구성, 연속파를 갖는 레이저, 연속파 없는 레이저, 또는 이들의 임의의 조합에 의해 제공되는, 방법.
- 제22항에 있어서, 상기 레이저 에너지의 빔은 이테르븀 레이저, Nd-YAG 레이저, CO2 레이저, 엑시머 레이저, 또는 이들의 임의의 조합에 의해 제공되는, 방법.
- 제22항에 있어서, 상기 레이저 에너지의 빔은 약 200nm 내지 약 1500nm의 파장을 갖는, 방법.
- 제8항에 있어서, 상기 제1 액체 층을 가로지르는 고 에너지의 빔을 스캐닝하는 단계는, 레이저 에너지의 적어도 하나의 빔을 상기 제1 액체 층 상으로 지향하는 단계를 포함하고, 상기 방법은 레이저 에너지의 또 다른 적어도 하나의 빔을 상기 제2 액체 층 상으로 지향하는 단계를 추가로 포함하는, 방법.
- 제1항에 있어서, 상기 제1 표면은 미처리된 제1 표면인, 방법.
- 제27항에 있어서, 상기 미처리된 제1 표면은 그 위에 유기물, 오일, 탄화수소, 토양 또는 무기 잔류물 중 하나 이상을 가지며, 상기 처리된 제1 표면은 유기물, 오일, 탄화수소, 토양, 또는 무기 잔류물 중 하나 이상이 없거나 실질적으로 없는 것을 특징으로 하는, 방법.
- 제27항에 있어서, 상기 미처리된 제1 표면은 화학적 에칭, 산성 또는 알칼리성 세정, 용매 세정, 증기 탈지, 기계적 표면 처리, 브러싱, 버핑, 기계적 표면 연마, 전기화학적 연마, 화학적 연마, 계면활성제 세정, 및 전환 코팅으로부터 선택된 하나 이상의 습식 처리 단계를 거치지 않는, 방법.
- 제27항에 있어서, 상기 미처리된 제1 표면은 상기 미처리된 제1 표면 상으로 상기 고 에너지의 빔을 지향시키기 전에 상기 하나 이상의 습식 가공 단계들을 거치지 않는, 방법.
- 제27항에 있어서, 상기 미처리된 제1 표면은 그 위에 압연 윤활제를 갖는 압연 표면에 해당되는, 방법.
- 제27항에 있어서, 상기 미처리된 제1 표면 상으로 고 에너지의 빔을 지향시키는 단계는 건식 세정 프로세스에 해당되고, 상기 처리된 제1 표면은 세정된 표면에 해당되는, 방법.
- 제27항에 있어서, 상기 미처리된 제1 표면 상으로 고 에너지의 빔을 지향시키는 단계는 건식 표면 개질 프로세스에 해당되고, 상기 처리된 제1 표면은 접착제에 의해 결합하기에 적합한 활성화된 표면에 해당되는, 방법.
- 제1항에 있어서, 상기 제1 표면은 표면 근처 미세구조를 포함하고, 상기 제1 표면 상으로 에너지의 빔을 지향시키는 단계는 상기 표면 근처 미세구조의 적어도 일부를 없애거나 제거하는, 방법.
- 제34항에 있어서, 상기 고 에너지의 빔을 상기 제1 표면 상으로 지향시키는 단계는 상기 표면 근처 미세구조들을 열적으로 변형시키는 단계를 포함하는, 방법.
- 제1항에 있어서, 상기 처리된 제1 표면이 0.1 내지 0.5의 건조 정지 마찰 계수를 나타내는, 방법.
- 알루미늄 합금 제품으로서,
압연된 알루미늄 합금 기판을 포함하며,
상기 압연된 알루미늄 합금 기판은,
금속간 입자 및 알루미늄 합금의 그레인을 포함하는 매트릭스를 포함하는 벌크; 및
상기 벌크의 제1 부분을 덮는 레이저-및-액체-처리 영역을 포함하되,
상기 레이저-및-액체-처리 영역은 처리된 표면 아래층, 레이저 및 액체 가공된 표면층을 포함하되,
상기 처리된 표면 아래층은 고 에너지의 빔에 의해 미리 용융되는 알루미늄 합금의 재응고된 층을 포함하고, 상기 처리된 표면 아래층은 1μm 내지 10μm의 알루미늄 합금 제품 내로 깊이를 차지하며, 상기 처리된 표면 아래층에서의 금속간 입자의 제1 농도는 상기 벌크 내의 금속간 입자의 제2 농도 미만이고,
상기 레이저 및 액체 가공된 표면층은 표면 근처 미세구조 및 유기물, 오일, 탄화수소, 토양, 무기 잔류물, 롤링-인 산화물, 또는 양극 산화물 중 하나 이상이 실질적으로 없고, 상기 레이저 및 액체 가공된 표면층은 10nm 내지 300nm의 두께를 갖는 제1 산화물층을 포함하는, 방법. - 제37항에 있어서, 상기 알루미늄 합금은 5xxx 시리즈 알루미늄 합금, 6xxx 시리즈 알루미늄 합금, 또는 7xxx 시리즈 알루미늄 합금을 포함하는, 알루미늄 합금 제품.
- 제37항에 있어서, 상기 알루미늄 합금 내의 마그네슘의 농도는 10 중량% 미만인, 알루미늄 합금 제품.
- 제37항에 있어서, 상기 벌크 내의 마그네슘의 농도는 상기 처리된 표면 아래층에서 보다 더 크고, 상기 벌크 내의 아연의 농도는 상기 처리된 표면 아래층에서 보다 더 큰, 알루미늄 합금 제품.
- 제37항에 있어서, 상기 레이저-및-액체-처리 영역은 FLTM BV 101-07 표준 시험에 따라 45 사이클 내지 125 사이클, 또는 그 초과의 결합 내구성을 나타내는, 알루미늄 합금 제품.
- 제37항에 있어서, 상기 알루미늄 합금 제품이 그 위에 기능화된 층, 예컨대 인 함유 유기 산 코팅을 포함하지 않는, 알루미늄 합금 제품.
- 제37항에 있어서, 상기 벌크의 제2 부분을 덮는 미처리된 영역을 더 포함하고, 상기 미처리 영역은 레이저 처리 공정이 없거나 이를 수행하지 않는, 알루미늄 합금 제품.
- 제43항에 있어서, 상기 레이저-및-액체-처리된 영역의 제1 산술적 평균 높이(Spk)는 상기 미처리 영역의 제2 산술적 평균 높이 미만인, 알루미늄 합금 제품.
- 제37항에 있어서, 상기 레이저-및-액체-처리된 영역은 0.1μm 내지 10μm의 산술 평균 높이(Sa)를 나타내는, 알루미늄 합금 제품.
- 제37항에 있어서, 상기 레이저-및-액체-처리된 영역은 0.1% 내지 80%의 복잡도(Sdr)를 나타내는, 알루미늄 합금 제품.
- 제37항에 있어서, 상기 레이저-및-액체-처리된 영역은 3개월 이하의 표면 안정성을 나타내는, 알루미늄 합금 제품.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062978767P | 2020-02-19 | 2020-02-19 | |
US62/978,767 | 2020-02-19 | ||
US202062984555P | 2020-03-03 | 2020-03-03 | |
US62/984,555 | 2020-03-03 | ||
US202062993365P | 2020-03-23 | 2020-03-23 | |
US62/993,365 | 2020-03-23 | ||
PCT/US2021/018504 WO2021168068A1 (en) | 2020-02-19 | 2021-02-18 | Metal alloy surface modification methods and related metal alloy products with improved bond durability |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220127291A true KR20220127291A (ko) | 2022-09-19 |
KR102725534B1 KR102725534B1 (ko) | 2024-11-05 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220203925A1 (en) * | 2020-12-31 | 2022-06-30 | Joyson Safety Systems Acquisition Llc | Postprocessing of seat belts for adding dye |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220203925A1 (en) * | 2020-12-31 | 2022-06-30 | Joyson Safety Systems Acquisition Llc | Postprocessing of seat belts for adding dye |
US11833993B2 (en) * | 2020-12-31 | 2023-12-05 | Joyson Safety Systems Acquisition Llc | Postprocessing of seat belts for adding dye |
Also Published As
Publication number | Publication date |
---|---|
EP4107302A1 (en) | 2022-12-28 |
CA3168014A1 (en) | 2021-08-26 |
MX2022010162A (es) | 2022-09-12 |
CA3169622A1 (en) | 2021-08-26 |
JP2023514331A (ja) | 2023-04-05 |
US20230082861A1 (en) | 2023-03-16 |
KR20220121871A (ko) | 2022-09-01 |
CN115135784A (zh) | 2022-09-30 |
JP2023524617A (ja) | 2023-06-13 |
US20230099830A1 (en) | 2023-03-30 |
JP2023524616A (ja) | 2023-06-13 |
CN115135785A (zh) | 2022-09-30 |
CN115135784B (zh) | 2024-07-12 |
KR20220126747A (ko) | 2022-09-16 |
WO2021168068A1 (en) | 2021-08-26 |
EP4107302B1 (en) | 2024-07-10 |
BR112022014106A2 (pt) | 2022-09-13 |
US20230077017A1 (en) | 2023-03-09 |
EP4107300A1 (en) | 2022-12-28 |
EP4107301A1 (en) | 2022-12-28 |
WO2021168065A1 (en) | 2021-08-26 |
JP7480323B2 (ja) | 2024-05-09 |
CN115151666A (zh) | 2022-10-04 |
WO2021168064A1 (en) | 2021-08-26 |
MX2022010163A (es) | 2022-09-12 |
CA3168011A1 (en) | 2021-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7480323B2 (ja) | 金属合金表面修正方法、及び改善された結合耐久性を有する、関連する金属合金製品 | |
US20150030494A1 (en) | Object production | |
CN102861990A (zh) | 一种提高铝合金激光焊接过程中熔深的方法 | |
US11346004B2 (en) | Preparation of 7XXX aluminum alloys for adhesive bonding | |
JP5941805B2 (ja) | 電池缶の封缶前洗浄方法 | |
CN113414495A (zh) | 一种热塑性复合材料与金属异质结构的预处理装置及方法 | |
CN112703276A (zh) | 含有薄阳极氧化膜层的连续线圈以及用于制造所述连续线圈的系统和方法 | |
JP7191106B2 (ja) | 改善された接合耐久性を示す、および/またはリン含有表面を有するアルミニウム合金製品、ならびにその作製方法 | |
Cheng et al. | Underwater wire-feed laser deposition of thin-Walled tubular structure of aluminum alloy | |
KR102725534B1 (ko) | 결합 내구성이 향상된 금속 합금 표면 개질 방법 및 관련 금속 합금 제품 | |
CN108637477B (zh) | 一种增加异种金属焊接熔池两侧凹陷的方法 | |
Siggs | Laser and electron beam treatments for corrosion protection of friction stir welds in aerospace alloys | |
Bi et al. | Comparison and Improvement of Millisecond Pulsed Laser and Nanosecond Pulsed Laser for Cleaning to Remove Paint Coating from Aluminum Alloy Surface | |
McFall-Boegeman | Investigation of the Anti-Corrosion Properties of Trivalent Chromium Process Coatings on Various Surface Pretreatments of Aerospace Aluminum Alloys | |
Suebka | Laser cleaning of aluminium alloys | |
CN118043488A (zh) | 与固溶热处理或连续退火同时进行的金属基板的表面处理 | |
Wang et al. | Influence of surface pre-treatments on porosity and microstructure of laser welding in AlSi10Mg alloys sheets fabricated by selective laser melting | |
Xu et al. | Dual function laser surface treatment improves die casting die life | |
Hekmatjou et al. | The influence of Nd: YAG laser welding parameters and surface modification on hot cracking behavior of 5456 Al alloy | |
Forsman et al. | Nd: YAG laser lap welding of coated aluminium alloys | |
Olabode et al. | Engineers, Part B: Journal of Engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |