CN113414495A - 一种热塑性复合材料与金属异质结构的预处理装置及方法 - Google Patents

一种热塑性复合材料与金属异质结构的预处理装置及方法 Download PDF

Info

Publication number
CN113414495A
CN113414495A CN202110489778.3A CN202110489778A CN113414495A CN 113414495 A CN113414495 A CN 113414495A CN 202110489778 A CN202110489778 A CN 202110489778A CN 113414495 A CN113414495 A CN 113414495A
Authority
CN
China
Prior art keywords
metal
thermoplastic composite
processed
heterostructure
microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110489778.3A
Other languages
English (en)
Inventor
徐洁洁
黄婷
肖荣诗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110489778.3A priority Critical patent/CN113414495A/zh
Publication of CN113414495A publication Critical patent/CN113414495A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开一种热塑性复合材料与金属异质结构的预处理装置,包括加工室、飞秒激光刻蚀组件,加工室内能够容纳待处理金属,飞秒激光刻蚀组件能够在待处理金属表面加工出微结构,加工室具有进气口,进气口与外部氧气来源相连通。本发明还提供一种热塑性复合材料与金属异质结构的预处理方法,在氧气环境下,利用飞秒激光刻蚀方式在待处理金属上加工出微结构,并在待处理金属表面生成致密氧化层。在氧气环境下对待处理金属表面进行加工,在待处理金属表面预制微结构的同时,令其表面生成致密氧化层,在金属材料与热塑性复合材料连接时,可同时实现机械连接和化学键连接,实现异质结构界面结合强度的协同增强,有效提高连接接头的综合力学性能。

Description

一种热塑性复合材料与金属异质结构的预处理装置及方法
技术领域
本发明涉及异质结构连接技术领域,特别是涉及一种热塑性复合材料与金属异质结构的预处理装置及方法。
背景技术
碳纤维增强热塑性树脂基复合材料与铝合金、钛合金等金属的异质结构符合轻量化设计的要求,在汽车、航空航天、电子封装等领域的需求日益强烈,是现代装备制造中实现低成本和轻量化制造的重要途径。
热塑性树脂基复合材料与金属异质结构中最薄弱部分往往位于接头连接区域,接头连接质量直接决定着异质结构的强度和使用寿命。目前异质结构常用的连接方法主要有机械连接、胶接、混合连接、激光连接、超声波辅助焊、摩擦点焊、感应焊等。这些方法都存在一定的缺陷。机械连接会造成应力集中、聚合物对缺口敏感易产生微裂纹。胶接对材料待粘接表面预处理要求较高且容易造成环境污染。由于金属与热塑复合材料之间物理化学性质的巨大差异性界面结合困难,使得焊接连接得到得连接接头强度较低。为了提升连接接头的强度,在激光连接、超声波辅助焊、感应焊等工艺中,大多通过在金属表面预制微结构的方法使连接界面形成机械锚固作用,通过增强界面机械结合来提高连接接头力学性能。在金属表面预制微结构的方法包括化学处理、机械加工、激光加工等。对复合材料树脂基表面或金属表面进行改性,比如在碳纤维增强复合材料表面进行紫外光接枝处理或者在低碳钢表面镀铬、铝合金表面阳极氧化等方法提高连接界面的化学键结合强度,也可在一定程度实现接头强度提升。然而采用单一的界面增强方法,一方面界面增强效果有限,另一方面也存在微结构存在缺陷、工艺可控性较差等问题。
因此,如何改变现有技术中,异质结构连接过程中,材料预处理对异质结构连接强度提升助益不佳的现状,成为了本领域技术人员亟待解决的问题。
发明内容
本发明的目的是提供一种热塑性复合材料与金属异质结构的预处理装置及方法,以解决上述现有技术存在的问题,增强异质结构接头连接强度。
为实现上述目的,本发明提供了如下方案:本发明提供一种热塑性复合材料与金属异质结构的预处理装置,包括加工室、飞秒激光刻蚀组件,所述加工室内能够容纳待处理金属,所述飞秒激光刻蚀组件能够在所述待处理金属表面加工出微结构,所述加工室具有进气口,所述进气口与外部氧气来源相连通。
优选地,所述加工室为顶部开口结构,所述飞秒激光刻蚀组件位于所述待处理金属的顶部,所述进气口位于所述加工室的侧壁的底部。
优选地,所述加工室的外部套设有加工套,所述加工室和所述飞秒激光刻蚀组件均设置于所述加工套内,所述加工套连接有抽气组件,所述抽气组件能够抽取所述加工室内的空气。
优选地,所述飞秒激光刻蚀组件包括飞秒激光器和扫描振镜,所述飞秒激光器的出射激光光束能够对所述待处理金属进行加工;所述扫描振镜能够控制所述飞秒激光器的出射激光光束的加工路径。
本发明还提供一种热塑性复合材料与金属异质结构的预处理方法,在预定浓度的氧气环境下,利用飞秒激光刻蚀方式在所述待处理金属上加工出微结构,以同时在所述待处理金属表面生成致密氧化层。
优选地,所述待处理金属表面生成的致密氧化层的厚度为5-10μm。
优选地,所述预定浓度为40%-90%。
优选地,所述待处理金属表面加工出的微结构具有凸起和凹陷。
优选地,在加工之前,对所述待处理金属进行清洗,去除所述待处理金属表面的氧化膜。
优选地,将在预定浓度的氧气环境下,利用飞秒激光刻蚀方式加工出微结构,同时生成致密氧化层的金属,与热塑性复合材料连接,连接界面同时实现机械连接和化学键连接。
本发明相对于现有技术取得了以下技术效果:本发明的热塑性复合材料与金属异质结构的预处理装置,包括加工室、飞秒激光刻蚀组件,加工室内能够容纳待处理金属,飞秒激光刻蚀组件能够在待处理金属表面加工出微结构,加工室具有进气口,进气口与外部氧气来源相连通,实际预处理过程中,向加工室内通入氧气的同时进行微结构飞秒激光刻蚀,以便在形成微结构的同时还能够在金属的表面生成致密氧化层。本发明还提供一种热塑性复合材料与金属异质结构的预处理方法,在预定浓度的氧气环境下,利用飞秒激光刻蚀方式在待处理金属上加工出微结构,以同时在待处理金属表面生成致密氧化层。
本发明在氧气环境下对待处理金属表面进行加工,在待处理金属表面预制微结构的同时,令其表面生成致密氧化层,在金属材料与热塑性复合材料连接时,可同时实现机械连接和化学键连接,实现异质结构界面结合强度的协同增强,有效提高热塑性复合材料与金属异质结构连接接头的综合力学性能。本发明的热塑性复合材料与金属异质结构的预处理装置,能够实现微结构精确加工和待处理金属表面致密氧化层的可调加工,提高装置的可控性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的热塑性复合材料与金属异质结构的预处理装置的结构示意图;
图2为本发明的热塑性复合材料与金属异质结构的预处理方法的实施例中的微结构的示意图;
其中,1为加工室,2为进气口,3为飞秒激光刻蚀组件,4为待处理金属。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种热塑性复合材料与金属异质结构的预处理装置及方法,以解决上述现有技术存在的问题,增强异质结构接头连接强度。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
请参考图1-2,其中,图1为本发明的热塑性复合材料与金属异质结构的预处理装置的结构示意图,图2为本发明的热塑性复合材料与金属异质结构的预处理方法的实施例中的微结构的示意图。
本发明提供一种热塑性复合材料与金属异质结构的预处理装置,包括加工室1、飞秒激光刻蚀组件3,加工室1内能够容纳待处理金属4,飞秒激光刻蚀组件3能够在待处理金属4表面加工出微结构,加工室1具有进气口2,进气口2与外部氧气来源相连通。
本发明在氧气环境下对待处理金属4表面进行加工,在待处理金属4表面预制微结构的同时,令其表面生成致密氧化层,在金属材料与热塑性复合材料连接时,可同时实现机械连接和化学键连接,实现异质结构界面结合强度的协同增强,有效提高热塑性复合材料与金属异质结构连接接头的综合力学性能。本发明的热塑性复合材料与金属异质结构的预处理装置,能够实现微结构加工和待处理金属4表面致密氧化层的可调加工,提高装置的可控性。
其中,加工室1为顶部开口结构,飞秒激光刻蚀组件3位于待处理金属4的顶部,进气口2位于加工室1的侧壁的底部,外部氧气来源由进气口2通入加工室1的内腔,使待处理金属4处于一定浓度的氧气环境中。
在本具体实施方式中,加工室1的外部套设有加工套,加工室1和飞秒激光刻蚀组件3均设置于加工套内,加工套连接有抽气组件,抽气组件能够抽取加工室1内的空气,使加工过程顺利进行,加工套可选择防火材料制成。
具体地,飞秒激光刻蚀组件3包括飞秒激光器和扫描振镜,飞秒激光器的出射激光光束能够对待处理金属4进行加工,在待处理金属4的表面加工出微结构,在飞秒激光刻蚀的作用下,待处理金属4的表面还会生成致密氧化层;扫描振镜能够控制飞秒激光器的出射激光光束的加工路径,确保飞秒激光器能够在待处理金属4的表面顺利加工出微结构。
本发明还提供一种利用上述热塑性复合材料与金属异质结构的预处理装置,能够实现的热塑性复合材料与金属异质结构的预处理方法,在预定浓度的氧气环境下,利用飞秒激光器在待处理金属4上加工出微结构,同时,待处理金属4表面生成致密氧化层。
需要强调的是,超快激光具有超窄脉宽(一般小于10ps)和超高能量密度,刻蚀过程中与材料的作用不同于常规的长脉冲激光,具有阈值效应以及极小的热影响区,不会产生气孔、裂纹等缺陷。同时,超快激光与材料相互作用可以在表面诱导生成微纳米复合结构,增大微结构的表面积。
连续激光制备微结构时,金属材料经历熔化冷却过程后显微组织由轧制状态转变为铸态,且难以避免热裂纹、孔洞等缺陷的产生。纳秒激光刻蚀微结构热影响区较大,且微结构边缘存在熔化金属的附着物。这些微结构缺陷在一定程度上影响接头力学性能。不同类型激光器制备的微结构形貌和尺寸各具特征。连续激光可制备尺度在亚毫米至毫米量级的微结构,脉冲激光(纳秒激光、皮秒激光)制备的微结构尺度通常在微米至百微米量级,同连续激光相比微结构密度更高。
激光加工技术可以在较大范围内调控微结构的尺寸和分布,是微结构制备的理想手段。微结构中气孔、裂纹的缺陷显然会导致异质结构接头的抗疲劳性能的降低,而超快激光可以实现无缺陷微结构的制备。因此,本发明的热塑性复合材料与金属异质结构的预处理方法,采用飞秒激光刻蚀方式对待处理金属4进行微结构的加工,尽可能地减少微结构缺陷,提高微结构加工质量,在加工微结构的同时,待处理金属4生成致密的氧化层,提高待处理金属4的预处理质量,进而提高异质结构连接接头的力学性能。
在本具体实施方式中,飞秒激光器的加工工艺参数,激光功率为10-60W,重复频率为400-600kHz,扫描速度为1000-3000mm/s,扫描次数为15-100,光斑线间距为100-250um。
在待处理金属4预处理完成后,使用激光连接、超声波辅助焊接或感应焊接实现热塑性复合材料与金属连接界面的机械连接和化学键连接,形成异质结构的连接接头,连接界面可同时实现机械连接与化学键连接,实现界面结合强度的协同增强,有效提高连接接头的综合力学性能。
待处理金属4表面生成的致密氧化层的厚度为5-10μm。
另外,待处理金属4处于氧气浓度为40%-90%的工作环境中,确保待处理金属4表面能够生成致密氧化层。
进一步地,待处理金属4表面加工出的微结构具有凸起和凹陷,微结构可选择平行的沟槽形式,也可选择网格状沟槽形式,在金属表面制备无缺陷、微结构密度较高的微结构,微结构尺寸、结构可调可控。
还需说明的是,在加工之前,对待处理金属4进行清洗去除表面油污,然后去除待处理金属4表面的氧化膜,实际操作中,去除氧化膜的方法包括机械打磨、化铣、飞秒激光去除等方式,为待处理金属4进行预处理提供便利。
本发明的热塑性复合材料与金属异质结构的预处理方法,在氧气环境下利用飞秒激光在待处理金属4表面进行刻蚀加工,连接界面可同时实现机械连接与化学键连接,实现界面结合强度的协同增强,有效提高连接接头综合力学性能。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种热塑性复合材料与金属异质结构的预处理装置,其特征在于:包括加工室、飞秒激光刻蚀组件,所述加工室内能够容纳待处理金属,所述飞秒激光刻蚀组件能够在所述待处理金属表面加工出微结构,所述加工室具有进气口,所述进气口与外部氧气来源相连通。
2.根据权利要求1所述的热塑性复合材料与金属异质结构的预处理装置,其特征在于:所述加工室为顶部开口结构,所述飞秒激光刻蚀组件位于所述待处理金属的顶部,所述进气口位于所述加工室的侧壁的底部。
3.根据权利要求2所述的热塑性复合材料与金属异质结构的预处理装置,其特征在于:所述加工室的外部套设有加工套,所述加工室和所述飞秒激光刻蚀组件均设置于所述加工套内,所述加工套连接有抽气组件,所述抽气组件能够抽取所述加工室内的空气。
4.根据权利要求3所述的热塑性复合材料与金属异质结构的预处理装置,其特征在于:所述飞秒激光刻蚀组件包括飞秒激光器和扫描振镜,所述飞秒激光器的出射激光光束能够对所述待处理金属进行加工,所述扫描振镜能够控制所述飞秒激光器的出射激光光束的加工路径。
5.一种热塑性复合材料与金属异质结构的预处理方法,其特征在于:在预定浓度的氧气环境下,利用飞秒激光刻蚀方式在所述待处理金属上加工出微结构,以同时在所述待处理金属表面生成致密氧化层。
6.根据权利要求5所述的热塑性复合材料与金属异质结构的预处理方法,其特征在于:所述待处理金属表面生成的致密氧化层的厚度为5-10μm。
7.根据权利要求5所述的热塑性复合材料与金属异质结构的预处理方法,其特征在于:所述预定浓度为体积百分比浓度40%-90%。
8.根据权利要求5所述的热塑性复合材料与金属异质结构的预处理方法,其特征在于:所述待处理金属表面加工出的微结构具有凸起和凹陷。
9.根据权利要求5所述的热塑性复合材料与金属异质结构的预处理方法,其特征在于:在加工之前,对所述待处理金属进行清洗,去除所述待处理金属表面的氧化膜。
10.根据权利要求5所述的热塑性复合材料与金属异质结构的预处理方法,其特征在于:将在预定浓度的氧气环境下,利用飞秒激光刻蚀方式加工出微结构,同时生成致密氧化层的金属,与热塑性复合材料连接,连接界面同时实现机械连接和化学键连接。
CN202110489778.3A 2021-05-06 2021-05-06 一种热塑性复合材料与金属异质结构的预处理装置及方法 Pending CN113414495A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110489778.3A CN113414495A (zh) 2021-05-06 2021-05-06 一种热塑性复合材料与金属异质结构的预处理装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110489778.3A CN113414495A (zh) 2021-05-06 2021-05-06 一种热塑性复合材料与金属异质结构的预处理装置及方法

Publications (1)

Publication Number Publication Date
CN113414495A true CN113414495A (zh) 2021-09-21

Family

ID=77712045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110489778.3A Pending CN113414495A (zh) 2021-05-06 2021-05-06 一种热塑性复合材料与金属异质结构的预处理装置及方法

Country Status (1)

Country Link
CN (1) CN113414495A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940012A (zh) * 2022-07-25 2022-08-26 宁波均胜群英汽车系统股份有限公司 一种车辆内饰模制件的制造工艺
CN115091039A (zh) * 2022-06-17 2022-09-23 中国科学院上海光学精密机械研究所 一种金属与碳纤维增强复合材料激光焊接强化方法
CN115677385B (zh) * 2022-10-25 2023-09-08 哈尔滨工业大学 一种陶瓷基复合材料表面耐温达1300℃的可磨耗复合涂层的制备方法
CN117620440A (zh) * 2023-11-24 2024-03-01 无锡物联网创新中心有限公司 一种用于硅通孔加工的高速激光刻蚀系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236073A (ja) * 2004-02-20 2005-09-02 Sony Corp 基板処理装置及び基板処理方法
CN101219506A (zh) * 2008-01-07 2008-07-16 江苏大学 金属基超疏水性微结构表面的激光制备方法
CN103033496A (zh) * 2012-12-17 2013-04-10 南开大学 一种大面积表面增强拉曼散射基底的制备方法
CN106393705A (zh) * 2016-07-26 2017-02-15 上海航天设备制造总厂 一种塑料和金属异质结构的连接方法
CN109954966A (zh) * 2019-03-28 2019-07-02 大族激光科技产业集团股份有限公司 通过飞秒激光进行金属表面处理的方法
CN112123789A (zh) * 2020-09-15 2020-12-25 哈尔滨工业大学(威海) 一种金属/碳纤维增强热塑复合材料激光连接方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236073A (ja) * 2004-02-20 2005-09-02 Sony Corp 基板処理装置及び基板処理方法
CN101219506A (zh) * 2008-01-07 2008-07-16 江苏大学 金属基超疏水性微结构表面的激光制备方法
CN103033496A (zh) * 2012-12-17 2013-04-10 南开大学 一种大面积表面增强拉曼散射基底的制备方法
CN106393705A (zh) * 2016-07-26 2017-02-15 上海航天设备制造总厂 一种塑料和金属异质结构的连接方法
CN109954966A (zh) * 2019-03-28 2019-07-02 大族激光科技产业集团股份有限公司 通过飞秒激光进行金属表面处理的方法
CN112123789A (zh) * 2020-09-15 2020-12-25 哈尔滨工业大学(威海) 一种金属/碳纤维增强热塑复合材料激光连接方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115091039A (zh) * 2022-06-17 2022-09-23 中国科学院上海光学精密机械研究所 一种金属与碳纤维增强复合材料激光焊接强化方法
CN115091039B (zh) * 2022-06-17 2024-04-12 中国科学院上海光学精密机械研究所 一种金属与碳纤维增强复合材料激光焊接强化方法
CN114940012A (zh) * 2022-07-25 2022-08-26 宁波均胜群英汽车系统股份有限公司 一种车辆内饰模制件的制造工艺
CN115677385B (zh) * 2022-10-25 2023-09-08 哈尔滨工业大学 一种陶瓷基复合材料表面耐温达1300℃的可磨耗复合涂层的制备方法
CN117620440A (zh) * 2023-11-24 2024-03-01 无锡物联网创新中心有限公司 一种用于硅通孔加工的高速激光刻蚀系统及方法

Similar Documents

Publication Publication Date Title
CN113414495A (zh) 一种热塑性复合材料与金属异质结构的预处理装置及方法
Jiao et al. Carbon fiber reinforced thermoplastic composites and TC4 alloy laser assisted joining with the metal surface laser plastic-covered method
KR102292675B1 (ko) 알루미늄 또는 알루미늄 합금 코팅을 갖는 강재 용접 부품 및 그 준비 방법
Su et al. Influence of defocus distance on laser joining of CFRP to titanium alloy
Li et al. Surface ablation properties and morphology evolution of K24 nickel based superalloy with femtosecond laser percussion drilling
Huang et al. Laser joining technology of polymer-metal hybrid structures-A review
Bergmann et al. Effects of diode laser superposition on pulsed laser welding of aluminum
Zou et al. Effects of laser hybrid interfacial pretreatment on enhancing the carbon fiber reinforced thermosetting composites and TC4 alloy heterogeneous joint
CN109079352B (zh) 铝合金的局部真空激光焊接并双面退火的装置
CN109226959B (zh) 一种纤维增强金属基复合板材及其预处理方法
CN105458510A (zh) 一种消除镁合金焊接气孔的方法
WO2018021392A1 (ja) レーザ処理方法、接合方法、銅部材、多層プリント配線基板の製造方法、及び多層プリント配線基板
CN112658446B (zh) 一种激光诱导等离子体微细加工装置及方法
CN112372142A (zh) 一种3d打印金属表面飞秒激光清扫方法
Nursyifaulkhair et al. Effect of process parameters on the formation of lack of fusion in directed energy deposition of Ti-6Al-4V alloy
CN113226626B (zh) 用于产生功能结构的方法以及构件
용김 Recent trends about modulation technology of the laser beam welding
CN107081529A (zh) 一种用于铝构件表层阳极氧化膜的激光去除方法
Junke et al. Laser welding process and strength enhancement of carbon fiber reinforced thermoplastic composites and metals dissimilar joint: A review
Zheng et al. Study on additive and subtractive manufacturing of high-quality surface parts enabled by picosecond laser
KR20220127291A (ko) 결합 내구성이 향상된 금속 합금 표면 개질 방법 및 관련 금속 합금 제품
CN1660537A (zh) 一种用于钛合金激光焊接的活性剂使用方法
Shehab et al. Hole characteristic of CO2 laser drilling of poly-methyl methacrylate PMMA
CN111069786B (zh) 激光开槽装置及方法
Wang et al. Laser transmission welding of glass-fiber-reinforced polymer and stainless steel with a three-dimensional-printing surface pretreatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination