KR20220078004A - Fuel additive composition for internal combustion engine - Google Patents

Fuel additive composition for internal combustion engine Download PDF

Info

Publication number
KR20220078004A
KR20220078004A KR1020200166874A KR20200166874A KR20220078004A KR 20220078004 A KR20220078004 A KR 20220078004A KR 1020200166874 A KR1020200166874 A KR 1020200166874A KR 20200166874 A KR20200166874 A KR 20200166874A KR 20220078004 A KR20220078004 A KR 20220078004A
Authority
KR
South Korea
Prior art keywords
fuel
additive composition
engine
internal combustion
naphtha
Prior art date
Application number
KR1020200166874A
Other languages
Korean (ko)
Other versions
KR102503500B1 (en
Inventor
이경은
Original Assignee
이경은
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이경은 filed Critical 이경은
Priority to KR1020200166874A priority Critical patent/KR102503500B1/en
Publication of KR20220078004A publication Critical patent/KR20220078004A/en
Application granted granted Critical
Publication of KR102503500B1 publication Critical patent/KR102503500B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1691Hydrocarbons petroleum waxes, mineral waxes; paraffines; alkylation products; Friedel-Crafts condensation products; petroleum resins; modified waxes (oxidised)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/191Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/10Use of additives to fuels or fires for particular purposes for improving the octane number
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/12Use of additives to fuels or fires for particular purposes for improving the cetane number
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/043Kerosene, jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0453Petroleum or natural waxes, e.g. paraffin waxes, asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

본 발명은, 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid)를 주재로 포함하는, 연료첨가제 조성물에 관한 것으로, 종래에 연료첨가제로 사용되던 PEA(Polyetheramine), PBA(Poly butyl acrylate), 폴리 이소뷰테닐 숙신산 아마이드 (Poly Isobutenyl Succinic Acid Imide), 알킬 페놀 아민(Alkyl Phenols Amine) 등과 달리, 엔진 연소실에 쌓이는 탄소 퇴적물을 후발적으로 제거하는 형태가 아닌, 엔진 연소실 내부에서 연료의 완전연소를 유도하여 탄소 퇴적물의 발생 자체를 방지할 수 있으며, 연소실 안 흡기밸브, 배기밸브, 인젝터 주변에 형성되어 있는 탄소 퇴적물을 효과적으로 제거하는 한편, 내연기관의 연료, 흡배기, 윤활 시스템을 개선하고, 내연기관, 특히 가솔린(Gasoline) 또는 디젤(Diesel) 내연기관의 배출가스 내에서 일산화탄소(CO), 질소산화물(NOx), 황산화물(SOx) 등이 현저히 감소하게 되므로, 친환경적이고 대기오염을 저감할 수 있다.The present invention relates to a fuel additive composition mainly comprising hydrotreated heavy paraffinic refined oil (Hydraulic Fluid), and PEA (Polyetheramine), PBA (Poly butyl acrylate), Polyisobutenyl Unlike succinic acid amide (Poly Isobutenyl Succinic Acid Imide), alkyl phenol amine (Alkyl Phenols Amine), etc., it is not a form that removes carbon deposits accumulated in the engine combustion chamber later, but induces complete combustion of fuel inside the engine combustion chamber. It can prevent the generation itself and effectively remove the carbon deposits formed around the intake valve, exhaust valve and injector in the combustion chamber, while improving the fuel, intake and exhaust, lubrication system of the internal combustion engine, and ) or diesel internal combustion engine, carbon monoxide (CO), nitrogen oxide (NO x ), sulfur oxide (SO x ), etc. are significantly reduced in the exhaust gas, so it is environmentally friendly and can reduce air pollution.

Description

내연기관용 연료첨가제 조성물{Fuel additive composition for internal combustion engine}Fuel additive composition for internal combustion engine

본 발명은 내연기관용 연료첨가제 조성물, 상세하게는 가솔린(Gasoline) 또는 디젤(Diesel) 내연기관용 연료처가제 조성물에 관한 것이다.The present invention relates to a fuel additive composition for an internal combustion engine, and more particularly, to a fuel additive composition for a gasoline or diesel internal combustion engine.

연료첨가제는 연료의 불완전 연소로 인한 엔진 내 잔류물을 세척하거나, 탄소 퇴적물(CCD: Combustion Chamber Deposits)을 감소시켜 연소 과정에서 연소실을 낮은 온도로 유지하며, 잔류물 내지 탄소 퇴적물을 재 연소 과정을 통해 사라지게 하기 위해 사용된다. 구체적으로 엔진 내 잔류물이나 탄소 퇴적물이 사라지게 되면, 연소실의 체적이 증가하게 되어 더 많은 산소가 유입되게 되고, 연소전파속도(화염전파속도)를 더욱 빠르게 진행시킬 수 있게 된다. 이에, 연소실 온도를 낮은 온도로 유지할 수 있게 되고, 출력 상승과 연료 효율 향상을 기대할 수 있다. Fuel additives clean the residues in the engine due to incomplete combustion of fuel or reduce carbon deposits (CCD) to keep the combustion chamber at a low temperature during the combustion process, and to reduce the recombustion process of residues or carbon deposits. It is used to disappear through Specifically, when residues or carbon deposits in the engine disappear, the volume of the combustion chamber increases, allowing more oxygen to flow in, and the combustion propagation speed (flame propagation speed) can be accelerated. Accordingly, it is possible to maintain the combustion chamber temperature at a low temperature, and an increase in output and improvement in fuel efficiency can be expected.

일반적으로 사용되는 연료첨가제들은 세정에 초점을 맞추고 있고, 이들은 엔진 내 연소실의 잔류물을 세척하여 제거하기 위한 세정 성분들을 포함하는데, 폴리에테르아민(Polyetheramine, PEA) 등과 같은 계면활성제 계열의 세정 성분들은 연료보다 폭발 온도(인화점)가 높아 연료와 함께 연소되기 어렵고, 이로 인해 완전 연소되지 않은 해당 성분들이 피스톤링을 통과하여 엔진오일 쪽으로 스며들게 되면, 엔진오일의 점도가 희석되게 되고, 이로 인해 엔진오일 윤활성능이 떨어지게 되며, 이는 엔진에 심각한 문제를 발생시킬 수 있다. Commonly used fuel additives focus on cleaning, and these include cleaning components for cleaning and removing residues from the combustion chamber in the engine, and surfactant-based cleaning components such as polyetheramine (PEA) The explosion temperature (flash point) is higher than that of fuel, so it is difficult to combust with the fuel. As a result, if the components that have not been completely combusted pass through the piston ring and seep into the engine oil, the viscosity of the engine oil is diluted, which leads to engine oil lubrication. The performance will be reduced, which can cause serious problems with the engine.

한편, 연료첨가제와 관련한 선행특허문헌으로서, 대한민국 등록특허 제10-0544568호에서는, 아민계열의 안정제와 과산화수소, 수산화나트륨, 및 붕사를 특정 중량 비로 포함하는 연료첨가제를 개시하고 있으며, 대한민국 등록특허 제10-0584224호에서는 탄화수소계 용매와 첨가제를 포함하는 내연기관용 연료첨가제를 개시하고 있으나, 이러한 선행특허문헌들에서는 엔진 연소실 내 연료의 불완전 연소라는 근본적인 문제를 해결하는 것이 아니라, 연료의 불완전 연소로 인해 이미 발생한 탄소 퇴적물을 후발적으로 제거하는 것에 초점을 맞추고 있을 뿐이며, 이 경우 연비 향상, 출력과 토크 향상, DPF 막힘 방지, 및 요소수 사용량 절감 등의 추가적인 효과를 기대하기 곤란한 문제가 있다. On the other hand, as a prior patent document related to fuel additives, Korean Patent Registration No. 10-0544568 discloses a fuel additive comprising an amine-based stabilizer, hydrogen peroxide, sodium hydroxide, and borax in a specific weight ratio. 10-0584224 discloses a fuel additive for an internal combustion engine containing a hydrocarbon-based solvent and an additive, but in these prior patent documents, the fundamental problem of incomplete combustion of fuel in the engine combustion chamber is not solved, but due to incomplete combustion of fuel It is only focused on the late removal of carbon deposits that have already occurred, and in this case, it is difficult to expect additional effects such as improvement of fuel efficiency, improvement of output and torque, prevention of DPF clogging, and reduction of urea water consumption.

따라서, 본 발명자들은 이러한 문제점을 해결하기 위하여, 보다 근본적인 해결책으로서 엔진 연소실 내 연료의 불완전 연소 자체를 방지하는, 즉 연료의 완전연소를 달성할 수 있도록 하는 방법에 대하여 예의 연구한 결과 본 발명을 완성하게 되었다. Accordingly, the present inventors completed the present invention as a result of intensive research on a method for preventing incomplete combustion of fuel in the engine combustion chamber itself, that is, achieving complete combustion of fuel, as a more fundamental solution to solve this problem. did it

본 발명의 목적은 종래에 연료첨가제로 사용되던 PEA(Polyetheramine), PBA(Poly butyl acrylate), 폴리 이소뷰테닐 숙신산 아마이드(Poly Isobutenyl Succinic Acid Imide), 알킬 페놀 아민(Alkyl Phenols Amine) 등과 달리, 엔진 연소실에 쌓이는 탄소 퇴적물을 후발적으로 제거하는 형태가 아닌, 엔진 연소실 내부에서 연료의 완전연소를 유도하여 탄소 퇴적물의 발생 자체를 방지할 수 있도록 하는 연료첨가제 조성물을 제공하기 위한 것이며, 구체적으로, 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid)를 주재로 하되, 다양한 보조 성분들을 특정 중량부 비로 혼합한 연료첨가제 조성물을 제공한다. The object of the present invention is, unlike PEA (Polyetheramine), PBA (Poly butyl acrylate), Poly Isobutenyl Succinic Acid Imid, Alkyl Phenols Amine, etc., which have been used as fuel additives in the prior art, the engine It is to provide a fuel additive composition that prevents the generation of carbon deposits by inducing complete combustion of fuel inside the engine combustion chamber, rather than in the form of later removing carbon deposits accumulated in the combustion chamber, specifically, hydrogen treatment Provided is a fuel additive composition mainly made of heavy paraffin refined oil (Hydraulic Fluid), but in which various auxiliary components are mixed in a specific weight part ratio.

또한, 본 발명이 해결하고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. In addition, the technical problems to be solved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned are clearly to those of ordinary skill in the art to which the present invention belongs from the description below. can be understood

본 명세서에서는, 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid), 수소 처리된 중질 나프타(Naphtha (petroleum), Hydrotreated heavy), 나프탈렌(Naphthalene), 수소탈황화된 케로젠(Hydrosulfurized Kerosene), 지방산 메틸 에스터(Fatty acid methyl ester), 폴리올 에스테르(Polyol Esters), 폴리올레핀 알킬페놀 알킬아민(Polyolefin alkylphenol alkylamine), 나프타(석유) 중질 방향족 화합물, 팔미트산(Palmitic acid), 2-(2-부톡시에톡시)에탄올(2-(2-butoxyethoxy)ethanol) 및 2-에틸-1-헥산올(2-ethyl-1-hexanol)을 포함하는, 연료첨가제 조성물을 제공한다.In the present specification, hydrotreated heavy paraffin refined oil (Hydraulic Fluid), hydrotreated heavy naphtha (Naphtha (petroleum), Hydrotreated heavy), naphthalene (Naphthalene), hydrodesulfurized kerosene (Hydrosulfurized Kerosene), fatty acid methyl ester ( Fatty acid methyl ester), polyol esters (Polyol Esters), polyolefin alkylphenol alkylamine (polyolefin alkylphenol alkylamine), naphtha (petroleum) heavy aromatics, palmitic acid, 2-(2-butoxyethoxy) It provides a fuel additive composition comprising ethanol (2-(2-butoxyethoxy)ethanol) and 2-ethyl-1-hexanol (2-ethyl-1-hexanol).

또한, 본 명세서에서 상기 조성물 전체 중량을 기준으로, 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid)는 95 내지 99.5 wt%, 수소 처리된 중질 나프타(Naphtha (petroleum), Hydrotreated heavy)는 0.1 내지 3 wt%, 나프탈렌(Naphthalene)은 0.1 내지 3 wt%, 수소탈황화된 케로젠(Hydrosulfurized Kerosene)은 0.1 내지 3 wt%, 지방산 메틸 에스터(Fatty acid methyl ester)는 0.1 내지 3 wt%, 폴리올 에스테르(Polyol Esters)는 0.1 내지 3 wt%, 폴리올레핀 알킬페놀 알킬아민(Polyolefin alkylphenol alkylamine)은 0.1 내지 3 wt%, 나프타(석유) 중질 방향족 화합물은 0.1 내지 3 wt%, 팔미트산(Palmitic acid)은 0.1 내지 3 wt%, 2-(2-부톡시에톡시)에탄올(2-(2-butoxyethoxy)ethanol)은 0.1 내지 3 wt% 및 2-에틸-1-헥산올(2-ethyl-1-hexanol)은 0.1 내지 3 wt%로 포함되는, 연료첨가제 조성물을 제공한다.In addition, based on the total weight of the composition in the present specification, hydrotreated heavy paraffinic refined oil (Hydraulic Fluid) is 95 to 99.5 wt%, hydrotreated heavy naphtha (Naphtha (petroleum), Hydrotreated heavy) is 0.1 to 3 wt% , Naphthalene is 0.1 to 3 wt%, Hydrosulfurized Kerosene is 0.1 to 3 wt%, Fatty acid methyl ester is 0.1 to 3 wt%, Polyol Esters ) is 0.1 to 3 wt%, polyolefin alkylphenol alkylamine is 0.1 to 3 wt%, naphtha (petroleum) heavy aromatic compound is 0.1 to 3 wt%, palmitic acid is 0.1 to 3 wt% wt%, 2-(2-butoxyethoxy)ethanol (2-(2-butoxyethoxy)ethanol) is 0.1 to 3 wt% and 2-ethyl-1-hexanol is 0.1 To provide a fuel additive composition included in 3 wt%.

또한, 본 명세서에서 상기 연료첨가제 조성물은 가솔린(Gasoline) 또는 디젤(Diesel) 내연기관용인, 연료첨가제 조성물을 제공한다.In addition, the fuel additive composition in the present specification provides for a gasoline (Gasoline) or diesel (Diesel) internal combustion engine, a fuel additive composition.

본 발명에 따른 연료첨가제 조성물은 종래에 연료첨가제로 사용되던 PEA(Polyetheramine), PBA(Poly butyl acrylate), 폴리 이소뷰테닐 숙신산 아마이드(Poly Isobutenyl Succinic Acid Imide), 알킬 페놀 아민(Alkyl Phenols Amine) 등과 달리, 엔진 연소실에 쌓이는 탄소 퇴적물을 후발적으로 제거하는 형태가 아닌, 엔진 연소실 내부에서 연료의 완전연소를 유도하여 탄소 퇴적물의 발생 자체를 방지할 수 있도록 한다.The fuel additive composition according to the present invention includes PEA (Polyetheramine), PBA (Poly butyl acrylate), Poly Isobutenyl Succinic Acid amide, Alkyl Phenols Amine, and the like, which have been conventionally used as fuel additives. Alternatively, it is not a form of later removing the carbon deposits accumulated in the engine combustion chamber, but inducing complete combustion of fuel inside the engine combustion chamber to prevent the generation of carbon deposits itself.

또한, 본 발명에 따른 연료첨가제 조성물은 연소실 안 흡기밸브, 배기밸브, 인젝터 주변에 형성되어 있는 탄소 퇴적물을 효과적으로 제거하는 한편, 내연기관의 연료, 흡배기, 윤활 시스템을 개선한다. In addition, the fuel additive composition according to the present invention effectively removes carbon deposits formed around intake valves, exhaust valves, and injectors in a combustion chamber, while improving fuel, intake and exhaust, and lubrication systems of an internal combustion engine.

또한, 본 발명에 따른 연료첨가제 조성물을 사용한 경우 내연기관, 특히 가솔린(Gasoline) 또는 디젤(Diesel) 내연기관의 배출가스 내에서 일산화탄소(CO), 질소산화물(NOx), 황산화물(SOx) 등이 현저히 감소하게 되므로, 친환경적이고 대기오염을 저감할 수 있다는 장점이 존재한다. In addition, when the fuel additive composition according to the present invention is used, carbon monoxide (CO), nitrogen oxides (NO x ), sulfur oxides (SO x ) in the exhaust gas of an internal combustion engine, particularly a gasoline (Gasoline) or diesel (Diesel) internal combustion engine etc. are significantly reduced, so there is an advantage that it is eco-friendly and can reduce air pollution.

도 1 내지 2는 본 발명의 일실시예에 따른 연료첨가제 조성물을 가솔린 내연기관에 사용 시 연비 및 배출가스 저감 결과를 나타낸 그래프이다.
도 3 내지 4는 본 발명의 일실시예에 따른 연료첨가제 조성물을 디젤 내연기관에 사용 시 연비 및 배출가스 저감 결과를 나타낸 그래프이다.
1 to 2 are graphs showing fuel efficiency and emission gas reduction results when a fuel additive composition according to an embodiment of the present invention is used in a gasoline internal combustion engine.
3 to 4 are graphs showing fuel efficiency and emission gas reduction results when the fuel additive composition according to an embodiment of the present invention is used in a diesel internal combustion engine.

이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 기재를 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 기재의 요지를 명료하게 하기 위하여 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing the present description, descriptions of already known functions or configurations will be omitted in order to clarify the gist of the present description.

한편, 본 발명의 명세서 및 도면 전반에서 사용되는 용어인 "수소 처리된 중질 파라핀 정제유(Hydraulic Fluid)"는 촉매 존재 하에서 석유 분획물을 수소로 처리하여 얻은 탄화수소의 복잡한 조합으로서, 주로 C20 내지 C50 범위의 탄소수를 가지는 탄화수소로 구성되며, 상대적으로 많은 비율의 포화 탄화수소를 포함하는 것을 의미하는 것일 수 있다. On the other hand, the term "hydrotreated heavy paraffinic refined oil (Hydraulic Fluid)" used throughout the specification and drawings of the present invention is a complex combination of hydrocarbons obtained by treating petroleum fractions with hydrogen in the presence of a catalyst, mainly C 20 to C 50 It is composed of hydrocarbons having a range of carbon atoms, and may mean to include a relatively large proportion of saturated hydrocarbons.

종래 널리 사용되던 연료첨가제들은 엔진 내 연소실의 잔류물을 세척하여 제거하기 위한 세정 성분들을 포함하는데, 폴리에테르아민(Polyetheramine, PEA) 등과 같은 계면활성제 계열의 세정 성분들은 연료보다 폭발 온도(인화점)가 높아 연료와 함께 연소되기 어렵고, 이로 인해 완전 연소되지 않은 해당 성분들이 피스톤링을 통과하여 엔진오일 쪽으로 스며들게 되면, 엔진오일의 점도가 희석되게 되고, 이로 인해 엔진오일 윤활성능이 떨어지게 되며, 이는 엔진에 심각한 문제를 발생시킬 수 있다. 또한, 이러한 연료첨가제들은 엔진 연소실 내 연료의 불완전 연소라는 근본적인 문제를 해결하는 것이 아니라, 연료의 불완전 연소로 인해 이미 발생한 탄소 퇴적물을 후발적으로 제거하는 것에 초점을 맞추고 있을 뿐이며, 이 경우 연비 향상, 출력과 토크 향상, DPF 막힘 방지, 및 요소수 사용량 절감 등의 추가적인 효과를 기대하기 곤란한 문제가 있었다. Conventionally widely used fuel additives include cleaning components for cleaning and removing residues from the combustion chamber in the engine. It is difficult to be combusted with fuel because of this, and if the components that have not been completely burned pass through the piston ring and seep into the engine oil, the viscosity of the engine oil is diluted, which leads to a decrease in engine oil lubrication performance, which in turn affects the engine. It can cause serious problems. In addition, these fuel additives do not solve the fundamental problem of incomplete combustion of fuel in the engine combustion chamber, but only focus on the subsequent removal of carbon deposits that have already occurred due to incomplete combustion of fuel. There was a problem that it was difficult to expect additional effects such as over-torque improvement, DPF clogging prevention, and reduction of urea water consumption.

본 발명자들은 연료첨가제 조성물 제조 시 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid)를 주재로 하되, 다양한 보조 성분들을 특정 중량부 비로 혼합하는 경우, 엔진 연소실에 쌓이는 탄소 퇴적물을 후발적으로 제거하는 형태가 아닌, 엔진 연소실 내부에서 연료의 완전연소를 유도하여 탄소 퇴적물의 발생 자체를 방지할 수 있으며, 연소실 안 흡기밸브, 배기밸브, 인젝터 주변에 형성되어 있는 탄소 퇴적물을 효과적으로 제거하는 한편, 내연기관의 연료, 흡배기, 윤활 시스템을 개선할 수 있고, 나아가 내연기관의 배출가스 내에서 일산화탄소(CO), 질소산화물(NOx), 황산화물(SOx) 등이 현저히 감소하게 되므로, 친환경적이고 대기오염을 저감할 수 있다는 점을 실험을 통하여 확인하고 본 발명을 완성하게 되었다. The present inventors mainly use hydrotreated heavy paraffin refined oil (Hydraulic Fluid) when manufacturing the fuel additive composition, but when various auxiliary components are mixed in a specific weight part ratio, carbon deposits accumulated in the engine combustion chamber are not subsequently removed, By inducing complete combustion of fuel inside the engine combustion chamber, it is possible to prevent the generation of carbon deposits, effectively removing carbon deposits formed around intake valves, exhaust valves, and injectors in the combustion chamber, while fuel, intake and exhaust of internal combustion engines , the lubrication system can be improved, and carbon monoxide (CO), nitrogen oxide (NO x ), sulfur oxide (SO x ), etc. can be significantly reduced in the exhaust gas of an internal combustion engine, so it is eco-friendly and can reduce air pollution It was confirmed through experimentation that there is, and the present invention was completed.

구체적으로 본 발명의 일실시예에 따른 연료첨가제 조성물은 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid), 수소 처리된 중질 나프타(Naphtha (petroleum), Hydrotreated heavy), 나프탈렌(Naphthalene), 수소탈황화된 케로젠(Hydrosulfurized Kerosene), 지방산 메틸 에스터(Fatty acid methyl ester), 폴리올 에스테르(Polyol Esters), 폴리올레핀 알킬페놀 알킬아민(Polyolefin alkylphenol alkylamine), 나프타(석유) 중질 방향족 화합물, 팔미트산(Palmitic acid), 2-(2-부톡시에톡시)에탄올(2-(2-butoxyethoxy)ethanol) 및 2-에틸-1-헥산올(2-ethyl-1-hexanol)을 포함할 수 있다.Specifically, the fuel additive composition according to an embodiment of the present invention is hydrotreated heavy paraffin refined oil (Hydraulic Fluid), hydrotreated heavy naphtha (Naphtha (petroleum), Hydrotreated heavy), naphthalene (Naphthalene), hydrodesulfurized ket Hydrosulfurized Kerosene, Fatty acid methyl ester, Polyol Esters, Polyolefin alkylphenol alkylamine, Naphtha (petroleum) heavy aromatic compound, Palmitic acid, 2-(2-butoxyethoxy)ethanol (2-(2-butoxyethoxy)ethanol) and 2-ethyl-1-hexanol.

수소 처리된 중질 파라핀 정제유의 경우, 상술한 바와 같이, 촉매 존재 하에서 석유 분획물을 수소로 처리하여 얻은 탄화수소의 복잡한 조합으로서, 주로 C20 내지 C50 범위의 탄소수를 가지는 탄화수소로 구성되며, 상대적으로 많은 비율의 포화 탄화수소를 포함하는 것일 수 있으며, 구체적으로 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid)는 조성물 전체 중량을 기준으로, 95 내지 99.5 wt% 포함되는 것일 수 있다. In the case of hydrotreated heavy paraffinic refined oil, as described above, it is a complex combination of hydrocarbons obtained by treating petroleum fractions with hydrogen in the presence of a catalyst, mainly composed of hydrocarbons having a carbon number in the range of C 20 to C 50 , and relatively many It may include saturated hydrocarbons in a ratio, and specifically, hydrotreated heavy paraffinic refined oil (Hydraulic Fluid) may be included in 95 to 99.5 wt% based on the total weight of the composition.

일반적으로 가솔린의 주성분을 이루는 2,2,4-Trimethylpentane은 아래 화학식 1과 같은 구조를 가진다. In general, 2,2,4-Trimethylpentane, which constitutes the main component of gasoline, has a structure as shown in Chemical Formula 1 below.

Figure pat00001
Figure pat00001

[화학식 1][Formula 1]

한편, 경유의 주성분을 이루는 3,3-Diethyloctane 은 아래 화학식 2와 같은 구조를 가진다. On the other hand, 3,3-Diethyloctane, which constitutes the main component of light oil, has a structure as shown in Chemical Formula 2 below.

Figure pat00002
Figure pat00002

[화학식 2][Formula 2]

한편, 상기 가솔린 내지 디젤을 구성하는 연료들은 서로 강하게 결합하고 있어 산소와 결합이 어려운 문제점이 있다. On the other hand, the fuel constituting the gasoline or diesel is strongly coupled to each other, so there is a problem in that it is difficult to combine with oxygen.

이에, 본 발명에 따른, 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid)를 주재로 한 연료첨가제 조성물을 첨가하는 경우, 연소실 내에서 연소가 일어나기 전 가솔린(Gasoline) 또는 디젤(Diesel) 연료 분자를 정렬하는 효과를 나타냄으로써, 산소 결합 및 연소 물질과 산소 간에 결합을 용이하게 할 수 있고, 이에 따라 완전 연소 수준의 연소 효과를 거둘 수 있게 되므로, 연소실 내 탄소 찌꺼기(C) 발생을 최소화할 수 있게 된다. 이는 내연기관의 연료 효율을 향상시키며, 배출가스의 미세먼지를 감소시키고, 출력 및 토크를 증가시키며, 엔진 소음과 진동을 감소시키는 결과로 이어진다. Accordingly, when adding the fuel additive composition based on hydrotreated heavy paraffinic refined oil (Hydraulic Fluid) according to the present invention, gasoline (Gasoline) or diesel (Diesel) fuel molecules are aligned before combustion occurs in the combustion chamber. By exhibiting the effect, it is possible to facilitate oxygen bonding and bonding between the combustion material and oxygen, thereby achieving a combustion effect of a complete combustion level, and thus it is possible to minimize the generation of carbon residues (C) in the combustion chamber. This improves the fuel efficiency of the internal combustion engine, reduces fine dust in exhaust gas, increases output and torque, and results in reduced engine noise and vibration.

한편, 본 발명의 일실시예에 따르면, 상기 수소 처리된 중질 파라핀 정제유 이외에 추가적인 보조 성분으로서 나프탈렌(Naphthalene), 수소탈황화된 케로젠(Hydrosulfurized Kerosene), 지방산 메틸 에스터(Fatty acid methyl ester), 폴리올 에스테르(Polyol Esters), 폴리올레핀 알킬페놀 알킬아민(Polyolefin alkylphenol alkylamine), 나프타(석유) 중질 방향족 화합물, 팔미트산(Palmitic acid), 2-(2-부톡시에톡시)에탄올(2-(2-butoxyethoxy)ethanol) 및 2-에틸-1-헥산올(2-ethyl-1-hexanol)로 이루어진 군에서 선택되는 1종 이상의 보조 성분을 더 포함할 수 있으며, 더욱 상세하게는 나프탈렌(Naphthalene), 수소탈황화된 케로젠(Hydrosulfurized Kerosene), 지방산 메틸 에스터(Fatty acid methyl ester), 폴리올 에스테르(Polyol Esters), 폴리올레핀 알킬페놀 알킬아민(Polyolefin alkylphenol alkylamine), 나프타(석유) 중질 방향족 화합물, 팔미트산(Palmitic acid), 2-(2-부톡시에톡시)에탄올(2-(2-butoxyethoxy)ethanol) 및 2-에틸-1-헥산올(2-ethyl-1-hexanol)을 더 포함할 수 있다. Meanwhile, according to an embodiment of the present invention, naphthalene, hydrosulfurized kerosene, fatty acid methyl ester, polyol as additional auxiliary components in addition to the hydrogen-treated heavy paraffin refined oil Esters, polyolefin alkylphenol alkylamine, naphtha (petroleum) heavy aromatics, palmitic acid, 2-(2-butoxyethoxy)ethanol (2-(2- butoxyethoxy) ethanol) and 2-ethyl-1-hexanol (2-ethyl-1-hexanol) may further include one or more auxiliary components selected from the group consisting of, more specifically, naphthalene (Naphthalene), hydrogen Hydrosulfurized Kerosene, Fatty acid methyl ester, Polyol Esters, Polyolefin alkylphenol alkylamine, Naphtha (petroleum) heavy aromatics, Palmitic acid ( Palmitic acid), 2-(2-butoxyethoxy)ethanol (2-(2-butoxyethoxy)ethanol) and 2-ethyl-1-hexanol may be further included.

또한, 본 발명의 일실시예에 따르면, 상기 조성물은, 조성물 전체 중량을 기준으로, 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid)는 95 내지 99.5 wt%, 수소 처리된 중질 나프타(Naphtha (petroleum), Hydrotreated heavy)는 0.1 내지 3 wt%, 나프탈렌(Naphthalene)은 0.1 내지 3 wt%, 수소탈황화된 케로젠(Hydrosulfurized Kerosene)은 0.1 내지 3 wt%, 지방산 메틸 에스터(Fatty acid methyl ester)는 0.1 내지 3 wt%, 폴리올 에스테르(Polyol Esters)는 0.1 내지 3 wt%, 폴리올레핀 알킬페놀 알킬아민(Polyolefin alkylphenol alkylamine)은 0.1 내지 3 wt%, 나프타(석유) 중질 방향족 화합물은 0.1 내지 3 wt%, 팔미트산(Palmitic acid)은 0.1 내지 3 wt%, 2-(2-부톡시에톡시)에탄올(2-(2-butoxyethoxy)ethanol)은 0.1 내지 3 wt% 및 2-에틸-1-헥산올(2-ethyl-1-hexanol)은 0.1 내지 3 wt%로 포함하는 것일 수 있다. In addition, according to an embodiment of the present invention, the composition, based on the total weight of the composition, hydrotreated heavy paraffinic refined oil (Hydraulic Fluid) is 95 to 99.5 wt%, hydrotreated heavy naphtha (Naphtha (petroleum), Hydrotreated heavy) is 0.1 to 3 wt%, naphthalene is 0.1 to 3 wt%, Hydrosulfurized Kerosene is 0.1 to 3 wt%, Fatty acid methyl ester is 0.1 to 3 wt% 3 wt%, Polyol Esters 0.1-3 wt%, Polyolefin alkylphenol alkylamine 0.1-3 wt%, Naphtha (petroleum) heavy aromatic compound 0.1-3 wt%, Palmit The acid (Palmitic acid) is 0.1 to 3 wt%, 2- (2-butoxyethoxy) ethanol (2- (2-butoxyethoxy) ethanol) is 0.1 to 3 wt% and 2-ethyl-1-hexanol (2 -ethyl-1-hexanol) may be included in an amount of 0.1 to 3 wt%.

한편, 상기와 같은 성분 및 중량 비를 조합하는 경우 내연기관 내 가솔린(Gasoline) 또는 디젤(Diesel) 연료 분자를 정렬하는 효과를 최적화할 수 있고 이에 따라, 완전 연소 효과, 연소실 내 탄소 찌꺼기(C) 발생 최소화, 내연기관의 연료 효율 향상, 배출가스의 미세먼지 감소, 출력 및 토크의 증가, 엔진 소음과 진동의 감소 효과를 최적화할 수 있게 된다. On the other hand, when the above components and weight ratios are combined, the effect of aligning the gasoline or diesel fuel molecules in the internal combustion engine can be optimized, and accordingly, the complete combustion effect, carbon residue (C) in the combustion chamber It is possible to optimize the effects of minimizing generation, improving fuel efficiency of internal combustion engines, reducing fine dust in exhaust gas, increasing output and torque, and reducing engine noise and vibration.

이상으로 설명한 본 발명에 따른 연료첨가제 조성물은 종래에 연료첨가제로 사용되던 PEA(Polyetheramine), PBA(Poly butyl acrylate), 폴리 이소뷰테닐 숙신산 아마이드 (Poly Isobutenyl Succinic Acid Imide), 알킬 페놀 아민(Alkyl Phenols Amine) 등과 달리, 엔진 연소실에 쌓이는 탄소 퇴적물을 후발적으로 제거하는 형태가 아닌, 엔진 연소실 내부에서 연료의 완전연소를 유도하여 탄소 퇴적물의 발생 자체를 방지할 수 있도록 한다. The fuel additive composition according to the present invention described above is PEA (Polyetheramine), PBA (Poly butyl acrylate), Poly Isobutenyl Succinic Acid Imide, alkyl phenol amines (Alkyl Phenols), which were conventionally used as fuel additives. Amine), etc., it is not a form of later removing the carbon deposits accumulated in the engine combustion chamber, but it induces the complete combustion of fuel inside the engine combustion chamber to prevent the generation of carbon deposits itself.

또한, 본 발명에 따른 연료첨가제 조성물은 연소실 안 흡기밸브, 배기밸브, 인젝터 주변에 형성되어 있는 탄소 퇴적물을 효과적으로 제거하는 한편, 내연기관의 연료, 흡배기, 윤활 시스템을 개선한다. In addition, the fuel additive composition according to the present invention effectively removes carbon deposits formed around intake valves, exhaust valves, and injectors in a combustion chamber, while improving fuel, intake and exhaust, and lubrication systems of an internal combustion engine.

또한, 본 발명에 따른 연료첨가제 조성물을 사용한 경우 내연기관, 특히 가솔린(Gasoline) 또는 디젤(Diesel) 내연기관의 배출가스 내에서 일산화탄소(CO), 질소산화물(NOx), 황산화물(SOx) 등이 현저히 감소하게 되므로, 친환경적이고 대기오염을 저감할 수 있다는 장점이 존재한다. In addition, when the fuel additive composition according to the present invention is used, carbon monoxide (CO), nitrogen oxides (NO x ), sulfur oxides (SO x ) in the exhaust gas of an internal combustion engine, particularly a gasoline (Gasoline) or diesel (Diesel) internal combustion engine etc. are significantly reduced, so there is an advantage that it is eco-friendly and can reduce air pollution.

이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.Hereinafter, the action and effect of the invention will be described in more detail through specific examples of the invention. However, this is presented as an example of the invention and the scope of the invention is not limited in any way by this.

[실시예][Example]

실시예 1: 가솔린 내연기관용 연료첨가제 조성물 제조Example 1: Preparation of fuel additive composition for gasoline internal combustion engine

본 발명에 따라, 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid)는 97 wt%, 수소 처리된 중질 나프타(Naphtha (petroleum), Hydrotreated heavy)는 0.3 wt%, 나프탈렌(Naphthalene)은 0.3 wt%, 수소탈황화된 케로젠(Hydrosulfurized Kerosene)은 0.3 wt%, 지방산 메틸 에스터(Fatty acid methyl ester)는 0.3 wt%, 폴리올 에스테르(Polyol Esters)는 0.3 wt%, 폴리올레핀 알킬페놀 알킬아민(Polyolefin alkylphenol alkylamine)은 0.3 wt%, 나프타(석유) 중질 방향족 화합물은 0.3 wt%, 팔미트산(Palmitic acid)은 0.3 wt%, 2-(2-부톡시에톡시)에탄올(2-(2-butoxyethoxy)ethanol)은 0.3 wt% 및 2-에틸-1-헥산올(2-ethyl-1-hexanol)은 0.3 wt%로 혼합하여, 연료첨가제 조성물을 제조하였다. According to the present invention, hydrotreated heavy paraffinic refined oil (Hydraulic Fluid) is 97 wt%, hydrotreated heavy naphtha (Naphtha (petroleum), Hydrotreated heavy) is 0.3 wt%, naphthalene is 0.3 wt%, hydrodesulfurization Hydrosulfurized Kerosene is 0.3 wt%, Fatty acid methyl ester is 0.3 wt%, Polyol Ester is 0.3 wt%, Polyolefin alkylphenol alkylamine is 0.3 wt% wt%, naphtha (petroleum) heavy aromatic compound is 0.3 wt%, palmitic acid is 0.3 wt%, 2-(2-butoxyethoxy)ethanol is 0.3 wt% wt% and 2-ethyl-1-hexanol (2-ethyl-1-hexanol) were mixed at 0.3 wt% to prepare a fuel additive composition.

[실험 1: 가솔린 내연기관 대상 배기가스 및 연비 측정 실험][Experiment 1: Exhaust gas and fuel efficiency measurement experiment for gasoline internal combustion engine]

배기가스 측정을 위해 MEIDENSHA의 섀시다이너모미터(Chassis dynamometer-FEB-DNR 95 kW)를 사용하였으며, 배기가스 측정에는 HORIBA의 배기분석기 MEXA-7100EGR을 사용하였다. MEIDENSHA's Chassis dynamometer (FEB-DNR 95 kW) was used to measure exhaust gas, and HORIBA's MEXA-7100EGR exhaust analyzer was used to measure exhaust gas.

가솔린과 연료첨가제 조성물을 300 대 1 중량부 비로 혼합한 다음, JC08 Mode로 1,000km 주행을 한 다음, 대조군(연료첨가제 조성물을 사용하지 않고 가솔린만 사용)과 비교하여 CO, THC(Total HC), NO 및 CO2를 측정하였다.After mixing gasoline and fuel additive composition in a ratio of 300 to 1 parts by weight, after driving 1,000 km in JC08 Mode, compared to the control group (using only gasoline without using fuel additive composition), CO, THC (Total HC), NO and CO 2 were measured.

한편, JC08 모드는 1L의 연료로 주행할 수 있는 주행거리를 측정하는 연비 측정방법이며, 이 모드는 주행거리 8.182 km, 최고속도 81.6 km/h, 평균속도 24.4 km/h, 주행시간 1,204 sec, 배기가스를 측정하기 위한 모드이며, JC08H 모드(열간실험)와 JC08C(냉간실험)이 있다. 냉간실험은 열간실험보다 연비 면에서 불리하다. 한편, 섀시다이너모미터 실험 차량은 주행거리 8,149 km의 Mazda의 ROAD STAR였다. On the other hand, the JC08 mode is a fuel economy measurement method that measures the mileage that can be driven with 1L of fuel. It is a mode for measuring exhaust gas, and there are JC08H mode (hot test) and JC08C (cold test). The cold test is more disadvantageous than the hot test in terms of fuel efficiency. Meanwhile, the chassis dynamometer test vehicle was Mazda's ROAD STAR with a mileage of 8,149 km.

연비는 탄소균형법(Carbon balance test)으로 계산하였으며, 섀시다이너모미터 테스트(도 2, (a))와 도로주행 테스트(도 2, (b))를 하여 도출하였다. 참고로, 도로주행 테스트는 60,048 km를 주행한 BMW 525i 차량으로 Yokohama Aobe IC에서 Gotenba IC까지 142.6 km를 고속도로 왕복실험하였다. The fuel economy was calculated by the carbon balance test, and was derived by performing the chassis dynamometer test (Fig. 2, (a)) and the road driving test (Fig. 2, (b)). For reference, in the road test, a 142.6 km round trip test was performed on the highway from Yokohama Aobe IC to Gotenba IC with a BMW 525i vehicle that traveled 60,048 km.

배기가스 측정 결과Exhaust gas measurement result

도 1 (a)를 참고하면, 냉간 실험의 경우 촉매장치, 산소센서의 온도가 낮아 CO 발생이 많고, 열간실험인 HOT 1에서는 급격히 감소하였으며, CO는 에어크리너의 막힘, 산소센서의 작동이 불량일 때, 혼합기가 노후할 때 많이 배출되는데, HOT 2, HOT 3의 실험에서는 CO가 약간 증가하였고, 특히 본 발명의 실시예 1에 따른 조성물을 첨가하는 경우, HOT 3 실험에서는 대조군의 2.703 g/km 대비 1.419 g/km로 약 47.5% CO 배출이 감소되는 것을 확인하였고, 냉간실험 시에는 대조군의 4.771 g/km 대비 4.045 g/km로 15.2% CO 배출이 감소되는 것을 확인할 수 있었다. Referring to FIG. 1 (a), in the case of the cold experiment, the temperature of the catalyst device and the oxygen sensor was low, so the generation of CO was high, and in the hot experiment, HOT 1, it decreased rapidly. , a lot is emitted when the mixer is aged. In the experiments of HOT 2 and HOT 3, CO slightly increased, and in particular, when the composition according to Example 1 of the present invention was added, in the HOT 3 experiment, 2.703 g/ It was confirmed that about 47.5% CO emission was reduced to 1.419 g/km compared to km, and it was confirmed that during the cold test, 15.2% CO emission was reduced to 4.045 g/km compared to 4.771 g/km of the control group.

한편, 도 1 (b)를 참고하면, 본 발명의 실시예 1에 따른 첨가제 조성물을 사용한 경우, 냉간실험 시 대조군의 0.663 g/km 대비 0.586 g/km로 약 13.1% HC 배출이 감소되며, 냉간실험 및 열간실험 전체 평균으로 대조군의 0.259 g/km 대비 0.204 g/km로 약 21.2%의 HC 배출 감소가 확인되었다. On the other hand, referring to FIG. 1 (b), when the additive composition according to Example 1 of the present invention is used, about 13.1% HC emission is reduced to 0.586 g/km compared to 0.663 g/km of the control group during cold testing, As an average of the entire experiment and hot experiment, it was confirmed that the HC emission reduction of about 21.2% was 0.204 g/km compared to 0.259 g/km of the control group.

한편, 도 1 (c)를 참고하면, 냉간 및 열간 실험동안 평균적으로 대조군의 0.145g/km 대비 0.126g/㎞로 약 15.1 %의 NO 배출 감소 효과가 있었다. On the other hand, referring to Figure 1 (c), during the cold and hot experiments, on average, there was an effect of reducing NO emission of about 15.1% to 0.126 g / km compared to 0.145 g / km of the control group.

한편, 도 1 (d)를 참고하면, 실시예 1에 따른 첨가제 조성물 사용 시 HOT 2 실험에서 가장 효과가 좋은 것을 확인할 수 있었으며, 특히 HOT 2에서는 대조군의 238.9 g/km 대비 226.7 g/km로 약 5.1% CO2 배출 감소 효과가 있는 것을 확인하였다.On the other hand, referring to FIG. 1 (d), when using the additive composition according to Example 1, it was confirmed that the best effect was obtained in the HOT 2 experiment, and in particular, in HOT 2, it was approximately 226.7 g/km compared to 238.9 g/km of the control group. It was confirmed that there was an effect of reducing 5.1% CO 2 emission.

연비 측정 결과Fuel economy measurement result

구체적으로, 도 2 (a)를 참고하면, 상기 실험 중 특히 HOT 2 실험에서 대조군 10.5 km/L 대비 12.1 km/L로 약 5.1%의 연비 개선이 이루어진 것을 확인할 수 있었으며, 도 2 (b)를 참고하면, 고도 23 m에서 고도 450m로 오르는 언덕길과 돌아오는 내리막길로 총 142.6 km 주행 시 연비 변화를 나타내며, 본 발명의 실시예 1에 따른 첨가제 조성물을 첨가한 경우, 내리막길에서 연비가 평균적으로 25% 개선되는 것을 확인하였으며, 오르막길에서는 약 9.6% 개선되는 것을 확인할 수 있었다. 특히, 정속 주행 시에는 본 발명의 첨가제 조성물 사용 시 평균적으로 25% 연비 개선이 이루어지는 것을 확인할 수 있었다. Specifically, referring to Fig. 2 (a), it was confirmed that the fuel efficiency improvement of about 5.1% was made to 12.1 km/L compared to the control 10.5 km/L in the HOT 2 experiment, which is about 5.1%, For reference, fuel efficiency changes are shown when driving a total of 142.6 km on a hill road going up from an altitude of 23 m to an altitude of 450 m and a return downhill road. It was confirmed that the improvement was 25%, and it was confirmed that the improvement was about 9.6% on the uphill road. In particular, it was confirmed that, on average, when the additive composition of the present invention was used, the fuel efficiency was improved by 25% during constant speed driving.

[실험 2: 디젤 내연기관 대상 배기가스 및 연비 측정 실험][Experiment 2: Exhaust gas and fuel efficiency measurement experiment for diesel internal combustion engine]

배기가스 측정을 위해 MEIDENSHA의 섀시다이너모미터(Chassis dynamometer-FEB-DNR 95 kW)를 사용하였으며, 배기가스 측정에는 가스분석기인 TESTO 330, HORIBA의 배기분석기 MEXA-7100EGR을 사용하였다. MEIDENSHA's Chassis dynamometer (FEB-DNR 95 kW) was used to measure exhaust gas, and TESTO 330, a gas analyzer, and MEXA-7100EGR, an exhaust analyzer from HORIBA, were used to measure exhaust gas.

디젤과 연료첨가제 조성물을 200 대 1 중량부 비로 혼합한 다음, FTP-75 연비 측정 모드로 실험하였으며, 대조군(연료첨가제 조성물을 사용하지 않고 디젤만 사용)과 비교하여 CO, THC(Total HC), NO 및 CO2를 측정하였다.After mixing diesel and fuel additive composition in a ratio of 200 to 1 parts by weight, the experiment was performed in FTP-75 fuel efficiency measurement mode. NO and CO 2 were measured.

한편, FTP-75 모드는 실내 온도 25℃ 에서 적산거리가 160 km 이내에서 차량에 136kg을 더 적재하여 12 ~ 36 시간 적응기간 후 전기장치를 모두 소등하고 롤러 위에서 가속, 감속, 변속을 하면서 31분 25초간 17.84 km를 주행하면서 측정하였고, 평균 시속은 34.1km, 최고 시속은 91.2 km였다. 실험 차량으로는 Cummin 365, F350, RAM 2500, Fox 781, Fox 783 등 5대의 디젤 자동차를 사용하였다. On the other hand, in FTP-75 mode, the vehicle is loaded with 136 kg more at an indoor temperature of 25℃ and the integrated distance is within 160 km. It was measured while driving 17.84 km for 25 seconds, and the average speed was 34.1 km/h, and the maximum speed was 91.2 km/h. Five diesel vehicles were used as test vehicles: Cummin 365, F350, RAM 2500, Fox 781, and Fox 783.

한편, 연비는 다음의 계산식 1에 따라, 탄소균형법(Carbon balance test)으로 계산하였다.On the other hand, fuel economy was calculated by the carbon balance test according to Equation 1 below.

Figure pat00003
Figure pat00003

[계산식 1][Formula 1]

도 3 (a)를 참고하면, Cummin 디젤 차량을 섀시 다이너모미터에서 연료소비, 마력, 차량 성능 실험을 수행한 결과, 주행 중 평균 마력은 331.9 HP, 평균 연비는 18.9 cc/s이고, 본 발명의 실시예 1의 첨가제 조성물을 사용한 경우, 평균 마력은 356.1 HP, 평균 연비는 19.8 cc/s 로 마력은 6.79%, 연비는 4.5% 개선되는 것을 확인할 수 있었다.Referring to FIG. 3 (a), as a result of performing fuel consumption, horsepower, and vehicle performance tests in a chassis dynamometer for a Cummin diesel vehicle, the average horsepower during driving is 331.9 HP, and the average fuel efficiency is 18.9 cc/s, the implementation of the present invention When the additive composition of Example 1 was used, the average horsepower was 356.1 HP and the average fuel efficiency was 19.8 cc/s, so it was confirmed that the horsepower was improved by 6.79% and the fuel consumption by 4.5%.

도 3 (b)를 참고하면, Cummin 디젤 차량을 3개월 단위로 24개월 동안 일반 디젤 연료와 본 발명에 따른 첨가제 조성물 사용 시 연료소비량 결과를 비교하여 나타낸 것이며, 대조군의 평균 연비 2.17 km/L 대비 2.35 km/L로 약 7.6% 연비 개선 효과를 나타내는 것을 확인할 수 있다. Referring to FIG. 3 (b), the results of fuel consumption when using the additive composition according to the present invention with general diesel fuel for a Cummin diesel vehicle for 3 months for 24 months are compared and shown, compared to the average fuel efficiency of 2.17 km/L of the control group It can be seen that the fuel efficiency is improved by about 7.6% at 2.35 km/L.

도 3 (c)를 참고하면, 7.3 L의 F350 디젤 트럭에 대하여 섀시 다이너모미터에서 FTP-75 시험으로 배기가스와 연비를 측정한 결과, 본 발명의 첨가제 조성물을 사용한 경우 NOx는 20%, HC는 44%, PM은 25% 감소하였으며, CO는 13% 증가한 것을 확인할 수 있었고, 탄소균형법으로 연비를 계산한 결과 약 4% 개선 효과가 있는 것을 확인할 수 있었다. Referring to FIG. 3 (c), as a result of measuring exhaust gas and fuel economy by FTP-75 test in a chassis dynamometer for a 7.3 L F350 diesel truck, when the additive composition of the present invention is used, NO x is 20%, HC is 44%, PM decreased by 25%, CO increased by 13%, and as a result of calculating fuel efficiency using the carbon balance method, it was confirmed that there was an effect of about 4% improvement.

도 3 (d)를 참고하면, 5.9 L R2500 디젤 트럭에 대하여 섀시 다이너모미터에서 FTP-75 시험을 일반 디젤, 바이오 디젤, 본 발명에 따른 첨가제 조성물을 사용한 경우에 대하여 실험한 결과이며, 본 발명에 따른 경우 일반 디젤 대비 CO 12% 및 PM 28% 감소를 확인하였다.Referring to FIG. 3 (d), the FTP-75 test in a chassis dynamometer for a 5.9 L R2500 diesel truck is the result of an experiment using general diesel, biodiesel, and the additive composition according to the present invention. In this case, it was confirmed that CO 12% and PM 28% reduction compared to general diesel.

한편, 도 3 (e) 내지 (f)를 참고하면, FOX 781 디젤 트레일러에 대하여 미국 재료시험협회의 D 21560-94의 매연가스 농도 측정 표준 시험 방법에 따라 스모그 스팟수(Smoke Spot Number, SSM) 및 NOx를 측정한 결과이며, 농도 등급은 1 내지 10 까지 범위에 있는데, 1이 가장 투명하다. 시험결과, 공회전 시 60%, 2000 rpm 시 61.5%의 SSN 감소가 측정되었으며, 본 발명의 첨가제 조성물 사용의 경우 3 ~ 7의 농도가 1 ~ 3으로 개선되는 것을 확인하였다.Meanwhile, referring to FIGS. 3 (e) to (f), according to the standard test method for measuring soot gas concentration of D 21560-94 of the American Society for Testing and Materials for FOX 781 diesel trailer, the number of smog spots (Smoke Spot Number, SSM) and NO x , the concentration grade ranges from 1 to 10, with 1 being the most transparent. As a result of the test, a reduction in SSN of 60% at idle and 61.5% at 2000 rpm was measured, and it was confirmed that the concentration of 3 to 7 was improved to 1 to 3 when the additive composition of the present invention was used.

한편, 도 4 (a)를 참고하면, FOX 781 디젤 트레일러에 대하여 단계 1의 본 발명의 첨가제 조성물 처리 전 7개월 동안 도로 주행 시험과 단계 2의 본 발명의 첨가제 조성물 처리 후 7개월 동안 도로 주행 시험 후 배기가스 저감율을 나타낸 것으로, 공회전 시 본 발명의 첨가제 조성물 처리한 경우 스모그는 60%, NOx 28.8%, SOx 22.9%, CO2 23%, CO 9.5% 순으로 감소되었고, 산소량은 36% 증가하였다. 2000 rpm 시 스모그는 61.5%, NOx 35.4%, SOx 26.8%, CO2 15.2%, CO 7.4% 순으로 감소되었고, 산소량은 3.9% 증가한 것을 볼 때, 배출가스 저감은 본 발명의 첨가제 조성물이 엔진 효율을 증대시키며, 연료 소비를 감소시킨다는 것을 확인할 수 있게 한다. On the other hand, referring to FIG. 4 (a), a road driving test for 7 months before treatment with the additive composition of the present invention in step 1 and a road driving test for 7 months after treatment with the additive composition of the present invention in step 2 for a FOX 781 diesel trailer After the exhaust gas reduction rate, when the additive composition of the present invention was treated at idle, smog was reduced in the order of 60%, NO x 28.8%, SO x 22.9%, CO 2 23%, CO 9.5%, and the amount of oxygen was 36% increased. At 2000 rpm, smog was reduced in the order of 61.5%, NO x 35.4%, SO x 26.8%, CO 2 15.2%, CO 7.4%, and when the amount of oxygen increased by 3.9%, exhaust gas reduction was the additive composition of the present invention. It increases engine efficiency and makes it possible to confirm that it reduces fuel consumption.

도 4 (b)를 참고하면, , FOX 783 디젤 트레일러에 대하여 단계 1의 본 발명의 첨가제 조성물 처리 전 7개월 동안 도로 주행 시험과 단계 2의 본 발명의 첨가제 조성물 처리 후 7개월 동안 도로 주행 시험 후 배기가스 저감율을 나타낸 것으로, 공회전 시 본 발명의 첨가제 조성물 처리한 경우 NOx 34%, SOx 20%, CO2 17.3%, CO 0% 순으로 감소되었고, 2000 rpm 시 NOx 32.4%, SOx 25.7%, CO2 13.7%, CO 3.6% 순으로 감소된 것을 볼 때, 본 발명의 첨가제 조성물이 NOx, SOx, CO2 등 배기가스를 현저히 감소시킨다는 것을 확인할 수 있게 한다. Referring to FIG. 4 (b), after a road driving test for 7 months before treatment with the additive composition of the present invention in step 1 and a road driving test for 7 months after treatment with the additive composition of the present invention in step 2 for a FOX 783 diesel trailer It shows the exhaust gas reduction rate, and when the additive composition of the present invention was treated at idle, it was reduced in the order of NO x 34%, SO x 20%, CO 2 17.3%, CO 0%, and at 2000 rpm, NO x 32.4%, SO x 25.7%, CO 2 13.7%, when seeing that the reduction in the order of CO 3.6%, the additive composition of the present invention NO x , SO x , CO 2 It can be confirmed that the exhaust gas such as significantly reduced.

앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.In the foregoing, specific embodiments of the present invention have been described and illustrated, but it is common knowledge in the art that the present invention is not limited to the described embodiments, and that various modifications and variations can be made without departing from the spirit and scope of the present invention. It is self-evident to those who have Accordingly, such modifications or variations should not be individually understood from the technical spirit or point of view of the present invention, and the modified embodiments should belong to the claims of the present invention.

Claims (3)

수소 처리된 중질 파라핀 정제유(Hydraulic Fluid), 수소 처리된 중질 나프타(Naphtha (petroleum), Hydrotreated heavy), 나프탈렌(Naphthalene), 수소탈황화된 케로젠(Hydrosulfurized Kerosene), 지방산 메틸 에스터(Fatty acid methyl ester), 폴리올 에스테르(Polyol Esters), 폴리올레핀 알킬페놀 알킬아민(Polyolefin alkylphenol alkylamine), 나프타(석유) 중질 방향족 화합물, 팔미트산(Palmitic acid), 2-(2-부톡시에톡시)에탄올(2-(2-butoxyethoxy)ethanol) 및 2-에틸-1-헥산올(2-ethyl-1-hexanol)을 포함하는, 연료첨가제 조성물. Hydrotreated Heavy Paraffin Refined Oil (Hydraulic Fluid), Hydrotreated Heavy Naphtha (Naphtha (petroleum), Hydrotreated heavy), Naphthalene, Hydrosulfurized Kerosene, Fatty acid methyl ester ), polyol esters, polyolefin alkylphenol alkylamine, naphtha (petroleum) heavy aromatic compound, palmitic acid, 2- (2-butoxyethoxy) ethanol (2- (2-butoxyethoxy)ethanol) and 2-ethyl-1-hexanol (2-ethyl-1-hexanol) containing, a fuel additive composition. 제 1 항에 있어서,
상기 조성물 전체 중량을 기준으로, 수소 처리된 중질 파라핀 정제유(Hydraulic Fluid)는 95 내지 99.5 wt%, 수소 처리된 중질 나프타(Naphtha (petroleum), Hydrotreated heavy)는 0.1 내지 3 wt%, 나프탈렌(Naphthalene)은 0.1 내지 3 wt%, 수소탈황화된 케로젠(Hydrosulfurized Kerosene)은 0.1 내지 3 wt%, 지방산 메틸 에스터(Fatty acid methyl ester)는 0.1 내지 3 wt%, 폴리올 에스테르(Polyol Esters)는 0.1 내지 3 wt%, 폴리올레핀 알킬페놀 알킬아민(Polyolefin alkylphenol alkylamine)은 0.1 내지 3 wt%, 나프타(석유) 중질 방향족 화합물은 0.1 내지 3 wt%, 팔미트산(Palmitic acid)은 0.1 내지 3 wt%, 2-(2-부톡시에톡시)에탄올(2-(2-butoxyethoxy)ethanol)은 0.1 내지 3 wt% 및 2-에틸-1-헥산올(2-ethyl-1-hexanol)은 0.1 내지 3 wt%로 포함되는, 연료첨가제 조성물.
The method of claim 1,
Based on the total weight of the composition, hydrotreated heavy paraffinic refined oil (Hydraulic Fluid) is 95 to 99.5 wt%, hydrotreated heavy naphtha (Naphtha (petroleum), Hydrotreated heavy) is 0.1 to 3 wt%, naphthalene Silver 0.1 to 3 wt%, Hydrosulfurized Kerosene 0.1 to 3 wt%, Fatty acid methyl ester 0.1 to 3 wt%, Polyol Esters 0.1 to 3 wt%, polyolefin alkylphenol alkylamine is 0.1 to 3 wt%, naphtha (petroleum) heavy aromatic compound is 0.1 to 3 wt%, palmitic acid is 0.1 to 3 wt%, 2- (2-butoxyethoxy) ethanol (2- (2-butoxyethoxy) ethanol) is 0.1 to 3 wt% and 2-ethyl-1-hexanol (2-ethyl-1-hexanol) is 0.1 to 3 wt% Included, fuel additive composition.
제 1 항에 있어서,
상기 연료첨가제 조성물은 가솔린(Gasoline) 또는 디젤(Diesel) 내연기관용인, 연료첨가제 조성물.
The method of claim 1,
The fuel additive composition is for gasoline (Gasoline) or diesel (Diesel) internal combustion engine, fuel additive composition.
KR1020200166874A 2020-12-02 2020-12-02 Fuel additive composition for internal combustion engine KR102503500B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200166874A KR102503500B1 (en) 2020-12-02 2020-12-02 Fuel additive composition for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200166874A KR102503500B1 (en) 2020-12-02 2020-12-02 Fuel additive composition for internal combustion engine

Publications (2)

Publication Number Publication Date
KR20220078004A true KR20220078004A (en) 2022-06-10
KR102503500B1 KR102503500B1 (en) 2023-02-28

Family

ID=81986470

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200166874A KR102503500B1 (en) 2020-12-02 2020-12-02 Fuel additive composition for internal combustion engine

Country Status (1)

Country Link
KR (1) KR102503500B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593191A (en) * 1990-03-27 1993-04-16 Tonen Corp Gasoline additive composition
KR20090003360A (en) * 2006-04-27 2009-01-09 뉴 제너레이션 바이오퓨얼스, 인코포레이티드 Biofuel composition and method of producing a biofuel
KR101201527B1 (en) * 2011-10-21 2012-11-15 주식회사 보타메디 Composition of Diesel Fuel-additives for Improving Combustion and Reducing Air Pollutants
KR20130125880A (en) * 2012-05-10 2013-11-20 주식회사 영진 Multiple-purpose fuel additives for diesel fuel
US8915976B1 (en) * 2013-12-02 2014-12-23 Christopher Haydn Lowery Fuel additive
CN109022066A (en) * 2018-07-27 2018-12-18 霍亚明 A kind of heat-resisting fuel oil additive of automobile-use
US20200095512A1 (en) * 2015-11-04 2020-03-26 Purify Founders, LLC Fuel additive composition and related methods and compositions
KR102111623B1 (en) * 2018-11-19 2020-05-15 주식회사 불스원 Fuel additive composition for vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593191A (en) * 1990-03-27 1993-04-16 Tonen Corp Gasoline additive composition
KR20090003360A (en) * 2006-04-27 2009-01-09 뉴 제너레이션 바이오퓨얼스, 인코포레이티드 Biofuel composition and method of producing a biofuel
KR101201527B1 (en) * 2011-10-21 2012-11-15 주식회사 보타메디 Composition of Diesel Fuel-additives for Improving Combustion and Reducing Air Pollutants
KR20130125880A (en) * 2012-05-10 2013-11-20 주식회사 영진 Multiple-purpose fuel additives for diesel fuel
US8915976B1 (en) * 2013-12-02 2014-12-23 Christopher Haydn Lowery Fuel additive
US20200095512A1 (en) * 2015-11-04 2020-03-26 Purify Founders, LLC Fuel additive composition and related methods and compositions
CN109022066A (en) * 2018-07-27 2018-12-18 霍亚明 A kind of heat-resisting fuel oil additive of automobile-use
KR102111623B1 (en) * 2018-11-19 2020-05-15 주식회사 불스원 Fuel additive composition for vehicle

Also Published As

Publication number Publication date
KR102503500B1 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
US8425630B2 (en) Low molecular weight fuel additive
FR2912932A1 (en) Aqueous solution, useful for treating exhaust gas in all spraying device, preferably selective catalytic reducer device for post-treatment, comprises a part of constituent to liberate gaseous ammonia, and a part of polyfunctional additive
Zhang et al. Effect of fuel detergent on injector deposit formation and engine emissions in a gasoline direct injection (GDI) engine
JP5137283B2 (en) Additive for reducing dust in exhaust gas caused by combustion of diesel oil and fuel composition containing the same
KR102614818B1 (en) Additive formulations and methods of use thereof
KR101950489B1 (en) Additive composition for Automobile fuels
KR102503500B1 (en) Fuel additive composition for internal combustion engine
Caprotti et al. Diesel additive technology effects on injector hole erosion/corrosion, injector fouling and particulate traps
WO2005118753A2 (en) Diesel motor fuel additive composition
JP2004067899A (en) Gas oil composition
JP4477267B2 (en) Diesel engine diesel oil composition for DPF
Tzirakis et al. Diesel-water emulsion emissions and performance evaluation in public buses in Attica Basin
CN108048143A (en) A kind of nano fuel energy-saving clean agent
JP2005343919A (en) Fuel oil composition for premixed compressed self-ignition type engine
KR102503505B1 (en) Fuel additive composition for internal combustion engine
JP3444351B2 (en) Light oil composition
KR20120064297A (en) Fuel additives
KR102620176B1 (en) Fuel reduction composition for disel internal combustion engines
CN109777540A (en) A kind of energy-saving fuel purificant and preparation method thereof
KR101241387B1 (en) Composition of fuel-additive and fuel composition comprising the same
KR102517046B1 (en) Fuel additive for combustion promotion of liquid fuel and manufacturing process thereof
JP2000119668A (en) Gas oil compsition
Lacarriere et al. A low ash and highly stable formulated fuel borne catalyst with injection system deposit prevention properties
JP4074199B2 (en) Light oil composition
JP2005343918A (en) Fuel oil composition for premixed compressed self- ignition type engine

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant