KR20220093267A - 광대역 광원장치 및 광대역 광 펄스 생성 방법 - Google Patents

광대역 광원장치 및 광대역 광 펄스 생성 방법 Download PDF

Info

Publication number
KR20220093267A
KR20220093267A KR1020227021300A KR20227021300A KR20220093267A KR 20220093267 A KR20220093267 A KR 20220093267A KR 1020227021300 A KR1020227021300 A KR 1020227021300A KR 20227021300 A KR20227021300 A KR 20227021300A KR 20220093267 A KR20220093267 A KR 20220093267A
Authority
KR
South Korea
Prior art keywords
fiber
pulse
pump
mode
core
Prior art date
Application number
KR1020227021300A
Other languages
English (en)
Other versions
KR102592778B1 (ko
Inventor
패트릭 우에벨
세바스티안 바우어슈미츠
필립 러셀
Original Assignee
막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. filed Critical 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우.
Publication of KR20220093267A publication Critical patent/KR20220093267A/ko
Application granted granted Critical
Publication of KR102592778B1 publication Critical patent/KR102592778B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3528Non-linear optics for producing a supercontinuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

광대역 광 펄스(1)를 생성하는 광대역 광원 장치(100)는: 충전가스를 포함하며 펌프 레이저 펄스(2)의 광학적 비선형 확장에 의해 상기 광대역 광 펄스(1)를 생성하도록 배치되는 비밴드갭(non-bandgap) 타입의 중공코어 섬유(10)로서, 도광 필드(guided light field)의 코어 모드를 지지하는 축방향의 중공 도광 섬유 코어(11)와 섬유 코어(11)를 둘러싸며 도광 필드의 횡벽(transverse wall) 모드를 지지하는 내부 섬유 구조(12)를 구비한 상기 중공코어 섬유(10); 및, 중공코어 섬유(10)의 입력측(13)에서 펌프 레이저 펄스(2)를 생성 및 제공하도록 배치된 펌프 레이저 소스 장치(20)를 포함하며, 측벽 모드는 기본 측벽 모드와 2차 이상의 횡벽 모드를 포함하고, 광대역 광 펄스(1)는 섬유 길이, 섬유 코어 직경, 펌프 레이저 펄스(2)의 적어도 하나의 펌프 펄스 및/또는 빔 파라미터, 및 상기 충전가스의 적어도 하나의 가스 파라미터에 의해 결정되는 코어 모드 스펙트럼을 가지며, 중공코어 섬유(10)의 내부 섬유 구조(12)는 적어도 2차 이상의 횡벽 모드와 상기 코어 모드 스펙트럼이 서로에 대해 스펙트럼 변위(spectral displacement)를 갖도록 구성된다. 또한, 광대역 광 펄스를 생성하는 방법이 개시된다.

Description

광대역 광원장치 및 광대역 광 펄스 생성 방법{BROADBAND LIGHT SOURCE DEVICE AND METHOD OF CREATING BROADBAND LIGHT PULSES}
본 발명은 광대역 광 펄스를 생성하기 위한 광대역 광원장치에 관한 것으로, 특히 초단 레이저 펄스에 의해 펌핑되는 비밴드갭(non-bandgap) 타입(HC-ARF)의 가스 충전 중공코어 광결정 광섬유(photonic crystal fiber)를 포함하는 광대역 광원 장치에 관한 것이다. 또한, 본 발명은 특히 초단 펌프 레이저 펄스를 HC-ARF에 결합하고 광섬유 내에서 펌프 레이저 펄스의 광학 비선형 확장에 의해 광대역 광 펄스를 생성함으로써 광대역 광 펄스를 생성하는 방법에 관한 것이다. 또한, 본 발명은 광섬유 내의 충전가스에서 초단 펌프 레이저 펄스의 광학 비선형 확장에 의해 광대역 광 펄스를 생성하도록 구성된 중공코어 광결정 광섬유에 관한 것이다. 본 발명의 적용분야는 특히, 자외선(UV) 광 기반의 계측, 예를 들면 반도체 계측, 및 검사에 이용 가능하다
본 명세서에서는 본 발명의 기술적 배경을 예시하는 다음의 종래 기술이 참조된다:
[1] P.St.J.Russell 외, "Nature Photonics" 8, 278-286 (2014).
[2] 미국특허 US 9,160,137 B1.
[3] F. Tani 외, "PRL" 111, 033902 (2013).
[4] F. Belli 외, "Optica" 2, 292-300 (2015).
[5] N. M. Litchinitser 외, "Opt. Lett." 27, 1592-1594 (2002).
[6] F. Gebert 외, "Opt. Exp." 22, 15388-15396 (2014).
[7] P. Uebel 외, "Opt. Lett." 41, 1961-1964 (2016).
[8] J. C. Travers 외, "J. Opt. Am." B 28 (2011), A11-A26.
광 반도체 계측 또는 재료 검사 시스템은 전형적으로 진공 또는 원자외선(UV) 내지 근적외선(IR)까지의 광대역 방사선을 방출하는 밝은 광원에 의존하는 것이 일반적으로 알려져 있다. 광원 아키텍처는 종종 가스 방전 효과, 즉 이온화 가스(플라즈마)에서 방전(electric discharge)을 발생시키는 것을 기반으로 한다. 이들 광원의 단점은 방전 아크의 볼륨 내의 매우 많은 수의 광학 모드에 기인한 그 고유의 공간적 비일관성(spatial incoherence)일 수 있다. 계측 적용의 경우에, 샘플에 대한 액세스를 어렵게 하는 비교적 복잡한 광학계를 필요로 하는, 명확히 정의된 조명 경로가 요구된다. 또한 회절 제한 스폿(spot)으로의 집광(focusing)은 공간 필터링을 요하며, 이는 대부분의 스펙트럼 파워의 손실을 초래한다.
대안으로서, 상이한 파장의 복수의 레이저 또는 백색광 레이저 소스가 제안되었다. 이 후자의 경우에, 중공코어 광섬유 내에서 충전가스를 광학적으로 펌핑함으로써 원자외선(deep UV) 내지 근적외선(near IR)에 걸친 범위 내의 광대역 펄스 방사선이 생성된다. 초단 펌프 레이저 펄스로부터 광대역 섬유 출력으로의 스펙트럼 변환은 비선형 프로세스, 특히 변조 불안정성(modulational instability), 솔리톤 분열(soliton fission), 및 분산파(dispersive wave) 발생의 결과이다(문헌 [1], [2], [3], 및 [4] 참조).
중공코어 광섬유는 물리적 유도 메커니즘에 따라 전형적으로 두 등급으로 구분된다: 중공코어 광 밴드갭 섬유(HC-PBF) 및 중공코어 반공진 반사 섬유(hollow-core anti-resonant-reflecting fibers)(HC ARF, 비밴드갭 타입의 섬유). 백색광 레이저 소스는, 광대역 펄스 방사선을 안내하는데 충분한 광대역 투과창(transmission window)을 갖는 HC-ARF의 사용을 필요로 한다.
도 6과 도 7(종래기술, 새로운 주파수의 생성을 고려하지 않음)에 도시된 바와 같이, HC-ARF, 특히 카고메(Kagome) 또는 단일 링(single ring) 타입의 HC-ARF에서의 도광(light guiding) 메커니즘은 대체로 중공의 중앙 코어를 둘러싸는 벽으로부터의 광의 반공진 반사를 기초로 한다(예컨대, 문헌 [5] 참조). 이러한 2차원 한정은 횡방향 코어 모드의 형성을 유발하며, 반공진은 비교적 광대역의 안내 창(guiding window)를 가능케 한다.
도 6a는 문헌 [6]에 기재된 바와 같은 카고메 타입의 HC-ARF의 횡단면을 도시하는데, 벽 내에서 안내되는 광의 벽 모드(wall mode)의 생성 및 코어 모드의 안내가 약 190mm 내지 약 295mm의 코어 벽 두께의 범위에 대해 검사되었다. 대안으로서, 도 6b에 도시된 바와 같은 단일 링 타입의 HC-ARF가 문헌 [7]에 기재되어 있는데, 단일 링 직경, 내부 코어 직경 및 벽 두께 t가 섬유 전송에 미치는 영향이 조사되었다.
전술한 HC-ARF 결과의 단점은 도 7 및 도 3a(곡선 A2)에 예시적인 방식으로 도시된 바와 같이, HC-ARF의 전송에 대한 벽 모드 및 코어 모드의 공진의 영향에서 볼 수 있다. 예를 들어, 벽 두께 t=0.44μm인 60cm의 단일 링 섬유를 통한 전송은 제1(0.92μm에서, m=1) 및 제2(0.46μm에서, m=2) 코어 벽 공진을 보여주는데, 이는 섬유 전송 스펙트럼에서 전송 딥(transmission dip)으로 보여진다.
다른 단점으로, 문헌 [6]에서는 HC-ARF를 통한 협대역(narrow-band) UV 광(예를 들면, 280nm의 단일 파장)의 전송이 조사되었는데, 단 몇 시간의 동작 후에도 전송 열화(degradation)가 발생할 수 있음이 밝혀졌다(도 3b(곡선 B2)에 도시된 것과 유사). 문헌 [6]에서는, 전송 손실이 코어를 둘러싸는 벽의 두께에 있어서의 가공 유발 변동으로 인해 초래될 수 있음이 제안되었다. 또한, 약 190nm 내지 약 290nm 범위의 소정의 벽 두께가 제공되고 두께의 변동이 회피되면, 연속파 광 필드의 전송 열화가 억제될 수 있음이 제안되었다.
또한, 전송 열화가 코어 벽 공진의 결과임이 문헌 [6]에서 확인되었는데, 코어 모드가 벽 모드와 위상 정합하는 파장은 다음의 수학식 1로 근사화될 수 있다.
Figure pat00001
여기서 nm은 모드 인덱스(충전가스의 굴절률로서, 약 1)이고, ng는 섬유 재료의 굴절률이며, hcw는 단일 링의 두께이고, 양의 정수 q는 섬유 벽에 의해 지지되는 횡방향 공진 차수를 정의한다. 도광(guided light)의 협대역 파장을 선택함으로써, 전송 열화가 회피될 수 있음이 문헌 [6]에서 밝혀졌다.
예를 들어 문헌 [1] 또는 [8]에 따르면, 백색광 발생을 위해 HC-ARF를 적용하고, 펌프 펄스와 빔 파라미터, 섬유 구조, 충전가스 타입 및 압력을 적절히 조절하면, 특히 UV 범위(전형적으로 350nm 미만의 파장)에서 광대역 출력 펄스 신호가 생성되어 섬유단(fiber end)으로 안내될 수 있다. 그러나, 상기의 HC-ARF에서의 전송 열화로 인해, UV 생성을 위한 섬유의 적용은 제한될 수 있다.
본 발명의 목적은 종래 기술의 단점을 회피하거나 저감할 수 있는, 개선된 광대역 광원 장치 및 광대역 광 펄스를 생성하는 개선된 방법을 제공하는 것이다. 특히, 광대역 광은 효율의 향상, 광섬유에서의 전송 손실의 저감 및/또는 장기적인 동작 안정성의 증가가 이루어지도록 생성된다.
이들 목적은 각각 청구범위의 독립항의 특징들을 포함하는 광대역 광원 장치, 광대역 광 펄스를 생성하는 방법, 또는 중공코어 섬유에 의해 해결된다. 본 발명의 바람직한 실시예 및 적용은 종속항에 명시된다.
본 발명의 제1의 전체적인 양태에 따르면, 상기 목적은 비밴드갭(non-bandgap) 타입의 중공코어 섬유(중공코어 반공진 반사 섬유)와 펌프 레이저 소스 장치를 포함하는, 광대역 광 펄스를 생성하기 위한 광대역 광원 장치에 의해 해결된다.
중공코어 섬유는 충전가스를 수용하고 펌프 레이저 펄스의 광학적 비선형 확장에 의해 광대역 광 펄스를 생성하는데 적합한 임의의 타입의 비밴드갭 중공 도광(light guiding) 섬유(HC-ARF)이다. 중공코어 섬유는 충전가스, 예를 들면 Ar, Ne, He, Kr, Xe와 같은 불활성 가스, H2, D2, N2와 같은 라만(Raman) 활성 가스, 또는 가스 혼합물을 포함하는 축방향 중공 도광 섬유 코어, 및 내부 섬유 구조를 구비한다. 중공 도광 섬유 코어는 도광 필드의 코어 모드를 지지한다. 내부 섬유 구조는 중공코어 섬유의 길이방향 연장부를 따라 연장되며 및 섬유 코어를 둘러싸는 내벽을 가지며, 도광 필드의 횡벽(transverse wall) 모드를 지원한다. 횡벽 모드는 기본 횡벽 모드와, 2차 이상의 횡벽 모드를 포함한다. 펌프 레이저 소스 장치는 중공코어 섬유의 입력측에서 초단 펌프 레이저 펄스(1ps 미만의 지속시간을 갖는 펌프 레이저 펄스)의 주기적인 시퀀스를 생성 및 제공하도록 배치된다.
바람직하게는, 펌프 레이저 소스 장치는 높은 반복률, 예를 들면 100Hz 초과를 갖는 서브ps(ps 미만) 펄스를 제공하는데 적합하다. 펌프 레이저 소스 장치의 반복률은 펌프 소스의 선택에 따라 달라진다. 예를 들어, Ti:사파이어 기반의 펌프 소스는 전형적으로 1 kHz에서 동작하는데 반해, 섬유 기반의 펌프 소스는 단일 샷(single shot)으로부터 수십 HHz로 동작할 수 있다.
섬유에서 생성된 광 펄스의 시퀀스는 섬유 길이, 섬유 코어 직경, 펌프 레이저 펄스의 적어도 하나의 펌프 펄스 파라미터 및/또는 빔 파라미터, 및 충전가스의 적어도 하나의 가스 파라미터에 의해 결정되는 코어 모드 스펙트럼을 갖는다. 특히, 코어 모드 스펙트럼에 의해 커버되는 스펙트럼 범위는 섬유 길이와 섬유 코어 직경에 의해 결정된다. 펌프 펄스 파라미터는 예를 들면, 펄스 지속시간, 펄스 에너지, 펄스 형상 및 펄스 스펙트럼 중 적어도 하나를 포함한다. 빔 파라미터는 예를 들면, 펌프 레이저 펄스의 시퀀스에 의해 제공되는 레이저 빔(광 필드)의 모드 형상(modal shape), 지향 및 안정성 중 적어도 하나를 포함한다.
본 발명에 따르면, 중공코어 섬유의 내부 섬유 구조는 횡벽 모드의 적어도 2차 이상의 횡벽 모드와 코어 모드 스펙트럼이 서로에 대해 스펙트럼 변위를 갖도록 구성된다. 즉, 중공코어 섬유의 내부 섬유 구조를 설계함으로써, 적어도 2차 이상의 공진 위치들은 코어 모드로 한정된 생성 광에 대해 스펙트럼적으로 변위된다. 따라서, 적어도 2차 이상의 횡벽 모드와 코어 모드 스펙트럼에 의해 커버되는 스펙트럼 범위 사이에는 스펙트럼 갭이 존재한다. 횡벽 모드는 코어 모드의 스펙트럼 분포와 중첩되지 않는다.
본 발명의 제2의 전체적인 양태에 따르면, 상기 목적은 광대역 광 펄스를 생성하는 방법에 의해 해결되며, 펌프 레이저 펄스는 충전가스를 포함하는 비밴드갭 타입의 중공코어 섬유로 지향되고, 광대역 광 펄스는 중공코어 섬유에서 펌프 레이저 펄스의 광학 비선형 확장에 의해 생성된다. 중공코어 섬유는 횡벽 모드와 코어 모드 스펙트럼을 지지하는데, 코어 모드 스펙트럼은 섬유 길이, 섬유 코어 직경, 펌프 레이저 펄스의 적어도 하나의 펌프 펄스 파라미터 및/또는 빔 파라미터, 및 충전가스의 적어도 하나의 가스 파라미터에 의해 결정된다.
본 발명에 따르면, 중공코어 섬유의 적어도 2차 이상의 횡벽 모드는 중공코어 섬유의 코어 모드 스펙트럼에 대해 스펙트럼적으로 변위된다. 따라서, 코어 모드 스펙트럼에 대해 벽 모드의 스펙트럼 변위를 제공하도록 설계된 HC-ARF가 사용된다. 바람직하게는, 광대역 광 레이저 펄스는 본 발명의 제1의 전체적인 양태에 따른 광대역 광원 장치에 의해 생성된다.
유익하게는, 본 발명의 광대역 광원 장치 및 방법은 광대역의, 고휘도(high brightness) 방사선을 합성할 수 있다. 특히, 방사된 섬유 출력(광대역 광 펄스, UV-IR 펄스라고도 지칭됨)은 UV 파장 범위의 적어도 일부를 커버하는 스펙트럼을 갖는다. 바람직하게는, 방사된 스펙트럼은 원자외선(deep UV), 예를 들면 250nm 로부터 근적외선(near IR), 예를 들면 1100nm까지의 범위에 포함된다. 방사된 스펙트럼은 벽 모드와 코어 모드의 공진에 의해 결정되는 스펙트럼 특징이 없다. 또한, "광대역 광원 장치"라는 용어는 이 방사된 스펙트럼에 포함된 펄스 출력을 생성하는데 적합한 시스템을 의미한다. 광대역 광원 장치는 탁상(table-top) 장치로 구성될 수 있으며, 예를 들면 광학 계측(특히, 반도체 적용에서), 분광법, 또는 생명과학 응용분야에서 툴(tool)로 사용될 수 있다. 본 발명은 종래의 실리카 코어, 섬유 기반의 초연속체(supercontinuum) 시스템에 비교될 수 있으나 그 방사 스펙트럼을 원자외선(deep UV)까지 확장하는, 광대역 광 생성 성능을 제공한다. 종래의 광대역 램프와 비교하면, 방사 빔은 공간적으로 일관적이어서 스펙트럼 밝기가 극적으로 증가되고, 광섬유 출력은 매우 우수한 빔 지향 안정성을 제공한다.
특히, 본 발명은 본 발명자들에 의한 이하의 고려사항에 기초한다. 첫째, 코어 모드와 벽 모드가 섬유 내에서 동일하거나 유사한 전파(propagation) 파라미터들을 갖는 공진 위치에서, UV 방사선은 섬유 코어로부터 강하게 누출되며, 섬유단(fiber end)에 도달하기 전에 강한 감쇠(attenuation)를 겪는다. 그 결과, 최종 사용자에게 강한 UV 신호를 제공하기 위해서는, 상대적으로 제한된 코어 모드와 비교하여 횡방향 필드 분포의 증대 및 공진이 회피되어야 한다. 둘째, 광대역 광의 UV 부분이 내부 섬유 구조의 일부이며 전형적으로 실리카로 구성되는 내벽과 강하게 중첩되면, 점차적인 섬유 열화가 발생할 가능성이 있다(솔러라이제이션(solarization)에 기인함). 이는 벽으로 누출되는 광을 억제함으로써 회피될 수 있다.
따라서, 본질적인 이점으로서, 본 발명의 코어 모드와 적어도 2차 이상의 횡벽 모드의 분리에 의해, 코어 모드로부터 횡벽 모드로의 광의 공진 결합(resonant coupling)이 억제되어, 코어 모드의 구속이 증가되고, 생성된 스펙트럼이 전체적으로 더 평탄하고 수명이 더 길이진다.
또한 광 필드 파워의 섬유의 내부 구조로의 누출이 저감된다. 본 발명자들은 섬유에 대한 파워 로드(power load)를 저감함으로써 섬유 벽 재료의 변화, 특히 광 흡수 섹션의 형성이 최소화될 수 있고, 그래서 장기적인 동작 안정성이 증가될 수 있다는 것을 찾아냈다.
따라서, 자외선 스펙트럼 범위에서의 광대역 광의 발성을 위한 기존의 HC-ARF 기반의 방식과 비교하여, 본 발명은 자외선 스펙트럼 영역에서 장기적이며 안정적인 광의 발생과 함께 섬유의 열화가 크게 저감되게 함으로써 수명을 연장한다. 또한, 생성된 스펙트럼의 범위에서 섬유의 공진 저감 특성은 방사된 광대역 신호의 스펙트럼 평탄도를 증가시키며 동시에 균일한 횡방향 모드 프로파일을 발생시킨다
상기 이점은 본 발명의 코어 모드와 2차 이상의 횡벽 모드의 디커플링에 의해 이미 얻어질 수 있다. 이는 본 발명의 발명자에 의한 하기의 이론적인 고려사항에 기인한다. 기본 공진은 고차 공진보다 더 긴 파장에서 발생한다. 그 결과, 솔러라이제이션이 발생할 가능성이 더 적은데, 이는 다중 광자 흡수가 필요하기 때문이다. 또한, 코어 모드와 기본 벽 모드 사이의 중첩 적분은 고차 공진과 비교하여 다르다. 그 결과, 코어 모드로부터 벽 모드로 더 적은 에너지가 전달될 수 있다. 마지막으로, 에너지 전달이 발생하는 스펙트럼 대역폭은 다르며, 코어 모드에 대한 벽 모드의 유효 지수(effective index)의 기울기 차이에 따라 달라진다. 기본 공진의 경우, 기울기 차이가 더 낮은데 이는 잠재적으로는 더 큰 스펙트럼 밴드폭을 초래할 수 있다
하지만, 본 발명의 바람직한 실시예에 따르면, 모든 횡벽 모드, 즉 기본, 2차 이상의 횡벽 모드, 및 코어 모드 스펙트럼은 서로에 대해 스펙트럼 변위를 가지며, 코어 모드와 벽 모드의 공진 커플링의 전적인 억제가 얻어진다. 유익하게는, 섬유 구조는 제1의 코어 벽 공진이 생성된 스펙트럼의 최단 파장보다 아래에 놓이도록 설계된다. 본 발명에 따라 사용되는 섬유 구조는 UV에서 벽 재료, 예를 들면 유리와의 모드 중첩을 최소화하며, 그 결과 섬유의 손상을 예방하고 더 나아가서는 시스템의 수명을 연장시킨다
본 발명의 또 다른 바람직한 실시예에 따르면, 코어 모드와 벽 모드의 디커플링을 위한 중공섬유, 특히 HC-ARF의 내부 섬유 구조를 설계하는 것은 섬유 코어를 향하는 내부 섬유 구조의 섬유 벽의 벽 두께를 선택함으로써 얻어진다. 벽 두께는 적어도 2차 이상, 바람직하게는 모든 횡벽 모드가 코어 모드 스펙트럼에 대해 보다 짧은 파장으로 스펙트럼이 쉬프트(shift)되도록 적어도 섬유의 하류 부분을 따라 한계 벽 두께 미만이 되게 선택된다. 유익하게는, 벽 두께는 중공 섬유를 제작할 때 또는 그 제작 후에(예를 들면, 에칭함으로써) 쉽게 조절될 수 있는 섬유 파라미터이다. 놀라운 결과로서, 본 발명의 발명자들은 섬유 내에서 안내되는 광 필드 파워에 대한 민감도 또는 섬유 안정성을 해치지 않으면서, 중공 섬유가 중공코어에 인접한 내부 구조의 충분히 얇은 벽 두께를 구비할 수 있음을 찾아냈다.
일례로서, 볼 발명의 발명자에 의한 실제 테스트는 벽 두께를 예를 들면, 0.32μm(종래의 중공 섬유)로부터 약 120nm로 줄이면, 전송 스펙트럼에서의 공진의 횟수(코어 모드와 벽 모드의 커플링을 나타냄)가 3개에서 약 0.25μm에서의 1개로 저감됨을 보여주었다. 광대역 스펙트럼의 장파장(long wavelength) 섹션에 이러한 잔류 공진이 있는 경우에도, 섬유 동작 지속시간의 상당한 증가가 얻어질 수 있다.
중공 섬유는 그 길이를 따라서 벽 두께의 분포를 가질 수 있는데, 입력측에서의 더 큰 두께로부터 출력측 쪽으로의 두께 한계 벽 두께 미만의 두께로 변한다. 내부 섬유 구조의 섬유 벽이, 광대역 광 펄스가 생성되어 중공코어 섬유를 통해서 그 출력단 쪽으로 전송되는 중공코어 섬유의 종단면(longitudinal section)에서만 한계 벽 두께 미만의 선택된 벽 두께를 갖는 경우, 섬유의 상류 부분에서의 섬유 안정성의 측면에서 또 다른 이점이 얻어진다. 섬유가 펌프의 구속 손실을 저감시키기 위해 입력측에서 상대적으로 두꺼운 벽을 갖는 것이 유익할 수 있다.
본 발명은 중공코어 및 중공코어에 인접한 내부 구조의 규칙적인 배열을 포함하는 임의의 타입의 전술한 비밴드갭 광자 섬유로 구현될 수 있다. 바람직하게, 내부 섬유 구조는 그 도광(light guiding) 특성에 대해 장기간 연구가 이루어진 단일 링 또는 카고메 구조를 포함한다. 단일 링 또는 카고메 타입의 HC-ARF의 경우, 섬유 코어를 향하는 섬유 벽은 바람직하게는 하기의 수학식 2와 같이 선택되는 벽 두께(t)를 갖는다:
Figure pat00002
여기서, λmin은 코어 모드 스펙트럼의 최단 파장이고, n1은 중공코어 섬유 내의 충전가스의 굴절률이며, n2는 내부 섬유 구조의 굴절률이다. 유익하게는, 상기 공식은 몇몇 알려진 파라미터에만 의존하여 설정될 수 있는 한계 벽 두께를 제공한다.
특히 바람직하게는, 벽 두께는 70nm 내지 300nm의 범위, 예를 들어, 중공 섬유가 유리(실리카)로 제작되면 특히 70nm 내지 150nm의 범위에서 선택된다. 하한치는 중공 섬유 및 그 내부 구조에 충분한 기계적 안정성을 제공하는 것이 밝혀졌다. 상한치는 유익하게는 코어 모드와 벽 모드의 공진의 억제를 제공한다. 상한치 150nm에 의해, 모든 벽 모드로부터의 스펙트럼 분리가 얻어진다. 또한, 중공 섬유는 바람직하게는 170nm 내지 250nm 범위의 최단 파장 λmin을 갖는 코어 모드 스펙트럼을 지지하는데 적합하다.
본 발명의 다른 바람직한 실시예에 의하면, 광대역 광원 장치는 적어도 하나의 펌프 펄스 및/또는 빔 파라미터 중 적어도 하나를 조정하는데 적합하게 이루어진 조정 장치를 더 포함한다. 실제 일상적인 사용을 위한 시스템에서, 펌프 레이저 소스 장치는 정확한 펄스 파라미터가 설정되도록 미리 구성될 수 있다. 이 경우에, 빔 파라미터 제어만이 제공된다. 유익하게는, 조정 장치는 예를 들면, 중공 섬유에 주입된 펌프 펄스의 빔 지향, 즉 섬유 중심에 대한 빔 중심을 변경할 수 있다. 특히 바람직하게는, 조정 장치는 가스 압력 및/또는 가스 타입과 같이, 선택적인 가스 공급 장치로부터 중공 섬유에 공급되는 충전가스의 적어도 하나의 가스 파라미터를 조정하는데 적합하게 이루어진 섹션을 더 포함한다.
본 발명의 다른 바람직한 실시예에 따르면, 광대역 광원 장치는 중공코어 섬유로부터 출력된 광대역 광 펄스의 코어 모드 스펙트럼의 적어도 일부를 모니터링하도록 배치된 모니터링 장치를 더 포함한다. 유익하게는, 모니터링 단계는 생성된 광대역 광 펄스의 온라인 측정 및 테스팅을 가능케 한다. 특히 바람직하게는, 모니터링 장치와 조정 장치를 포함하는 컨트롤 루프(control loop)가 제공된다. 컨트롤 루프는 횡벽 모드와 코어 모드 스펙트럼의 스펙트럼 변위가 광대역 광 펄스의 생성 동안에 유지되도록 조정 장치를 제어하기에 적합하게 이루어진다.
본 발명의 제3의 전체적인 양태에 따르면, 상기 목적은 충전가스에서 펌프 레이저 펄스의 광학 비선형 확장에 의해 광대역 광 펄스를 생성하는데 적합하게 이루어진 중공코어 섬유, 특히 HC-ARF에 의해 해결된다. 중공코어 섬유는 충전가스로 충전되며 광대역 광 펄스의 도광 필드의 코어 모드를 지지하는 축방향의 중공 섬유 코어와, 섬유 코어를 둘러싸며 도광 필드의 횡벽 모드를 지지하는 내부 섬유 구조를 갖는다. 횡벽 모드는 기본 횡벽 모드와 2차 이상의 횡벽 모드를 포함한다. 광대역 광 펄스는 펌프 레이저 펄스의 적어도 하나의 펌프 펄스 파라미터와 충전가스의 적어도 하나의 가스 파라미터에 의해 결정되는 코어 모드 스펙트럼을 갖는다. 본 발명에 따르면, 중공코어 섬유의 내부 섬유 구조는 적어도 2차 이상의 횡벽 모드와 코어 모드 스펙트럼이 서로에 대해 스펙트럼 변위를 갖도록 구성된다. 광대역 광 펄스를 생성하기 위해 중공코어 섬유를 사용하는 것은 본 발명의 다른 독립적인 주제를 나타낸다.
본 발명의 다른 구체사항 및 이점은 첨부된 도면을 참조하여 이하에 기술되어 있다.
도 1은 본 발명에 따른 광대역 광원 장치의 일 실시예의 개략도.
도 2와 도 3은 HC-ARF의 본 발명의 설계의 개략 예시도.
도 4는 본 발명에 따른 광대역 광원 장치의 일 실시예의 추가 상세사항을 도시하는 개략도.
도 5는 본 발명의 방법에 의해 생성된 광대역 광 펄스의 출력 스펙트럼.
도 6과 도 7은 종래의 HC-ARF와 그 전송 스펙트럼(종래기술)의 개략적인 예시도.
본 발명의 특징이 카고메(Kagome) 또는 단일 링 타입의 HC-ARF 및 특히 펌프 소스 장치와 가스 공급 장치를 조정하는 컨트롤 루프를 포함하는 UV 광원 장치에서의 광대역 광 펄스의 생성을 특히 참조하여 이하에서 설명된다. 본 발명은 이들 실시예에 국한되지 않으며, 오히려 다른 타입의 HC-ARF를 사용하여 및/또는 자동 컨트롤 루프 없이도 구현될 수 있다. 중공 섬유에서 펌프 펄스를 스펙트럼 확장하기 위한 광학적 비선형 프로세스의 구체사항은 종래기술로부터 알려져 있으므로 여기서는 설명되지 않는다.
도 1은 광대역 UV광(자외선) 발생을 위한 본 발명의 구성의 개략도를 보여준다. 광대역 광원 장치(100)는 중공코어 섬유(10)와 펌프 레이저 소스 장치(20)를 포함한다. 중공코어 섬유(10)는 예를 들면 단일 링 타입의 HC-ARF이며, 확대 횡단면도 및 도 2에 도시된 바와 같이, 중공코어(11)와 내부 섬유 구조(12)를 가지며 중공코어 섬유(10)의 입력측(13)으로부터 출력측(14)으로 일직선의 길이방향을 따라 연장된다. 횡단면도에 따르면, 내부 섬유 구조(12)는 예를 들면 입력측(13)과 출력측(14) 사이에서 튜브 형상으로 연장되는 벽(15)을 각각 갖는 6개의 박벽 모세관(thin-walled capillary)의 규칙적인 배열을 포함한다. 중공코어 섬유(10)는, 예를 들면 50cm의 길이와, 예를 들면 25μm의 코어 직경을 갖는다. 벽(15)은 예를 들면 300nm의 두께를 갖는다.
펌프 레이저 소스 장치(20)는 예를 들어, 5 fs 내지 1 ps 범위의 지속시간과, 200 내지 2000 nm 범위의 중심 파장, 및 0.001 kHz 내지 100 MHz 범위의 반복률을 갖는 일련의 펌프 펄스(2)를 방출하는 고체 상태(솔리드 스테이트) 또는 섬유 레이저 타입의 펄스 소스를 포함한다.
중공코어 섬유(10)는, 예를 들면 Ar과 같은 충전가스를 수용하는 가스 셀을 포함하는 가스 공급 장치(34)에 고정 배치된다. 가스 셀은 제어 가능한 밸브를 통하여 가스 소스(도시하지 않음)에 연결될 수 있으며, 펌프 펄스(2)와 광대역 광 펄스(1)가 각각 투과하는 입력창(41)과 출력창(42)을 갖는다. 입력창(41)과 출력창(42)은 광학 품질을 갖는 유리로 제작된다. 상업적 용도의 실제 시스템에서는 외부 가스 소스가 필요치 않을 수도 있다. 예를 들어, 가스 셀은 제작시에 충전가스로 충전되어 밀봉될 수 있다.
광대역 광 펄스(1)를 생성하기 위해, 펌프 레이저 펄스(2)의 빔은 입력창(41)을 통해서 중공 섬유(10)의 입력측으로 지향되어서는 그 중공섬유 코어(11)에 결합된다. 펌프 레이저 펄스(2)는 중공 섬유(10)의 길이방향 축과 일치하는 빔 경로를 따라서 주입된다. 중공 섬유(10)는 아래에서 도 5를 참조하여 예시적인 방식으로 기재되는 바와 같이, 도광 필드(guided light field)의 코어 모드를 지지한다. 또한 내부 섬유 구조(12)는 도광 필드의 횡벽(transverse wall) 모드를 지지한다. 중공 섬유 내에서, 예를 들면 위치(16) 주위에서 펌프 레이저 펄스(2)의 광학 비선형 확장에 의해 광대역 광 펄스(1)가 생성된다. 광대역 광 펄스(1)는 펌프 펄스 및 펌프 빔 파라미터, 충전가스의 타입 및 그 농도(압력)에 의존하는 광대역 코어 모드 스펙트럼을 갖는다. 횡벽 모드와 코어 모드 스펙트럼이 서로에 대해 스펙트럼적으로 변위되도록(spectrally displaced) 코어 모드 스펙트럼이 설정되고 중공 섬유가 구성된다.
본 발명에 따르면, 섬유 벽 두께(t)가 상기 수학식 2로 주어지도록 섬유 구조가 선택된다. 생성되는 최소 파장은 섬유 구조와 길이, 펌프 펄스와 펌프 빔 파라미터, 및 가스 타입과 압력(충전가스의 굴절률에 영향을 미침)의 상호작용의 결과이다.
도 2는 주사전자 현미경 이미지로 예시된, 중공 섬유(10)의 다른 예를 보여준다. 단일 링 중공 섬유(10)는 HF 에칭에 의해 360nm 벽을 갖는 종래의 중공 섬유로부터 얻어진 150nm 벽(박벽)을 갖는다. 삽화는 벽(15)의 클로즈업 이미지를 보여준다.
예를 들면 Ar과 같은 가스로 중공 섬유(10)를 충전하고 펌프 파라미터들을 조정함으로써, 펌프 펄스는 스펙트럼 확장이 이루어지며, 광대역 광 펄스의 측정된 스펙트럼이 도 3a(곡선 A1)에 도시되어 있다. 측정된 스펙트럼(곡선 A1)은 종래의 후벽(thick-walled) 섬유(곡선 A2)의 출력 스펙트럼과 대조적으로 공진 딥(resonance dip)을 나타내지 않는데, 종래의 후벽 섬유는 신호에서 2개의 뚜렷한 딥(760nm 근방에서 m=1, 및 390nm 근방에서 m=2)을 분명하게 보여준다.
시스템이 종래의 섬유을 이용하여 수 시간에 걸쳐서 작동되면, 출력 파워의 감쇠가 분명하게 드러난다(도 3b의 곡선 B2). 신호는 0.6 Wh에서 약 20%가 감소한다. 섬유가 본 발명에 따른 박벽을 가지면, 수명 테스트(도 3b의 곡선 B1)는 열화(degradation)가 300배 이상 개선되었음을 보여준다.
도 4는 광대역 광원 장치(100)의 추가 상세사항에 대한 블록도를 도시하는데, 광대역 광원 장치(100)는 광대역 광 펄스가 합성되어 사용자에게 제공되는 광 헤드(optical head)(110)와, 전자기기, 펌프 소스(20) 및 인터페이스의 제어부를 포함하는 제어 유닛(120)으로 구분될 수 있다.
광 헤드(110)는 펌프 소스(20), 전처리, 합성 및 후처리를 위한 개별 모듈(111 내지 115)을 포함한다. 모든 모듈(111 내지 115)은 안정성을 최적화하기 위해 상호적이며 견고한 베이스 플레이트 상의 단일 인클로저(single enclosure)에 통합된다. 실험실 환경에서, 광 헤드(110)는 전형적으로 광 테이블 상에 배치되며, 광대역 광 펄스(1)는 후처리 모듈(115)로부터 방출된다.
펌프 소스 모듈(111)은, 수 0.001 kHz 내지 수 10 MHz(전자 제어식 변조기에 의해 조정 가능함) 사이의 반복률에서 수십 μJ의 에너지를 가짐으로써 최대 단지 몇 10W의 평균 파워를 갖게 되는 서브ps(sub-ps) 펄스를 방출하는 펌프 소스 장치(20)를 포함한다. 펌프 소스 장치(20)는 전형적으로 근적외선(near IR) 또는 해당 고조파(예를 들면, 녹색 또는 UV)의 중심 파장에서 동작하는 섬유 또는 박막 디스프(thin disk) 레이저이다.
전처리 모듈(112)에서는, 광전자 수단(입력 체크)에 의해 펌프 펄스 및 펌프 빔 파라미터가 모니터링된다. 또한, 모듈(112)은 빔 안정성, 펄스 에너지, 평균 파워, 편광, 또는 빔 직경(빔 제어)과 같은 관련 특성을 성형(shape)하는 조정 장치(30)를 포함한다. 선택적으로, 펌프 펄스가 합성 모듈(113)에 전달되는 것을 방지하기 위해 전자 제어식 셔터가 삽입된다.
합성 모듈(113)은 전처리 모듈(112)에 의해 설계된 펌프 펄스(2)를 중공코어 광섬유(HC-ARF)(10)에 결합시키기 위해, 미러, 렌즈, 및/또는 편광 광학소자를 포함하는 광학 요소를 포함한다. 인커플링(incoupling)을 위한 광학 요소는 안정성 및 결합(커플링) 효율을 최적화하기 위해 선택된 홀더 및 메커니즘에 장착된다. 중공 섬유(10)는 선택적으로 제공된 유체 모듈(114)에 연결되는 하나 이상의 가스 셀(도 1 참조)에 통합된다. 가스 셀은 중공 섬유(10)가 유체(일반적으로, Ar, Ne, He, Kr, Xe와 같은 불활성 가스, H2와 같은 라만(Raman) 활성 가스, 또는 가스 혼합물)로 충전될 수 있도록 설계된다. (예를 들면, 중공 섬유(10)의 인커플링측 및 아웃커플링측에서) 수 개의 가스 셀을 사용하면, 섬유를 따라서 일정한 압력 분포 또는 상이한 압력이 설정된 경우에는 압력 구배(pressure gradient)가 얻어진다. 가스 셀의 단부(ends)는 입력/출력 펄스를 투과시키기 위한 적절한 창(도 1 참조) 또는 추가 셀을 연결하기 위한 내압 피팅(pressure-tight fitting)을 포함한다.
유체 모듈(114)은 저진공(low vacuum) 내지 수 10 바(bar) 범위를 갖는 전자 압력 조절기를 포함하는 조정 장치(30)의 섹션을 포함한다. 모듈(114)은 또한 가스 저장소 및 진공 펌프(도시하지 않음)를 포함하는 가스 공급 장치(40)에 고압 및 진공 라인(116)을 통해 연결하기 위한 인터페이스를 포함할 수 있다.
예를 들어, 평균 파워, 빔 지향 안정성, 스펙트럼, 빔 품질 또는 노이즈와 같은 합성 광대역 광 펄스(1)의 관련 파라미터는 후처리 모듈(115)에 포함된 모니터링 장치(50)로 모니터링된다. 중공 섬유(10)(출력 체크)로의 결합을 최적화하기 위해서 전처리 모듈(112)에 및 유체 모듈(114)에 피드백이 제공된다. 특히, 합성 스펙트럼의 일부 또는 전체가 모니터되며, 신호에 있어서의 분안정성이 전처리 모듈(112)의 빔 안정화 시스템에 의해 보상될 수 있다. 이러한 불안정성은 응력 또는 열 효과에 기인한 기계적인 오정렬(misalignment)의 결과일 수 있다. 또한, 스펙트럼은 평탄화되어 창을 통해 최종 사용자에게 제공된다.
본 시스템의 중요한 특징은 후처리 모듈(115)에 통합된 동적 피드백 기술인데, 이는 방출된 스펙트럼의 일부를 모니터링하며, UV 합성 프로세스를 최적화하기 위해 제어 유닛(120)을 포함하는 시스템 컨트롤 루프(60)를 통해 피드백 신호를 빔 안정화에 제공한다.
제어 유닛(120)은 펌프 소스 장치(20), 빔 안정화(조정 장치(30)의 일부임), 가스 공급(조정 장치(30)의 다른 부분임) 및 전체 시스템을 위한 제어부(121 내지 123)로 구분된다. 모니터링 장치(50) 및 조정 장치(30)와 관련하여, 제어 유닛(120)은 장치 동작의 자동 조정을 위한 컨트롤 루프(60)를 제공한다. 제어 유닛(120)은 19인치(약 483mm) 랙 하우징에 장착되며, 제어 유닛이 광 헤드(110)로부터 수 미터 떨어져서 배치될 수 있도록 케이블은 충분히 길다.
펌프 소스 제어부(121)는 펌프 소스 장치(20)의 동작을 제어하기 위해 전자장치, 광학장치, 및 선택적으로 냉각장치(chiller)를 포함한다. 빔 안정화 제어부(122)에 의해, 포함된 마이크로컨트롤러가 전처리 모듈(112) 내의 빔 안정화 시스템의 성능을 설정하고 중공 섬유(10)로의 결합을 최적화한다. 시스템 제어부(123)는 다양한 시스템 파라미터들을 모니터링 및 설정하기 위해 수개의 A/D 변환기 및 마이크로컨트롤러를 포함한다. 또한, 이 제어부(123)는 사용자가 시스템(대기 및 온/오프 스위치)과 상호작용할 수 있도록 하며, 광 헤드(110)를 제어 유닛(120)에 연결하기 위한 상이한 인터페이스뿐만 아니라 외부 컴퓨터 제어를 위한 인터페이스(RS232 및/또는 USB)를 제공한다.
광대역 광원 장치(100)의 동작시에, 펌프 소스 모듈(111)에 의해 펌프 펄스(2)가 발생된다. 그리고 나서 펌프 펄스 빔이 전처리 모듈(112) 쪽으로의 자유 공간에 전달된다. 여기서, 상업적으로 이용 가능한 전자, 광학, 및 기계 요소들이 입력 체크 및 빔 제어에 사용된다. 자유공간 빔은 중공 섬유(10)의 코어에 결합되어 횡방향의, 기본 코어 코드를 여기시킨다. 펌프 펄스 파라미터(예를 들면, 수 100 fs의 펄스 지속시간)로 인해, 변조 불안정성(modulation instability: MI) 시스템이 펄스를 광학적으로 확장하기 위해 액세스된다(문헌 [8]). 스펙트럼적으로 확장된 출력 빔은 광학 소자에 의해 집속되고, 상업적으로 이용 가능한 전자, 광학, 및 기계 요소들을 사용하여 전처리 모듈(115)에 의해 성형되고는, 광대역 광 펄스(1)의 자유공간의, 평행 빔(collimated beam)으로서 최종 사용자에게 제공된다.
실용적인 예로서, 동작 사양은 다음과 같다. 광대역 코어 모드 스펙트럼은 250nm 이하로부터 1100nm 이상까지의 파장 범위를 커버한다. 광대역 광 펄스(1)의 평균 출력 파워는 1W 이상이고, 스펙트럼 평탄도는 15 dB 미만(300 내지 1000nm 사이에서)이다. 도 5는 원자외선(deep UV)으로부터 근적외선(IR)에 이르는, 출력된 광대역 광 펄스(1)의 방사 스펙트럼(보정됨)의 일례를 도시한다. 삽화는 1.03μm에서의 빔 횡단면을 보여준다.
상기 설명, 도면 및 특허청구범위에 개시된 본 발명의 특징은 그 다양한 실시예에서의 본 발명의 구현에 개별적으로, 조합 형태로 또는 하부 조합 형태로 중요할 수 있다.

Claims (20)

  1. 광대역 광원으로서,
    충전 가스를 포함하며, 펌프 레이저 펄스의 광학적 비선형 확장에 의해 광대역 광 펄스를 생성하도록 구성된 중공 코어 섬유 - 상기 중공 코어 섬유는,
    도광 필드(guided light field)의 코어 모드를 지지하도록 구성된 축 방향의 중공 도광 섬유(axial hollow light guiding fiber core); 및
    섬유 코어를 둘러싸며, 상기 도광 필드의 횡벽(transverse wall) 모드를 지지하도록 구성된 내부 섬유 구조를 포함함 -;
    상기 중공 코어 섬유의 입력 측에서 상기 펌프 레이저 펄스를 생성 및 제공하도록 구성된 펌프 레이저 소스; 및
    상기 펌프 레이저 소스에 결합되고, 적어도 하나의 펌프 레이저 펄스 파라미터를 조정하도록 구성된 조정 장치를 포함하는 광대역 광원.
  2. 제 1 항에 있어서,
    상기 적어도 하나의 펌프 레이저 펄스 파라미터는 펄스 지속시간, 펄스 에너지, 펄스 형상, 펄스 스펙트럼, 빔 모드 형상, 빔 직경, 빔 편광, 빔 지향 안전성, 평균 빔 출력, 빔 품질, 노이즈, 노이즈 신호 및/또는 빔 파워 안정성을 포함하는 광대역 광원.
  3. 제 1 항에 있어서,
    상기 조정 장치에 연결되고 중공 코어 섬유에 충전 가스를 공급하도록 구성된 가스 공급부를 포함하고,
    상기 조정 장치는 중공 코어 섬유에 대한 충전 가스의 적어도 하나의 가스 파라미터를 조정하도록 구성된 광대역 광원.
  4. 제 1 항에 있어서,
    상기 중공 코어 섬유에 결합되고 중공 코어 섬유의 출력 측에서 광대역 광 펄스의 코어 모드 스펙트럼의 적어도 일부를 모니터링하도록 구성된 모니터링 장치를 더 포함하는 광대역 광원.
  5. 제 4 항에 있어서,
    상기 모니터링 장치 및 조정 장치에 결합된 제어 루프를 더 포함하고, 제어 루프는 코어 모드 스펙트럼에 기초하여 조정 장치를 제어하도록 구성된 광대역 광원.
  6. 제 5 항에 있어서,
    상기 제어 루프는 상기 광대역 광원의 동작 동안 상기 횡벽 모드와 상기 코어 모드 스펙트럼 사이의 스펙트럼 변위가 유지되도록 상기 조정 장치를 제어하는 광대역 광원.
  7. 광대역 광원으로서,
    펌프 펄스의 광학적 비선형 확장에 의해 광대역 광 펄스를 생성하도록 구성된 광학 헤드(optical head) - 상기 광학 헤드는,
    광학 소자 및 중공 코어 섬유를 포함하고, 펌프 펄스를 중공 코어 섬유의 입력 측에 결합하도록 구성된 합성기 - 상기 중공 코어 섬유는 충전 가스를 포함함 -;
    합성기에 펌프 펄스를 생성 및 제공하도록 구성된 펌프 소스;
    펌프 소스의 펌프 펄스 마라미터들을 모니터링하도록 구성된 전처리기;
    중공 코어 섬유에 충전 가스를 공급하는 유체 장치; 및
    중공 코어 섬유의 출력 측에서 광대역 광 펄스를 모니터링하도록 구서된 후처리기를 포함함 -; 및
    상기 광학 헤드에 결합되고 결합 헤드의 동작을 제어하도록 구성된 제어 유닛을 포함하는 광대역 광원.
  8. 제 7 항에 있어서,
    상기 광학 소자는 거울, 렌즈 및 /또는 편광판을 포함하는 광대역 광원.
  9. 제 7 항에 있어서,
    상기 전처리기는 적어도 하나의 펌프 펄스 파라미터를 조정하도록 구성된 주정 장치를 포함하는 광대역 광원.
  10. 제 7 항에 있어서,
    상기 후처리기는 광대역 광 펄스의 방출된 스펙트럼의 일부를 모니터링하고 피드백 신호를 제공하도록 구성된 조정 장치를 포함하는 광대역 광원.
  11. 제 10 항에 있어서,
    상기 피드백 신호는 상기 중공 코어 섬유 및 유체 장치로의 결합을 최적화하기 위해 상기 전처리기로 전송되는 광대역 광원.
  12. 제 10 항에 있어서,
    상기 피드백 신호는 방출된 스펙트럼의 일부에서의 불안정정에 기초하는 광대역 광원.
  13. 제 7 항에 있어서,
    상기 제어 유닛은 광대역 광 펄스의 출력을 최적화하기 위해 광학 헤드의 하나 이상의 파라미터를 자동으로 조절하도록 구성된 제어 루프를 포함하는 광대역 광원.
  14. 제 7 항에 있어서
    상기 제어부는,
    펌프 펄스 안정화를 위해 펌프 소스를 제어하도록 구성된 제 1 제어 서브 유닛;
    빔 안정화를 위한 전처리기 및 합성기를 제어하도록 구성된 제 2 제어 서브 유닛; 및
    광학 헤드의 하나 이상의 파라미터를 모니터링하고 제어하도록 구성된 제 3 제어 서브-유닛을 포함하는 광대역 광원.
  15. 제어 시스템으로서,
    측정 데이터를 생성하기 위해 중공 코어 섬유를 포함하는 광대역 광원으로부터 방출된 방사선의 하나 이상의 파라미터를 측정하도록 구성된 검출기; 및
    측정 데이터에 기초하여 방출된 방사선의 모드 순도 평가를 수행하도록 구성된 프로세서를 포함하고,
    상기 제어 시스템은 평가에 기초하여 광대역 광원의 하나 이상의 펌프 결합 조건을 최적화하기 위한 제어 신호를 생성하도록 구성되며, 상기 하나 이상의 펌프 결합 조건은 펌프 레지어 빔과 중공 코어 섬유의 섬유 코어 사이의 결합에 기초도록 구성된 제어 시스템.
  16. 제 15 항에 있어서,
    방출된 방사선의 하나 이상의 파라미터는 방출된 방사선의 모드 순도의 하나 이사의 파라미터를 포함하는 제어 시스템.
  17. 제 15 항에 있어서,
    상기 모드 순도는 기본 횡벽 모드 전력과 총 출력 전력 사이의 비율을 포함하는 제어 시스템.
  18. 제 15 항에 있어서,
    상기 검출기는 방출된 방사선의 하나 이상의 스펙트럼 파라미터를 측정하도록 구성된 스펙트럼 분석기를 포함하는 제어 시스템.
  19. 제 15 항에 있어서,
    상기 검출기는,
    방출된 방사선의 스펙트럼 범위를 필터링하도록 구성도딘 대역통과 필터(bandpass filter); 및
    필터링된 방출된 방사선의 파워를 측정하도록 구성된 광학 검출기를 특징으로 하는 제어 시스템.
  20. 제 15 항에 있어서,
    상기 광대역 광원의 하나 이상의 구성요소의 움직임을 제어하도록 구성된 액츄에이터를 더 포함하고, 상기 제어 신호는 액츄에이터를 제어하도록 구성된 제어 시스템.
KR1020227021300A 2017-01-09 2017-01-09 광대역 광원장치 및 광대역 광 펄스 생성 방법 KR102592778B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/EP2017/000023 WO2018127266A1 (en) 2017-01-09 2017-01-09 Broadband light source device and method of creating broadband light pulses
KR1020217010918A KR102413595B1 (ko) 2017-01-09 2017-01-09 광대역 광원장치 및 광대역 광 펄스 생성 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020217010918A Division KR102413595B1 (ko) 2017-01-09 2017-01-09 광대역 광원장치 및 광대역 광 펄스 생성 방법

Publications (2)

Publication Number Publication Date
KR20220093267A true KR20220093267A (ko) 2022-07-05
KR102592778B1 KR102592778B1 (ko) 2023-10-24

Family

ID=57882048

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020217010918A KR102413595B1 (ko) 2017-01-09 2017-01-09 광대역 광원장치 및 광대역 광 펄스 생성 방법
KR1020197023382A KR102242442B1 (ko) 2017-01-09 2017-01-09 광대역 광원장치 및 광대역 광 펄스 생성 방법
KR1020227021300A KR102592778B1 (ko) 2017-01-09 2017-01-09 광대역 광원장치 및 광대역 광 펄스 생성 방법

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020217010918A KR102413595B1 (ko) 2017-01-09 2017-01-09 광대역 광원장치 및 광대역 광 펄스 생성 방법
KR1020197023382A KR102242442B1 (ko) 2017-01-09 2017-01-09 광대역 광원장치 및 광대역 광 펄스 생성 방법

Country Status (7)

Country Link
US (4) US10693271B2 (ko)
EP (2) EP3566097B1 (ko)
JP (1) JP6921195B2 (ko)
KR (3) KR102413595B1 (ko)
CN (2) CN110537144B (ko)
IL (2) IL299683A (ko)
WO (1) WO2018127266A1 (ko)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885565B1 (ko) * 2002-07-18 2009-02-24 엘지전자 주식회사 액정 모니터 메인 프레임 장치
KR102413595B1 (ko) 2017-01-09 2022-06-27 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. 광대역 광원장치 및 광대역 광 펄스 생성 방법
CN108919418B (zh) * 2018-07-23 2019-09-27 燕山大学 单层孔低损耗混合导光光子晶体光纤
SG11202103803QA (en) * 2018-10-24 2021-05-28 Asml Netherlands Bv Optical fibers and production methods therefor
CN109445020B (zh) * 2018-12-13 2020-05-05 云南电网有限责任公司电力科学研究院 一种用于sf6气体及其分解组分检测的光纤及制备方法
EP3696606A1 (en) 2019-02-15 2020-08-19 ASML Netherlands B.V. A metrology apparatus with radiation source having multiple broadband outputs
CN109839785B (zh) * 2019-03-01 2021-04-02 杭州奕力科技有限公司 一种空芯反谐振光纤的频率上转换装置
EP3705942A1 (en) 2019-03-04 2020-09-09 ASML Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
IL286548B1 (en) 2019-03-25 2024-02-01 Asml Netherlands Bv A device for expanding frequency and method
WO2020200637A1 (en) * 2019-04-03 2020-10-08 Asml Netherlands B.V. Optical fiber
EP3719551A1 (en) * 2019-04-03 2020-10-07 ASML Netherlands B.V. Optical fiber
EP3754389A1 (en) 2019-06-21 2020-12-23 ASML Netherlands B.V. Mounted hollow-core fibre arrangement
EP3758168A1 (en) 2019-06-25 2020-12-30 ASML Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
EP3786701B1 (en) 2019-08-29 2023-04-26 ASML Netherlands B.V. End facet protection for a light source and a method for use in metrology applications
EP3786702A1 (en) 2019-09-02 2021-03-03 ASML Netherlands B.V. Mode control of photonic crystal fiber based broadband light sources
WO2021043593A1 (en) 2019-09-02 2021-03-11 Asml Netherlands B.V. Mode control of photonic crystal fiber based broadband light sources
EP3839586A1 (en) 2019-12-18 2021-06-23 ASML Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
KR20220063265A (ko) 2019-10-24 2022-05-17 에이에스엠엘 네델란즈 비.브이. 광대역 방사선 발생을 위한 중공 코어 광결정 섬유 기반 광학 요소
EP3819267B1 (en) 2019-11-07 2022-06-29 ASML Netherlands B.V. Method of manufacture of a capillary for a hollow-core photonic crystal fiber
EP3819266A1 (en) 2019-11-07 2021-05-12 ASML Netherlands B.V. Method of manufacture of a capillary for a hollow-core photonic crystal fiber
WO2021144093A1 (en) * 2020-01-15 2021-07-22 Asml Netherlands B.V. Method, assembly, and apparatus for improved control of broadband radiation generation
EP3889681A1 (en) * 2020-03-31 2021-10-06 ASML Netherlands B.V. An assembly including a non-linear element and a method of use thereof
EP3913429A1 (en) 2020-05-19 2021-11-24 ASML Netherlands B.V. A supercontinuum radiation source and associated metrology devices
EP3936936A1 (en) 2020-07-08 2022-01-12 ASML Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator with extended fiber lifetime
DK3936937T3 (en) 2020-07-08 2022-09-19 Asml Netherlands Bv Hollow-Core Fiber Based Broadband Radiation Generator With Extended Fiber Lifetime
CN111969399B (zh) * 2020-07-22 2021-09-14 中国科学院西安光学精密机械研究所 基于Kagome空心光子晶体光纤的脉冲自压缩系统及其耦合调节方法
US20230273502A1 (en) 2020-08-03 2023-08-31 Asml Netherlands B.V. Method for generating broadband radiation and associated broadband source and metrology device
EP3974899A1 (en) 2020-09-28 2022-03-30 ASML Netherlands B.V. Method for generating broadband radiation and associated broadband source and metrology device
EP4001976A1 (en) 2020-11-13 2022-05-25 ASML Netherlands B.V. Hollow core fiber light source and a method for manufacturing a hollow core fiber
WO2022028812A1 (en) 2020-08-06 2022-02-10 Asml Netherlands B.V. Hollow core fiber light source and a method for manufacturing a hollow core fiber
JP2023540186A (ja) 2020-09-03 2023-09-22 エーエスエムエル ネザーランズ ビー.ブイ. 中空コアフォトニック結晶ファイバベースの広帯域放射ジェネレータ
EP3988996A1 (en) 2020-10-20 2022-04-27 ASML Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
EP3968090A1 (en) 2020-09-11 2022-03-16 ASML Netherlands B.V. Radiation source arrangement and metrology device
CN112582861A (zh) * 2020-10-21 2021-03-30 暨南大学 可调谐激光产生装置及产生方法
CN112582860A (zh) * 2020-10-21 2021-03-30 暨南大学 超连续谱产生装置及产生方法
KR20230112653A (ko) 2020-12-10 2023-07-27 에이에스엠엘 네델란즈 비.브이. 중공 코어 광결정 광섬유 기반 광대역 방사선 발생기
EP4012492A1 (en) 2020-12-10 2022-06-15 ASML Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
EP4030230A1 (en) 2021-01-18 2022-07-20 ASML Netherlands B.V. Methods and apparatus for providing a broadband light source
WO2022135823A1 (en) 2020-12-23 2022-06-30 Asml Netherlands B.V. Methods and apparatus for providing a broadband light source
EP4067968A1 (en) 2021-03-29 2022-10-05 ASML Netherlands B.V. Methods and apparatuses for spatially filtering optical pulses
JP2024512198A (ja) 2021-02-04 2024-03-19 エーエスエムエル ネザーランズ ビー.ブイ. 光パルスを空間的にフィルタリングするための方法および装置
EP4060403A1 (en) 2021-03-16 2022-09-21 ASML Netherlands B.V. Hollow-core photonic crystal fiber based multiple wavelength light source device
EP4086698A1 (en) 2021-05-06 2022-11-09 ASML Netherlands B.V. Hollow-core optical fiber based radiation source
IL305428A (en) 2021-03-16 2023-10-01 Asml Netherlands Bv A radiation source based on hollow-core optical fibers
EP4112572A1 (en) 2021-06-28 2023-01-04 ASML Netherlands B.V. Method of producing photonic crystal fibers
DE102021207626A1 (de) 2021-07-16 2023-01-19 Amphos GmbH Gepulste Laserlichtquelle und Verfahren zur Erzeugung eines gepulsten Ausgangslaserstrahls mit Laserpulsen mit vorgegebenen Eigenschaften
EP4163715A1 (en) 2021-10-05 2023-04-12 ASML Netherlands B.V. Improved broadband radiation generation in photonic crystal or highly non-linear fibres
WO2023025578A1 (en) 2021-08-25 2023-03-02 Asml Netherlands B.V. Improved broadband radiation generation in photonic crystal or highly non-linear fibres
CN113900183B (zh) * 2021-10-15 2022-07-15 西安邮电大学 一种基于双芯负曲率光纤的太赫兹偏振分束器
EP4170430A1 (en) 2021-10-25 2023-04-26 ASML Netherlands B.V. Metrology apparatus and metrology methods based on high harmonic generation from a diffractive structure
EP4174568A1 (en) 2021-11-01 2023-05-03 ASML Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
EP4174567A1 (en) 2021-11-02 2023-05-03 ASML Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
WO2023078619A1 (en) 2021-11-02 2023-05-11 Asml Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
DE102021128556A1 (de) * 2021-11-03 2023-05-04 Amphos GmbH STED-Mikroskop
EP4202508A1 (en) 2021-12-22 2023-06-28 ASML Netherlands B.V. Waveguides and manufacturing methods thereof
EP4231090A1 (en) 2022-02-17 2023-08-23 ASML Netherlands B.V. A supercontinuum radiation source and associated metrology devices
WO2023160924A1 (en) 2022-02-22 2023-08-31 Asml Netherlands B.V. Method and apparatus for reflecting pulsed radiation
DE102022104992A1 (de) 2022-03-03 2023-09-07 Trumpf Lasertechnik Gmbh Vorrichtung sowie Verfahren zur spektroskopischen Analyse eines Prozessmediums
DE102022104988A1 (de) 2022-03-03 2023-09-07 Amphos GmbH Vorrichtung mit einem Operationsmikroskop
EP4273622A1 (en) 2022-05-02 2023-11-08 ASML Netherlands B.V. Hollow-core optical fiber based radiation source
WO2023194049A1 (en) 2022-04-08 2023-10-12 Asml Netherlands B.V. Hollow-core optical fiber based radiation source
EP4289798A1 (en) 2022-06-07 2023-12-13 ASML Netherlands B.V. Method of producing photonic crystal fibers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9160137B1 (en) * 2014-05-09 2015-10-13 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Method and device for creating supercontinuum light pulses

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4474625B2 (ja) * 1999-12-14 2010-06-09 独立行政法人科学技術振興機構 超広帯域可変波長多重パルス波形整形装置
JP2002131710A (ja) 2000-10-27 2002-05-09 Japan Science & Technology Corp 複合型超広帯域高精度位相補償・位相制御装置
DE102004032463B4 (de) * 2004-06-30 2011-05-19 Jenoptik Laser Gmbh Verfahren und optische Anordnung zur Erzeugung eines Breitbandspektrums mittels modengekoppelter Picosekunden-Laserimpulse
US7295739B2 (en) * 2004-10-20 2007-11-13 Kla-Tencor Technologies Corporation Coherent DUV illumination for semiconductor wafer inspection
US7283712B2 (en) * 2005-05-03 2007-10-16 United States Of America As Represented By The Secretary Of The Navy Gas filled hollow core chalcogenide photonic bandgap fiber Raman device and method
US7519253B2 (en) * 2005-11-18 2009-04-14 Omni Sciences, Inc. Broadband or mid-infrared fiber light sources
JP2008262004A (ja) * 2007-04-11 2008-10-30 Sumitomo Electric Ind Ltd 広帯域光源装置
GB0719376D0 (en) * 2007-10-03 2007-11-14 Univ Bath Hollow-core photonic crystal fibre
WO2010115432A1 (en) * 2009-04-08 2010-10-14 Nkt Photonics A/S Broadband high power light source
CN101764350B (zh) * 2009-07-24 2011-09-28 中国科学院安徽光学精密机械研究所 基于空芯光子晶体光纤的光纤型可调谐气体拉曼激光光源
WO2011023201A1 (en) * 2009-08-28 2011-03-03 Nkt Photonics A/S Pulsed fiber laser
US8554037B2 (en) * 2010-09-30 2013-10-08 Raydiance, Inc. Hybrid waveguide device in powerful laser systems
JP2014512019A (ja) * 2011-03-14 2014-05-19 イムラ アメリカ インコーポレイテッド 光ファイバを用いた中赤外コヒーレント・コンティニュームの広帯域発生
GB2518419B (en) * 2013-09-20 2019-05-29 Univ Southampton Hollow-core photonic bandgap fibers
JP2017501428A (ja) 2013-10-30 2017-01-12 マックス−プランク−ゲゼルシャフト ツール フェルデルンク デル ヴィッセンシャフテン エー.ファウ. フッ化物ガラス系の微細構造のフォトニック結晶ファイバーを備えたスーパーコンティニュームシステム
US9785033B2 (en) * 2014-01-30 2017-10-10 The United States Of America, As Represented By The Secretary Of The Navy Compact infrared broadband source
CN103901699B (zh) * 2014-02-20 2016-05-11 中国科学院上海光学精密机械研究所 基于脉冲分割的飞秒激光脉冲宽度压缩装置
EP3531514B1 (en) 2014-05-09 2020-07-08 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method and device for creating supercontinuum light pulses
GB2526879A (en) * 2014-06-06 2015-12-09 Univ Southampton Hollow-core optical fibers
EP3136143B1 (en) * 2015-08-26 2020-04-01 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hollow-core fibre and method of manufacturing thereof
JP6254985B2 (ja) * 2015-09-17 2017-12-27 ファナック株式会社 レーザ光路内の不純ガスを監視するレーザ加工システム
KR102413595B1 (ko) 2017-01-09 2022-06-27 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. 광대역 광원장치 및 광대역 광 펄스 생성 방법
WO2021043593A1 (en) * 2019-09-02 2021-03-11 Asml Netherlands B.V. Mode control of photonic crystal fiber based broadband light sources

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9160137B1 (en) * 2014-05-09 2015-10-13 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Method and device for creating supercontinuum light pulses

Also Published As

Publication number Publication date
CN116482912A (zh) 2023-07-25
CN110537144B (zh) 2023-04-25
KR102242442B1 (ko) 2021-04-21
US11205884B2 (en) 2021-12-21
US11688992B2 (en) 2023-06-27
EP3566097A1 (en) 2019-11-13
JP6921195B2 (ja) 2021-08-18
US20190319420A1 (en) 2019-10-17
WO2018127266A1 (en) 2018-07-12
KR102592778B1 (ko) 2023-10-24
IL299683A (en) 2023-03-01
IL267624B2 (en) 2023-06-01
IL267624A (en) 2019-08-29
WO2018127266A8 (en) 2019-09-26
JP2020514785A (ja) 2020-05-21
US10693271B2 (en) 2020-06-23
EP4130866A1 (en) 2023-02-08
KR102413595B1 (ko) 2022-06-27
US20200280159A1 (en) 2020-09-03
EP3566097B1 (en) 2022-11-16
KR20210044313A (ko) 2021-04-22
CN110537144A (zh) 2019-12-03
US20230268706A1 (en) 2023-08-24
KR20190100404A (ko) 2019-08-28
US20220045470A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
KR102413595B1 (ko) 광대역 광원장치 및 광대역 광 펄스 생성 방법
US9160137B1 (en) Method and device for creating supercontinuum light pulses
EP3531514B1 (en) Method and device for creating supercontinuum light pulses
JP2014219677A (ja) ソリトン光パルスを生成するための方法およびパルス光源
US20070160092A1 (en) Broad-band light source
US8982918B2 (en) System, device and method for stabilizing the optical output power of an optical system
Marty et al. All-fiber multi-purpose gas cells and their applications in spectroscopy
US20090180510A1 (en) Guiding a beam from an unstable laser resonator
US7848378B2 (en) Apparatus and method for monitoring power of a UV laser
CA2478314A1 (en) Amplifiers and light sources employing s-band erbium-doped fiber and l-band thulium-doped fiber with distributed suppression of amplified spontaneous emission (ase)
WO2009095022A2 (en) System, device and method for extending the life-time of an optical system
US20240036435A1 (en) Optical Parametric Oscillator System
Cooper Multi-Kilowatt Fiber Laser Amplifiers and Hollow-Core Delivery Fibers
Xu Advances in Hollow Core Fibres and Application to Mid-Infrared Fibre Gas Lasers
Lee Mid-infrared fiber laser: high-power ultrafast pulse delivery and compression
Martelli et al. Add-Drop Gas Reference Cell with Acetylene
SAFETY Compact ultra-bright supercon-tinuum light source
Eichler et al. Fiber phase conjugators with a saturated SBS reflectivity
Le et al. Ultrashort pulse long distance fiber delivery

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant