KR20220032937A - 중금속 저감된 식물체 및 이의 제조방법 - Google Patents

중금속 저감된 식물체 및 이의 제조방법 Download PDF

Info

Publication number
KR20220032937A
KR20220032937A KR1020200114891A KR20200114891A KR20220032937A KR 20220032937 A KR20220032937 A KR 20220032937A KR 1020200114891 A KR1020200114891 A KR 1020200114891A KR 20200114891 A KR20200114891 A KR 20200114891A KR 20220032937 A KR20220032937 A KR 20220032937A
Authority
KR
South Korea
Prior art keywords
gene
pcs
plant
sequence
leu
Prior art date
Application number
KR1020200114891A
Other languages
English (en)
Other versions
KR102522125B1 (ko
Inventor
서효석
이영기
이정헌
김광철
나웅현
오경환
전은영
Original Assignee
주식회사 케이티앤지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티앤지 filed Critical 주식회사 케이티앤지
Priority to KR1020200114891A priority Critical patent/KR102522125B1/ko
Priority to PCT/KR2021/011059 priority patent/WO2022055144A1/ko
Priority to US17/642,050 priority patent/US20240052360A1/en
Publication of KR20220032937A publication Critical patent/KR20220032937A/ko
Application granted granted Critical
Publication of KR102522125B1 publication Critical patent/KR102522125B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/823Nicotiana, e.g. tobacco
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/104Aminoacyltransferases (2.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/02Aminoacyltransferases (2.3.2)
    • C12Y203/02015Glutathione gamma-glutamylcysteinyltransferase (2.3.2.15), i.e. phytochelatin synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physiology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

모세포에 비하여 PCS (Phytochelatin synthase) 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 감소된 식물 세포, 상기 식물 세포를 포함하는 중금속 흡수량이 저감된 식물, 식물체의 모세포에 비하여 PCS 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성을 감소시키는 단계를 포함하는 식물체 내 중금속을 저감시키는 방법, PCS 유전자를 표적으로 하는 단일 가이드 RNA를 포함하는 크리스퍼-카스9 (CRISPR-Cas9) 재조합 벡터, 및 상기 재조합 벡터로 식물 세포를 형질전환시키는 단계를 포함하는 중금속이 저감된 식물체를 제조하는 방법에 관한 것이다.

Description

중금속 저감된 형질전환 식물체 및 이의 제조방법 {Trnasgenic plant with reduced heavy metals and methods for preparation thereof}
중금속 저감된 형질전환 식물체 및 이의 제조방법에 관한 것이다.
납, 카드뮴, 수은 등 중금속은 환경으로부터 유래된 오염물질로 식품, 물, 대기, 토양 등을 통해 노출된다. 일반인은 주로 식품을 통해서 중금속을 섭취하게 되며 체내로 흡수된 미량의 중금속은 뼈, 신장 등의 장기에 축적되며 건강에 악영향을 끼치는 것으로 알려져 있다. 식품의약품안전처에서 2010년부터 2015년까지 우리 국민의 체내 중금속 농도 변화를 추적조사하고, 식품 섭취나 생활 습관과의 관련성을 분석한 결과 음주와 흡연, 식습관이 체내 중금속 농도와 관련성이 있는 것으로 확인됐다. 흡연은 섭취를 통한 체내 흡수율보다 흡입을 통한 흡수율이 높기 때문에 담배 자체가 가지는 중금속 등 유해물질이 체내로 들어와 체내 중금속 농도를 높이는 것으로 알려져 있다. 따라서, 담배 식물체 내의 중금속 함량 또는 재배시 토양으로부터의 중금속 흡수율을 저감시킬 수 있는 담배 식물체의 개발이 요구되고 있다.
또한, 많은 중금속은 토양에 천연 상태로 존재하고, 식물에 상이한 정도로 흡수된다. 망간 또는 아연과 같은 일부 중금속은 효소 활성에 요구된 공동 인자를 나타내기 때문 식물에 대해 필수적이지만, 다른 중금속은 식물에 대해 필수적이지 않으므로, 중금속의 농도를 감소시키는 것이 유익하다. 예를 들어, 카드뮴(Cd)은 식물 또는 인간 발육에 있어 유익한 효과가 없는 중금속으로 보고된 바 있으며, 인간 발암 물질로서 분류된다. Cd가 식물에서 과하게 축적되는 경우, 잎 표면이 감소하고, 건중량, 물 함량, 엽록소 함량, 및 카로티노이드 함량이 감소하는 등의 유해한 효과를 나타낸다.
특히, 담배는 뿌리에서보다 순(shoot)에서 Cd를 4배 더 높은 수준으로 축적할 수 있는 능력을 특징으로 하는 식물 종이므로, 담배와 같은 식물체에서 Cd의 축적을 감소시키는 것이 바람직하다. 이와 관련하여, 카드뮴 축적이 감소된 담배 식물체로서, NtHMA 유전자의 감소된 발현 또는 활성을 갖는 돌연변이 식물체를 제조하는 방법이 알려져 있으나 (국내 특허공개공보 제10-2018-0107123호), 상기 방법에 의해 제조된 돌연변이 담배 식물체는 야생형 담배 식물체에 비해 정상적인 생육이 불가능하다는 문제점이 있다.
이러한 배경 하에, 본 발명자들은 담배 식물체의 파이토켈라틴 합성 효소 (NtPCS: phytochelatin synthase) 유전자에 돌연변이를 유발함으로써, 야생형 담배 식물체에 비해 중금속 함량 또는 중금속 흡수 정도가 현저히 저감되면서도, 우수한 생육 특성을 유지할 수 있음을 확인하여 본 발명을 완성하였다.
일 양상은 모세포에 비하여 PCS (Phytochelatin synthase) 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 감소된 식물 세포를 제공한다.
다른 양상은 모세포에 비하여 PCS (Phytochelatin synthase) 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 감소된 식물 세포를 포함하는 중금속 흡수량이 저감된 식물을 제공한다.
또 다른 양상은 식물체의 모세포에 비하여 PCS 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성을 감소시키는 단계를 포함하는 식물체 내 중금속을 감소시키는 방법을 제공한다.
또 다른 양상은 PCS 유전자를 표적으로 하는 단일 가이드 RNA를 포함하는 크리스퍼-카스9 (CRISPR-Cas9) 재조합 벡터를 제공한다.
또 다른 양상은 PCS 유전자를 표적으로 하는 단일 가이드 RNA를 포함하는 크리스퍼-카스9 (CRISPR-Cas9) 재조합 벡터로 식물 세포를 형질전환시키는 단계를 포함하는 중금속 흡수량이 저감된 식물체를 제조하는 방법을 제공한다.
일 양상은 모세포에 비하여 PCS (Phytochelatin synthase) 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 감소된 식물 세포를 제공하는 것이다.
본 명세서에서 사용되는 용어, “모세포”는 PCS 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 감소되도록 인위적인 조작을 수행하지 않은 세포로서, 식물체에서 갓 분리된 세포 또는 이를 배양한 세포를 의미할 수 있다.
본 명세서에서 사용되는 용어, "파이토켈라틴 합성 효소 (PCS: phytochelatin synthase)"는 글루타티온 감마-글루타밀시스테이닐트랜스퍼라제 (glutathione gamma-glutamylcysteinyltransferase), 감마-글루타밀시스테인 디펩티딜 트랜스펩티다아제 (gamma-glutamylcysteine dipeptidyl transpeptidase)로도 불리는 효소로서, 글루타티온 및 [Glu(-Cys)]n-Gly의 2개 기질로 Gly 및 [Glu(-Cys)]n+1-Gly의 2개의 산물을 생성하는 효소이다. 담배 식물체 내에서는 세포 내의 금속 이온과 결합하여 저장 및 이동에 관여하는 단백질로서, 구체적으로 카드뮴, 아연 등을 포함한 중금속의 세포 내 원거리 이동에 관여할 것으로 예상되는 단백질이다.
상기 PCS 유전자는 실베스트리스 꽃담배 (Nicotiana sylvestris)로부터 유래된 PCS 유전자 (NtPCSs), 토멘토시포르미스 꽃담배 (Nicotiana tomentosiformis)로부터 유래된 PCS 유전자 (NtPCSt), 또는 이들의 조합(NtPCSst)일 수 있다.
상기 식물 세포는 PCS 유전자 또는 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 감소되도록 유전적으로 조작되는 것일 수 있다. 본 명세서에서 용어 "유전적 조작 (genetic engineering)" 또는 "유전적으로 조작된 (genetically engineered)"은 세포에 대하여 하나 이상의 유전적 변형 (genetic modification)을 도입하는 행위 또는 그에 의하여 만들어진 세포를 의미할 수 있다.
상기 유전적 조작은 물리적인 방법에 의해 PCS 유전자의 염기 서열 내 변형으로 유도되는 것일 수 있다. 상기 물리적인 방법은 예를 들어, X-선 조사, 감마선 조사 등일 수 있다.
상기 유전적 조작은 화학적인 방법에 의해 PCS 유전자의 염기 서열 내 변형 또는 유전자의 발현의 변화로 유도되는 것일 수 있다. 상기 화학적 인 방법은 예를 들어, 에틸 메탄설포네이트(ethyl methanesulfonate) 처리, 다이메틸 설페이트(dimethyl sulfate) 처리 등일 수 있다.
상기 유전적 조작은 유전자 편집 시스템에 의해 PCS 유전자의 염기 서열 내 변형으로 유도되는 것일 수 있다. 상기 유전자 편집 시스템은 예를 들어, 메가뉴클레아제(Meganuclease) 시스템, 징크핑거 뉴클레아제(Zinc finger nuclease) 시스템, 탈렌(TALEN; Transcription Activator-Like Effector Nuclease) 시스템, CRISPR/Cas9 시스템 등일 수 있다. 예를 들어, 상기 유전적 조작은 RNA 간섭(RNAi; RNA interference) 시스템에 의해 PCS 유전자로부터 전사된 mRNA에 결합하여 유전자 발현의 변화로 유도되는 것일 수 있다.
일 구체예에 있어서, 상기 식물 세포는 CRISPR/Cas9 시스템에 의해 PCS 유전자 또는 PCS 유전자에 의해 코딩된 단백질의 발현 또는 활성을 감소시킬 수 있다.
용어 PCS 유전자 또는 PCS 유전자에 의해 코딩되는 단백질의 "발현 또는 활성이 감소" 또는 PCS 유전자의 "불활성화", PCS 단백질의 "발현 또는 활성이 감소" 또는 PCS 유전자의 "불활성화"된 유전적으로 조작된 식물 세포는 상기 PCS 유전자 또는 PCS 유전자에 의해 코딩되는 단백질이 비교 가능한 동일 종의 식물 세포 또는 그의 모세포에서 측정된 PCS 유전자 또는 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성 수준보다 낮은 정도로 발현 또는 활성이 나타내거나 발현 또는 활성이 없는 것을 의미한다. 즉, 식물 세포에 있어서 PCS 유전자 또는 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 본래 조작되지 않은 식물 세포의 발현 또는 활성보다 약 20% 이 상, 약 30% 이상, 약 40% 이상, 약 50% 이상, 약 55% 이상, 약 60% 이상, 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상, 약 90% 이상, 약 95% 이상, 또는 약 100% 감소된 것일 수 있다. PCS 유전자 또는 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 감소된 유전적으로 조작된 식물 세포는 당업계에 공지된 임의의 방법을 사용하여 확인될 수 있다. 용어 "불활성화 (inactivation)"는 전혀 발현이 되지 않는 유전자 또는 발현이 되더라도 그 활성이 없는 단백질이 생성되는 것을 의미할 수 있다. 용어 "감소 (depression)"는 PCS 유전자가 조작되지 않은 식물 세포에 비하여 낮은 수준으로 발현되거나, 또는 PCS 유전자에 의해 코딩되는 단백질이 발현이 되더라도 그 활성이 낮은 것을 의미할 수 있다.
다른 양상은 상기 식물 세포를 포함하는 중금속 흡수량이 저감된 식물에 관한 것이다. 상기 식물 세포 등의 구체적인 내용은 전술한 바와 같다.
상기 식물은 재배담배(Nicotiana tabacum)일 수 있고, 구체적으로 황색종, 버어리종, 재래종, 흑담배 또는 오리엔트종일 수 있고, 보다 구체적으로는 버어리종 또는 황색종일 수 있다.
일 구체예에 있어서, 상기 식물은 PCS 유전자 또는 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성을 감소시킨 식물 세포를 포함함으로써, 동일 세대뿐만 아니라 후 세대에서도 중금속 함량 또는 중금속 흡수량이 감소된 식물일 수 있고, 이에 따라 계속해서 중금속 저감화된 식물을 얻을 수 있다.
또 다른 양상은 식물체의 모세포에 비하여 PCS 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성을 감소시키는 단계를 포함하는 식물체 내 중금속을 감소시키는 방법을 제공하는 것이다. 상기 모세포, PCS, 식물 세포, 발현 또는 활성의 감소 등의 구체적인 내용은 전술한 바와 같다.
상기 PCS 유전자 또는 PCS 단백질의 발현 또는 활성이 감소되는 것은 상기 PCS를 코딩하는 유전자의 일부 또는 전부가 변이, 치환, 삭제되거나 상기 유전자에 하나 이상의 염기가 삽입되는 것에 의한 것일 수 있으며, PCS 유전자 교정 수단에 의한 것일 수 있다.
상기 PCS 유전자 또는 PC 유전자에 의해 코딩되는 단백질의 발현 또는 활성을 감소시키는 단계에서 RNA 간섭(RNAi; RNA interference) 시스템, 메가뉴클레아제(Meganuclease) 시스템, 징크핑거 뉴클레아제(Zinc finger nuclease) 시스템, 탈렌(TALEN; Transcription Activator-Like Effector Nuclease) 시스템, CRISPR/Cas9 시스템, X-선 조사, 감마선 조사, 에틸 메탄설포네이트(ethyl methanesulfonate) 처리, 다이메틸 설페이트(dimethyl sulfate) 처리로 이루어진 군으로부터 선택되는 적어도 하나를 수행하는 것일 수 있다.
상기 PCS 유전자 또는 PCS 유전자에 의해 코딩된 단백질의 발현 또는 활성이 감소되도록 인위적으로 수행하는 유전자 조작은 PCS 유전자로부터 코딩되는 단백질이 본래의 기능을 갖는 단백질 형태로 발현되지 않도록 하는 것일 수 있다. 상기 유전자 조작은 다음 중 하나 이상에 의하여 유도된 것일 수 있다: 1) PCS 유전자의 전부 또는 일부 결실, 예컨대, PCS 유전자의 1bp 이상의 뉴클레오티드, 예컨대, 1 내지 30개, 1 내지 27개, 1 내지 25개, 1 내지 23개, 1 내지 20개, 1 내지 15개, 1 내지 10개, 1 내지 5개, 1 내지 3개, 또는 1개의 뉴클레오티드의 결실; 2) PCS 유전자의 1bp 이상의 뉴클레오티드, 예컨대, 1 내지 30개, 1 내지 27개, 1 내지 25개, 1 내지 23개, 1 내지 20개, 1 내지 15개, 1 내지 10개, 1 내지 5개, 1 내지 3개, 또는 1개의 뉴클레오티드의 원래(야생형)와 상이한 뉴클레오티드로의 치환; 3) 하나 이상의 뉴클레오티드, 예컨대, 1 내지 30개, 1 내지 27개, 1 내지 25개, 1 내지 23개, 1 내지 20개, 1 내지 15개, 1 내지 10개, 1 내지 5개, 1 내지 3개, 또는 1개의 뉴클레오티드 (각각 독립적으로 A, T, C 및 G 중에서 선택됨)의 타겟 유전자의 임의의 위치에의 삽입; 및 4) 상기 1) 내지 3) 중에서 선택된 2 가지 이상의 조합.
상기 PCS 유전자의 변형되는 일부 ('타겟 부위')는 상기 유전자 중의 1bp 이상, 3bp 이상, 5bp 이상, 7bp 이상, 10bp 이상, 12bp 이상, 15bp 이상, 17bp 이상, 20bp 이상, 예컨대, 1bp 내지 30bp, 3bp 내지 30bp, 5bp 내지 30bp, 7bp 내지 30bp, 10bp 내지 30bp, 12bp 내지 30bp, 15bp 내지 30bp, 17bp 내지 30bp, 20bp 내지 30bp, 1bp 내지 27bp, 3bp 내지 27bp, 5bp 내지 27bp, 7bp 내지 27bp, 10bp 내지 27bp, 12bp 내지 27bp, 15bp 내지 27bp, 17bp 내지 27bp, 20bp 내지 27bp, 1bp 내지 25bp, 3bp 내지 25bp, 5bp 내지 25bp, 7bp 내지 25bp, 10bp 내지 25bp, 12bp 내지 25bp, 15bp 내지 25bp, 17bp 내지 25bp, 20bp 내지 25bp, 1bp 내지 23bp, 3bp 내지 23bp, 5bp 내지 23bp, 7bp 내지 23bp, 10bp 내지 23bp, 12bp 내지 23bp, 15bp 내지 23bp, 17bp 내지 23bp, 20bp 내지 23bp, 1bp 내지 20bp, 3bp 내지 20bp, 5bp 내지 20bp, 7bp 내지 20bp, 10bp 내지 20bp, 12bp 내지 20bp, 15bp 내지 20bp, 17bp 내지 20bp, 21bp 내지 25bp, 18bp 내지 22bp, 또는 21bp 내지 23bp의 연속하는 염기 서열 부위일 수 있다.
또한, 일 예로, PCS 넉아웃 식물 세포를 제조하기 위하여 유전체 교정 기술로서 유전체 중 존재 비율이 매우 낮은 희귀 유전자 서열을 절단하는 희귀 절단 엔도뉴클레아제(rare-cutting endonuclease)를 포함하는 유전체 교정 시스템에 의하여 타겟된 유전자 내의 특정 부위의 단일가닥 또는 이중가닥 절단 (cleavage)을 촉매화하여 타겟된 유전자인 PCS 유전자를 발현을 감소시키는 것일 수 있다. 상기 희귀 절단 엔도뉴클라아제에 의하여 촉매되는 핵산가닥 손상 (breaks)은 상동 재조합 (homologous recombination) 또는 비상동 말단 연결 (NHEJ: non-homologous end joining) 등의 메커니즘들을 통하여 수선될 수 있다. 상기 희귀 절단 엔도뉴클레아제는 메가뉴클레아제(meganuclease), 징크핑거(Zinc finger) 뉴클레아제, CRISPR/Cas9 (Cas9 단백질), CRISPR-Cpf1 (Cpf1 단백질) 및 TALE-뉴클레아제로 이루어진 군에서 선택된 하나 이상일 수 있다.
상기 중금속은 카드뮴, 비소, 안티몬, 납, 수은, 크롬, 주석, 아연, 바륨, 비스무트, 니켈, 코발트, 망간, 철, 구리 및 바나듐으로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 일 구체예에 있어서, PCS 유전자 또는 PCS 유전자에 의해 코딩된 단백질의 발현 또는 활성을 감소 시킴으로써, 식물체 내 카드뮴 함량 또는 카드뮴 흡수량을 감소시키는 것일 수 있다.
또 다른 양상은 PCS 유전자를 표적으로 하는 단일 가이드 RNA를 포함하는 크리스퍼-카스9 (CRISPR-Cas9) 재조합 벡터를 제공하는 것이다. 상기 PCS 유전자, 식물 세포 등의 구체적인 내용은 전술한 바와 같다.
본 명세서에서 사용되는 용어, "단일 가이드 RNA(sgRNA: single guide RNA)"는 "키메라 RNA", "키메라 가이드 RNA", "가이드 RNA", "단일 가이드 RNA(single guide RNA, sgRNA)" 및 "합성 가이드 RNA"는 상호 교환가능하게 사용될 수 있다. 가이드 서열, tracr 서열 및/또는 tracr 메이트 서열을 포함하는 폴리뉴클레오티드 서열을 지칭한다. 용어 "가이드 서열"은 표적 부위를 지정하는 가이드 RNA 내의 약 20bp 서열을 지칭하며, 용어 "가이드" 또는 "스페이서"와 상호교환가능하게 사용될 수 있다. 또한, 용어 "tracr 메이트 서열"은 용어 "직접 반복부 (들)"와 상호교환가능하게 사용될 수 있다. 상기 가이드 RNA는 두 개의 RNA, 즉, CRISPR RNA (crRNA) 및 트랜스 활성화 crRNA (transactivating crRNA, tracrRNA)로 이루어져 있는 것일 수 있으며, 또는 crRNA 및 tracrRNA의 부분을 포함하고 상기 표적 DNA와 혼성화하는 단일 사슬 RNA (single-chain RNA, sgRNA)일 수 있다.
상기 sgRNA가 표적으로 하는 PSC 유전자는 실베스트리스 꽃담배 (Nicotiana sylvestris)로부터 유래된 PCS 유전자 (NtPCSs), 또는 토멘토시포르미스 꽃담배 (Nicotiana tomentosiformis)로부터 유래된 PCS 유전자 (NtPCSt)일 수 있다.
상기 NtPCSs 유전자를 표적으로 하는 sgRNA는 서열번호 1 또는 서열번호 2의 염기서열로 이루어진 것일 수 있고, 상기 NtPCSt 유전자를 표적으로 하는 sgRNA는 서열번호 3 또는 서열번호 4의 염기서열로 이루어진 것일 수 있고, 상기 NtPCSs 유전자 및 NtPCSt 유전자 모두를 표적으로 하는 sgRNA는 서열번호 5 또는 서열번호 6의 염기서열로 이루어진 것일 수 있다.
일반적으로, 가이드 서열은 표적 서열과 혼성화하고, 표적 서열로의 CRISPR 복합체의 서열-특이적 결합을 유도하기에 충분한, 표적 폴리뉴클레오티드 서열과의 상보성을 갖는 임의의 폴리뉴클레오티드 서열이다. 또한 PCS 유전자 또는 PCS 유전자가 발현하는 단백질의 발현 또는 활성을 감소시키기 위한 유전자 조작에 이용할 수 있는 염기 서열이라면 제한 없이 가이드 RNA로 이용할 수 있으며, 예컨대 상기 염기 서열은 PCS 유전자와 혼성화할 수 있는 서열일 수 있다. 또한 상기 가이드 RNA의 기능을 변형/증진시키기 위하여 가이드 RNA 염기 서열의 일부분을 변형할 수 있다. 또한 일부 구현 예에서, 가이드 서열과 그의 상응하는 표적 서열 간의 상보성의 정도는 적절한 정렬 알고리즘을 사용하여 최적으로 정렬되는 경우, 약 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99% 이상이다. 최적의 정렬은 서열을 정렬하기에 적절한 임의의 알고리즘의 사용으로 결정될 수 있으며, 그의 비제한적인 예는 스미스-워터만 (Smith-Waterman) 알고리즘, 니들만-분쉬 (Needleman-Wunsch) 알고리즘, 버로우즈-휠러 트랜스폼(Burrows-Wheeler Transform)에 기초한 알고리즘(예를 들어, 버로우즈 휠러 얼라이너(Burrows Wheeler Aligner)), ClustalW, Clustal X, BLAT, 노보얼라인(Novoalign)(노보크라 프트 테크놀로지즈(Novocraft Technologies), ELAND(일루미나(Illumina), 미국 캘 리포니아주 샌디에고), SOAP(soap.genomics.org.cn에서 이용가능) 및 Maq(maq.sourceforge.net에서 이용가능)를 포함한다.
일부 구현 예에서, 가이드 서열은 예컨대 약 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75개 이상의 뉴클레오티드 길이일 수 있다. 일부 구현 예에서, 가이드 서열은 약 75, 50, 45, 40, 35, 30, 25, 20, 15, 12개 이하의 뉴클레오티드 길이일 수 있다. 표적 서열로의 CRISPR 복합체의 서열-특이적 결합을 유도하는 가이드 서열의 능력은 임의의 적절한 검정에 의해 평가될 수 있다. 예를 들어, 시험되는 가이드 서열을 포함하는 CRISPR 복합체를 형성하기에 충분한 CRISPR 시스템의 성분은 예를 들어, CRISPR 서열의 성분을 인코딩하는 벡터로의 트랜스펙션 후에, 예를 들어, 본원에 기술된 바와 같은 서베이어 검정에 의한 표적 서열 내의 우선적인 절단의 평가에 의해서와 같이, 상응하는 표적 서열을 갖는 숙주 세포로 제공될 수 있다. 유사하게, 표적 폴리뉴클레오티드 서열의 절단은 표적 서열, 시험되는 가이드 서열 및 시험 가이드 서열과 상이한 대조군 가이드 서열을 포함하는 CRISPR 복합체의 성분을 제공하고, 표적 서열에서 시험 및 대조군 가이드 서열 반응 간의 결합 또는 절단 비율을 비교함으로써 시험관에서 평가될 수 있다. 다른 검정이 가능하며, 당업자에게 용이하게 사용될 수 있을 것이다.
일 구체예에 있어서, sgRNA는 상기 식물 세포 내 적어도 하나의 대립유전자의 PCS 유전자에 결합되는 것일 수 있으며, 구체적으로 모든 대립유전자의 PCS 유전자에 결합되는 것일 수 있다. 모든 대립유전자의 PCS 유전자에 가이드 RNA가 결합하여 PCS 유전자를 넉아웃시키는 경우, 동일 세대 뿐만아니라 후 세대의 식물 세포에서도 중금속 흡수 및 이동이 억제될 수 있다.
일 구체예에 있어서, 상기 식물 세포에서 PCS 유전자를 넉아웃 시키기 위하여 사용한 타겟 시퀀스는 예컨대 PCS 유전자의 Exon 1 및 Exon 2 중 적어도 하나의 부위일 수 있다. 또한, 일 구체예에 있어서, 상기 식물 세포에서 PCS 유전자의 Exon 2를 표적으로 제작한 sgRNA가 돌연변이를 가장 많이 유발할 수 있음을 확인하였다.
일 구체예에 있어서, 상기 식물 세포는 sgRNA에 의해 PCS 유전자의 특정 타겟 부위가 절단되어 상기 유전자가 넉아웃된 식물 세포로서, 넉아웃에 의하면 식물 세포의 중금속 흡수 및 이동이 억제될 수 있다.
상기 유전자 넉아웃은 유전자의 전부 또는 일부 (예컨대, 하나 이상의 뉴클레오티드)의 결실, 치환, 및/또는 하나 이상의 뉴클레오티드의 삽입에 의한 유전자의 활성 조절, 예컨대, 불활성화를 의미하는 것일 수 있다. 상기 유전자 불활성화는 유전자의 발현 억제 또는 발현 감소 (downregulation) 또는 본래의 기능을 상실한 단백질을 코딩하도록 변형된 것을 의미한다. 또한 유전자 조절은 타겟 유전자의 하나 이상의 Exon을 둘러싸고 있는 양쪽 intron 부위를 동시에 타겟팅함으로 인한 Exon 부위의 결실로 인해 얻어지는 단백질의 구조 변형, Dominant negative 형태의 단백질 발현, soluble 형태로 분비되는 경쟁적 저해제 발현 등의 결과에 의한 유전자의 기능 변화를 의미하는 것일 수 있다.
본 명세서에서 사용되는 용어 "벡터(vector)"는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단을 의미한다. 예를 들어, 플라스미드 벡터, 코즈미드 벡터 및 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡 터와 같은 바이러스 벡터를 포함한다. 상기 재조합 벡터로 사용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예를 들면, V1k_GE, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지 또는 바이러스 (예를 들면, SV40 등)를 조작하여 제작될 수 있다.
상기 벡터에서 상기 PCS 유전자에 결합하는 가이드 RNA를 코딩하는 유전자, 상기 Cas9 단백질을 코딩하는 유전자 및 상기 NLS를 코딩하는 유전자는 프로모터에 작동 가능하게 연결될 수 있다. 용어 "작동 가능하게 연결된(operatively linked)"은 뉴클레오타이드 발현 조절 서열(예를 들어, 프로모터 서열)과 다른 뉴클레오타이드 서열 사이의 기능적인 결합을 의미한다. 상기 조절 서열은 "작동 가능하게 연결(operatively linked)"됨으로써 다른 뉴클레오타이드 서열의 전사 및/또는 해독을 조절할 수 있다.
일 구체예에 있어서, 상기 벡터는 상기 PCS 유전자에 결합하는 가이드 RNA를 코딩하는 유전자의 5'-말단에 서열번호 43의 염기 서열로 이루어진 폴리뉴클레오티드 (P_U6)가 결합되어 있고, 3'-말단에 5개의 연속된 티민 (Thymine)이 결합되어 있는 경우, 불안정한 가이드 RNA가 안정화될 수 있다.
상기 벡터는, 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 상기 발현용 벡터는 당업계에서 식물, 동물 또는 미생물에서 외래의 단백질을 발현하는 데 사용되는 통상의 것을 사용할 수 있다. 상기 벡터는 당업계에 공지된 다양한 방법을 통해 구축될 수 있다.
상기 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 예를 들어, 사용되는 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터(예를 들어, CMV 프로모터, trp 프로모터, lac 프로모터, tac 프로모터, T7 프로모터 등), 해독의 개시를 위한 라이보 좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 진핵 세포를 숙주로 하는 경우에는, 벡터에 포함되는 진핵 세포에서 작동하는 복제원점은 f1 복제원점, SV40 복제원점, pMB1 복제원점, 아데노 복제원점, AAV 복제원점 및 BBV 복제원점 등을 포함하나, 이에 한정되는 것은 아니다. 또한, 포유동물 세포의 게놈으로부터 유래된 프로모터(예를 들어, 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예를 들어, 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.
본 명세서에서 사용되는 용어, "CRISPR/Cas9 시스템"은 crRNA(CRISPR RNA) 및 tracrRNA(transactivating crRNA)를 포함하는 sgRNA(single guide RNA)를 포함할 수 있다. 또한, 상기 CRISPR/Cas9 시스템은 Cas9(CRISPR associated protein 9) 단백질 또는 Cas9 단백질을 코딩하는 유전자 및 NLS(Nuclear Localization Signal) 단백질 또는 NLS 단백질을 코딩하는 유전자를 포함할 수 있다.
일반적으로, 널리 알려진 유전자 교정 수단인 "CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats) 시스템"은 집합적으로 Cas 유전자를 코딩하는 서열, tracr(트랜스-활성화 CRISPR) 서열(예를 들어, tracrRNA 또는 활성 부분 tracrRNA), tracr-메이트 서열(내인성 CRISPR 시스템의 맥락에서 "직접 반복부" 및 tracrRNA-가공 부분 직접 반복부 포함), 가이드 서열(내인성 CRISPR 시스템의 맥락에서 "스페이서"로도 지칭), 가이드 RNA 또는 CRISPR 유전자좌로부터의 기타 서열 및 전사물을 포함하는 CRISPR-관련(CRISPR-associated; 이하 Cas) 유전자의 발현에 수반되거나, 그의 활성을 유도하는 전사물 및 다른 요소를 지칭한다. 일부 구현 예에서, CRISPR 시스템의 하나 이상의 요소는 I형, II형 또는 III형 CRISPR 시스템으로부터 유래된다. 일부 구현 예에서, CRISPR 시스템의 하나 이상의 요소는 내인성 CRISPR 시스템을 포함하는 특정 유기체, 예를 들어, 스트렙토코커스 피요게네스(Streptococcus pyogenes)로부터 유래된다. 일반적으로, CRISPR 시스템은 표적 서열의 부위에서 CRISPR 복합체의 형성을 증진시키는 요소 (내인성 CRISPR 시스템의 맥락에서 프로토스페이서로도 지칭)를 특징으로 한다. CRISPR 복합체의 형성의 맥락에서, "표적 서열" 또는 "표적 유전자"는 가이드 서열 이 상보성을 갖도록 설계된 서열을 지칭하며, 여기서, 표적 서열과 가이드 서열 간의 혼성화는 CRISPR 복합체의 형성을 증진시킨다. 본질적으로 완전한 상보성이 필요하지 않지만, 혼성화를 야기하고, CRISPR 복합체의 형성을 증진시키는 충분한 상보성이 존재한다. 표적 서열은 임의의 폴리뉴클레오티드, 예를 들어, DNA 또는 RNA 폴리뉴클레오티드를 포함할 수 있다. 일부 구현 예에서, 표적 서열은 세포의 핵 또는 세포질 내에 위치한다. 일부 구현 예에서, 표적 서열은 진핵 세포의 세포기관, 예를 들어, 미토콘드리아 또는 엽록체 내에 존재할 수 있다.
상기 Cas 단백질은 CRISPR RNA(crRNA) 및 트랜스-활성화 crRNA(trans-activating crRNA, tracrRNA)로 불리는 두 RNA와 복합체를 형성할 때, 활성 엔도뉴클레아제 또는 니카아제(nickase)를 형성한다. 상기 Cas 단백질의 비제한적인 예는 Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9(Csn1 및 Csx12로도 알려짐), Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, 그의 상동체 또는 그의 변형된 버전을 포함한다. 이들 효소가 알려져 있으며; 예를 들어, 스트렙토코커스 피오게네스 Cas9 단백질의 아미노산 서열은 수탁 번호 Q99ZW2 하에 스위스프로트(SwissProt) 데이터베이스에서 얻을 수 있다. 일부 구현 예에서, 비변형 CRISPR 효소, 예를 들어, Cas9는 DNA 절단 활성을 갖는다.
일부 구현 예에서, CRISPR 효소는 Cas9 단백질이며, 상기 Cas9 단백질은 스트렙토코커스 피요게네스 (Streptococcus pyogenes) 유래 Cas9 단백질, 캄필 로박터 제주니 (Campylobacter jejuni) 유래 Cas9 단백질, 스트렙토코커스 써모필러스 (Streptococcus thermophiles) 유래 Cas9 단백질, 스트렙토코커스 아우레우스 (Streptocuccus aureus) 유래 Cas9 단백질 및 네이세리아 메닝기디티스 (Neisseria meningitidis) 유래 Cas9 단백질로 이루어진 군에서 선택되는 적어도 하나의 Cas9 단백질일 수 있고, 구체적으로 스트렙토코커스 피요게네스 (Streptococcus pyogenes) 유래 Cas9 단백질일 수 있다. 일부 구현 예에서, Cas9 단백질은 진핵 세포에서의 발현을 위해 코돈-최적화되며, 상기 스트렙토코커스 피요게네스 (Streptococcus pyogenes) 유래 Cas9 단백질을 사용하는 경우, PCS 유전자 또는 PCS 유전자가 발현하는 단백질의 발현 또는 활성이 최대로 감소될 수 있다.
일부 구현 예에서, Cas9 단백질은 진핵 세포 내의 핵 내에 위치하기 위하여 Cas9 단백질의 5'- 또는 3'-, 또는 양 말단 부분에 NLS(nuclear localization sequence or signal)를 포함하는 것일 수 있으며, 상기 NLS는 하나 또는 그 이상일 수 있다.
본 명세서에서 사용되는 용어, “핵 위치화 서열 또는 신호(Nuclear localization sequence or signal, NLS)"는 특정물질(예컨대, 단백질)을 세포 핵 내로 운반하는 역할을 하는 아미노산 서열을 의미하며, 대체적으로 핵공(Nuclear Pore)을 통하여 세포 핵 내로 운반하는 작용을 한다. 상기 핵 위치화 서열은 진핵생물에서 CRISPR 복합체 활성에 필요하지 않지만, 이러한 서열을 포함하여, 시스템의 활성을 증진시켜, 특히 핵 내의 핵산 분자를 표적화하는 것으로 여겨진다.
또한 RNA 유전자 가위(RNA-guided CRISPR)(clustered regularly interspaced short palindrome repeats)-연관된 뉴클레아제 Cas9는 표적 유전자의 넉아웃, 전사 활성화 및 single guide RNA(sgRNA)(즉, crRNA-tracrRNA 융합 전사체)를 이용한 억제에 대한 획기적인 기술을 제공하며, 이 기술은 수많은 유전자 위치를 타겟팅하는 것으로 알려져 있다.
Cas9 (또는 Cpf1) 단백질은 CRISPR/Cas9 시스템에서 필수적인 단백질 요소를 의미하고, 상기 Cas9 (또는 Cpf1) 유전자 및 단백질의 정보는 국립생명공학정보센터(national center for biotechnology information, NCBI)의 GenBank에서 구할 수 있으나, 이에 제한되지 않는다. Cas (또는 Cpf1)단백질을 암호화하는 CRISPR-연관 유전자는 약 40 개 이상의 서로 다른 Cas (또는 Cpf1) 단백질 패밀리가 존재하는 것으로 알려져 있으며, cas 유전자 및 반복 구조(repeat structure)의 특정 조합에 따라 8개의 CRISPR 하위 유형 (Ecoli, Ypest, Nmeni, Dvulg, Tneap, Hmari, Apern, 및 Mtube)을 정의할 수 있다. 따라서 상기 각 CRISPR 하위 유형이 반복단위를 이루어 폴리리보뉴클레오티드-단백질 복합체를 형성할 수 있다.
상기 Cas9가 DNA로 암호화되어 개체 또는 세포로 전달되는 경우, 상기 DNA는 일반적으로 (그러나 필수적이지는 않음) 타겟 세포에서 작동 가능한 조절 요소 (예컨대, 프로모터)를 포함할 수 있다. 상기 Cas9 발현을 위한 프로모터는, 예컨대, CMV, EF-l a, EFS, MSCV, PGK, 또는 CAG 프로모터일 수 있다. gRNA 발현을 위한 프로모터는, 예컨대, HI, EF-la, tRNA 또는 U6 프로모터일 수 있다. 상기 프로모터는 조직 특이성 또는 세포 특이성을 갖는 것일 수 있다.
또 다른 양상은 PCS 유전자를 표적으로 하는 단일 가이드 RNA를 포함하는 크리스퍼-카스9 (CRISPR-Cas9) 재조합 벡터로 식물 세포를 형질전환시키는 단계를 포함하는 중금속 흡수량이 저감된 식물체를 제조하는 방법을 제공하는 것이다. 상기 PCS 유전자, 단일 가이드 RNA, 크리스퍼-카스9 시스템, 벡터, 식물 세포 등의 구체적인 내용은 전술한 바와 같다.
상기 형질전환시키는 단계에 있어서, 당업계에 주지된 형질전환 방법으로서 담배의 유전자의 형질전환이 가능한 방법이라면 특별히 제한되지 않는다. 예를 들어, 아그로박테리움-매개 형질전환법, 폴리에틸렌글리콜(Polyethylene glycol; PEG)-매개 프로토플라스트 형질전환법, 유전자총법, 전극(electrode) 형질전환법, 진공 침윤(Vacuum infiltration) 형질전환법 및 탄화규소 섬유-매개 형질전환법으로 이루어진 군에서 선택된 하나에 의해 수행되는 것일 수 있다.
일 구체예에 있어서, 담배의 특성 및 형질전환율 등을 고려할 때 아그로박테리움-매개 형질전환법 (Agrobacterium-mediated transformation)을 통해 PCS 유전자를 표적으로 하는 단일 가이드 RNA를 포함한 재조합 벡터를 식물 세포에 형질전환시킨 것일 수 있다.
일 양상에 따른 PCS (Phytochelatin synthase) 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 감소된 식물 세포는 식물 세포 내의 중금속 이온과 결합하여 중금속 흡수, 저장 또는 이동시키는 경로가 저해되어, 식물 세포 또는 이를 포함하는 식물 내의 중금속 함량 또는 흡수량을 감소시킬 수 있는 효과가 있다.
다른 양상에 따른 PCS 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 감소된 식물 세포는 기존의 중금속 저감 식물체의 한계점인 생육 저해 현상을 해결할 수 있다.
도 1은 공개된 레퍼런스 염기서열과 KB108의 NtHMA 유전자 염기서열의 일부를 정렬한 모습을 나타낸 도면이다. 구체적으로, (A) NtHMAα 유전자 내 exon 2 부위를 비교한 결과를 나타낸 도면 (gRNA_A4_e2: NtHMAα 유전자에 특이적인 부분으로 sgRNA가 결합하도록 디자인한 부위) 및 (B) NtHMAβ 유전자 내 exon 2 부위를 비교한 결과를 나타낸 도면 (gRNA_B4_e2: NtHMAβ 유전자에 특이적인 부분으로 sgRNA가 결합하도록 디자인한 부위)이다.
도 2는 sgRNA 2개가 포함된 유전자 가위 발현 운반체의 구조를 나타낸 도면이다.
도 3은 아그로박테리움 매개된 형질전환 방법으로 형질전환시킨 후 식물 조직 배양의 단계별 사진을 나타낸 도면이다. 구체적으로, (A) 잎 조직을 잘라 아그로박테리움과 함께 배양하여 형질전환시키는 단계, (B) 캘러스 분화 및 shoot 분화를 유도하는 단계, (C) root 분화를 유도하는 단계, (D) 분화가 완료된 소식물체 상태를 나타낸 도면이다.
도 4는 돌연변이 여부 및 양상을 확인하기 위하여 조직 배양체 24 개체의 gDNA를 대상으로 각 목표 유전자 부위를 증폭하여 전기영동한 결과를 나타낸 도면이다 (Lane M: 1kb DNA marker, lane 1~7: NtHMAα 부위 증폭 결과, lane 9~15: NtHMAβ 부위 증폭 결과, lane 17~21: NtPCSs 부위 증폭 결과, lane 23~27: NtPCSt 부위 증폭 결과, lane 8, 16, 22, 28: NTC (Non-template control))
도 5는 야생형 (wild type) KB108와 돌연변이체의 NtHMAβ 부위 염기서열 분석 결과를 나타낸 도면이다. 구체적으로, (A) KB108 염기서열 (B) 돌연변이체의 염기서열의 분석 결과를 나타낸 도면으로, 야생형 염기서열에 비해 아데닌 염기가 삽입된 부분을 빨간색 화살표로 표시하였음
도 6은 F1 식물체 내 도입 유전자 유전 여부를 확인하기 위한 유전자 증폭 반응 수행 후 전기영동 결과를 나타낸 도면이다.
도 7은 양액 재배시설에서 수행한 1차 및 2차 카드뮴 함량 분석 결과를 종합하여 대조군의 카드뮴 함량을 기준으로 한 상대값을 나타낸 그래프이다.
도 8은 온실 토양 환경에서 재배한 식물체의 카드뮴 함량을 분석한 결과이다.
도 9는 대조군 KB108 대비 NtHMAαβ 돌연변이체와 NtPCSst 돌연변이체의 생육 특성을 비교한 그래프이다 (Height: 식물체의 높이, # of leaves: 잎의 수, Weight: 잎의 중량).
도 10은 대조군 KB108 대비 NtHMAαβ 돌연변이체와 NtPCSst 돌연변이체의 생육 상태를 육안으로 비교한 사진이다.
이하 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1. NtPCS 유전자를 타겟으로 한 CRISPR/Cas9 시스템을 이용한 카드뮴 저감 담배 생산
(1) 유전자 운반체 제작
(1.1) 중금속 관련 유전자 (NtHMA 및 NtPCS) 염기 서열 확인
뿌리에 흡수된 2가 금속 이온을 다른 조직으로 이동시킬 때 열리고 닫히는 관문 역할을 하는 단백질을 코딩하는 유전자인 NtHMAα 및 NtHMAβ; 및 세포 내의 금속 이온과 결합하여 금속 이온의 저장과 이동에 관여하는 단백질을 코딩하는 유전자인 NtPCS를 포함하는, 담배에서 카드뮴 흡수 및 이동에 관련된 2종의 유전자를 선정하였다.
연구 대상 식물체인 버어리(burley)종 담배 (KB108) 내 NtHMA 및 NtPCS 유전자 염기서열을 확인하기 위해, NCBI (National Center for Biotechnology Information) 데이터베이스에 공개된 염기 서열 정보를 바탕으로 각 유전자에 특이적인 프라이머를 제작하고, 유전자 증폭 반응 (PCR: Polymerase Chain Reaction)을 수행하였다. 각 유전자에 특이적인 프라이머의 서열 및 PCR 조건은 하기 표 1에 나타내었다.
프라이머 명칭 염기서열 (5'→3') 증폭크기(bp) PCR 조건 서열번호
Anealing Tmp Extention time Cycles
F_HMAα GAAACAAAGAAGTTGAGCAAGAGCTATT 2937 62 ℃ 90 sec 35 7
R_HMAα AGCCTTAGTGAGATGATTTATAACACAA 8
F_HMAβ GACACAAAGAATCTGAGCAAGAGCTATT 2374 62 ℃ 90 sec 35 9
R_HMAβ AGCTAGAGTAGGACCACACATTAATTCT 10
F_PCSs AAATGGCGATGGCGGGTTTGTAT 927 68 ℃ 90 sec 35 11
R_PCSs GTCGGGAAGGATTAGAACACAAATTCAC 12
F_PCSt AATGGCGATGGCGGGTTTATATC 2731 68 ℃ 90 sec 35 13
R_PCSt AGTCCGGAAGGATAGGAACACAGATT 14
도 1에 나타낸 바와 같이, KB108 품종의 gDNA 영역을 증폭하여 염기 서열을 분석한 결과 공개된 염기서열과 대부분 일치하였다. 구체적으로, 공개된 레퍼런스 염기서열들 (Database accession No. HF675180.1, HF937054.1)과 KB108의 NtHMA 유전자 염기서열의 일부를 정렬하여 비교한 결과, NtHMAα 유전자 (A) 및 NtHMAβ 유전자 (B) 내 exon 2 부위를 각각 비교한 결과 대부분 일치함을 확인하였고, 각각의 유전자에 특이적인 부분으로 sgRNA가 결합하도록 디자인한 부위를 나타내었다.
KB108 품종의 NtPCSs 유전자 (단, 일부 서열), N. tabacum (TN90) 레퍼런스 지놈 염기서열 및 N. sylvestris 레퍼런스 지놈 염기서열 데이터의 상동성을 확인한 결과를 하기 표 2에, KB108 품종의 NtPCSt 유전자를 N. tabacum (TN90) 레퍼런스 지놈 염기서열 및 N. tometosiformis 레퍼런스 지놈 염기서열 데이터의 상동성을 확인한 결과를 하기 표 3에 나타내었다.
PCSs 유전자 상동성 비교 PCSs_KB108
(KT&G)
PCSs_TN90
(NW_015845165.1)
PCSs_Nsyl
(NW_009518934.1)
PCSs_KB108(KT&G) ID 1.000 1.000
PCSs_TN90(NW_015845165.1) 1.000 ID 1.000
PCSs_Nsyl(NW_009518934.1) 1.000 1.000 ID
PCSt 유전자 상동성 비교 PCSt_KB108
(KT&G)
PCSt_TN90
(NW_015825368.1)
PCSt_Ntom
(NW_008939610.1)
PCSt_KB108(KT&G) ID 1.000 0.986
PCSt_TN90(NW_015825368.1) 1.000 ID 0.986
PCSt_Ntom(NW_008939610.1) 0.986 0.986 ID
실베스트리스 꽃담배 (Nicotiana sylvestris)로부터 유래된 NtPCSs 유전자 및 토멘토시포르미스 꽃담배 (Nicotiana tomentosiformis)로부터 유래된 NtPCSt 유전자의 염기서열을 N. tabacum (TN90) 레퍼런스 지놈 염기서열과 비교한 결과 상기 표 2 및 3에서 확인한 바와 같이, 100% 일치함을 확인하였다. 또한, NtPCSs 유전자 (단, 일부 서열)는 N. sylvestris 레퍼런스 지놈 데이터와 100% 일치하고, NtPCSt 유전자는 N. tometosiformis 레퍼런스 지놈 데이터와는 약 98.6% 일치함을 확인하였다.
(1.2) 유전자 가위 블록 디자인 및 운반체 재조합
상기 실시예 1-(1)에서 확보된 NtHMAα, NtHMAβ, NtPCSs 및 NtPCSt 유전자의 염기 서열을 비교하여 각각의 유전자에 특이적인 부분을 유전자 가위 인솔자 (sgRNA)로 선정하였다. 식물에서 발현되는 유전자 운반체에 선정된 유전자 가위 발현 블록을 클로닝하여 총 5종의 재조합 운반체를 완성하였다.
NtHMAα 및 NtHMAβ 유전자에 특이적으로 결합할 수 있는 6개의 sgRNA를 각각 포함한 유전자 운반체 정보는 하기 표 4에 나타내었다.
벡터 sgRNA 표적 위치 서열 서열번호
Vlk_HMA_A6 gRNA_A1 HMAα Exon 1 TCTTTCTTACCAATTTGTTG 15
gRNA_A2 Intron 1 TGTTTGTACAAGCTTTTAGA 16
gRNA_A3 Intron 1 ATGGTAACTTCAATAATTATA 17
gRNA_A4 Exon 2 AAGCAAGCATAAGAGTGAA 18
gRNA_A5 Exon 2 CCACACCTCTAAAAATAAT 19
gRNA_A6 Intron 2 TCATATAAATTGGGACAAA 20
Vlk_HMA_B6 gRNA_B1 HMAβ Exon 1 CAATTTGTTGCTGAGAAATG 21
gRNA_B2 Intron 1 AGTGGAGAAAAGATGAAGAA 22
gRNA_B3 Intron 1 ATGGTAACTACAATAATTATA 23
gRNA_B4 Exon 2 AAGCAAGTATAAGAGTGAA 24
gRNA_B5 Exon 2 GATTCCTCCAATTATTTTT 25
gRNA_B6 Exon 2 CCACACCCCTAAAAATAAT 26
NtPCSs 및 NtPCSt 유전자에 특이적으로 결합할 수 있는 2개의 sgRNA를 각각 포함한 유전자 운반체 정보는 하기 표 5에 나타내었다.
벡터 sgRNA 표적 위치 서열 서열번호
Vlk_PCS_S gRNA_S1 PCSs Exon 1 AAGCGAAATCAACAGCCGGAG 1
gRNA_S2 Exon 2 GGCATTCAAGACCATGGAA 2
Vlk_PCS_T gRNA_T1 PCSt Exon 1 CGAGTTCTTCCGTCGCCTC 3
gRNA_T2 Exon 2 GGCATTCAAGACCATAGAA 4
Vlk_PCS_ST gRNA_ST1 PCSs
PCSt
Exon 1 TAGAAGCGAAATCAACAGC 5
gRNA_ST2 Exon 2 GCCATCCAGAATGGAACAA 6
구체적으로, pBI121은 E. coli와 agrobacterium에서 복제 가능한 binary vector이며 식물 형질전환에 널리 쓰이고 있는 벡터로서, pBI121을 HindIII와 EcoRI으로 절단하여 CRISPR/Cas9 시스템에 필요한 GE_block을 클로닝할 수 있도록 준비하였다. GE_block은 차례대로 CaMV 35S promoter with dual enhancer (P_35Sd), Cas9 블록을 클로닝하기 위한 multi cloning site (MCS), CaMV 35S terminator (T_35S), linker sequence, 그리고 sgRNA 블록을 클로닝하기 위한 multi cloning site (MCS)로 구성되어 있으며 양 끝에는 HindIII와 EcoRI의 인식 염기서열이 추가되어 있다. GE_block의 각 블록들은 DNA 합성으로 준비되었으며 순차적으로 클로닝하여 완성하였다. HindIII와 EcoRI으로 절단된 pBI121과 GE_block을 ligation하여 재조합 운반체 (V1k_GE)를 제작하였다. CRISPR/Cas9_block은 Cas9 coding sequence (CDS), C-terminus nuclear localization sequence (NLS)로 구성되고, 양 말단에는 BamHI과 SacI 인식 염기서열이 추가된 블록 (Cas9_block); 및 sgRNA가 발현될 수 있는 블록(sgRNA_PMT)으로서 U6 promoter(P_U6, 서열번호 43)와 sgRNA, 그리고 poly T로 구성된 블록;으로 이루어져 있다. NtPCS 유전자 (NtPCSs 및/또는 NtPCSt 유전자)에 특이적으로 결합할 수 있는 2 종류의 sgRNA 블록을 overlap extension PCR 기법을 통해 하나의 연속된 DNA로 연결하여 sgRNA_PMT를 완성하였다. sgRNA_PMT의 양 끝에는 SalI, SpeI의 인식 염기서열이 존재한다.
도 2에 나타낸 바와 같이, BamHI과 SacI으로 절단된 V1k_GE와 CRISPR/Cas9_block을 ligation 반응을 통해 이어 붙인 후, SalI과 SpeI으로 절단하여 sgRNA_PMT를 삽입하여 유전자 운반체를 제작하였다.
(2) 유전자 전달 미생물 (Agrobacterium) 내 재조합 운반체 도입
동결-해동법 (Freeze-thaw method)으로 식물용 운반체를 아그로박테리움 LBA4404 균주에 형질전환시켰다.
구체적으로, 상기 아그로박테리움 균주를 YEP 액체 배지 (효모 추출물 10 g, Bacto™ peptone 10 g, NacCl 5 g)에 접종한 후, 16시간 동안 28℃, 250 rpm 조건으로 진탕 배양하였다. 배양액을 3,000 g의 속도 및 4℃ 조건으로 20분간 원심분리하여 세포를 분리하고, 20 mM CaCl2에 부유시켜서 수용성 세포 (competent cell)를 만들었다. 수용성 세포 100 μL에 플라스미드 DNA (식물용 운반체) 5 μL를 첨가한 후, 액체 질소에서 5분간, 37℃ 온도에서 5분간 배양하였다. YEP 액체배지 1 mL를 첨가하여 28℃, 250 rpm 조건으로 2시간 동안 진탕 배양하였다. 100 μL 배양액을 카나마이신 100 mg/L가 포함된 YEP 고체배지에 spreading 한 후, 28℃ 온도에서 3일 동안 배양하였다. 단일 콜로니들을 각각 계대배양한 후, 플라스미드 DNA가 형질전환되었는지 PCR을 통해 확인하였다.
(3) 식물 조직배양
(3.1) 식물 형질전환
상기 실시예 1-(2)에서 유전자 운반체의 형질전환이 확인된 아그로박테리움 균주를 YEP 액체 배지 (70 mg/L 카나마이신, 70 mg/L 스트렙토마이신 포함)에서 28℃ 조건에서 24시간 동안 배양하였다. 또한, 발아된지 1달된 식물체의 잎을 70% 에탄올과 락스로 멸균한 후, 3 mm X 3 mm 크기의 절편으로 자르고, MS 액체 배지가 5 ml 담겨 있는 페트리 디쉬에 절편을 올려 놓은 뒤, 아그로박테리움 균주 배양액 1 mL을 골고루 뿌려줌으로써 담배 잎 절편을 준비하였다. 이후 25℃, 암 조건에서 48 시간 동안 배양시켰다.
(3.2) 식물 조직배양
잎 절편을 멸균 증류수(200 ug/ml 세포탁심 (cefotaxim) 포함)에 4 회 세척한 후, shooting 배지(MS 배지, 2 mg/L BA, 0.1 mg/L NAA, 200 mg/L 세포탁심, 100 mg/L 카나마이신 포함)에 치상하여 25℃, 16시간/8시간 광주기 조건에서 배양하며, 2주 마다 새로운 배지로 계대배양함으로써 세척 및 선별 배지 치상을 수행하였다.
또한, 잎 절편에서 분화된 shoot을 절단하여 rooting 배지(MS 배지, 200 mg/L 세포탁심 포함)에 치상하여 25℃, 16시간/8시간 광주기 조건에서 배양함으로써 Rooting 배지 치상을 수행하였다.
그 결과, 도 3에 나타낸 바와 같이, 아그로박테리움 균주가 매개된 형질전환 (Agrobacterium mediated transformation) 방법으로 담배 잎 조직에 형질전환 시킨 후, 캘러스 분화, 잎 분화, 뿌리 분화가 차례로 잘 이루어졌음을 확인하였다. 조직배양을 통해 잎, 줄기, 뿌리를 갖춘 조직배양 소식물체 102 개체를 확보하였다.
(4) 돌연변이체 선별
(4.1) 목표 유전자 내 돌연변이 발생 여부 및 양상 확인
상기 실시예 1-(3)에서 확보된 조직 배양체의 잎 일부를 채취하여 gDNA를 추출한 후, 각 목표 유전자 부위를 PCR 반응을 통해 증폭하였다. 증폭된 유전자 산물에 대해 염기서열을 분석하여 NtHMA 유전자에 돌연변이가 발생한 조직배양체 50개와 NtPCS 유전자에 돌연변이가 일어난 조직배양체 60개를 선별하였다.
구체적으로, 건강한 잎 조직 100 mg을 샘플링하여 균일하게 분쇄한 후, silica column을 이용하는 상용화 키트 (예: Nucleospin 96 plant II, Macherey Nagel, 독일)를 이용하여 gDNA를 추출 및 정제하였다. 돌연변이 여부 및 양상을 확인하기 위하여 조직 배양체 24개체의 gDNA를 대상으로 각 목표 유전자 부위를 증폭하여 전기영동한 결과를 도 4에 나타내었다.
또한, 잎 조직에서 gDNA를 추출/정제한 후, PCR을 통해 목표 유전자 부위를 증폭하여 염기 서열 분석을 수행한 예시를 도 5에 나타내었다. 도 5에 나타낸 바와 같이, 야생형 KB108과 돌연변이체의 NtHMAβ 부위의 염기서열 분석 결과, 야생형 염기서열에 비해 아데닌 염기가 삽입된 돌연변이체임을 확인하였다.
NtHMA 유전자에 돌연변이가 일어난 패턴을 위치별로 분류해본 결과, 하기 표 6에 나타낸 바와 같이, exon 2를 표적으로 제작한 gRNA_HMA_A4 및 gRNA_HMA_B4의 위치에서 돌연변이 발생률이 44% 내지 48%로, NtHMA 유전자의 exon 2 위치에서 돌연변이가 가장 많이 일어나는 것으로 확인하였다.
표적 위치 돌연변이 수 조직배양체 수 돌연변이 발생율 (%)
gRNA_HMA_A1 HMAα Exon 1 1 25 4
gRNA_HMA_A2 Intron 1 3 12
gRNA_HMA_A3 Intron 1 0 0
gRNA_HMA_A4 Exon 2 12 48
gRNA_HMA_A5 Exon 2 2 8
gRNA_HMA_A6 Intron 2 10 40
gRNA_HMA_B1 HMAβ Exon 1 5 25 20
gRNA_HMA_B2 Intron 1 7 28
gRNA_HMA_B3 Intron 1 0 0
gRNA_HMA_B4 Exon 2 11 44
gRNA_HMA_B5 Exon 2 5 20
gRNA_HMA_B6 Exon 2 2 8
NtPCS 유전자에 돌연변이가 일어난 패턴을 위치별로 분류해본 결과, 하기 표 7에 나타낸 바와 같이, exon 2를 표적으로 제작한 gRNA_PCSs_e2, gRNA_PCSt_e2, 및 gRNA_PCSst_e2의 위치에서 돌연변이 발생률이 45% 내지 70%로, NtPCS 유전자의 exon 2 위치에서 돌연변이가 가장 많이 일어나는 것을 확인하였다.
표적 위치 돌연변이 수 조직배양체 수 돌연변이 발생율 (%)
gRNA_PCSs_e1 PCSs Exon 1 0 20 0
gRNA_PCSs_e2 Exon 2 12 60
gRNA_PCSt_e1 PCSt Exon 1 0 20 0
gRNA_PCSt_e2 Exon 2 14 70
gRNA_PCSst_e1 PCSs
PCSt
Exon 1 0 20 0
gRNA_PCSst_e2 Exon 2 9 45
(4.2) F 1 세대 종자 확보 및 도입 유전자 제거 식물체 선별
돌연변이가 확인된 NtHMA 유전자 돌연변이체 50 개체 및 NtPCS 유전자 돌연변이체 60 개체를 상토가 담긴 화분으로 이식하여 온실에서 재배하였다. CRISPR/Cas9 발현을 위해 도입된 유전자 블록을 제거하기 위하여 자가 수정을 통해 F1 세대 종자를 확보하였다. F1 세대 종자를 128구 트레이에 파종하여 30일 동안 기른 후, 잎을 채취하여 균일하게 분쇄한 후, silica column을 이용하여 상용화 키트 (예: Nucleospin 96 plant II, Macherey Nagel, 독일)를 이용하여 gDNA를 추출 및 정제하였다. 35S 프로모터와 Cas9 DNA 블록을 특이적으로 증폭하는 프라이머를 이용하여 PCR을 진행하였다. 프라이머의 서열은 하기 표 8에 나타내었다.
프라이머 서열 PCR length Note 서열번호
F_C9 GACCATCCTGGACTTCCTGAAGAGC 420 bp Cas 9 검출 27
R_C9 TGCAGGTAGTACAGGTACAGCTTCTCG 28
F_35S GCTCCTACAAATGCCATCA 195 bp 35S 프로모터 검출 29
R_35S GATAGTGGGATTGTGCGTCA 30
그 결과, 도 6에 나타낸 바와 같이, 535S 프로모터와 Cas9 DNA 블록이 검출되지 않는 식물체를 선별하였다.
(4.3) 최종 선별 식물체의 유전형 정보
최종 선별한 F1 식물(108_PMTm_F1)은 도입 유전자를 포함하지 않으며, NtHMA 유전자 및 NtPCS 유전자들에 각각 동형접합 돌연변이(homozygous mutation)가 일어난 식물이었다. NtHMA 유전자 및 NtPCS 유전자 각각에 돌연변이가 유발된 최종 식물체의 유전형을 하기 표 9에 나타내었다.
표적 돌연변이 위치 돌연변이 양상
A6_02 HMAα Exon 2 GT del
B6_02 HMAβ Exon 2 T ins
AB_01 HMAα Exon 2 GTGA del
HMAβ Intron 1 T del
Exon 2 A ins
Exon 2 T ins
T_05 PCSt Exon 2 T ins
ST_01 PCSs Exon 2 A ins
PCSt Exon 2 A ins
또한, 대조군 식물체 (KB108), 및 NtPCSs 및 NtPCSt 유전자에 돌연변이가 유발된 식물체 (PCSst)의 PCSs 유전자 및 PCst 유전자의 gDNA 염기 서열, CDS 염기서열, 및 아미노산 서열을 하기 표 10에 정리하여 나타내었다.
식물체 종류 서열번호 약칭
KB108 PCSs_gDNA 31 KB108_PCSs_gDNA
PCSs_CDS 32 KB108_PCSs_CDS
PCSs_amino acid 33 KB108_PCSs_AA
PCSt_gDNA 34 KB108_PCSt_gDNA
PCSt_CDS 35 KB108_PCSt_CDS
PCSt_amino acid 36 KB108_PCSt_AA
PCSst PCSs_gDNA 37 PCSst_PCSs_gDNA
PCSs_CDS 38 PCSst_PCSs_CDS
PCSs_amino acid 39 PCSst_PCSs_AA
PCSt_gDNA 40 PCSst_PCSt_gDNA
PCSt_CDS 41 PCSst_PCSt_CDS
PCSt_amino acid 42 PCSst_PCSt_AA
(아미노산 서열 중 *는 stop codon을 의미하며, 아미노산의 서열 중간에 존재하는 stop codon은 핵산 서열에 돌연변이가 존재하여 발생한 early stop codon을 의미하는 것이다.)
실시예 2. NtPCS 유전자에 돌연변이가 유발된 담배 식물체의 카드뮴 함량 분석
(1) 양액 재배시설을 이용한 카드뮴 함유량 분석
발아된 식물을 양액 재배 시설로 옮겨심은 후, 80일 동안 재배한 식물체의 꽃대를 자른 뒤, 2주 후에 식물체의 모든 잎을 수확하였고, 수확한 잎을 65℃ 드라이 오븐에서 48 시간 동안 건조시킨 후, 글라스 비드가 담긴 용기에 담아 gyro-shaker를 이용하여 분쇄하였다. 돌연변이 식물체의 확보 시기에 따라 1차 및 2차로 나누어 실험을 진행하였다. GC/MS 분석 기법으로 KB108 (야생형, 대조군)과 돌연변이체의 카드뮴 함량을 정량 분석하였다. 2회의 실험 결과를 대조군 식물체의 카드뮴 흡수량 대비 상대량으로 나타내었다.
그 결과, 도 7 및 하기 표 11에 나타낸 바와 같이, NtHMAα 유전자 또는 NtHMAβ 유전자에 돌연변이가 유발된 식물체는 대조군 대비 잎 내 카드뮴 함량이 25% 또는 2% 감소하였고, NtHMAα 유전자 및 NtHMAβ 유전자 모두에 돌연변이가 유발된 식물체는 대조군 대비 잎 내 카드뮴 함량이 64% 감소하였다. 특히, NtPCSs 유전자 및 NtPCSt 유전자 모두에 돌연변이가 유발된 식물체는 대조군 대비 잎 내 카드뮴 함량을 85% 감소시켜 현저한 카드뮴 저감 효과를 나타내었다. 이는 NtHMAα 유전자 및 NtHMAβ 유전자 모두에 돌연변이가 유발된 식물체에 비해서도 우수한 카드뮴 저감 효과를 나타내는 것이다.
식물체 카드뮴 (상대값)
KB108 (대조군) 1.00
NtHMAα 0.75
NtHMAβ 0.98
NtHMAαβ 0.36
NtPCSt 1.25
NtPCSst 0.15
(2) 온실 환경에서의 카드뮴 함유량 분석
NtPCS 유전자에 돌연변이가 유발된 식물체의 카드뮴 흡수 저감 효과가 토양 환경에서도 유지되는지 확인하기 위하여, 온실 환경에서 카드뮴 흡수 실험을 수행하였다. 구체적으로, 발아된 식물을 온실 환경의 화분으로 옮겨 심은 후, 60일 동안 재배한 식물체의 꽃대를 자른 뒤, 2주 후에 식물체의 모든 잎 (하부 잎, 상부 잎, 또는 전체 잎)을 수확하였고, 수확한 잎을 65℃ 드라이 오븐에서 48 시간 동안 건조시킨 후, 글라스 비드가 담긴 용기에 담아 gyro-shaker를 이용하여 분쇄하였다. GC/MS 분석 기법으로 KB108 (야생형, 대조군)과 돌연변이체의 카드뮴 함량을 정량 분석하였다.
그 결과, 도 8 및 하기 표 12에 나타낸 바와 같이, 카드뮴 처리를 하지 않은 대조군 (KB108_NC)에서는 카드뮴이 거의 확인되지 않은 반면에, 카드뮴 처리를 한 대조군 (KB108_PC)에서는 분석법의 정량 한계 (LOQ) 이상으로 매우 높은 카드뮴 함량이 검출되었다. NtHMAα 유전자 또는 NtHMAβ 유전자에 돌연변이가 유발된 식물체는 대조군 대비 잎 내 카드뮴 함량이 약 26% 감소하였고, NtHMAα 유전자 및 NtHMAβ 유전자 모두에 돌연변이가 유발된 식물체는 대조군 대비 잎 내 카드뮴 함량이 약 77% 감소하였다. 특히, NtPCSs 유전자 및 NtPCSt 유전자 모두에 돌연변이가 유발된 식물체는 대조군 대비 잎 내 카드뮴 함량을 약 87% 감소시켜 현저한 카드뮴 저감 효과를 나타내었다. 이는 NtHMAα 유전자 및 NtHMAβ 유전자 모두에 돌연변이가 유발된 식물체에 비해서도 우수한 카드뮴 저감 효과를 나타내는 것이다.
식물체 하부 잎
카드뮴 함량
(㎍/g)
상부 잎
카드뮴 함량
(㎍/g)
전체 잎
카드뮴 함량
(㎍/g)
KB108_NC
(음성 대조군)
0.08 0.04 0.13
KB108_PC
(양성 대조군)
2.44 2.13 4.57
NtHMAα 1.05 2.27 3.31
NtHMAβ 1.19 1.48 2.67
NtHMAαβ 0.68 0.48 1.16
NtPCSst 0.23 0.26 0.49
종합하면, NtPCSs 유전자 및 NtPCSt 유전자 모두에 돌연변이가 유발된 식물체의 잎 내 카드뮴 함량이 양액 환경에서는 대조군 대비 86% 감소되고, 토양 환경에서는 대조군 대비 87% 감소되어, 카드뮴 저감 효과가 가장 크게 나타났다.
실시예 3. NtPCS 유전자에 돌연변이가 유발된 담배 식물체의 생육 특성 확인
NtPCS 돌연변이 식물체가 NtHMA 돌연변이 식물체의 한계점인 생육 저해 현상을 해결할 수 있는지 확인하기 위해, NtHMAα 유전자 및/또는 NtHMAβ 유전자에 돌연변이가 유발된 식물체, 및 NtPCSs 유전자 및 NtPCSt 유전자 모두에 돌연변이가 유발된 식물체의 생육 특성을 대조군과 비교하였다. 구체적으로, 각각 식물체의 종류별로 5개 개체의 식물체 높이, 잎의 수, 및 잎의 중량을 측정하여 비교하였다.
그 결과, 도 9 및 하기 표 13에 나타낸 바와 같이, NtHMAα 유전자 및 NtHMAβ 유전자 모두에 돌연변이가 유발된 식물체는 대조군 대비 식물체 높이가 30% 감소하고, 잎의 수는 유의미한 차이는 없었으나 잎의 중량이 16% 감소하였다. 상기 결과로부터 NtHMAα 유전자 및 NtHMAβ 유전자에 돌연변이가 유발된 식물체는 생육 저해가 나타남을 알 수 있다. 이와 달리, NtPCSs 유전자 및 NtPCSt 유전자 모두에 돌연변이가 유발된 식물체는 대조군 대비 식물체 높이는 15% 감소하여 다소 낮아졌으나, 잎의 수 및 잎의 중량에 있어서 유의미한 변화를 나타내지 않아, 생육 저해가 나타나지 않음을 확인하였다.
번호 식물체 높이 (cm) 잎 수 (개) 잎 중량 (g)
1 KB108
(대조군)
62 12 145.5
2 66 13 149.0
3 63 13 142.0
4 68 13 142.0
5 67 12 129.0
평균 65.2 12.6 141.5
1 NtHMAα
돌연변이체
45 13 146.0
2 55 13 167.0
3 53 13 154.0
4 52 13 156.0
5 53 13 163.0
평균 51.6 13 157.2
1 NtHMAβ
돌연변이체
58 12 144.6
2 51 14 169.0
3 57 13 176.0
4 58 14 172.0
5 54 13 160.0
평균 55.6 13.2 164.32
1 NtHMAαβ
돌연변이체
50 11 108.5
2 50 12 157.5
3 40 14 123.0
4 41 12 107.0
5 47 13 99.0
평균 45.6 12.4 117.0
1 NtPCSst
돌연변이체
61 13 145.0
2 60 13 158.0
3 57 13 149.0
4 54 13 142.0
5 47 12 138.0
평균 55.8 12.8 146.4
또한, 도 10에 나타낸 바와 같이, NtHMAαβ 돌연변이체는 대조군과 비교하여 육안으로 관찰되는 수준의 생육 저해를 나타낸 반면, NtPCSst 돌연변이체는 대조군과 비교하여 유의미한 생육 상태 차이를 나타내지 않았다.
<110> KT&G CORPORATION <120> Trnasgenic plant with reduced heavy metals and methods for preparation thereof <130> PN134818 <160> 43 <170> KoPatentIn 3.0 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> gRNA S1 sequnce of Vlk_PCS_S <400> 1 aagcgaaatc aacagccgga g 21 <210> 2 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA S2 sequnce of Vlk_PCS_S <400> 2 ggcattcaag accatggaa 19 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA T1 sequnce of Vlk_PCS_T <400> 3 cgagttcttc cgtcgcctc 19 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA T2 sequnce of Vlk_PCS_T <400> 4 ggcattcaag accatagaa 19 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA_ST1 sequnce of Vlk_PCS_ST <400> 5 tagaagcgaa atcaacagc 19 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA_ST2 sequnce of Vlk_PCS_ST <400> 6 gccatccaga atggaacaa 19 <210> 7 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> F_HMA alpha primer sequence <400> 7 gaaacaaaga agttgagcaa gagctatt 28 <210> 8 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> R_HMA alpha primer sequence <400> 8 agccttagtg agatgattta taacacaa 28 <210> 9 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> F_HMA beta primer sequence <400> 9 gacacaaaga atctgagcaa gagctatt 28 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> R_HMA beta primer sequence <400> 10 agctagagta ggaccacaca ttaattct 28 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> F_PCSs primer sequence <400> 11 aaatggcgat ggcgggtttg tat 23 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> R_PCSs primer sequence <400> 12 gtcgggaagg attagaacac aaattcac 28 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> F_PCSt primer sequence <400> 13 aatggcgatg gcgggtttat atc 23 <210> 14 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> R_PCSt primer sequence <400> 14 agtccggaag gataggaaca cagatt 26 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA_A1 sequnce of Vlk_HMA_A6 <400> 15 tctttcttac caatttgttg 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA_A2 sequnce of Vlk_HMA_A6 <400> 16 tgtttgtaca agcttttaga 20 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> gRNA_A3 sequnce of Vlk_HMA_A6 <400> 17 atggtaactt caataattat a 21 <210> 18 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA_A4 of Vlk_HMA_A6 <400> 18 aagcaagcat aagagtgaa 19 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA_A5 sequnce of Vlk_HMA_A6 <400> 19 ccacacctct aaaaataat 19 <210> 20 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA_A6 sequnce of Vlk_HMA_A6 <400> 20 tcatataaat tgggacaaa 19 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA_B1 sequence of Vlk_HMA_B6 <400> 21 caatttgttg ctgagaaatg 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA_B2 sequence of Vlk_HMA_B6 <400> 22 agtggagaaa agatgaagaa 20 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> gRNA_B3 sequence of Vlk_HMA_B6 <400> 23 atggtaacta caataattat a 21 <210> 24 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA_B4 sequence of Vlk_HMA_B6 <400> 24 aagcaagtat aagagtgaa 19 <210> 25 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA_B5 sequence of Vlk_HMA_B6 <400> 25 gattcctcca attattttt 19 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> gRNA_B6 sequence of Vlk_HMA_B6 <400> 26 ccacacccct aaaaataat 19 <210> 27 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> F_C9 primer sequence <400> 27 gaccatcctg gacttcctga agagc 25 <210> 28 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R_C9 primer sequence <400> 28 tgcaggtagt acaggtacag cttctcg 27 <210> 29 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> F_35S primer sequence <400> 29 gctcctacaa atgccatca 19 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R_35S primer sequence <400> 30 gatagtggga ttgtgcgtca 20 <210> 31 <211> 914 <212> DNA <213> Artificial Sequence <220> <223> PCSs_gDNA sequence of KB108 <400> 31 atggcgatgg cgggtttgta tcggcgagtt cttccgtccc ctccggctgt tgatttcgct 60 tctactgaag gaaaggcaag ttttagtgct actcttcctt tcttcccttt gaactgatgg 120 ttgaagacta gggttttagc cgtctttgtt tgttgttctg ttctattttg tcactgatga 180 atatggatta tatcataatg ttttaactct ttgtttacta gctggtacca atttgttaat 240 tggtttggac ttcagaggcg gattcagaat tttaaatctg tagttgtgct ttagtatttt 300 gccacaatgg ttgctaacta gtataagtat atagttaatg aaatacgcga tatctgcaat 360 tcaagctgaa cgtaattgat ttagtagagt cagcaagatc caggtgacca aagtgatcag 420 cagcttgatc tgctactcag ccttagggat tggcctatat gatacatgtt agataattgt 480 ttatcgtaaa ttgaccaatt cgctgtttat cgtaattgtt tgtccagacc ccatagtgag 540 aactgtggcc atggcagact taaaagaaaa tgtgataaaa ggaaatcagg aatctgttct 600 gttttacgtg aacttgtaaa tttcgctgtt cttaagggtt tgtagctatt tttgtgcttt 660 ccacatgaag catctgactt tcattttgta ctgattttta tgtgtttttt tggagctgca 720 gcaacttttc ttggaggcca tccagaatgg aacaatggaa ggatttttca agttgatctc 780 ttattttcag acacagtctg aaccggccta ttgtggtttg gctagccttt ccatggtctt 840 gaatgccctt gctattgatc caggaagaaa atggaaaggt aattctacta tcatcaagtg 900 aatttgtgtt ctaa 914 <210> 32 <211> 233 <212> DNA <213> Artificial Sequence <220> <223> PCSs_CDS sequence of KB108 <400> 32 atggcgatgg cgggtttgta tcggcgagtt cttccgtccc ctccggctgt tgatttcgct 60 tctactgaag gaaagcaact tttcttggag gccatccaga atggaacaat ggaaggattt 120 ttcaagttga tctcttattt tcagacacag tctgaaccgg cctattgtgg tttggctagc 180 ctttccatgg tcttgaatgc ccttgctatt gatccaggaa gaaaatggaa agg 233 <210> 33 <211> 77 <212> PRT <213> Artificial Sequence <220> <223> PCSs_amino acid sequence of KB108 <400> 33 Met Ala Met Ala Gly Leu Tyr Arg Arg Val Leu Pro Ser Pro Pro Ala 1 5 10 15 Val Asp Phe Ala Ser Thr Glu Gly Lys Gln Leu Phe Leu Glu Ala Ile 20 25 30 Gln Asn Gly Thr Met Glu Gly Phe Phe Lys Leu Ile Ser Tyr Phe Gln 35 40 45 Thr Gln Ser Glu Pro Ala Tyr Cys Gly Leu Ala Ser Leu Ser Met Val 50 55 60 Leu Asn Ala Leu Ala Ile Asp Pro Gly Arg Lys Trp Lys 65 70 75 <210> 34 <211> 6901 <212> DNA <213> Artificial Sequence <220> <223> PCSt_gDNA sequence of KB108 <400> 34 atggcgatgg cgggtttata tcggcgagtt cttccgtcgc ctccggctgt tgatttcgct 60 tctactgaag gaaaggcaag ttttagtgct actctttcct ttttcgtttg tgctgagggt 120 taaagactag ggttttagcc gtctttggtt gttgttctat tttgtcacgg atgaatatgg 180 attatatcat aatcttttag ctatctgttt actagctggt accgatttgt taattggttt 240 ggactttatt cagaattttg aatctgtaat tgtgtcgtta ctatttggcc acaatggttg 300 ctaacttagt ataagtatat atattattaa aataattaaa ctgtgtctgt aattcagctg 360 aaggcaattg atttaataga gtcagcaaga tccaggtgac cacagtgatc aacaacttga 420 tcagctggtc agccttaggg attggcctat atgatacacg ttagataatt gtttattgta 480 agttgattta gacaccaatt cactgctaac tgtccagacc ccataacata tagtaccttt 540 tattcaaatt tgtccttgat gttccacatg gagaactttg gccatggcag tcttaaaaga 600 aaatgtgata aaaggaaatc aggaatctgt ttctttttga cgcggacttg taaattttgc 660 tgttcttaag gttttgtagc tatttttgtg ctttccacat tggagggcat ctgactttca 720 taaattctac tccttcctgc ttcaatgttt tgttgatata tttatttatg atgtacgata 780 tttttttttt ggcaattaac tgtcggtgtc tttgtctgta cttactttta catctacact 840 ttttaagtct taacatccca tttcttgcgg tatgccctta acttccagat actaaaatgt 900 gtgataatat tctagtttat tgtacttgct tgcccttggt ttaggtatca attcatctta 960 ttgttcggtt cgactgttaa ggtgtacatc tgaagttgat gtcattgtac agcctaatac 1020 agatttgctt gaatatcttt tttctccagt ttgatgctgt ttcatgaaat taaaatcctt 1080 tttgtcatta atatgaagag attgaatgca gttttctctg gctctttcca tacataattt 1140 tttatgcgta tctttttatt aaaaaaagtt gtcacataag attttgactt tccattgaag 1200 ttgaccttca gagaggaata gagaaaagga gttatattaa agtatccaag taaacatatg 1260 cttgacatca ttcatattct ttttactctt ctacatatct acagggatgg aatactcagg 1320 ccattaagtc tattacaatt gcgccaatac tctttatttc caagaactta ataagctttt 1380 tgtgccgaat tgctacagtg acattttccc cttcaacttc tgcacttgat tgaaggatga 1440 cttttgcctg ccatatgtaa aatgatatta atacgagatt aatgagttac cttttcccct 1500 ataggtcaaa gcgagaagag ctgcattcct catttgcagc cacagcctca ttgaggcaca 1560 tccctttgac tccttaccag cccaaacaac catatgctgc ttagctcaat tccatctgcc 1620 ttcagttaaa ttttctgctc agactagcca tacccaattc aaatgttgag caactattta 1680 ttagtctatc acattgtagc cttatacctc caatgaatac tcaacataat aatactcctt 1740 ggacgactgc tggtttcctc tgcagatttt tatctatgcc ctcccttcag atcacttgtc 1800 tggatccttg gctcctccca ccctttaagt tatgtcatta tggaagttga atcttttaat 1860 ggggaaagct ctcagttatt actgcaacca ttatcttaag gatctgtttc ggtttgcttt 1920 ctcactgatt gcctgagttt gatcatattg gtttatgata ggcttcctag ctgaaaaagg 1980 ggtagctgtc cctttccttt ttttcccaca atatttcact aggctactgt ggtatcgtat 2040 ggagaacatt gtagcttctc ttagactgag aaactataag aagataggtg tgccagtgac 2100 cgtgtatttg tgcagtgttt tgaatttcat aggaaacaat gttatttagg gagatcctta 2160 actttttcgg aaaaggttaa gtgacccttg cataaacctg gaatttgaag gtctgtctta 2220 cagagatacc tcaaatgccc gcctgatcaa atacaagcca ttcctacatt tatcttgaaa 2280 tgatactatt agatatcaaa ctaagtcttt tgttatatga actgaatgtt atatcaaaaa 2340 taaatttctt ctgtaaacat gaatttgttt tcatcagcat agactgcgtt ttaattagcc 2400 atacctcaga gaaaaaagga aatgcatgaa acggggtgga gggatgagaa agagatacaa 2460 tatctgatac tttgttcagt gactgttctt tttgtactga tttttgcgtg ttttttggag 2520 ctgcagcaac tttttttgga ggccatccag aatggaacaa tggaaggatt tttcaagttg 2580 atctcttatt ttcagacaca gtctgaaccg gcctattgtg gtttggctag cctttctatg 2640 gtcttgaatg cccttgctat tgatccagga agaaaatgga aaggtaactc tgctatcatc 2700 aagtgaatct gtgttcctat ccttccggac tatatcgatg attttgatct tcactttttc 2760 atggccttgc cttctgaatt gttaataagg tctcaggctc tttatatgtt tatttccttg 2820 atgaaggtct ttacatcttt attttccaat aatttcgcct atcccgacct gcccatgtta 2880 gttataagat atagcacaga gatgtgtagt tcactttgtt ttttattgtt gagatctcta 2940 ttaaaaaaaa taagttgatg ccttgtctgt gagctttgta agttaatctg atatgttgtg 3000 atgcattggc atgagtctga tatcatctgt tctcaacatg aatcctagcc actgttgctg 3060 gacaccttcc aaagatctaa actgctatat gtgcaactta atattttttc ttacctcatt 3120 tattgaaggt gtttattctc tggataattg ttcatcaaag ttgccgttct agtgcagttt 3180 tgcaaactta aggctttaac agattagacc tcggtaatat aattctgaga actcctttag 3240 agttaatatc tgtgtctgta tttcgttcca tttgcattta acagaaaagg gttcatgcat 3300 ctaggagctg ttgctctgag ttgcctcatg catattattt gttgatgtcc atttttccaa 3360 acttcatggt cacatgaaat cattcttatt gtcagtttct gtttccaatt tacatgaact 3420 agaaacatct tagataatat tttgtttcaa tgttcacatc ttaaaaactt gaaaaccttt 3480 tctttccacc aattaactta tatgttaggg tcatatcttg gtcaccaatg tctactgata 3540 ttaaagagtc agtttggaaa agaaggagct tggtgaggac agctttaacg ttcttagctt 3600 tcatcacctg aaactgtttg atgcttgtac gtttctcttt cgaacttggt tgttcatatc 3660 ctttttatag tctgcttgcg tcaatgagct tggagtttat tatcttatca gcttcaacaa 3720 actgtcaggg ccttggagat ggtttgatga atctatgttg gactgttgtg agcctctgga 3780 gaaggttaaa gctaaaggga tctcttttgg gaaagtggta tgtttggctc actgtgcagg 3840 agcgaaggta gaagcttttc gctctaatca tagtactatt gatgacttcc gtaaacaagt 3900 catggcctgc actactagtg ataattgtca tctgatctca tcatatcata gaggcctttt 3960 taagcaggta aatgtaaaca tagcttctct atccccatgc ttatgattgt gaagaagtat 4020 attgctgcat cgggagtttg accacacagg atctactgaa tcttatggca gacaggttcg 4080 ggccactttt cgcctattgg tggttatcac gtgggaaagg atatggcact gattctagat 4140 gttgcgaggt ttaaatatcc tcctcattgg gttcccctcc ctctcctttg ggaagccatg 4200 aacacaattg atgaagctac aggattacat agggggtatg cacttccagt tagctgtgct 4260 gtgatattga tattgatttt cataatggct atgagttgtt gcctgttagc atgctcttta 4320 ccttgaacag cgtctcgttc atgcttttta gctgtcaact gatactggct aagcatttag 4380 cttaaggaat ataaatatgt agaagaagta gttttactat gtgttttggt cttcctctta 4440 taattaagac taaaattgga aattaaatgc tgaactcttt cggcactgct tctggtcttc 4500 ttcaaacata actgtagatt ctcttcatta ttttctcttc ctattctcct tctgctcaaa 4560 tttagcggtc cgtctatatc catctcacac ttgatatatt tttatcattc tgcagcatgg 4620 atttcagtga cttatgtgca aaaacataat tttcaggttt atgctaatta ctaagcttca 4680 cagagctcct gcactgctat ataccctggt aaggtttaag tagctgctat tatgttattc 4740 gctttaaata taaactcctt cgaagttcga acaaactata agaagcaact tctattactg 4800 cttgtgagat cctttgctag ttgattcttt tcagtacacc agcttggtcg gatagttgtt 4860 aactactact ttacctacct tttacatgct ataacataat gataacatct ttgtcaaatg 4920 cttgggaatt gtggtcttag tgccaggtga ttagcttgga cttttgtttc aaaactatga 4980 tgtcattgca atatttatgg agtttaacaa cattggcctt tagaactatt taacgtgtaa 5040 ttttttatgt aaattttcta taataaagag ggaggaatgt actgtattga attactcctg 5100 gattttcttc tttctgcgac tagtcatgta ttttgaatgg tgaacttcta cagagctgta 5160 aacatgagag ttgggtcact atctcaaagc atttgatgga tgatcttcct gtcctgttaa 5220 gttctgagaa tgtgaagggc ataaaagatg ttctctctac tgttctttca aatctacctt 5280 caaattttgt tgaattcata aagtggatag cggaagttcg aaggcaagag gagaatggtc 5340 aaaatttgag tgacgaggag aaaggaaggc tagctatcaa ggtaaggtat ctgaagaaat 5400 ttagtaaata gaaagaaaaa aaagaaggct cctagaaatg gtcatgtaga tttgatcggg 5460 taacttgcag gataggtgat tatttatgag ttcagtaacc actcttacct tactttgcag 5520 gaagaggtat tgaaacaagt gcaggacact cctctttata agcatgtcac aagcatttta 5580 ttttcaaaaa attctatctg ccagtcaaaa gcagcatcag acagcagttt ggctaatgtt 5640 gccgcaaaca tttgctgcca aggagcaggt ctttttgcag gaagatctgg ttcatcggat 5700 aggttttgct gtctccaaac atgtgttaga tgctacagag ctaccggggg caattctgct 5760 acagtggtgt ctgggacagt tgtaaatggg aatggggagc agggggttga tgttctggtc 5820 cctacatctc tagcaaagac tagctgctgt ccctcagggc aagctggttg ctcgccaatg 5880 caccctgcaa gtaacgatgt gctgacagca ctattgctgg cattacctcc acatacatgg 5940 tctcgaataa aagatacgaa ggtcttgcag gaaatagaga accttgtctc agcagagaac 6000 ctgcctcctt tgctgcaaga agaggtatct ttgtacattt gtctcttatc acatttgctt 6060 tcttgtttta aaattcctct ttgttgtttg tgttgggaag cccagaactg gaggattgca 6120 gtaggttaag ggccagcaga aagctaggca attttatgat taatctaaca atattgaaat 6180 attggaaaga aaggagtcca aatagagtta aatggatgtc caggatttat atagcgaccc 6240 caactagctt aggattgagg cttttgtttt gttgttgtca ttttgtattg ggaaattcac 6300 atgagcactt agaatggcct tcataactat atcagagctt tctacctctt ttctaattgg 6360 tagttcttat tatggcccaa tagaagattt ttcctgccta agattatcta tttcactgca 6420 ctgcatattt tatgaaaaat agtctaatcc tcttgaagca ggttatcata tcataacagg 6480 cttaactgat ttttcatttc tagtctatct gaaggagcat ataactgata aatcttatgc 6540 ataatgagac ctaaggcgca taactctgtc ttctgcatgt tattcagccg tttaatgagt 6600 ttgtctctca tgctatgcat ctttgaccaa ttaacttagt tcaacggtat gagttatgaa 6660 attctgagat gtgtgctggg ttgatgaact agtagatacg ctctgagaat gcattttgtt 6720 ctaatgacta cttaaatctt tcacttggtt aaccattaaa catggtgtaa tatacttctg 6780 aatatccttt tgggcgactg cagattttgc acctgcgagg acagttcctc ctcctcaaga 6840 aatgcaagga taacaaggta gaagaagatt tagctgcacc tcccttctag ctttgctttc 6900 c 6901 <210> 35 <211> 1506 <212> DNA <213> Artificial Sequence <220> <223> PCSt_CDS sequence of KB108 <400> 35 atggcgatgg cgggtttata tcggcgagtt cttccgtcgc ctccggctgt tgatttcgct 60 tctactgaag gaaagcaact ttttttggag gccatccaga atggaacaat ggaaggattt 120 ttcaagttga tctcttattt tcagacacag tctgaaccgg cctattgtgg tttggctagc 180 ctttctatgg tcttgaatgc ccttgctatt gatccaggaa gaaaatggaa agggccttgg 240 agatggtttg atgaatctat gttggactgt tgtgagcctc tggagaaggt taaagctaaa 300 gggatctctt ttgggaaagt ggtatgtttg gctcactgtg caggagcgaa ggtagaagct 360 tttcgctcta atcatagtac tattgatgac ttccgtaaac aagtcatggc ctgcactact 420 agtgataatt gtcatctgat ctcatcatat catagaggcc tttttaagca gacaggttcg 480 ggccactttt cgcctattgg tggttatcac gtgggaaagg atatggcact gattctagat 540 gttgcgaggt ttaaatatcc tcctcattgg gttcccctcc ctctcctttg ggaagccatg 600 aacacaattg atgaagctac aggattacat agggggttta tgctaattac taagcttcac 660 agagctcctg cactgctata taccctgagc tgtaaacatg agagttgggt cactatctca 720 aagcatttga tggatgatct tcctgtcctg ttaagttctg agaatgtgaa gggcataaaa 780 gatgttctct ctactgttct ttcaaatcta ccttcaaatt ttgttgaatt cataaagtgg 840 atagcggaag ttcgaaggca agaggagaat ggtcaaaatt tgagtgacga ggagaaagga 900 aggctagcta tcaaggaaga ggtattgaaa caagtgcagg acactcctct ttataagcat 960 gtcacaagca ttttattttc aaaaaattct atctgccagt caaaagcagc atcagacagc 1020 agtttggcta atgttgccgc aaacatttgc tgccaaggag caggtctttt tgcaggaaga 1080 tctggttcat cggataggtt ttgctgtctc caaacatgtg ttagatgcta cagagctacc 1140 gggggcaatt ctgctacagt ggtgtctggg acagttgtaa atgggaatgg ggagcagggg 1200 gttgatgttc tggtccctac atctctagca aagactagct gctgtccctc agggcaagct 1260 ggttgctcgc caatgcaccc tgcaagtaac gatgtgctga cagcactatt gctggcatta 1320 cctccacata catggtctcg aataaaagat acgaaggtct tgcaggaaat agagaacctt 1380 gtctcagcag agaacctgcc tcctttgctg caagaagaga ttttgcacct gcgaggacag 1440 ttcctcctcc tcaagaaatg caaggataac aaggtagaag aagatttagc tgcacctccc 1500 ttctag 1506 <210> 36 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> PCSt_amino acid sequence of KB108 <400> 36 Met Ala Met Ala Gly Leu Tyr Arg Arg Val Leu Pro Ser Pro Pro Ala 1 5 10 15 Val Asp Phe Ala Ser Thr Glu Gly Lys Gln Leu Phe Leu Glu Ala Ile 20 25 30 Gln Asn Gly Thr Met Glu Gly Phe Phe Lys Leu Ile Ser Tyr Phe Gln 35 40 45 Thr Gln Ser Glu Pro Ala Tyr Cys Gly Leu Ala Ser Leu Ser Met Val 50 55 60 Leu Asn Ala Leu Ala Ile Asp Pro Gly Arg Lys Trp Lys Gly Pro Trp 65 70 75 80 Arg Trp Phe Asp Glu Ser Met Leu Asp Cys Cys Glu Pro Leu Glu Lys 85 90 95 Val Lys Ala Lys Gly Ile Ser Phe Gly Lys Val Val Cys Leu Ala His 100 105 110 Cys Ala Gly Ala Lys Val Glu Ala Phe Arg Ser Asn His Ser Thr Ile 115 120 125 Asp Asp Phe Arg Lys Gln Val Met Ala Cys Thr Thr Ser Asp Asn Cys 130 135 140 His Leu Ile Ser Ser Tyr His Arg Gly Leu Phe Lys Gln Thr Gly Ser 145 150 155 160 Gly His Phe Ser Pro Ile Gly Gly Tyr His Val Gly Lys Asp Met Ala 165 170 175 Leu Ile Leu Asp Val Ala Arg Phe Lys Tyr Pro Pro His Trp Val Pro 180 185 190 Leu Pro Leu Leu Trp Glu Ala Met Asn Thr Ile Asp Glu Ala Thr Gly 195 200 205 Leu His Arg Gly Phe Met Leu Ile Thr Lys Leu His Arg Ala Pro Ala 210 215 220 Leu Leu Tyr Thr Leu Ser Cys Lys His Glu Ser Trp Val Thr Ile Ser 225 230 235 240 Lys His Leu Met Asp Asp Leu Pro Val Leu Leu Ser Ser Glu Asn Val 245 250 255 Lys Gly Ile Lys Asp Val Leu Ser Thr Val Leu Ser Asn Leu Pro Ser 260 265 270 Asn Phe Val Glu Phe Ile Lys Trp Ile Ala Glu Val Arg Arg Gln Glu 275 280 285 Glu Asn Gly Gln Asn Leu Ser Asp Glu Glu Lys Gly Arg Leu Ala Ile 290 295 300 Lys Glu Glu Val Leu Lys Gln Val Gln Asp Thr Pro Leu Tyr Lys His 305 310 315 320 Val Thr Ser Ile Leu Phe Ser Lys Asn Ser Ile Cys Gln Ser Lys Ala 325 330 335 Ala Ser Asp Ser Ser Leu Ala Asn Val Ala Ala Asn Ile Cys Cys Gln 340 345 350 Gly Ala Gly Leu Phe Ala Gly Arg Ser Gly Ser Ser Asp Arg Phe Cys 355 360 365 Cys Leu Gln Thr Cys Val Arg Cys Tyr Arg Ala Thr Gly Gly Asn Ser 370 375 380 Ala Thr Val Val Ser Gly Thr Val Val Asn Gly Asn Gly Glu Gln Gly 385 390 395 400 Val Asp Val Leu Val Pro Thr Ser Leu Ala Lys Thr Ser Cys Cys Pro 405 410 415 Ser Gly Gln Ala Gly Cys Ser Pro Met His Pro Ala Ser Asn Asp Val 420 425 430 Leu Thr Ala Leu Leu Leu Ala Leu Pro Pro His Thr Trp Ser Arg Ile 435 440 445 Lys Asp Thr Lys Val Leu Gln Glu Ile Glu Asn Leu Val Ser Ala Glu 450 455 460 Asn Leu Pro Pro Leu Leu Gln Glu Glu Ile Leu His Leu Arg Gly Gln 465 470 475 480 Phe Leu Leu Leu Lys Lys Cys Lys Asp Asn Lys Val Glu Glu Asp Leu 485 490 495 Ala Ala Pro Pro Phe *** 500 <210> 37 <211> 915 <212> DNA <213> Artificial Sequence <220> <223> PCSs_gDNA sequence of PCSst <400> 37 atggcgatgg cgggtttgta tcggcgagtt cttccgtccc ctccggctgt tgatttcgct 60 tctactgaag gaaaggcaag ttttagtgct actcttcctt tcttcccttt gaactgatgg 120 ttgaagacta gggttttagc cgtctttgtt tgttgttctg ttctattttg tcactgatga 180 atatggatta tatcataatg ttttaactct ttgtttacta gctggtacca atttgttaat 240 tggtttggac ttcagaggcg gattcagaat tttaaatctg tagttgtgct ttagtatttt 300 gccacaatgg ttgctaacta gtataagtat atagttaatg aaatacgcga tatctgcaat 360 tcaagctgaa cgtaattgat ttagtagagt cagcaagatc caggtgacca aagtgatcag 420 cagcttgatc tgctactcag ccttagggat tggcctatat gatacatgtt agataattgt 480 ttatcgtaaa ttgaccaatt cgctgtttat cgtaattgtt tgtccagacc ccatagtgag 540 aactgtggcc atggcagact taaaagaaaa tgtgataaaa ggaaatcagg aatctgttct 600 gttttacgtg aacttgtaaa tttcgctgtt cttaagggtt tgtagctatt tttgtgcttt 660 ccacatgaag catctgactt tcattttgta ctgattttta tgtgtttttt tggagctgca 720 gcaacttttc ttggaggcca tccagaatgg aaacaatgga aggatttttc aagttgatct 780 cttattttca gacacagtct gaaccggcct attgtggttt ggctagcctt tccatggtct 840 tgaatgccct tgctattgat ccaggaagaa aatggaaagg taattctact atcatcaagt 900 gaatttgtgt tctaa 915 <210> 38 <211> 234 <212> DNA <213> Artificial Sequence <220> <223> PCSs_CDS sequence of PCSst <400> 38 atggcgatgg cgggtttgta tcggcgagtt cttccgtccc ctccggctgt tgatttcgct 60 tctactgaag gaaagcaact tttcttggag gccatccaga atggaaacaa tggaaggatt 120 tttcaagttg atctcttatt ttcagacaca gtctgaaccg gcctattgtg gtttggctag 180 cctttccatg gtcttgaatg cccttgctat tgatccagga agaaaatgga aagg 234 <210> 39 <211> 78 <212> PRT <213> Artificial Sequence <220> <223> PCSs_amino acid sequence of PCSst <400> 39 Met Ala Met Ala Gly Leu Tyr Arg Arg Val Leu Pro Ser Pro Pro Ala 1 5 10 15 Val Asp Phe Ala Ser Thr Glu Gly Lys Gln Leu Phe Leu Glu Ala Ile 20 25 30 Gln Asn Gly Asn Asn Gly Arg Ile Phe Gln Val Asp Leu Leu Phe Ser 35 40 45 Asp Thr Val *** Thr Gly Leu Leu Trp Phe Gly *** Pro Phe His Gly 50 55 60 Leu Glu Cys Pro Cys Tyr *** Ser Arg Lys Lys Met Glu Arg 65 70 75 <210> 40 <211> 6902 <212> DNA <213> Artificial Sequence <220> <223> PCSt_gDNA sequence of PCSst <400> 40 atggcgatgg cgggtttata tcggcgagtt cttccgtcgc ctccggctgt tgatttcgct 60 tctactgaag gaaaggcaag ttttagtgct actctttcct ttttcgtttg tgctgagggt 120 taaagactag ggttttagcc gtctttggtt gttgttctat tttgtcacgg atgaatatgg 180 attatatcat aatcttttag ctatctgttt actagctggt accgatttgt taattggttt 240 ggactttatt cagaattttg aatctgtaat tgtgtcgtta ctatttggcc acaatggttg 300 ctaacttagt ataagtatat atattattaa aataattaaa ctgtgtctgt aattcagctg 360 aaggcaattg atttaataga gtcagcaaga tccaggtgac cacagtgatc aacaacttga 420 tcagctggtc agccttaggg attggcctat atgatacacg ttagataatt gtttattgta 480 agttgattta gacaccaatt cactgctaac tgtccagacc ccataacata tagtaccttt 540 tattcaaatt tgtccttgat gttccacatg gagaactttg gccatggcag tcttaaaaga 600 aaatgtgata aaaggaaatc aggaatctgt ttctttttga cgcggacttg taaattttgc 660 tgttcttaag gttttgtagc tatttttgtg ctttccacat tggagggcat ctgactttca 720 taaattctac tccttcctgc ttcaatgttt tgttgatata tttatttatg atgtacgata 780 tttttttttt ggcaattaac tgtcggtgtc tttgtctgta cttactttta catctacact 840 ttttaagtct taacatccca tttcttgcgg tatgccctta acttccagat actaaaatgt 900 gtgataatat tctagtttat tgtacttgct tgcccttggt ttaggtatca attcatctta 960 ttgttcggtt cgactgttaa ggtgtacatc tgaagttgat gtcattgtac agcctaatac 1020 agatttgctt gaatatcttt tttctccagt ttgatgctgt ttcatgaaat taaaatcctt 1080 tttgtcatta atatgaagag attgaatgca gttttctctg gctctttcca tacataattt 1140 tttatgcgta tctttttatt aaaaaaagtt gtcacataag attttgactt tccattgaag 1200 ttgaccttca gagaggaata gagaaaagga gttatattaa agtatccaag taaacatatg 1260 cttgacatca ttcatattct ttttactctt ctacatatct acagggatgg aatactcagg 1320 ccattaagtc tattacaatt gcgccaatac tctttatttc caagaactta ataagctttt 1380 tgtgccgaat tgctacagtg acattttccc cttcaacttc tgcacttgat tgaaggatga 1440 cttttgcctg ccatatgtaa aatgatatta atacgagatt aatgagttac cttttcccct 1500 ataggtcaaa gcgagaagag ctgcattcct catttgcagc cacagcctca ttgaggcaca 1560 tccctttgac tccttaccag cccaaacaac catatgctgc ttagctcaat tccatctgcc 1620 ttcagttaaa ttttctgctc agactagcca tacccaattc aaatgttgag caactattta 1680 ttagtctatc acattgtagc cttatacctc caatgaatac tcaacataat aatactcctt 1740 ggacgactgc tggtttcctc tgcagatttt tatctatgcc ctcccttcag atcacttgtc 1800 tggatccttg gctcctccca ccctttaagt tatgtcatta tggaagttga atcttttaat 1860 ggggaaagct ctcagttatt actgcaacca ttatcttaag gatctgtttc ggtttgcttt 1920 ctcactgatt gcctgagttt gatcatattg gtttatgata ggcttcctag ctgaaaaagg 1980 ggtagctgtc cctttccttt ttttcccaca atatttcact aggctactgt ggtatcgtat 2040 ggagaacatt gtagcttctc ttagactgag aaactataag aagataggtg tgccagtgac 2100 cgtgtatttg tgcagtgttt tgaatttcat aggaaacaat gttatttagg gagatcctta 2160 actttttcgg aaaaggttaa gtgacccttg cataaacctg gaatttgaag gtctgtctta 2220 cagagatacc tcaaatgccc gcctgatcaa atacaagcca ttcctacatt tatcttgaaa 2280 tgatactatt agatatcaaa ctaagtcttt tgttatatga actgaatgtt atatcaaaaa 2340 taaatttctt ctgtaaacat gaatttgttt tcatcagcat agactgcgtt ttaattagcc 2400 atacctcaga gaaaaaagga aatgcatgaa acggggtgga gggatgagaa agagatacaa 2460 tatctgatac tttgttcagt gactgttctt tttgtactga tttttgcgtg ttttttggag 2520 ctgcagcaac tttttttgga ggccatccag aatggaaaca atggaaggat ttttcaagtt 2580 gatctcttat tttcagacac agtctgaacc ggcctattgt ggtttggcta gcctttctat 2640 ggtcttgaat gcccttgcta ttgatccagg aagaaaatgg aaaggtaact ctgctatcat 2700 caagtgaatc tgtgttccta tccttccgga ctatatcgat gattttgatc ttcacttttt 2760 catggccttg ccttctgaat tgttaataag gtctcaggct ctttatatgt ttatttcctt 2820 gatgaaggtc tttacatctt tattttccaa taatttcgcc tatcccgacc tgcccatgtt 2880 agttataaga tatagcacag agatgtgtag ttcactttgt tttttattgt tgagatctct 2940 attaaaaaaa ataagttgat gccttgtctg tgagctttgt aagttaatct gatatgttgt 3000 gatgcattgg catgagtctg atatcatctg ttctcaacat gaatcctagc cactgttgct 3060 ggacaccttc caaagatcta aactgctata tgtgcaactt aatatttttt cttacctcat 3120 ttattgaagg tgtttattct ctggataatt gttcatcaaa gttgccgttc tagtgcagtt 3180 ttgcaaactt aaggctttaa cagattagac ctcggtaata taattctgag aactccttta 3240 gagttaatat ctgtgtctgt atttcgttcc atttgcattt aacagaaaag ggttcatgca 3300 tctaggagct gttgctctga gttgcctcat gcatattatt tgttgatgtc catttttcca 3360 aacttcatgg tcacatgaaa tcattcttat tgtcagtttc tgtttccaat ttacatgaac 3420 tagaaacatc ttagataata ttttgtttca atgttcacat cttaaaaact tgaaaacctt 3480 ttctttccac caattaactt atatgttagg gtcatatctt ggtcaccaat gtctactgat 3540 attaaagagt cagtttggaa aagaaggagc ttggtgagga cagctttaac gttcttagct 3600 ttcatcacct gaaactgttt gatgcttgta cgtttctctt tcgaacttgg ttgttcatat 3660 cctttttata gtctgcttgc gtcaatgagc ttggagttta ttatcttatc agcttcaaca 3720 aactgtcagg gccttggaga tggtttgatg aatctatgtt ggactgttgt gagcctctgg 3780 agaaggttaa agctaaaggg atctcttttg ggaaagtggt atgtttggct cactgtgcag 3840 gagcgaaggt agaagctttt cgctctaatc atagtactat tgatgacttc cgtaaacaag 3900 tcatggcctg cactactagt gataattgtc atctgatctc atcatatcat agaggccttt 3960 ttaagcaggt aaatgtaaac atagcttctc tatccccatg cttatgattg tgaagaagta 4020 tattgctgca tcgggagttt gaccacacag gatctactga atcttatggc agacaggttc 4080 gggccacttt tcgcctattg gtggttatca cgtgggaaag gatatggcac tgattctaga 4140 tgttgcgagg tttaaatatc ctcctcattg ggttcccctc cctctccttt gggaagccat 4200 gaacacaatt gatgaagcta caggattaca tagggggtat gcacttccag ttagctgtgc 4260 tgtgatattg atattgattt tcataatggc tatgagttgt tgcctgttag catgctcttt 4320 accttgaaca gcgtctcgtt catgcttttt agctgtcaac tgatactggc taagcattta 4380 gcttaaggaa tataaatatg tagaagaagt agttttacta tgtgttttgg tcttcctctt 4440 ataattaaga ctaaaattgg aaattaaatg ctgaactctt tcggcactgc ttctggtctt 4500 cttcaaacat aactgtagat tctcttcatt attttctctt cctattctcc ttctgctcaa 4560 atttagcggt ccgtctatat ccatctcaca cttgatatat ttttatcatt ctgcagcatg 4620 gatttcagtg acttatgtgc aaaaacataa ttttcaggtt tatgctaatt actaagcttc 4680 acagagctcc tgcactgcta tataccctgg taaggtttaa gtagctgcta ttatgttatt 4740 cgctttaaat ataaactcct tcgaagttcg aacaaactat aagaagcaac ttctattact 4800 gcttgtgaga tcctttgcta gttgattctt ttcagtacac cagcttggtc ggatagttgt 4860 taactactac tttacctacc ttttacatgc tataacataa tgataacatc tttgtcaaat 4920 gcttgggaat tgtggtctta gtgccaggtg attagcttgg acttttgttt caaaactatg 4980 atgtcattgc aatatttatg gagtttaaca acattggcct ttagaactat ttaacgtgta 5040 attttttatg taaattttct ataataaaga gggaggaatg tactgtattg aattactcct 5100 ggattttctt ctttctgcga ctagtcatgt attttgaatg gtgaacttct acagagctgt 5160 aaacatgaga gttgggtcac tatctcaaag catttgatgg atgatcttcc tgtcctgtta 5220 agttctgaga atgtgaaggg cataaaagat gttctctcta ctgttctttc aaatctacct 5280 tcaaattttg ttgaattcat aaagtggata gcggaagttc gaaggcaaga ggagaatggt 5340 caaaatttga gtgacgagga gaaaggaagg ctagctatca aggtaaggta tctgaagaaa 5400 tttagtaaat agaaagaaaa aaaagaaggc tcctagaaat ggtcatgtag atttgatcgg 5460 gtaacttgca ggataggtga ttatttatga gttcagtaac cactcttacc ttactttgca 5520 ggaagaggta ttgaaacaag tgcaggacac tcctctttat aagcatgtca caagcatttt 5580 attttcaaaa aattctatct gccagtcaaa agcagcatca gacagcagtt tggctaatgt 5640 tgccgcaaac atttgctgcc aaggagcagg tctttttgca ggaagatctg gttcatcgga 5700 taggttttgc tgtctccaaa catgtgttag atgctacaga gctaccgggg gcaattctgc 5760 tacagtggtg tctgggacag ttgtaaatgg gaatggggag cagggggttg atgttctggt 5820 ccctacatct ctagcaaaga ctagctgctg tccctcaggg caagctggtt gctcgccaat 5880 gcaccctgca agtaacgatg tgctgacagc actattgctg gcattacctc cacatacatg 5940 gtctcgaata aaagatacga aggtcttgca ggaaatagag aaccttgtct cagcagagaa 6000 cctgcctcct ttgctgcaag aagaggtatc tttgtacatt tgtctcttat cacatttgct 6060 ttcttgtttt aaaattcctc tttgttgttt gtgttgggaa gcccagaact ggaggattgc 6120 agtaggttaa gggccagcag aaagctaggc aattttatga ttaatctaac aatattgaaa 6180 tattggaaag aaaggagtcc aaatagagtt aaatggatgt ccaggattta tatagcgacc 6240 ccaactagct taggattgag gcttttgttt tgttgttgtc attttgtatt gggaaattca 6300 catgagcact tagaatggcc ttcataacta tatcagagct ttctacctct tttctaattg 6360 gtagttctta ttatggccca atagaagatt tttcctgcct aagattatct atttcactgc 6420 actgcatatt ttatgaaaaa tagtctaatc ctcttgaagc aggttatcat atcataacag 6480 gcttaactga tttttcattt ctagtctatc tgaaggagca tataactgat aaatcttatg 6540 cataatgaga cctaaggcgc ataactctgt cttctgcatg ttattcagcc gtttaatgag 6600 tttgtctctc atgctatgca tctttgacca attaacttag ttcaacggta tgagttatga 6660 aattctgaga tgtgtgctgg gttgatgaac tagtagatac gctctgagaa tgcattttgt 6720 tctaatgact acttaaatct ttcacttggt taaccattaa acatggtgta atatacttct 6780 gaatatcctt ttgggcgact gcagattttg cacctgcgag gacagttcct cctcctcaag 6840 aaatgcaagg ataacaaggt agaagaagat ttagctgcac ctcccttcta gctttgcttt 6900 cc 6902 <210> 41 <211> 1507 <212> DNA <213> Artificial Sequence <220> <223> PCSt_CDS sequence of PCSst <400> 41 atggcgatgg cgggtttata tcggcgagtt cttccgtcgc ctccggctgt tgatttcgct 60 tctactgaag gaaagcaact ttttttggag gccatccaga atggaaacaa tggaaggatt 120 tttcaagttg atctcttatt ttcagacaca gtctgaaccg gcctattgtg gtttggctag 180 cctttctatg gtcttgaatg cccttgctat tgatccagga agaaaatgga aagggccttg 240 gagatggttt gatgaatcta tgttggactg ttgtgagcct ctggagaagg ttaaagctaa 300 agggatctct tttgggaaag tggtatgttt ggctcactgt gcaggagcga aggtagaagc 360 ttttcgctct aatcatagta ctattgatga cttccgtaaa caagtcatgg cctgcactac 420 tagtgataat tgtcatctga tctcatcata tcatagaggc ctttttaagc agacaggttc 480 gggccacttt tcgcctattg gtggttatca cgtgggaaag gatatggcac tgattctaga 540 tgttgcgagg tttaaatatc ctcctcattg ggttcccctc cctctccttt gggaagccat 600 gaacacaatt gatgaagcta caggattaca tagggggttt atgctaatta ctaagcttca 660 cagagctcct gcactgctat ataccctgag ctgtaaacat gagagttggg tcactatctc 720 aaagcatttg atggatgatc ttcctgtcct gttaagttct gagaatgtga agggcataaa 780 agatgttctc tctactgttc tttcaaatct accttcaaat tttgttgaat tcataaagtg 840 gatagcggaa gttcgaaggc aagaggagaa tggtcaaaat ttgagtgacg aggagaaagg 900 aaggctagct atcaaggaag aggtattgaa acaagtgcag gacactcctc tttataagca 960 tgtcacaagc attttatttt caaaaaattc tatctgccag tcaaaagcag catcagacag 1020 cagtttggct aatgttgccg caaacatttg ctgccaagga gcaggtcttt ttgcaggaag 1080 atctggttca tcggataggt tttgctgtct ccaaacatgt gttagatgct acagagctac 1140 cgggggcaat tctgctacag tggtgtctgg gacagttgta aatgggaatg gggagcaggg 1200 ggttgatgtt ctggtcccta catctctagc aaagactagc tgctgtccct cagggcaagc 1260 tggttgctcg ccaatgcacc ctgcaagtaa cgatgtgctg acagcactat tgctggcatt 1320 acctccacat acatggtctc gaataaaaga tacgaaggtc ttgcaggaaa tagagaacct 1380 tgtctcagca gagaacctgc ctcctttgct gcaagaagag attttgcacc tgcgaggaca 1440 gttcctcctc ctcaagaaat gcaaggataa caaggtagaa gaagatttag ctgcacctcc 1500 cttctag 1507 <210> 42 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> PCSt_amino acid sequence of PCSst <400> 42 Met Ala Met Ala Gly Leu Tyr Arg Arg Val Leu Pro Ser Pro Pro Ala 1 5 10 15 Val Asp Phe Ala Ser Thr Glu Gly Lys Gln Leu Phe Leu Glu Ala Ile 20 25 30 Gln Asn Gly Asn Asn Gly Arg Ile Phe Gln Val Asp Leu Leu Phe Ser 35 40 45 Asp Thr Val *** Thr Gly Leu Leu Trp Phe Gly *** Pro Phe Tyr Gly 50 55 60 Leu Glu Cys Pro Cys Tyr *** Ser Arg Lys Lys Met Glu Arg Ala Leu 65 70 75 80 Glu Met Val *** *** Ile Tyr Val Gly Leu Leu *** Ala Ser Gly Glu 85 90 95 Gly *** Ser *** Arg Asp Leu Phe Trp Glu Ser Gly Met Phe Gly Ser 100 105 110 Leu Cys Arg Ser Glu Gly Arg Ser Phe Ser Leu *** Ser *** Tyr Tyr 115 120 125 *** *** Leu Pro *** Thr Ser His Gly Leu His Tyr *** *** *** Leu 130 135 140 Ser Ser Asp Leu Ile Ile Ser *** Arg Pro Phe *** Ala Asp Arg Phe 145 150 155 160 Gly Pro Leu Phe Ala Tyr Trp Trp Leu Ser Arg Gly Lys Gly Tyr Gly 165 170 175 Thr Asp Ser Arg Cys Cys Glu Val *** Ile Ser Ser Ser Leu Gly Ser 180 185 190 Pro Pro Ser Pro Leu Gly Ser His Glu His Asn *** *** Ser Tyr Arg 195 200 205 Ile Thr *** Gly Val Tyr Ala Asn Tyr *** Ala Ser Gln Ser Ser Cys 210 215 220 Thr Ala Ile Tyr Pro Glu Leu *** Thr *** Glu Leu Gly His Tyr Leu 225 230 235 240 Lys Ala Phe Asp Gly *** Ser Ser Cys Pro Val Lys Phe *** Glu Cys 245 250 255 Glu Gly His Lys Arg Cys Ser Leu Tyr Cys Ser Phe Lys Ser Thr Phe 260 265 270 Lys Phe Cys *** Ile His Lys Val Asp Ser Gly Ser Ser Lys Ala Arg 275 280 285 Gly Glu Trp Ser Lys Phe Glu *** Arg Gly Glu Arg Lys Ala Ser Tyr 290 295 300 Gln Gly Arg Gly Ile Glu Thr Ser Ala Gly His Ser Ser Leu *** Ala 305 310 315 320 Cys His Lys His Phe Ile Phe Lys Lys Phe Tyr Leu Pro Val Lys Ser 325 330 335 Ser Ile Arg Gln Gln Phe Gly *** Cys Cys Arg Lys His Leu Leu Pro 340 345 350 Arg Ser Arg Ser Phe Cys Arg Lys Ile Trp Phe Ile Gly *** Val Leu 355 360 365 Leu Ser Pro Asn Met Cys *** Met Leu Gln Ser Tyr Arg Gly Gln Phe 370 375 380 Cys Tyr Ser Gly Val Trp Asp Ser Cys Lys Trp Glu Trp Gly Ala Gly 385 390 395 400 Gly *** Cys Ser Gly Pro Tyr Ile Ser Ser Lys Asp *** Leu Leu Ser 405 410 415 Leu Arg Ala Ser Trp Leu Leu Ala Asn Ala Pro Cys Lys *** Arg Cys 420 425 430 Ala Asp Ser Thr Ile Ala Gly Ile Thr Ser Thr Tyr Met Val Ser Asn 435 440 445 Lys Arg Tyr Glu Gly Leu Ala Gly Asn Arg Glu Pro Cys Leu Ser Arg 450 455 460 Glu Pro Ala Ser Phe Ala Ala Arg Arg Asp Phe Ala Pro Ala Arg Thr 465 470 475 480 Val Pro Pro Pro Gln Glu Met Gln Gly *** Gln Gly Arg Arg Arg Phe 485 490 495 Ser Cys Thr Ser Leu Leu 500 <210> 43 <211> 304 <212> DNA <213> Artificial Sequence <220> <223> P_U6 sequence <400> 43 agaaatctca aaattccggc agaacaattt tgaatctcga tccgtagaaa cgagacggtc 60 attgttttag ttccaccacg attatatttg aaatttacgt gagtgtgagt gagacttgca 120 taagaaaata aaatctttag ttgggaaaaa attcaataat ataaatgggc ttgagaagga 180 agcgagggat aggccttttt ctaaaatagg cccatttaag ctattaacaa tcttcaaaag 240 taccacagcg cttaggtaaa gaaagcagct gagtttatat atggttagag acgaagtagt 300 gatt 304

Claims (12)

  1. 모세포에 비하여 PCS (Phytochelatin synthase) 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성이 감소된 식물 세포.
  2. 청구항 1에 있어서, 상기 PCS 유전자는 실베스트리스 꽃담배 (Nicotiana sylvestris)로부터 유래된 PCS 유전자 (NtPCSs), 토멘토시포르미스 꽃담배 (Nicotiana tomentosiformis)로부터 유래된 PCS 유전자 (NtPCSt), 또는 이들의 조합(NtPCSst)인 것인 식물 세포.
  3. 청구항 1에 있어서, RNA 간섭(RNAi; RNA interference) 시스템, 메가뉴클레아제(Meganuclease) 시스템, 징크핑거 뉴클레아제(Zinc finger nuclease) 시스템, 탈렌(TALEN; Transcription Activator-Like Effector Nuclease) 시스템, CRISPR/Cas9 시스템, X-선 조사, 감마선 조사, 에틸 메탄설포네이트(ethyl methanesulfonate) 처리, 다이메틸 설페이트(dimethyl sulfate) 처리로 이루어진 군으로부터 선택되는 적어도 하나에 의해 유전적으로 조작된 것인 식물 세포.
  4. 청구항 1에 있어서, 상기 식물은 재배담배 (Nicotiana tabacum)인 것인 식물 세포.
  5. 청구항 1 내지 4 중 어느 한 항의 식물 세포를 포함하는 중금속 흡수량이 저감된 식물.
  6. 식물체의 모세포에 비하여 PCS 유전자 또는 상기 PCS 유전자에 의해 코딩되는 단백질의 발현 또는 활성을 감소시키는 단계를 포함하는 식물체 내 중금속을 감소시키는 방법.
  7. 청구항 6에 있어서, 상기 PCS 유전자 또는 PC 유전자에 의해 코딩되는 단백질의 발현 또는 활성을 감소시키는 단계에서 RNA 간섭(RNAi; RNA interference) 시스템, 메가뉴클레아제(Meganuclease) 시스템, 징크핑거 뉴클레아제(Zinc finger nuclease) 시스템, 탈렌(TALEN; Transcription Activator-Like Effector Nuclease) 시스템, CRISPR/Cas9 시스템, X-선 조사, 감마선 조사, 에틸 메탄설포네이트(ethyl methanesulfonate) 처리, 다이메틸 설페이트(dimethyl sulfate) 처리로 이루어진 군으로부터 선택되는 적어도 하나를 수행하는 것인 방법.
  8. 청구항 6에 있어서, 상기 중금속은 카드뮴, 비소, 안티몬, 납, 수은, 크롬, 주석, 아연, 바륨, 비스무트, 니켈, 코발트, 망간, 철, 구리 및 바나듐으로 이루어진 군으로부터 선택된 하나 이상인 것인 방법.
  9. PCS 유전자를 표적으로 하는 단일 가이드 RNA를 포함하는 크리스퍼-카스9 (CRISPR-Cas9) 재조합 벡터.
  10. 청구항 9에 있어서, 상기 PCS 유전자는 실베스트리스 꽃담배 (Nicotiana sylvestris)로부터 유래된 PCS 유전자 (NtPCSs), 또는 토멘토시포르미스 꽃담배 (Nicotiana tomentosiformis)로부터 유래된 PCS 유전자 (NtPCSt)인 것인 재조합 벡터.
  11. 청구항 10에 있어서, 상기 NtPCSs 유전자를 표적으로 하는 sgRNA는 서열번호 1 또는 서열번호 2의 염기서열로 이루어진 것이고, NtPCSt 유전자를 표적으로 하는 sgRNA는 서열번호 3 또는 서열번호 4의 염기서열로 이루어진 것이고, 상기 NtPCSs 유전자 및 NtPCSt 유전자를 표적으로 하는 sgRNA는 서열번호 5 또는 서열번호 6의 염기서열로 이루어진 것인 재조합 벡터.
  12. 청구항 9 내지 11 중 어느 한 항의 재조합 벡터로 식물 세포를 형질전환시키는 단계를 포함하는 중금속 흡수량이 저감된 식물체를 제조하는 방법.
KR1020200114891A 2020-09-08 2020-09-08 중금속 저감된 식물체 및 이의 제조방법 KR102522125B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200114891A KR102522125B1 (ko) 2020-09-08 2020-09-08 중금속 저감된 식물체 및 이의 제조방법
PCT/KR2021/011059 WO2022055144A1 (ko) 2020-09-08 2021-08-19 중금속 저감된 형질전환 식물체 및 이의 제조방법
US17/642,050 US20240052360A1 (en) 2020-09-08 2021-08-19 Transgenic plant with reduced heavy metals and methods for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200114891A KR102522125B1 (ko) 2020-09-08 2020-09-08 중금속 저감된 식물체 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20220032937A true KR20220032937A (ko) 2022-03-15
KR102522125B1 KR102522125B1 (ko) 2023-04-14

Family

ID=80630364

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200114891A KR102522125B1 (ko) 2020-09-08 2020-09-08 중금속 저감된 식물체 및 이의 제조방법

Country Status (3)

Country Link
US (1) US20240052360A1 (ko)
KR (1) KR102522125B1 (ko)
WO (1) WO2022055144A1 (ko)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370675B2 (en) * 2016-05-24 2019-08-06 The Trustees Of The University Of Pennsylvania Transgenic plants exhibiting enhanced phytochelatin-based heavy metal tolerance and methods of use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Byoung Doo Lee, NtPCS1 plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco, Plant Biotechnol Rep. (2015) 9, pp.107-114* *
Maria De Benedictis, The Arabidopsis thaliana Knockout Mutant for cad1-3 Is Defective in Callose Deposition~But Shows an Increased Stem Lignification, Front. Plant Sci., 2018, vol9, article 19* *
RAI, P. K. 등, 'Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes', Science of the Total Environment, 2019, 705권, pp.1-24* *

Also Published As

Publication number Publication date
US20240052360A1 (en) 2024-02-15
WO2022055144A1 (ko) 2022-03-17
KR102522125B1 (ko) 2023-04-14

Similar Documents

Publication Publication Date Title
CN116157144A (zh) 尿嘧啶稳定蛋白及其活性片段和变体以及使用方法
CN111902541A (zh) 增加细胞中感兴趣的核酸分子表达水平的方法
WO2018115389A1 (en) Methods of targeted genetic alteration in plant cells
CN116286742B (zh) CasD蛋白、CRISPR/CasD基因编辑系统及其在植物基因编辑中的应用
US11702670B2 (en) Compositions and methods for improving crop yields through trait stacking
KR102522125B1 (ko) 중금속 저감된 식물체 및 이의 제조방법
US12024711B2 (en) Methods and compositions for generating dominant short stature alleles using genome editing
KR102389358B1 (ko) 신규한 니코틴 생합성 유전자 및 그의 용도
EP4130262A1 (en) Plant cells having engineered qpt gene and method for using same
KR102675540B1 (ko) 유전자 교정을 이용한 병 저항성이 조절된 토마토 식물체의 제조방법 및 상기 제조방법에 의해 제조된 토마토 식물체
CN115216488B (zh) 创制水稻大长粒型新种质或大长粒型矮杆新种质的方法及其应用
CN113846120B (zh) 蛋白质TaTIN103在调控小麦分蘖中的应用
US20220195450A1 (en) Methods and compositions for generating dominant short stature alleles using genome editing
CN116063425A (zh) TaGS蛋白质或生物材料在调控植物耐盐碱性、或植物育种中的应用
KR20230048237A (ko) 유전자 교정을 이용한 꼬투리 열개가 지연된 배추과 작물의 제조방법 및 상기 제조방법에 의해 제조된 배추과 작물
CN116134143A (zh) 多种抗病基因及其基因组堆叠件
CN117384917A (zh) 一种烟草果胶甲酯酶抑制子基因NtPMEI及其应用和方法
WO2023230459A2 (en) Compositions and methods for targeting donor polynucelotides in soybean genomic loci
KR20240031315A (ko) 바나나 과실의 갈변 지연 또는 예방
WO2023192855A2 (en) Compositions and methods for enhancing corn traits and yield using genome editing
WO2023192860A2 (en) Compositions and methods for enhancing corn traits and yield using genome editing
WO2023275245A1 (en) Method for editing banana genes
KR20230089306A (ko) 밀 수발아 내성 증진을 위한 유전자 편집용 조성물 및 이를 이용한 유전자 편집방법
CN117866976A (zh) 水稻OsOGG1基因在调控水稻对稻瘟病抗性中的应用
CN117778457A (zh) 蛋白ZmERF018及其编码基因在玉米干旱响应中的应用

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant