KR20220018567A - 전기 히터를 작동시키는 제어 시스템을 교정하는 시스템 및 방법 - Google Patents

전기 히터를 작동시키는 제어 시스템을 교정하는 시스템 및 방법 Download PDF

Info

Publication number
KR20220018567A
KR20220018567A KR1020227000409A KR20227000409A KR20220018567A KR 20220018567 A KR20220018567 A KR 20220018567A KR 1020227000409 A KR1020227000409 A KR 1020227000409A KR 20227000409 A KR20227000409 A KR 20227000409A KR 20220018567 A KR20220018567 A KR 20220018567A
Authority
KR
South Korea
Prior art keywords
temperature
calibration
control system
characteristic
wire heater
Prior art date
Application number
KR1020227000409A
Other languages
English (en)
Inventor
매튜 옌더
브라이언 기어
에릭 미치
스탠튼 에이치. 브라이틀로우
Original Assignee
와틀로 일렉트릭 매뉴팩츄어링 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 와틀로 일렉트릭 매뉴팩츄어링 컴파니 filed Critical 와틀로 일렉트릭 매뉴팩츄어링 컴파니
Publication of KR20220018567A publication Critical patent/KR20220018567A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0233Industrial applications for semiconductors manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Control Of Resistance Heating (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

2-와이어 히터를 제어하도록 구성된 제어 시스템을 교정하는 방법은 상기 제어 시스템에 전기적으로 연결된 부하에 전력을 제공하는 단계, 상기 제어 시스템에 의해 상기 부하의 초기 측정 특성을 생성하는 단계 및 제어기 교정 시스템에 의해 상기 부하의 교정 측정 특성을 생성하는 단계를 포함한다. 상기 방법은 상기 초기 측정 특성과 상기 교정 측정 특성의 상관에 기초하여 교정 측정 기준을 정의하는 단계를 더 포함한다. 상기 교정 측정 기준을 사용하여, 상기 제어 시스템은 상기 2-와이어 히터의 측정 저항에 기초하여 상기 2-와이어 히터의 작동 온도를 결정하기 위한 저항-온도 교정 기준을 정의하도록 더 교정된다.

Description

전기 히터를 작동시키는 제어 시스템을 교정하는 시스템 및 방법
관련 출원에 대한 상호 참조
본원은 2019년 6월 7일에 출원된 미국 임시출원 제62/858,587호에 기초한 우선권과 그의 혜택을 주장한다. 상기 미국 임시출원의 개시내용은 인용에 의해 본원에 보완된다.
기술분야
본 개시내용은 전기 히터를 제어하는 제어 시스템의 교정에 관한 것이다.
본 섹션의 설명은 본 개시내용에 관련된 배경 정보를 제공할 뿐이며 선행기술을 구성하지 않을 수 있다.
반도체 처리용 히터들은 일반적으로 하나 이상의 가열 영역들을 정의하기 위해 기판 및 상기 기판에 제공된 저항 가열 요소들을 지니는 가열 플레이트를 포함한다. 일부 애플리케이션들에서는, 상기 저항 가열 요소들은 히터들로서 그리고 온도 센서들로서 기능을 수행하며 4개의 리드 와이어(예컨대, 2개의 리드 와이어는 상기 가열 요소를 위한 것이고 2개의 리드 와이어는 개별 온도 센서를 위한 것임)가 아닌 단지 2개의 리드 와이어가 상기 저항 가열 요소에 작동 가능하게 접속되어 있다. 한 형태에서, 이러한 저항 가열 요소들은 상대적으로 높은 온도 저항 계수(temperature coefficient of resistance; TCR) 재료에 의해 정의될 수 있고, 상기 저항 가열 요소들의 온도는 상기 가열 요소의 저항에 기초하여 결정될 수 있다.
한 애플리케이션에서는, 상기 히터가 상기 가열 요소들의 저항에 기초하여 상기 저항 가열 요소들의 온도를 측정하는 제어 시스템에 의해 제어된다. 상기 히터를 제어하기 위해, 상기 제어 시스템은 전압 및/또는 전류 측정들에 기초하여 저항을 계산하고 계산된 저항에 기초하여 각각의 영역의 온도를 결정한다. 저항값들을 주어진 저항 히터 재료에 대한 온도에 연관시키는 테이블(table)들과 같은 표준화된 정보가 사용될 수 있지만, 히터들은 비록 상기 히터들이 동일한 타입의 히터들이라 하더라도 서로 다르게 작동할 수 있다. 이는 예를 들어 제조 변동들, 재료 배치(material batch) 변동들, 히터 수명, 사이클 횟수, 및/또는 상기 계산된 온도들을 부정확하게 하는 기타 요인들로 인한 것일 수 있다. 2-와이어 저항 히터들의 사용에 관련된 이들 및 기타 문제들은 본 개시내용에 의해 해결된다.
본 섹션은 본 개시내용에 대한 전반적인 요약을 제공하며 본 개시내용의 전체 범위 또는 본 개시내용의 모든 특징들에 대한 포괄적인 개시가 아니다.
한 형태에서, 본 개시내용은 열을 생성하도록 작동 가능하며 2-와이어 히터의 전기적 특성을 측정하기 위한 센서로서 기능하도록 작동 가능한 2-와이어 히터를 제어하도록 구성된 제어 시스템을 교정하는 방법에 관련된 것이다. 상기 방법은 상기 제어 시스템에 의해 상기 제어 시스템에 전기적으로 연결된 부하에 전력을 제공하는 단계, 상기 제어 시스템에 의해 상기 부하의 초기 측정 특성을 생성하는 단계 및 상기 부하에 연결된 제어기 교정 시스템에 의해 상기 부하의 교정 측정 특성을 생성하는 단계를 포함한다. 상기 초기 측정 특성과 상기 교정 측정 특성은 상기 부하의 전기적 특성을 나타낸다. 상기 부하의 전기적 특성은 전압, 전류, 저항 또는 이들의 조합을 포함한다. 상기 방법은 상기 초기 측정 특성을 상기 교정 측정 특성과 상관시키는 단계, 및 상기 초기 측정 특성과 상기 교정 측정 특성의 상관에 기초하여 교정 측정 기준을 정의하는 단계를 더 포함한다. 상기 제어 시스템은 상기 교정 측정 기준을 채용하여 상기 2-와이어 히터를 제어하기 위한 정확한 측정들을 제공한다.
다른 한 형태에서, 상기 제어 시스템에 의해 초기 측정 특성을 생성하는 단계는 상기 제어 시스템에 의해 상기 부하의 초기 전압 및 초기 전류를 측정하는 단계를 더 포함한다. 상기 초기 측정 특성에는 상기 초기 전압과 상기 초기 전류가 포함된다. 상기 부하에 연결된 제어기 교정 시스템에 의해, 상기 교정 측정 특성을 생성하는 단계는 상기 제어기 교정 시스템에 의해 상기 부하의 교정 전압 및 교정 전류를 측정하는 단계를 더 포함한다. 상기 교정 측정 특성에는 상기 교정 전압과 상기 교정 전류가 포함된다. 상기 초기 전압과 상기 교정 전압은 동시에 측정되고, 상기 초기 전류와 상기 교정 전류는 동시에 측정된다.
또 다른 한 형태에서, 상기 방법은 상기 부하의 초기 전압 및 초기 전류에 기초하여 상기 부하의 초기 저항을 계산하는 단계, 및 사기 부하의 교정 전압 및 교정 전류에 기초하여 상기 부하의 교정 저항을 계산하는 단계를 더 포함한다. 상기 초기 측정 특성은 상기 초기 저항을 더 포함하고 상기 교정 측정 특성은 상기 교정 저항을 더 포함한다.
한 형태에서, 복수 개의 전력 설정점들에서 상기 부하에 전력이 제공된다. 복수 개의 초기 측정 특성들 및 복수 개의 교정 측정 특성을 제공하기 위해, 상기 복수 개의 전력 설정점들 각각에 대해, 상기 초기 측정 특성이 상기 제어 시스템에 의해 생성되고 상기 교정 측정 특성이 상기 제어기 교정 시스템에 의해 생성된다. 상기 복수 개의 초기 측정 특성들은 상기 복수 개의 교정 측정 특성들과 상관되고, 상기 교정 측정 기준은 상기 복수 개의 초기 측정 특성들과 상기 복수 개의 교정 측정 특성들의 상관에 기초하여 정의된다.
다른 한 형태에서, 상기 부하는 조정 가능한 저항을 지니는 제어 가능한 부하이고, 상기 방법은 상기 부하의 저항을 복수 개의 저항 설정점들로 설정하는 단계를 더 포함하며, 복수 개의 초기 측정 특성들 및 복수 개의 교정 측정 특성들을 제공하기 위해, 상기 복수 개의 저항 설정점들 각각에 대해, 상기 초기 측정 특성이 상기 제어 시스템에 의해 생성되고 상기 교정 측정 특성이 상기 제어기 교정 시스템에 의해 생성된다. 상기 복수 개의 초기 측정 특성들은 상기 복수 개의 교정 측정 특성과 상관되고, 상기 교정 측정 기준은 상기 복수 개의 초기 측정 특성들과 상기 복수 개의 교정 측정 특성들의 상관에 기초하여 정의된다.
또 다른 한 형태에서, 상기 제어 시스템이 상기 2-와이어 히터에 전기적으로 연결된 경우, 상기 방법은 상기 제어 시스템에 의해 상기 2-와이어 히터를 복수 개의 온도 설정점들 중에서 하나의 온도 설정점으로 제어하여, 상기 센서 제어 시스템으로부터 상기 2-외이어 히터의 전압 및 전류(V-I) 특성을 그리고 온도 센서 시스템으로부터 상기 2-와이어 히터의 온도 데이터세트를 동시에 획득하는 단계를 더 포함한다. 상기 V-I 특성 및 상기 온도 데이터세트는 상기 복수 개의 온도 설정점들 각각에 대해 획득된다. 상기 방법은 상기 복수 개의 온도 설정점들 각각에 대해 상기 획득된 V-I 특성 및 상기 교정 측정 기준에 기초하여 상기 2-와이어 히터의 저항을 결정하는 단계, 상기 복수 개의 온도 설정점들 각각에 대해 상기 획득된 온도 데이터세트에 기초하여 온도 계측 데이터를 계산하는 단계, 상기 복수 개의 온도 설정점들에 대한 온도 계측 데이터와 상기 2-와이어 히터의 저장을 상관시키는 단계, 및 상기 2-와이어 히터의 측정 저항에 기초하여 상기 2-와이어 히터의 작동 온도를 결정하기 위한 저장-온도 교정 기준을 정의하는 단계를 더 포함한다.
한 형태에서, 상기 제어 시스템으로부터 상기 2-와이어 히터의 V-I를 그리고 상기 온도 센서 시스템으로부터 상기 2-와이어 히터의 온도 데이터세트를 획득하는 단계는 상기 제어 시스템의 센서 회로에 의해 상기 2-와이어 히터의 V-I 특성을 측정하는 단계, 및 상기 온도 센서 시스템에 의해, 상기 온도 설정점에서 상기 2-와이어 히터의 복수 개의 온도 측정들을 측정하는 단계를 더 포함한다. 상기 복수 개의 온도 측정들은 상기 온도 설정점에 대한 온도 데이터세트로서 제공된다.
다른 한 형태에서, 상기 온도 계측 데이터는 평균 온도, 중앙값 온도, 온도 변동, 표준 편차, 최대 온도, 최소 온도, 온도 범위, 3-시그마 값, 또는 이들의 조합을 포함한다.
또 다른 한 형태에서, 상기 부하는 조정 가능한 저항을 지니는 능동 저항 뱅크이다.
한 형태에서, 본 개시내용은 2-와이어 히터를 작동하도록 구성된 제어 시스템을 교정하는 방법에 관련된 것이다. 상기 2-와이어 히터는 열을 발생시키도록 작동 가능하고 상기 2-와이어 히터의 온도를 측정하는 센서로 기능하도록 작동 가능하다. 상기 방법은 상기 제어 시스템에 의해 상기 2-와이어 히터를 복수 개의 온도 설정점들 중에서 하나의 온도 설정점으로 제어하여, 상기 제어 시스템으로부터 상기 2-와이어 히터의 전압 및 전류(V-I) 특성을 그리고 온도 센서 시스템으로부터 상기 2-와이어 히터의 온도 데이터세트를 동시에 획득하는 단계를 포함한다. 상기 V-I 특성 및 상기 온도 데이터세트는 상기 복수 개의 온도 설정점들 각각에 대해 획득된다. 상기 방법은 상기 복수 개의 온도 설정점들 각각에 대해 상기 획득된 V-I 특성에 기초하여 상기 2-와이어 히터의 저항을 결정하는 단계, 상기 복수 개의 온도 설정점들 각각에 대해 상기 획득된 온도 데이터세트에 기초하여 온도 계측 데이터를 계산하는 단계, 복수 개의 온도 설정점들에 대한 온도 계측 데이터와 상기 2-와이어 히터의 저항을 상관시키는 단계, 및 상기 2-와이어 히터의 측정 저항에 기초하여 상기 2-와이어 히터의 작동 온도를 결정하기 위한 저항-온도 교정 기준을 정의하는 단계를 더 포함한다.
다른 한 형태에서, 상기 2-와이어 히터의 V-I 특성 및 상기 온도 데이터세트를 획득하는 단계는 상기 제어 시스템의 센서 회로에 의해, 상기 2-와이어 히터의 V-I 특성을 측정하는 단계, 및 상기 온도 센서 시스템에 의해, 상기 온도 설정점에서 상기 2-와이어 히터의 복수 개의 온도 측정들을 측정하는 단계를 더 포함한다. 상기 복수 개의 온도 측정들은 상기 온도 설정점에 대한 온도 데이터세트로서 제공된다.
또 다른 한 형태에서, 상기 온도 계측 데이터는 평균 온도, 중앙값 온도, 온도 변동, 표준 편차, 최대 온도, 최소 온도, 온도 범위, 3-시그마 값, 또는 이들의 조합을 포함한다.
한 형태에서, 상기 2-와이어 히터는 복수 개의 영역들을 정의하는 복수 개의 저항 가열 요소들을 포함하고, 상기 제어 시스템은 각각의 영역을 독립적으로 제어하도록 구성되며, 상기 제어 시스템으로부터 획득된 2-와이어 히터의 V-I 특성은 상기 복수 개의 영역들 각각에 대한 V-I 특성을 포함한다. 상기 복수 개의 영역들 중 하나의 영역에 대한 V-I 특성은 영역 특성으로서 제공된다. 상기 온도 센서 시스템으로부터 획득된 2-외어어 히터의 온도 데이터세트는 상기 복수 개의 영역들 각각에 대한 적어도 하나의 온도 측정을 포함한다.
다른 한 형태에서, 상기 제어 시스템에 의해, 상기 2-와이어 히터를 상기 온도 설정점으로 제어하는 단계는 상기 2-와이어 히터의 복수 개의 영역들에 전력을 제공하는 단계, 상기 2-와이어 히터의 복수 개의 영역들 각각에 대한 온도를 획득하는 단계, 및 상기 온도 설정점과 동일하지 않은 상기 복수 개의 영역들 중 하나 이상의 영역들의 온도에 응답하여 상기 복수 개의 영역들에 대한 전력 공급을 조정하는 단계를 더 포함한다.
또 다른 한 형태에서, 상기 온도 센서 시스템은 복수 개의 온도 센서들을 포함하고, 상기 방법은, 상기 복수 개의 영역들의 각각의 구역에 대해, 상기 복수 개의 온도 센서들 중 하나 이상의 온도 센서들을 대응하는 영역에 연관시키는 단계를 더 포함한다. 상기 하나 이상의 온도 센서들은 상기 대응하는 영역에 대한 온도 측정을 제공하도록 구성된다.
한 형태에서, 상기 복수 개의 영역들 각각은 상기 복수 개의 온도 센서들 중 2개 이상의 온도 센서에 연관된다. 상기 2개 이상의 온도 센서는 감지 그룹으로서 제공되고, 상기 방법은, 각각의 감지 그룹에 대해, 상기 감지 그룹으로부터의 온도 측정들에 기초하여 상기 감지 그룹의 온도 센서들 중에서 결함이 있는 온도 센서를 식별하는 센서 진단을 수행하는 단계, 결함이 있는 온도 센서를 식별하는 센서 진단에 응답하여 그리고 식별된 결함 있는 온도 센서의 갯수가 결함 있는 센서 임계값보다 작으면 결함이 있는 온도 센서로부터의 온도 측정을 폐기하는 단계, 및 결함이 있는 온도 센서를 식별하는 센서 진단에 응답하여 그리고 식별된 결함 있는 온도 센서의 갯수가 결함 있는 센서 임계값보다 크면 상기 2-와이어 히터에 대한 전력 공급을 차단하는 단계를 더 포함한다.
다른 한 형태에서, 상기 복수 개의 영역들 각각은 상기 복수 개의 온도 센서들 중 2개 이상의 온도 센서에 연관되고 2개 이상의 온도 센서는 감지 그룹으로서 제공된다. 상기 방법은 각각의 감지 그룹에 대해 대응하는 감지 그룹의 2개 이상의 온도 센서로부터의 온도 측정에 기초하여 영역 온도 계측 데이터를 계산하는 단계를 더 포함한다.
또 다른 한 형태에서, 상기 영역 온도 계측 데이터는 평균 온도, 중앙값 온도, 온도 변동, 표준 편차, 최대 온도, 최소 온도, 온도 범위, 3-시그마 값, 또는 이들의 조합을 포함한다.
다른 한 형태에서, 결함이 있는 온도 센서를 식별하지 않는 센서 진단에 응답하여 또는 식별된 결함 있는 온도 센서의 갯수가 결함 있는 센서 임계값보다 작으면, 상기 방법은 상기 복수 개의 온도 설정점들 각각에 대해 상기 획득된 V-I 특성에 기초하여 상기 2-와이어 히터의 저항을 결정하는 단계, 상기 복수 개의 온도 설정점들 각각에 대해 상기 온도 데이터세트에 기초하여 온도 계측 데이터를 계산하는 단계, 복수 개의 온도 설정점들에 대한 온도 계측 데이터와 상기 2-와이어 히터의 저항을 상관시키는 단계, 및 상기 2-와이어 히터의 측정 저항에 기초하여 상기 -와이어 히터의 작동 온도를 결정하기 위한 저항-오?? 교청 기준을 정의하는 단계를 더 포함한다.
적용 가능한 추가 분야들은 여기에서 제공되는 설명으로부터 명백해질 것이다. 여기서 이해하여야 할 점은 설명 및 특정 예들이 단지 예시를 위한 것이며 본 개시내용의 범위를 국한하려는 의도가 아니다는 것이다.
본 개시내용이 잘 이해될 수 있게 하기 위해, 예를 들어 첨부도면들을 참조하여 예를 들어 제공되는 본 개시내용의 다양한 형태가 지금부터 설명될 것이다.
도 1은 본 개시내용에 따른 제어 시스템 및 다중-영역 히터를 지니는 열 시스템(thermal system)의 블록도이다.
도 2는 도 1의 제어 시스템의 블록도이다.
도 3은 도 1의 제어 시스템을 교정하기 위한 본 개시내용에 따른 교정 시스템의 블록도이다.
도 4는 도 1의 다중-영역 히터를 교정하기 위한 본 개시내용에 따른 교정 셋업의 블록도이다.
도 5는 본 개시내용에 따른 열전대 웨이퍼(thermocouple wafer)용 다수의 열전대의 그룹화를 보여주는 도면이다.
도 6은 본 개시내용에 따른 다중-영역 히터 및 제어 시스템을 교정하기 위한 교정 셋업을 보여주는 도면이다.
도 7은 한 대표적인 제어 시스템 교정 루틴의 흐름도이다.
도 8은 한 대표적인 히터 교정 제어 루틴의 흐름도이다.
여기에서 설명되는 도면들은 단지 예시를 위한 것뿐이며 어떤 식으로든 본 개시내용의 범위를 제한하도록 의도된 것이 아니다.
이하의 설명은 본질적으로 단지 대표적인 것뿐이며 본 개시내용, 적용 또는 사용을 국한하도록 의도된 것이 아니다. 여기서 이해하여야 할 점은 도면들 전체에 걸쳐 상응하는 참조번호들이 유사하거나 상응하는 부분들 및 특징들을 나타낸다는 것이다.
온도 센서들 및 히터들로서 작동 가능한 저항 가열 요소들을 지니는 다중-영역 히터용 제어 시스템은 상기 히터의 측정된 전기적 특성들에 기초하여 상기 히터의 열 프로파일(thermal profile)을 선택적으로 조정하도록 하는 맞춤가능 피드백 제어 기능을 통합한다. 특정 다중-영역 히터에 대한 피드백 제어 기능을 수행하기 위해, 상기 제어 시스템은 넓은 전류 범위(10mA-30A) 및 넓은 전압 범위(예컨대, 1-240V)에 걸쳐 상기 히터의 전기적 특성들(예컨대, 전압, 전류 및/또는 저항)을 정확하게 측정하도록 교정된다.
더 구체적으로는, 한 형태에서, 상기 제어 시스템은 전압과 전류(예를 들어, ±140㎲ 내에서 측정된 전압 및 전류)를 동시에 측정하고, 상기 측정에 기초하여 저항을 계산한다. 시간에 따라 전력 파형이 변하므로, 정확한 저항 값(예컨대, ±0.005 오옴, ±0.010 오옴 또는 기타 허용오차들)을 획득하기 위해 전류 및 전압 측정이 서로 더 가깝게 이루어진다. 또한, 유사한 히터 타입들 간의 변동들로 인해, 상기 제어 시스템은 상기 저항에 기초하여 상기 히터의 온도를 정확하게 계산하도록 상기 제어 시스템에 의해 제어되는 상기 히터에 특정한 저항-온도 교정 데이터를 획득하는 교정 프로세스를 수행한다.
본 개시내용은 상기 제어 시스템의 측정 능력들을 교정하고 상기 저항-온도 교정 데이터를 생성하기 위한 교정 프로세스들에 관련된 것이다. 이하에서는, 이러한 프로세스들이 (I) 제어 시스템 측정의 교정; 및 (II) 히터에 대한 저항-온도 교정;으로서 식별된다. 도면들에서는, 전력 라인들이 파선들로서 예시되어 있으며 데이터 신호 라인들이 실선들로서 제공되어 있다.
2가지 교정 프로세스의 적용을 더 잘 이해하기 위해, 한 형태에서의 다중 영역 히터와 같은 히터, 및 제어 시스템을 지니는 열 시스템의 한 대표적인 구성이 먼저 제공된다. 도 1 및 도 2를 참조하면, 열 시스템(100)은 전력 변환기 시스템(108) 및 히터 제어기(106)를 지니는 제어 시스템(104) 및 다중-영역 페데스탈 히터(multi-zone pedestal heater; 102)를 포함한다. 한 형태에서, 상기 히터(102)는 가열 플레이트(110) 및 상기 가열 플레이트(110)의 바닥면에 배치된 지지 샤프트(112)를 포함한다. 상기 가열 플레이트(110)는 기판(111)과, 상기 기판(111)의 표면에 매립되거나 상기 기판(111)의 표면을 따라 배치된 복수 개의 저항 가열 요소들(도시되지 않음)을 포함한다. 상기 기판(111)은 세라믹 또는 알루미늄으로 만들어질 수 있다. 상기 저항 가열 요소들은 상기 제어기(106)에 의해 독립적으로 제어되고 도면에서 점선에 의해 예시된 바와 같이 복수 개의 가열 영역들(114)을 정의한다. 이러한 가열 영역들(114)은 단지 대표적인 것이며 본 개시내용의 범위 내에 여전히 있는 동안 임의의 구성을 취할 수 있다.
한 형태에서, 상기 히터(102)는 상기 저항 가열 요소들이 히터들로서 그리고 온도 센서들로서 기능을 수행하고 4개의 리드 와이어가 아닌 단지 2개의 리드 와이어가 상기 가열 요소에 작동 가능하게 접속되어 있는 "2-와이어" 히터이다. 이러한 2-와이어 기능은 예를 들어 미국 특허 제7,196,295호에 개시되어 있으며, 상기 미국 특허는 본원과 함께 일반 양도되고 그의 전체 내용이 인용에 의해 본원에 보완된다. 전형적으로, 2-와이어 시스템에서는, 상기 저항 가열 요소들이 저항 가열 요소의 평균 온도가 상기 가열 요소의 저항 변화에 기초하여 결정되도록 다양한 온도에 따라 다양한 저항을 나타내는 재료에 의해 정의된다. 한 형태에서는, 상기 저항 가열 요소의 저항이, 먼저 상기 가열 요소들 양단 간의 전압 및 상기 가열 요소들을 통한 전류를 측정함으로써 계산된 다음에 오옴 법칙을 사용하여 저항이 결정된다. 상기 저항 가열 요소는 상대적으로 높은 온도 저항 계수(TCR) 재료, 음(-) TCR 재료, 또는 비-선형 TCR을 지니는 재료에 의해 정의될 수 있다.
상기 제어 시스템(104)은 상기 히터(102)의 작동을 제어하고, 더 구체적으로는 상기 복수 개의 가열 영역들(114) 각각에 대한 전력 공급을 독립적으로 제어하도록 구성된다. 한 형태에서, 상기 제어 시스템(104)은 각각의 가열 영역(114)이 전력을 제공하고 온도를 감지하는 2개의 단자(도시되지 않음)를 지니는 채널(115)에 결합되도록 채널들(115)을 통해 상기 복수 개의 가열 영역들(114)에 전기적으로 연결된다.
한 형태에서, 상기 제어 시스템(104)은 컴퓨팅 장치(117)(예컨대, 특히 디스플레이, 키보드, 마우스, 스피커, 터치 스크린과 같은 하나 이상의 휴먼 인터페이스 장치들을 지니는 컴퓨터)에 전기적으로 연결된다. 한 형태에서, 상기 제어 시스템(104)은 인터록(interlock; 120)을 통해 상기 전력 변환기 시스템(108)에 입력 전압(예컨대, 240V, 208V)을 공급하는 전원(118)에 연결된다. 상기 인터록(120)은 상기 전원(118)과 상기 전력 변환기 시스템(108) 간에 흐르는 전력을 제어하고 상기 전원(118)으로부터의 전력 공급을 차단하도록 상기 히터 제어기(106)에 의해 안전 메커니즘으로서 작동 가능하다. 도 1에 예시되어 있지만, 상기 제어 시스템(104)은 상기 인터록(120)을 포함하지 않을 수 있다.
상기 전력 변환기 시스템(108)은 원하는 전력 출력(예컨대, 원하는 출력 전압(VOUT))을 상기 히터(102)에 인가하기 위해 상기 입력 전압을 조정하도록 작동 가능하다. 한 형태에서, 상기 전력 변환기 시스템(108)은 주어진 영역(114)(도면들에서는 114-1 내지 114-N)의 저항 가열 요소들에 조정 가능한 전력 출력을 인가하도록 작동 가능한 복수 개의 전력 변환기들(122)(도면들에서 122-1 내지 122-N)을 포함한다. 이러한 전력 변환기 시스템의 일 예는 2017년 6월 15일자 출원되고 발명의 명칭이 "열 시스템용 전력 변환기(POWER CONVERTER FOR A THERMAL SYSTEM)"인 계류 중인 미국 출원 제15/624,060호에 기재되어 있으며, 상기 미국 출원은 본원과 함께 일반 양도된 것이고 그의 내용들 전체가 인용에 의해 본원 명세서에 보완된다. 이러한 예에서, 각각의 전력 변환기는 주어진 영역(114)의 하나 이상의 가열 요소들에 대한 입력 전압보다 작거나 같은 원하는 출력 전압을 생성하도록 상기 히터 제어기에 의해 작동 가능한 벅(buck) 변환기를 포함한다. 따라서, 상기 전력 변환기 시스템은 상기 히터의 각각의 영역에 맞춤 가능한 양의 전력(다시 말하면, 원하는 전력 출력)을 제공하도록 작동 가능하다.
2-와이어 히터의 사용으로, 상기 제어 시스템(104)은 상기 저항 가열 요소들의 전압 및/또는 전류를 측정하기 위한 센서 회로들(124)(다시 말하면, 도 2의 참조번호(124-1 내지 124-N))을 포함하며, 상기 저항 가열 요소들의 전압 및/또는 전류는 그 후에 저항, 온도 및 기타 적절한 정보와 같은 상기 영역들의 성능 특성들을 결정하는데 사용된다. 한 형태에서, 주어진 센서 회로(124)는 도면들에서 전류계(126) 및 전압계(128)에 의해 예시된 바와 같이 주어진 영역(114) 내 가열 요소(들)를 통해 흐르는 전류 및 주어진 영역(114) 내 가열 요소(들)에 인가된 전압을 측정하도록 구성된다.
한 형태로, 도 2는 센서 회로들(124-1 내지 124-N)을 보여주며, 여기서 각각의 센서 회로(124)는 주어진 영역의 가열 요소(들)의 전기적 특성들을 측정하도록 주어진 전력 변환기(122)와 주어진 영역(114) 간 전기 회로에 연결된다. 한 형태에서, 각각의 전류계(126)는 전류 측정을 위한 분로(shunt; 130)를 포함하고, 각각의 전압계(128)는 저항기들(132-1, 132-2)로 표현되는 전압 분배기(132)를 포함한다. 대안으로, 상기 전류계(126)는 상기 분로(130) 대신에 홀 효과(Hall effect) 센서 또는 변류기(current transformer)를 사용하여 전류를 측정할 수 있다.
한 형태에서, 상기 전류계(126) 및 상기 전압계(128)는 상기 가열 요소에 인가되는 전력에 관계없이 전류 및 전압을 동시에 측정하기 위해 전력 측정 칩으로서 제공된다. 다른 한 형태에서, 상기 전압 및/또는 전류 측정은 미국 특허 제7,196,295호에 기재되어 있는 바와 같이 제로-교차(zero-crossing)에서 취해질 수 있다.
상기 전류 및 전압 측정에 기초하여, 상기 히터 제어기(106)는 저항, 결과적으로는 상기 영역들(114)을 정의하는 저항 가열 요소들의 평균 온도를 결정한다. 상기 히터 제어기(106)는 하나 이상의 마이크로프로세서들 및 상기 마이크로프로세서들에 의해 실행되는 컴퓨터 판독가능 명령어들을 저장하는 메모리를 포함한다. 상기 히터 제어기(106)는 상기 히터 제어기(106)가 입력 전압의 100%, 입력 전압의 90% 등과 같이 상기 영역에 인가될 원하는 전력을 결정하는 하나 이상의 제어 프로세스들을 수행하도록 구성된다. 대표적인 제어 프로세스들은 2018년 8월 10일자 출원되었고 발명의 명칭이 "히터에 대한 전력을 제어하는 시스템 및 방법(SYSTEM AND METHOD FOR CONTROLLING POWER TO A HEATER)"인 공동 계류중인 미국 출원 제15/624,060호, 및 공동 계류중인 미국 출원 제16/100,585호에 기재되어 있으며, 상기 미국 출원들은 본원과 공통 소유되는 것이고 상기 미국 출원들의 내용들 전체는 인용에 의해 본원 명세서에 보완된다.
여기서 용이하게 이해하여야 할 점은 특정 구성요소들이 예시되고 설명되지만, 상기 열 시스템은 본 개시내용의 범위 내에 있는 동안 다른 구성요소들을 포함할 수 있다는 것이다. 예를 들어, 한 형태에서, 상기 제어 시스템(104)은 고전압 구성요소들로부터 저전압 구성요소들을 분리하고 여전히 신호 교환을 허용하는 전자 구성요소들을 포함할 수 있다.
(I) 제어 시스템 측정의 교정
도 3을 참조하면, 제어기 교정 시스템(200)은 상기 제어 시스템(104)에 의해 취해지는 전류 및 전압 측정을 교정하도록 구성된다. 도 3에서는, 채널들(115)이 도시되어 있지 않고 센서 회로들(124)이 교정 프로세스를 예시하기 쉽게 하도록 전류계(126) 및 전압계(128)를 지니는 것으로 광범위하게 표현되어 있다. 상기 제어기 교정 시스템(200)은 정밀 전원(precision power source; 204), 제어가능 부하(206), 고정밀 전류계(208), 고정밀 전압계(210), 및 교정 제어기(212)를 포함한다. 상기 정밀 전원(204)은 전력 변동(예컨대, ± 0.01V)을 억제하거나 감소시키기 위해 교정 프로세스 동안 상기 제어 시스템(104)에 안정되고 정확한 전력을 제공하도록 전력 입력 인터페이스(도시되지 않음)를 통해 상기 제어 시스템(104)에 전기적으로 접속된다. 한 형태에서, 상기 정밀 전원(204)은 상기 제어 시스템(104)에 넓은 범위의 전압 및 넓은 범위의 전류를 제공하도록 작동 가능하고 하나 이상의 DC 전원들일 수 있다. 예를 들어, 상기 정밀 전원(204)은 CHROMA 62012 타입 DC 전원과 같은 DC 소스의 뱅크(bank)를 포함할 수 있다. 상기 정밀 전원(204)은 또한 하나 이상의 AC 전원일 수 있다. 여기서 용이하게 이해하여야 할 점은 상기 정밀 전원(204)이 다른 적절한 전원일 수 있고 CHROMA 62012 타입 DC 전원에 국한되지 않는다는 것이다.
상기 제어가능 부하(206)는 행렬 측정(procession measurement) 동안 최소한의 변동 내지 무변동을 표시하는 안정된 전류 부하를 제공도록 케이블 인터페이스(도시되지 않음)를 통해 상기 제어 시스템(104)에 전기적으로 연결된다. 한 대표적인 애플리케이션에서, 상기 제어가능 부하(206)는 CHROMA 63600 타입 부하 장치와 같이 0 내지 최소의 오류로 알려진 부하를 생성하는 능동 부하 뱅크(예컨대, 전자 부하 뱅크)이다. 헌 형태에서, 상기 제어가능 부하(206)는 상기 교정 제어기(212)가 상기 부하(206)의 저항을 설정하도록 상기 교정 제어기(212)에 의해 제어 가능하다. 다른 한 형태에서, 상기 제어가능 부하(206)는 고정 저항 부하일 수 있고, 그럼으로써 상기 교정 제어기(212)에 의해 제어되지 않는다. 이러한 형태에서, 상기 교정 제어기(212)는 상기 제어 가능한 부하(206)에 접속되어 있지 않을 수 있다. 여기서 용이하게 이해하여아 할 점은 상기 제어가능 부하(206)가 다른 적절한 제어가능 부하일 수 있으며 CHROMA 63600 타입 부하 장치에 국한되지 않는다는 것이다.
상기 고정밀(high-precision; HP) 전류계(208) 및 고정밀(HP) 전압계(210)는 각각 제어가능 부하(206)를 통한 전류 및 제어가능 부하(206)에 인가된 전압을 측정하도록 구성된다. 한 형태에서, 상기 HP 전류계(208)는 분로(214)의 알려진 저항 및 분로(214) 양단 간의 전압에 기초하여 분로(214)를 통한 전류를 측정하지만, 다른 타입의 전류계(208)도 본 개시내용의 범위 내에 있는 동안 사용될 수 있다. 한 형태에서, 상기 HP 전류계(208) 및 상기 HP 전압계(210)는 7.5 디지트 미터(digit meter)를 지니는 멀티-미터로서 제공된다. 예를 들어, 상기 HP 전류계(208) 및 상기 HP 전압계(210)는 PXI-7 1/2 디지트 타입 멀티-미터일 수 있다. 한 형태에서, 상기 제어 시스템의 전류 및 전압 측정을 상기 HP 전류계(208) 및 TKDRL HP 전압계(210)의 전류 및 전압 측정으로 교정하도록 것으로 제어 시스템의 전류 및 전압 측정치를 교정하기 위해 상기 HP 전류계(208)에 의해 취해지는 전류 측정이 상기 센서 회로(124)의 전류계(126)에 의해 취해지는 전류 측정과 동시에 취해지며 상기 HP 전압계(210)에 의해 취해지는 전압 측정이 상기 센서 회로(124)의 전압계(128)에 의해 취해지는 전압 측정과 동시에 취해진다. 상기 HP 전류계(208) 및 상기 HP 전압계(210)는 여기에서 집합적으로 정밀 전압-전류(VI) 센서들(208, 210)로서 언급될 수 있다.
한 형태에서, 상기 교정 제어기(212)는 하나 이상의 마이크로프로세서들 및 상기 마이크로프로세서들에 의해 실행되는 컴퓨터 판독가능 명령어들을 저장하는 메모리를 지니는 컴퓨터이다. 상기 교정 제어기(212)는 교정을 수행하는 사용자와 통신하기 위해 모니터, 마우스, 키보드, 스피커와 같은 하나 이상의 휴먼 인터페이스(도시되지 않음)에 통신 가능하게 연결된다.
상기 교정 제어기(212)는 전류 및 전압 측정(다시 말하면, 정밀 전류-전압 데이터 또는 교정 측정 특성)을 획득하기 위해 상기 정밀 V-I 센서들(208, 210)에 그리고 상기 제어 시스템(104)에 인가된 입력 전압을 설정하기 위해 상기 정밀 전원(204)에 통신 가능하게 연결된다. 한 형태에서, 상기 교정 제어기(212)는 상기 제어 시스템(104)과 상기 센서 회로(들)(124)에 의해 취해지는 측정과 같은 데이터를 교환하기 위해 상기 제어 시스템(104)에 통신 가능하게 연결된다. 한 형태에서, 상기 교정 제어기(212)는 대략 동일한 측정 시간에(다시 말하면, 동시에) 상기 정밀 VI 센서들(208, 210) 및 상기 센서 회로(들)(124)로부터 전압 측정 및 전류 측정을 획득한다. 다른 한 형태에서, 상기 교정 제어기(212)는 상기 HP 전압계(210) 및 상기 센서 회로(들)(124)로부터 전압 측정을 동시에 획득하고 상기 HP 전류계(208) 및 상기 센서 회로(들)(124)로부터 전류 측정을 동시에 획득하는데 이는 상기 전압 측정의 시간과는 다른 시간에 이루어질 수 있다.
한 형태에서, 4가지 측정이 동시에 획득되는 경우, 상기 교정 제어기(212)는 상기 센서 회로들(124)로부터의 측정들에 기초한 제어 시스템 저항 및 상기 정밀 V-I 센서들(208, 210)로부터의 측정들에 기초하여 교정 저항들을 결정하도록 구성된다. 한 형태에서, 상기 제어 시스템(104)은 전류 및 전압 측정의 RMS(root-mean square)에 기초한 저항을 계산하고, 결과적으로는 높은 샘플 레이트(전력 파형을 정밀하게 관측할 수 있도록 140㎲ 또는 7kHz)를 사용하여 RMS 전류 및 RMS 전압을 동시에 측정하는 진정한 RMS 변환기를 포함할 수 있다. 다른 한 형태에서, 상기 제어 시스템(104)은 상기 정밀 V-I 센서들(208, 210)을 사용하여 피크 전류 및 피크 전압을 동시에 측정하도록 구성되며, 이러한 피크 전류 및 피크 전압은 예를 들어 50Hz의 경우 10ms마다 그리고 60Hz의 경우 8.3ms마다 각각 샘플링될 수 있다. 상기 전압 대 전류 비는 홀수 파형들 및 전압 범위에 걸친 저항 판독값을 제공한다. 이러한 방법을 사용하면 다양한 형상의 순수 DC 신호들 및 AC 신호들 및 하이브리드 AC/DC 시스템과 실질적으로 일치하는 측정이 이루어진다.
상기 제어 시스템(104)이 다수의 센서 회로(124)를 사용하여 다중 영역(114)에 대한 저항을 측정하기 때문에, 각각의 센서 회로(124)로부터의 전압 및 전류 측정이 교정된다. 상기 센서 회로들(124)로부터의 측정들은 한 번 모두, 하나씩, 또는 심지어는 그룹으로 획득될 수 있다. 예를 들어, 한 구성에서는, 각각의 채널(115)이 제어가능 부하(206)에 접속되고 한 세트의 정밀 V-I 센서들(208, 210)은 각각의 부하(206)에서 전류 및 전압을 측정하도록 구성된다. 그 후에, 상기 제어 시스템(104)은 상기 전력 변환기 시스템(108)을 통해 각각의 부하(206)에 전력을 인가하고 각각의 센서 회로(124)로부터의 측정들을 획득할 수 있다. 또한, 상기 교정 제어기(212)는 각각의 세트의 정밀 V-I 센서들(208, 210)로부터의 측정들을 획득한다. 따라서, 상기 센서 회로들(124) 모두로부터의 측정들이 한 번에 획득될 수 있다. 다른 한 구성에서, 상기 센서 회로들(124)로부터의 측정들은 이용 가능한 제어가능 부하들(206) 및 정밀 V-I 센서들(208, 210)의 갯수에 기초하여 한번에 하나씩 또는 그룹으로 획득된다. 예를 들어, 하나의 제어가능 부하(206)와 한 세트의 정밀 V-I 센서들(208, 210)을 사용하여, 상기 제어가능 부하(206)는 선택된 채널(115)에 접속되고 상기 제어 시스템(104)은 상기 선택된 채널(115)에 전력을 전송하고 상기 선택된 채널(115)에 연관된 센서 회로(124)로부터의 측정들을 획득하도록 작동 가능하다.
상기 제어기 교정 시스템(200)과 상기 제어 시스템(104)에 의해 측정된 전기적 특성(들)을 구별하기 위해, 상기 제어 시스템(104)에 의해 취해지는 측정은 부하의 초기 측정 특성으로서 언급될 수 있고 초기 전압, 초기 전류 및/또는 초기 저항을 포함할 수 있다. 상기 초기 측정 특성은 상기 부하의 전기적 특성을 나타낸다. 또한, 상기 제어기 교정 시스템(200)에 의해 취해지는 측정은 상기 부하의 교정 측정 특성으로서 언급될 수 있고 교정 전압, 교정 전류 및/또는 교정 저항을 포함할 수 있다. 상기 교정 측정 특성은 상기 부하의 전기적 특성을 나타낸다.
상기 제어 시스템(104)이 광범위한 전력 레벨들에 걸쳐 저항을 계산하도록 구성되기 때문에, 상기 교정 제어기(212)는 상이한 전력 레벨들(다시 말하면, 전력 설정점들)에서 상기 제어 시스템(104)을 교정한다. 예를 들어, 상기 교정 제어기(212)는 상기 정밀 전원(204)을 통해 적어도 하나의 저전력량(예컨대, 10V) 및 적어도 하나의 고전력량(예컨대, 130V)을 인가하도록 구성된다. 한 형태에서, 전류는 전압을 일정하게 유지하고 프로그램가능 부하를 다른 저항 부하들(다시 말하면, 저항 설정점들)로 변경하여 5A와 같은 적어도 하나의 저전류점, 및 15A와 같은 적어도 하나의 고전류 교정점을 제공함으로써 교정된다. 또 다른 한 형태에서, 상기 교정 제어기(212)는 상기 제어 시스템(104)이 전체 전력량(예컨대, 입력 전압의 100%) 또는 감소된 전력량(예컨대, 입력 전압의 90% 또는 75%)을 상기 전력 변환기 시스템(108)을 통해 상기 부하(206)에 인가하게 할 수 있다.
한 형태에서, 상기 교정 제어기(212)는 상기 제어 시스템(104)에 의한 측정들을 교정하기 위해 상기 정밀 V-I 센서들(208, 210)로부터의 측정들과 상기 제어 시스템(104)으로부터의 측정들을 상관시킨다. 구체적으로는, 상기 교정 제어기(212)가 상기 제어 시스템(104)으로부터의 측정들(다시 말하면, 초기 측정 특성(들))을 상기 정밀 V-I 센서들(208, 210)의 측정(다시 말하면, 교정 측정 특성(들))과 매핑하여 상기 히터의 정확도와 제어를 개선하는 상관 데이터 또는 다시 말하면 교정 측정 기준을 정의한다. 상기 상관 데이터는 또한 상기 측정들(다시 말하면, 상기 제어 시스템 저항 및/또는 상기 교정 저항)에 기초하여 계산된 저항을 포함할 수 있다. 한 형태에서, 상기 상관 데이터는 통계적 관계들(예컨대, 선형 모델), 알고리즘들, 또는 상기 히터 제어기(106)에 의해 저장되는 다른 적절한 상관들로서 제공될 수 있다. 다른 한 형태에서, 상관 데이터는 상기 정밀 V-I 센서들(208, 210)로부터의 측정들을 상기 센서 회로들(124)에 의해 취해지는 측정들과 연관시키는 테이블(table)일 수 있다. 상기 테이블은 또한 상기 교정 제어기(212)에 의해 계산된 저항(들)을 포함할 수 있다. 따라서, 한 형태에서, 상기 교정 측정 기준은 상기 제어 시스템(104)으로부터의 초기 측정 특성(들)과 상기 제어기 교정 시스템(200)으로부터의 교정 측정 특성(들)의 상관에 기초하여 이루어진다. 상기 상관 데이터를 생성하는 교정 제어기(212) 대신에, 다른 한 형태로, 상기 제어 시스템(104)은 상기 상관 데이터를 생성하도록 구성된다. 예를 들어, 상기 교정 제어기(212)는 상기 정밀 V-I 센서들(208, 210)로부터의 측정들과 같은 데이터를 상기 제어 시스템(104)에 제공할 수 있고, 상기 제어 시스템(104)의 히터 제어기(106)는 이러한 측정들 및 상기 센서 회로들(124)로부터의 측정들을 사용하여 상기 상관 데이터를 생성한다.
DC 전원 대신에, 상기 교정 시스템은 AC 전원을 포함할 수 있다. 이러한 구성에서, AC 전력은 고전류(예컨대, 20암페어)에서 작동할 수 있고 능동적으로 냉각되는 저온 계수 저항기에 제공된다. 상기 제어 시스템(104) 및 상기 교정 제어기(212)는 상기 제어 시스템(104)의 전력 변조 범위(예컨대, 0-100%) 및 AC 전압 범위(예컨대, 1-208V)에 걸쳐 알려진 저항을 측정한다.
다중-영역 히터(102)용 제어 시스템(104)은 전력 전달 장치 및 고정밀 저항계로서 작동한다. 저항계들은 일반적으로 시스템을 방해하지 않고 양호한 신호를 획득하기에 충분하도록 측정되는 저항에 적은 전력을 전달한다. 여기서, 상기 제어 시스템(104)은 상당한 전력을 전달하고 고전류 및 전압의 형태로 전력을 전달하면서 정밀 저항계와 동일한 정확도로 구동되는 저항 가열 요소의 저항을 감지한다. 이러한 조건에서의 교정 및 감지는 중요한 과제이다. 본 개시내용의 교정 시스템은, (1) 저전압(들) 및 고전압(들)에서 상기 제어 시스템(104)을 통해 알려진 부하에 제어가능 전기 자극을 제공하고, (2) 각각의 전력 설정점에 대해 상기 제어 시스템(104)으로부터 상기 부하의 전기적 특성을 획득하고 고정밀 전류계 및 전압계를 사용하여 상기 부하의 전기적 특성을 측정하며; 그리고 (4) 상기 제어 시스템(104)의 측정들을 교정하기 위해 고정밀 미터들에 의해 취해지는 측정들을 상기 제어 시스템(104)의 측정과 상관시킨다. 따라서, 상기 전류 및 전압 측정들, 결과적으로는 상기 제어 시스템(104)에 의해 측정된 저항은 고정밀 저항 측정을 달성하도록 (예컨대, ±0.005 오옴 이상으로) 교정된다.
(II) 2-와이어 히터에 대한 저항-온도 교정
2-와이어 히터를 사용하여, 상기 제어 시스템(104)은 주어진 영역(114)의 저항 가열 요소의 저항에 기초하여 주어진 영역(114)의 온도를 결정한다. 상기 온도를 결정하기 위해, 상기 제어 시스템(104)은 다수의 저항을 대응하는 온도 측정들과 연관시키는 저항-온도 교정 데이터(다시 말하면, 저항-온도 교정 기준)를 포함한다. 본원 명세서에서 설명한 바와 같이, 상기 제어 시스템(104)은 이러한 교정 데이터를 생성 및 저장하기 위해 히터 교정 제어를 수행하도록 구성되며, 상기 교정 데이터는 표준 작동들 동안 상기 영역들의 온도를 측정하고 상기 저항 가열 요소들에 대한 전력을 제어하는 데 사용된다. 본 개시내용의 히터 교정 제어는 하나 이상의 영역들을 지니는 2-와이어 히터에 대해 수행될 수 있으며, 다중-영역 히터에 국한되어서는 아니 된다.
도 4를 참조하면, 상기 제어 시스템(104) 및 상기 히터(102)를 포함하는 열 시스템(100)은 상기 히터(102)의 영역들(114)의 온도를 측정하고 상기 측정들을 상기 제어 시스템(104)에 출력하는 온도 센서 시스템(300)의 사용을 통해 교정된다.
한 형태에서, 상기 온도 센서 시스템(300)은 웨이퍼(304) 및 상기 웨이퍼(304)를 따라 분포된 복수 개의 열전대(thermocouple; TC)들(308)을 지니는 열전대(TC) 웨이퍼(302)이다. 교정 동안, 상기 TC 웨이퍼(302)는 상기 다중-영역 히터(102) 상에 위치하고 상기 히터(102)와 상기 TC 웨이퍼(302)를 하우징하는 챔버 내에 음압을 생성하는 것, 상기 TC 웨이퍼(302)를 상기 히터(102)에 본딩하는 것과 같은 다양한 방법을 사용하여서나 또는 중력에 의해 상기 표면에 고정된다. 상기 온도 센서 시스템(300)은 다른 적절한 센서(들)일 수 있고 열전대 웨이퍼에 국한되어서는 아니 된다. 예를 들어, 상기 온도 센서 시스템(300)은 TC 스프링 장착 센서들의 어레이로 상기 히터(102)의 표면을 프로브(probe)하는 TC 지그(TC jig)로서 제공될 수 있다. 다른 dlf 예에서, tkdrl 온도 센서 시스템(300)은 상기 히터(102) 표면의 열 이미지들을 캡처하는 적외선 카메라이다.
한 형태에서, TC 웨이퍼의 TC들은 상기 히터(102)의 열 제어 영역(114)에 상응하는 다수의 그룹으로 구성된다. 예를 들어, 도 5에서, TC 웨이퍼(350)는 상기 TC 웨이퍼(350) 주위에 분포된 26개의 TC(화살표들로 표시됨)를 포함한다. 상기 TC들은 6개의 그룹으로 배열되며, 여기서 그룹 1에는 6개의 TC가 있고, 그룹들 2, 3, 4, 5, 6 각각에는 4개의 TC가 있다. 그룹 1은 상기 히터(102)의 중앙 영역에 제공된 영역과 상관되고, 그룹들 2-6은 상기 히터(102)의 외부 링을 따라 제공된 하나 이상의 영역들과 상관된다. TC 웨이퍼의 TC들은 상기 히터(102)의 영역들과 상관하도록 다양한 적절한 방식으로 그룹화될 수 있고 도 5에 예시된 구성에 국한되어서는 아니 된다.
상기 제어 시스템(104)은 상기 TC 웨이퍼(302)에 접속하기 위한 입력/출력 인터페이스(도시되지 않음)를 포함한다. 예를 들어, 도 6은 페데스탈 히터(400)가 TC 웨이퍼(402)를 수용하도로 하는 한 대표적인 구성을 보여준다. 상기 TC 웨이퍼는 복수 개의 TC 센서들과 상기 TC 센서들로부터 연장되는 복수 개의 와이어들을 포함한다. 한 형태에서, 상기 TC 센서들은 상기 TC 센서들로부터의 측정들을 모니터링하는 데 사용되는 TC 스캐너 시스템(406)을 통해 제어 시스템(404)에 접속된다. 상기 TC 센서들은 다른 적절한 방식으로 상기 제어 시스템(404)에 접속될 수 있으며 상기 TC 스캐너 시스템(406)에 국한되어서는 아니 된다. 상기 유선 접속을 통해, 상기 제어 시스템(404)의 히터 제어기는, 한 영역의 평균 온도, 각각의 TC로부터의 개별 온도 측정들, 표준 편차, 특히 상기 TC 웨이퍼(402)의 TC들로부터의 표준 편차와 같은 온도 측정들을 수신한다. 상기 히터(400) 및 상기 제어 시스템(404)은 각각 상기 히터(102) 및 상기 제어 시스템(104)과 유사하다.
도 4를 참조하면, 상기 제어 시스템(104)은 다양한 영역 및 히터(102) 전체에 대한 저항-온도 교정 데이터를 생성하기 위해 상기 히터 제어기(106)에 제공되는 히터 교정 제어부(310)를 포함하도록 구성된다. 한 형태에서, 상기 TC 웨이퍼(302)와 상기 제어 시스템(104) 간의 유선 접속에 기초하여, 상기 히터 교정 제어부(310)는 상기 TC 센서들(308)을 그들에 대응하는 온도 측정들에 매핑시키고, 상기 온도 측정들을 상기 TC 웨이퍼(302) 상의 그들의 물리적 위치들에 매핑시킨다. 따라서, 상기 온도 측정들은 상기 히터(102) 상의 열 제어 영역들에 상응하는 정의된 그룹들에 더 연관되고, 결과적으로는 상기 히터(102)의 주어진 영역에 대한 센서들의 그룹을 식별하게 해준다.
한 형태에서, 상기 히터 교정 제어부(310)는 상기 히터(102)가 균일한 열 프로파일을 지니도록 상기 히터를 다수의 온도 설정점으로 가열한다. 각각의 온도 설정점에 대해, 상기 히터 교정 제어부(310)는 상기 TC 센서(308)로부터 온도 측정들을 수신하고 상기 센서 회로들(124)로부터 전기적 특성(예컨대, 전압 및/또는 전류) 측정들을 수신한다. 온도 측정들(다시 말하면, 온도 데이터세트)에 기초하여, 상기 히터 교정 제어부(310)는 주어진 설정점에 대해 각각의 그룹에 대한 온도 계측 데이터를 생성하며, 이는, 상기 그룹에 연관된 대응하는 히터 영역의 평균 온도에 상응하는 평균 온도; 대응하는 히터 영역의 변동에 상응하는 온도의 변동; 대응하는 히터 영역에 대한 표준 편차에 상응하는 온도의 표준 편차; 최대 온도; 최소 온도; 온도 범위; 3-시그마 값; 및 상기 그룹 내 최소, 최대, 및 중간 센서들의 인덱스들; 중의 적어도 하나를 포함할 수 있다. 특정 계측 데이터가 리스트되어 있지만, 상기 히터 교정 제어부(310)는 상기 온도 측정들에 기초하여 다른 계측 데이터를 계산할 수 있다.
각각의 그룹에 대한 계측 데이터를 결정하는 것 외에도, 상기 히터 교정 제어부(310)는 전체 TC 웨이퍼(302), 결과적으로는 히터(102) 전체에 대한 계측 데이터를 계산한다. 예를 들어, 상기 평균 온도, 상기 중간 온도, 상기 최대 온도, 상기 최소 온도 및 기타 계측 데이터는 모든 온도 측정들에 기초하여 계산된다. 이러한 측정치들은 단지 단일 구역이 아니라 상기 히터(102)의 표면에 걸쳐 균일한 열 분포를 제공하기 위해 상기 히터(102)를 모니터링하고 제어하는 데 사용된다.
한 형태에서, 상기 히터 교정 제어부(310)는 주어진 그룹의 중간(평균) 온도를 대응하는 영역에 대한 평균 온도로서 연관시킨다. 온도 측정 시에 한 영역에 대해 측정된 전압 및/또는 전류에 기초하여, 상기 히터 교정 제어부(310)는 상기 영역의 저항 가열 요소의 저항을 결정하고 상기 영역의 저항을 대응하는 그룹의 평균 온도에 상관시킨다. 한 형태에서, 상기 히터 교정 제어부(310)는 전기적 특성(다시 말하면, 전압, 전류 및/또는 저항)을 결정할 때 교정 측정 기준을 채용한다. 상기 저항 가열 요소의 저항은 저항-온도 교정 데이터의 일부로서 각각의 설정점에서 각각의 영역에 대해 저장된다. 상기 저항-온도 교정 데이터를 지님으로써, 상기 제어 시스템(104)은 실제 온도에 대한 직접적인 프록시로서 저항을 사용하여 그의 감지된 온도를 통해 상기 영역들을 정확하게 제어할 수 있다. 상기 평균 온도 대신에 또는 평균 온도에 추가하여, 범위, 중앙값, 최소값 및 최대값과 같은 다른 계측 소스들이 대안으로 제어 소스들로서 사용될 수 있다.
상기 히터 교정 제어부(310)는 하나 이상의 계측 데이터를 사용하여 가능한 결함 센서들을 식별하기 위해 온도 센서 시스템(300)에 대한 진단을 추가로 수행할 수 있다. 다시 말하면, 정상적인 마모, 과도한 사용 및 환경 조건과 같은 다양한 이유로 센서들이 고장날 수 있으며, 센서로부터의 비정상적인 판독은 온도 교정을 왜곡하여 불량한 균일성을 유발한다. 한 형태에서, 주어진 그룹에서 결함이 있는 센서들을 검출하기 위해, 상기 히터 교정 제어부(310)는 상기 센서들로부터의 온도 측정들을 주어진 그룹에 대한 중앙 온도와 비교한다. 온도 판독값이 미리 정의된 양(다시 말하면, ±10℃)만큼 중앙값에서 벗어나면, 상기 히터 교정 제어부(310)는 잘못된 온도 판독값을 출력하는 센서가 결함이 있는 것으로 식별한다. 온도 변동 허용오차는 미리 정의될 수도 있고 모델 히터들 및 제어 시스템들의 실험적 테스트에 기초하여 결정될 수도 있다. 상기 히터 교정 제어부(310)는 결함이 있는 센서들을 식별하고 결함이 있는 센서들을 평균 온도와 같은 하나 이상의 계측 데이터를 계산하는 것으로부터 제외한다.
상기 진단의 일부로서, 상기 히터 교정 제어부(310)는 온도 센서 시스템(300)이 결함이 있는 것으로 간주되기 전에 각각의 영역에 대해 허용되는 결함 센서의 최대 개수를 정의한다. 예를 들어, 4개의 TC 센서가 있는 그룹의 경우, 결함으로 간주되기 전에 상기 그룹에 1개의 결함 센서가 허용되고 5개의 TC 센서가 있는 그룹에 대해 상기 그룹에 2개의 결함 센서가 허용된다. 따라서, 센서들의 임의 그룹이 허용 가능한 결함 센서의 개수를 초과한 경우, 상기 히터 교정 제어부(310)는 교정 프로세스를 중지하고(예컨대, 상기 히터(102)에 대한 전력 공급을 턴오프하고) 결함이 있는 온도 센서 시스템(300)을 사용자에게 알린다. 허용 가능한 결함 센서들의 개수는 미리 정의되며 상기 그룹 내 센서들의 개수와 상기 히터(102)에 대해 제공된 정확도 수준에 기초하여 이루어질 수 있다.
상기 TC 센서들의 온도 측정들과 상기 센서 회로들로부터의 전압 및 전류 측정들을 사용하여, 상기 히터 제어기는 상기 센서 어레이를 통한 직접 제어 온도와 같은 알고리즘을 사용하여 자체 교정하도록 구성된다. 다시 말하면, 한 형태에서, 상기 히터는 상기 TC 센서들로부터의 측정들에 기초하여 상기 히터 제어기에 의해 결정된 평균 온도로 제어된다. 상기 히터는 또한, 테스트 중인 히터와 동일한 등급인 이전 히터들로부터의 데이터에 기초하여 상기 히터의 저항 가열 요소들에 의해 측정된 바와 같은 공칭 온도로 제어될 수 있다. 이러한 데이터는 생산된 각각의 고유 페더스탈에 대해 가까울 수 있지만 정확하지 않을 수 있다.
작동 시, 상기 제어 시스템에 의해 수행되는 히터 교정 제어부는 상기 온도 센서 시스템이 셋업(set-up)될 때(예컨대, 상기 온도 센서 시스템이 상기 히터에 위치하여 고정되고 상기 제어기에 통신 가능하게 연결될 때) 시동될 수 있다. 한 형태에서, 상기 히터 교정 제어부는 온도 설정점들과 같은 다수의 설정점에서 상기 히터를 제어한다. 각각의 설정점에 대해, 상기 히터는 히터 및/또는 TC 웨이퍼가 평형 상태에 도달할 때까지 상기 설정점에서 유지되며, 상기 제어 시스템은 상기 센서 회로들로부터의 데이터를 기초하여 각각의 영역에서의 저항을 측정 및 기록하고, 상기 온도 센서 시스템으로부터 온도 측정들을 획득한다. 그 후에, 상기 제어 시스템은 각각의 영역에 대해 그리고 히터 전체에 대해 평균 온도와 같은 계측 데이터를 계산한다. 상기 정의된 설정점들, 상기 측정된 저항, 및/또는 하나 이상의 계측 데이터는 저항-온도 교정 데이터로서 저장될 수 있고 테이블과 같은 다양한 적절한 방식으로 제공될 수 있다. 상기 교정 동안, 상기 제어 시스템은 상기 온도 센서 시스템이 설정된 매개변수들 내에서 작동하는지를 확인하기 위해 여기에서 설명한 바와 같이 센서 진단들을 수행할 수 있다.
한 형태에서, 상기 제어 시스템은 사용자에게 정보를 표시하고 사용자로부터의 커맨드들을 수신하기 위한 하나 이상의 그래픽 사용자 인터페이스들을 표시할 수 있다. 예를 들어, 한 형태에서, 상기 제어 시스템은 상기 교정 데이터의 곡선, 상기 히터의 열 패턴, 및/또는 각각의 영역 및 전체 히터에 대한 계측 데이터를 표시할 수 있다. 이러한 정보를 통해 원하는 온도 프로파일과 매치(match)하도록 상기 영역을 최적화할 수 있으며 최적의 균일성을 위해 상기 히터와 상기 제어 시스템이 함께 작동할 수 있다.
저항-온도 교정 데이터를 사용하여, 상기 제어 시스템은 모든 영역들의 폐쇄 루프/서보 제어를 제공하기 위해 정확한 정밀도로 그리고 상기 영역들에서 개별 온도 센서를 사용하지 않고 다중-영역 히터의 각각의 영역의 온도를 측정한다. 여기에서 설명한 바와 같이, 상기 교정 프로세스는 자동화되어 있고, 그래서 운영 요원에게는 온도 센서 시스템을 설치하고 제어 시스템에 저장된 교정을 시작하는 방법 외에 교정에 대한 자세한 이해가 필요하지 않다. 한 형태에서, 열 시스템은 본 개시내요의 교정 프로세스들 중 하나 또는 양자 모두를 구현할 수 있다.
도 7을 참조하면, 한 대표적인 제어 시스템 교정 루틴(500)이 제공된다. 상기 제어 시스템 교정 루틴은 본 개시내용의 제어기 교정 시스템에 의해 수행된다. 단계 502에서, 상기 시스템은 상기 제어 시스템을 통해 상기 부하에 전력을 제공하고, 단계 504에서 상기 시스템은 상기 제어 시스템으로부터 상기 부하의 초기 측정 특성을 생성하고 상기 제어기 교정으로부터 상기 부하의 교정 측정 특성을 생성한다. 한 형태에서, 일단 생성되면, 상기 부하에 대한 전력 공급이 턴오프될 수 있다. 상기 초기 측정 특성 및 상기 교정 측정 특성은 전압, 전류 및/또는 저항을 포함하는 상기 부하의 전기적 특성을 나타낸다. 더 구체적으로, 한 형태에서, 상기 초기 측정 특성을 생성하기 위해, 상기 부하의 초기 전압 및 초기 전류는 상기 제어 시스템에 의해 측정되고, 상기 교정 측정 특성을 생성하기 위해, 상기 부하의 교정 전압 및 교정 전류는 상기 제어기 교정 시스템에 의해 측정된다. 한 형태에서, 상기 초기 전압과 상기 교정 전압이 동시에 측정되고, 상기 초기 전류와 상기 교정 전류가 동시에 측정된다. 다른 한 형태에서, 초기 전압, 초기 전류, 교정 전압 및 교정 전류가 동시에 측정된다. 한 형태에서, 상기 부하의 초기 저항은 상기 초기 전압 및 상기 초기 전류에 기초하여 계산되고 초기 측정 특성으로서도 제공되며, 상기 부하의 교정 저항은 상기 부하의 교정 전압 및 교정 전류에 기초하여 계산되고 교정 측정 특성으로서도 제공된다.
단계 506에서, 상기 시스템은 제어 시스템에 의한 측정들을 교정하도록 상기 초기 측정 특성을 상기 교정 측정 특성과 상관시킨다. 단계 508에서, 상기 시스템은 상기 초기 측정 특성과 상기 교정 측정 특성의 상관에 기초하여 교정 측정 기준을 정의한다.
루틴 500은 히터 제어 교정을 수행하기 위한 하나의 대표적인 루틴일 뿐이며 다양한 적절한 방식으로 구성될 수 있다. 예를 들어, 한 형태에서, 상기 교정 측정 기준은 다수의 전력 설정점 및/또는 상기 부하의 다수의 알려진 저항(다시 말하면, 부하 저항)에 대해 정의될 수 있다. 각각의 전력 및/또는 부하 저항에 대해, 상기 초기 측정 특성과 상기 교정 측정 특성이 생성된 다음에 상기 교정 측정 기준을 정의하도록 상관된다.
도 8을 참조하면, 상기 제어 시스템에 의해 수행되는 한 대표적인 히터 교정 제어 루틴 600이 제공된다. 상기 루틴 600은 온도 센서 시스템이 상기 히터의 온도 측정들을 제공하기 위해 상기 제어 시스템에 접속될 때 실행될 수 있다. 단계 602에서, 상기 히터는 복수 개의 온도 설정점들 중에서 하나의 온도 설정점으로 제어된다. 단계 604에서, 상기 히터의 온도 데이터세트 및 상기 전압 및 전류(V-I) 특성이 획득된다. 상기 V-I 특성 및 온도 데이터세트는 각각의 온도 설정점에 대해 수집된다. 단계 606에서, 상기 제어 시스템은 각각의 온도 설정점에 대해 상기 온도 설정점에 대해 획득된 V-I 특성에 기초하여 상기 히터의 저항을 결정한다. 단계 608에서, 상기 제어 시스템은 상기 온도 설정점에 대해 획득된 온도 데이터세트에 기초하여 온도 계측 데이터를 결정한다. 한 형태에서, 상기 온도 계측 데이터는 평균 온도, 중앙값 온도, 온도 변동, 표준 편차, 최대 온도, 최소 온도, 온도 범위, 및/또는 3-시그마 값을 포함한다. 단계 610에서, 상기 제어 시스템은 상기 히터의 저항들과 상기 온도 설정점들에 대한 온도 계측 데이터를 상관시킨다. 단계 612에서, 상기 제어 시스템은 상기 히터의 측정 저항에 기초하여 상기 히터의 작동 온도를 결정하기 위한 저항-온도 교정 기준을 정의한다.
상기 히터가 다중-영역 히터인 경우, 상기 영역들의 온도들이 상기 온도 설정점과 실질적으로 동일하도록 상기 영역들 각각에 전력이 제공되어 제어된다. 또한, 상기 영역들 각각에 대해 상기 V-I 특성 및 온도 측정들이 캡처된다. 상기 온도 센서 시스템으로부터의 상기 히터의 온도 데이터세트에는 상기 영역들 각각에 대한 적어도 하나의 온도 측정이 포함된다.
상기 루틴 600은 히터 제어 교정을 수행하기 위한 하나의 대표적인 루틴일 뿐이며 다양한 적절한 방식으로 구성될 수 있다. 예를 들어, 한 형태에서, 상기 루틴은 가능한 결함 센서들을 식별하기 위해 상기 온도 센서 시스템에 대한 진단을 수행할 수 있다. 더 구체적으로는, 한 형태에서, 다중-영역 히터에 대한 각각의 영역은 상기 온도 센서 시스템의 온도 센서들 중에서 2개 이상의 온도 센서(다시 말하면, 감지 그룹)에 연관된다. 각각의 감지 그룹에 대해, 상기 감지 그룹으로부터의 온도 측정들에 기초하여 상기 감지 그룹의 온도 센서들 중에서 결함이 있는 온도 센서를 식별하기 위해 센서 진단이 수행된다. 상기 센서 진단에서 결함이 있는 온도 센서가 식별되고 식별된 결함이 있는 온도 센서의 갯수가 결함이 있는 센서 임계값보다 적은 경우, 온도 계측 데이터를 결정하기 전에 결함이 있는 온도 센서로부터의 온도 측정값이 폐기된다. 식별된 결함 온도 센서의 갯수가 결함 센서 임계값보다 크면 상기 히터의 전력 공급이 턴오프된다. 또한, 달리 명시되지 않는 한, 허용오차들, 온도들, 전압들, 전류들 또는 기타 특성들을 나타내는 모든 수치들은 예로서 제공된 것이다. 따라서, 여기서 용이하게 이해하여야 할 점은 본 개시내용의 범위 내에 있는 동안 다른 수치들이 사용될 수 있다는 것이다.
여기에서 달리 명시적으로 표시되지 않는 한, 기계적/열적 속성들, 조성 백분율들, 치수들 및/또는 허용오차들 또는 기타 특성들을 나타내는 모든 수치들은 본 개시내용의 범위를 설명할 때 "약" 또는 "대략"이라는 단어로 수정되는 것으로서 이해되어야 한다. 이러한 수정은 산업상의 관행, 재료, 제조 및 조립 공차 및 테스트 기능을 포함한 다양한 이유로 필요하다.
여기에서 사용되는 문구 A, B, 및 C 중 적어도 하나는 비-배타적 논리 OR을 사용하여 논리(A OR B OR C)를 의미하는 것으로 해석되어야 하며, "적어도 하나의 A, 적어도 하나의 B, 그리고 적어도 하나의 C를 의미하는 것으로 해석되어서는 아니 된다.
본원에서 "제어기"라는 용어는 "회로"라는 용어로 대체될 수 있다. "제어기"라는 용어는 ASIC(Application Specific Integrated Circuit); 디지털, 아날로그 또는 혼합 아날로그/디지털 개별 회로; 디지털, 아날로그 또는 혼합 아날로그/디지털 통합 회로; 조합 논리 회로; FPGA(field programmable gate array); 코드를 실행하는 프로세서 회로(공유, 전용 또는 그룹); 상기 프로세서 회로에 의해 실행되는 코드를 저장하는 메모리 회로(공유, 전용 또는 그룹); 위에서 설명한 기능을 제공하는 기타 적절한 하드웨어 구성요소들 또는 시스템-온-칩(system-on-chip)에서와 같은 위의 일부 또는 전부의 조합을 언급할 수도 있고, 이들의 일부일 수도 있으며 이들을 포함할 수도 있다.
코드라는 용어는 소프트웨어, 펌웨어 및/또는 마이크로코드를 포함할 수 있으며 프로그램들, 루틴들, 함수들, 클래스들, 데이터 구조들 및/또는 객체들을 언급할 수 있다. 메모리 회로라는 용어는 컴퓨터 판독가능 매체라는 용어의 하위집합이다. 여기에서 사용되는 컴퓨터 판독가능 매체라는 용어는 매체(예컨대, 반송파)를 통해 전파되는 일시적인 전기 또는 전자기 신호들을 포함하지 않으므로, 컴퓨터 판독가능 매체라는 용어는 유형적이고 비-일시적인 것으로 간주될 수 있다.
본 개시내용의 설명은 본질적으로 대표적인 것일 뿐이며, 결과적으로는 본 개시내용의 실체를 벗어나지 않는 변형들은 본 개시내용의 범위 내에 있는 것으로 의도된다. 그러한 변형들은 본 개시내용의 사상 및 범위로부터 벗어나는 것으로 간주되어서는 아니 된다.

Claims (15)

  1. 2-와이어 히터를 제어하도록 구성된 제어 시스템을 교정하는 방법으로서, 상기 2-와이어 히터는 열을 생성하도록 작동 가능하며 상기 2-와이어 히터의 전기적 특성을 측정하기 위한 센서로서 기능하도록 작동 가능하고, 상기 제어 시스템의 교정 방법은,
    상기 제어 시스템에 의해 상기 제어 시스템에 전기적으로 연결된 부하에 전력을 제공하는 단계;
    상기 제어 시스템에 의해 상기 부하의 초기 측정 특성을 생성하는 단계 - 상기 초기 측정 특성은 상기 부하의 전기적 특성을 나타내고, 상기 부하의 전기적 특성은 전압, 전류, 저항 또는 이들의 조합을 포함함 -;
    상기 부하에 연결된 제어기 교정 시스템에 의해 상기 부하의 교정 측정 특성을 생성하는 단계 - 상기 교정 측정 특성은 상기 부하의 전기적 특성을 나타내고, 상기 제어기 교정 시스템은 상기 제어 시스템과는 별개인 것이며, 상기 교정 측정 특성은 상기 초기 측정 특성과 동시에 생성됨 -;
    상기 초기 측정 특성을 상기 교정 측정 특성과 상관시키는 단계; 및
    상기 초기 측정 특성과 상기 교정 측정 특성의 상관에 기초하여 교정 측정 기준을 정의하는 단계 - 상기 제어 시스템은 상기 2-와이어 히터를 제어하기 위한 정확한 측정들을 제공하기 위해 상기 교정 측정 기준을 채용함 -;
    를 포함하는, 제어 시스템의 교정 방법.
  2. 제1항에 있어서,
    상기 제어 시스템에 의해 초기 측정 특성을 생성하는 단계는 상기 제어 시스템에 의해 상기 부하의 초기 전압 및 초기 전류를 측정하는 단계 - 상기 초기 측정 특성은 상기 초기 전압 및 상기 초기 전류를 포함함 - 를 더 포함하고,
    상기 부하에 연결된 제어기 교정 시스템에 의해 상기 교정 측정 특성을 생성하는 단계는 상기 제어기 교정 시스템에 의해 상기 부하의 교정 전압 및 교정 전류를 측정하는 단계 - 상기 교정 측정 특성은 상기 교정 전압 및 상기 교정 전류를 포함함 - 를 더 포함하며,
    상기 초기 전압 및 상기 교정 전압은 동시에 측정되고, 상기 초기 전류 및 상기 교정 전류는 동시에 측정되는, 제어 시스템의 교정 방법.
  3. 제2항에 있어서,
    상기 제어 시스템의 교정 방법은,
    상기 부하의 초기 전압 및 초기 전류에 기초하여 상기 부하의 초기 저항을 계산하는 단계 - 상기 초기 측정 특성은 상기 초기 저항을 더 포함함 -; 및
    상기 부하의 교정 전압 및 교정 전류에 기초하여 상기 부하의 교정 저항을 계산하는 단계 - 상기 교정 측정 특성은 상기 교정 저항을 더 포함함 -;
    를 더 포함하는, 제어 시스템의 교정 방법.
  4. 제1항에 있어서,
    복수 개의 전력 설정점들에서 상기 부하에 전력이 제공되고,
    복수 개의 초기 측정 특성들 및 복수 개의 교정 측정 특성들을 제공하기 위하여, 상기 복수 개의 전력 설정점들 각각에 대해, 상기 초기 측정 특성이 상기 제어 시스템에 의해 생성되며 상기 교정 측정 특성이 상기 제어기 교정 시스템에 의해 생성되며,
    상기 복수 개의 초기 측정 특성들은 상기 복수 개의 교정 측정 특성들과 상관되고,
    상기 교정 측정 기준은 상기 복수 개의 초기 측정 특성들과 상기 복수 개의 교정 측정 특성의 상관에 기초하여 정의되는, 제어 시스템의 교정 방법.
  5. 제1항에 있어서,
    상기 부하는 조정 가능한 저항을 지니는 제어 가능한 부하이고, 상기 제어 시스템의 교정 방법은,
    복수 개의 저항 설정점들에 대해 상기 부하의 저항을 설정하는 단계;
    를 더 포함하며,
    복수 개의 초기 측정 특성들 및 복수 개의 교정 측정 특성들을 제공하기 위하여, 상기 복수 개의 저항 설정점들 각각에 대해, 상기 초기 측정 특성이 상기 제어 시스템에 의해 생성되고 상기 교정 측정 특성이 상기 제어기 교정 시스템에 의해 생성되며,
    상기 복수 개의 초기 측정 특성들은 상기 복수 개의 교정 측정 특성들과 상관되고,
    상기 교정 측정 기준은 상기 복수 개의 측정 특성들과 상기 복수 개의 교정 측정 특성들의 상관에 기초하여 정의되는, 제어 시스템의 교정 방법.
  6. 제1항에 있어서,
    상기 제어 시스템이 상기 2-와이어 히터에 전기적으로 연결된 경우, 상기 제어 시스템의 교정 방법은,
    상기 제어 시스템에 의해 상기 2-와이어 히터를 복수 개의 온도 설정점들 중에서 하나의 온도 설정점으로 제어하는 단계;
    상기 제어 시스템으로부터 상기 2-와이어 히터의 전압 및 전류(V-I) 특성을 그리고 온도 센서 시스템으로부터 상기 2-와이어 히터의 온도 데이터세트를 동시에 획득하는 단계 - 상기 V-I 특성 및 상기 온도 데이터세트는 상기 복수 개의 온도 설정점들 각각에 대해 획득됨 -;
    상기 복수 개의 온도 설정점들 각각에 대해 상기 획득된 V-I 특성 및 상기 교정 측정 기준에 기초하여 상기 2-와이어 히터의 저항을 결정하는 단계;
    상기 복수 개의 온도 설정점들 각각에 대해 상기 획득된 온도 데이터세트에 기초하여 온도 계측 데이터를 계산하는 단계;
    상기 복수 개의 온도 설정점들에 대한 온도 계측 데이터와 상기 2-와이어 히터의 측정 저항을 상관시키는 단계; 및
    상기 2-와이어 히터의 측정 저항에 기초하여 상기 2-와이어 히터의 작동 온도를 결정하기 위한 저항-온도 교정 기준을 정의하는 단계;
    를 더 포함하는, 제어 시스템의 교정 방법.
  7. 제6항에 있어서,
    상기 온도 계측 데이터는 평균 온도, 중앙값 온도, 온도 변동, 표준 편차, 최대 온도, 최소 온도, 온도 범위, 3-시그마 값, 또는 이들의 조합을 포함하는, 제어 시스템의 교정 방법.
  8. 2-와이어 히터를 작동하도록 구성된 제어 시스템을 교정하는 방법으로서, 상기 2-와이어 히터는 열을 생성하도록 작동 가능하고 상기 2-와이어 히터의 온도를 측정하기 위한 센서로서 기능하도록 작동 가능하며, 상기 제어 시스템의 교정 방법은,
    상기 제어 시스템에 의해 상기 2-와이어 히터를 복수 개의 온도 설정점들 중에서 하나의 온도 설정점으로 제어하는 단계;
    상기 제어 시스템으로부터 상기 2-와이어 히터의 전압 및 전류(V-I) 특성을 그리고 온도 센서 시스템으로부터 상기 2-와이어 히터의 온도 데이터세트를 동시에 획득하는 단계 - 상기 V-I 특성 및 상기 온도 데이터세트는 상기 복수 개의 온도 설정점들 각각에 대해 획득됨 -;
    상기 복수 개의 온도 설정점들 각각에 대해 상기 획득된 V-I 특성에 기초하여 상기 2-와이어 히터의 저항을 결정하는 단계;
    상기 복수 개의 온도 설정점들 각각에 대해 상기 획득된 온도 데이터세트에 기초하여 온도 계측 데이터를 계산하는 단계;
    복수 개의 온도 설정점들에 대한 온도 계측 데이터와 상기 2-와이어 히터의 저항을 상관시키는 단계; 및
    상기 2-와이어 히터의 측정 저항에 기초하여 상기 2-와이어 히터의 작동 온도를 결정하기 위한 저항-온도 교정 기준을 정의하는 단계;
    를 포함하는, 제어 시스템의 교정 방법.
  9. 제8항에 있어서,
    상기 온도 데이터세트와 상기 2-와이어 히터의 V-I 특성을 획득하는 단계는,
    상기 제어 시스템의 센서 회로에 의해 상기 2-와이어 히터의 V-I 특성을 측정하는 단계; 및
    상기 온도 센서 시스템에 의해 상기 온도 설정점에서 상기 2-와이어 히터의 복수 개의 온도 측정들을 측정하는 단계 - 상기 복수 개의 온도 측정들은 상기 온도 설정점에 대한 온도 데이터세트로서 제공되는, 제어 시스템의 교정 방법.
  10. 제8항에 있어서,
    상기 온도 계측 데이터는 평균 온도, 중앙값 온도, 온도 변동, 표준 편차, 최대 온도, 최소 온도, 온도 범위, 3-시그마 값, 또는 이들의 조합을 포함하는, 제어 시스템의 교정 방법.
  11. 제8항에 있어서,
    상기 2-와이어 히터는 복수 개의 영역들을 정의하는 복수 개의 저항 가열 요소들을 포함하고,
    상기 제어 시스템은 각각의 영역을 독립적으로 제어하도록 구성되며,
    상기 제어 시스템으로부터 획득된 2-와이어 히터의 V-I 특성은 상기 복수 개의 영역들 각각에 대한 V-I 특성을 포함하고, 상기 복수 개의 영역들 중 하나의 영역에 대한 V-I 특성은 하나의 영역 특성으로서 제공되며,
    상기 온도 센서 시스템으로부터 획득된 2-와이어 히터의 온도 데이터세트는 상기 복수 개의 영역들 각각에 대한 적어도 하나의 온도 측정을 포함하는, 제어 시스템의 교정 방법.
  12. 제11항에 있어서,
    상기 제어 시스템에 의해 상기 2-와이어 히터를 상기 온도 설정점으로 제어하는 단계는,
    상기 2-와이어 히터의 복수 개의 구역들에 전력을 제공하는 단계;
    상기 2-와이어 히터의 복수 개의 구역들 각각에 대한 온도를 획득하는 단계; 및
    상기 온도 설정점과 동일하지 않은 복수 개의 영역들 중 하나 이상의 영역들의 온도에 응답하여 상기 복수의 영역에 대한 전력 공급을 조정하는 단계;
    더 포함하는, 제어 시스템의 교정 방법.
  13. 제11항에 있어서,
    상기 온도 센서 시스템은 복수 개의 온도 센서들을 포함하고, 상기 제어 시스템의 교정 방법은, 상기 복수 개의 영역들의 각각의 영역에 대해, 상기 복수 개의 온도 센서들 중 하나 이상의 온도 센서들을 대응하는 영역에 연관시키는 단계를 더 포함하며, 상기 하나 이상의 온도 센서들은 상기 대응하는 영역에 대한 온도 측정을 제공하도록 구성되는, 제어 시스템의 교정 방법.
  14. 제13항에 있어서,
    상기 복수 개의 영역들 각각은 상기 복수 개의 온도 센서들 중 2개 이상의 온도 센서들에 연관되고, 상기 2개 이상의 온도 센서는 하나의 감지 그룹으로서 제공되며, 상기 제어 시스템의 교정 방법은,
    각각의 감지 그룹에 대해, 상기 감지 그룹으로부터의 온도 측정들에 기초하여 상기 감지 그룹의 온도 센서들 중에서 결함이 있는 온도 센서를 식별하기 위한 센서 진단을 수행하는 단계;
    결함 온도 센서를 식별하는 센서 진단에 응답하여 그리고 식별된 결함 온도 센서의 갯수가 결함 센서 임계값보다 작으면 결함 온도 센서로부터의 온도 측정값을 폐기하는 단계; 및
    결함 온도 센서를 식별하는 센서 진단에 응답하여 그리고 식별된 결함 온도 센서의 갯수가 결함 센서 임계값보다 크면 상기 2-와이어 히터에 대한 전력 공급을 차단하는 단계;
    를 더 포함하는, 제어 시스템의 교정 방법.
  15. 제14항에 있어서,
    결함 온도 센서를 식별하지 않은 센서 진단에 응답하여 또는 식별된 결함 온도 센서의 개수가 결함 센서 임계값보다 작으면, 상기 제어 시스템의 교정 방법은,
    상기 복수 개의 온도 설정점들 각각에 대해, 상기 획득된 V-I 특성에 기초하여 상기 2-와이어 히터의 저항을 결정하는 단계;
    상기 복수 개의 온도 설정점들 각각에 대해, 상기 온도 데이터세트에 기초하여 온도 계측 데이터를 계산하는 단계;
    복수 개의 온도 설정점들에 대한 온도 계측 데이터와 상기 2-와이어 히터의 저항을 상관시키는 단계; 및
    상기 2-와이어 히터의 측정 저항에 기초하여 상기 2-와이어 히터의 작동 온도를 결정하기 위한 저항-온도 교정 기준을 정의하는 단계;
    를 더 포함하는, 제어 시스템의 교정 방법.
KR1020227000409A 2019-06-07 2020-06-05 전기 히터를 작동시키는 제어 시스템을 교정하는 시스템 및 방법 KR20220018567A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962858587P 2019-06-07 2019-06-07
US62/858,587 2019-06-07
PCT/US2020/036377 WO2020247787A1 (en) 2019-06-07 2020-06-05 System and method for calibrating a control system operating an electric heater

Publications (1)

Publication Number Publication Date
KR20220018567A true KR20220018567A (ko) 2022-02-15

Family

ID=71899834

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227000409A KR20220018567A (ko) 2019-06-07 2020-06-05 전기 히터를 작동시키는 제어 시스템을 교정하는 시스템 및 방법

Country Status (7)

Country Link
US (2) US12004267B2 (ko)
EP (1) EP3981222B1 (ko)
JP (2) JP2022534795A (ko)
KR (1) KR20220018567A (ko)
CN (1) CN113966644A (ko)
TW (1) TWI796572B (ko)
WO (1) WO2020247787A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022524415A (ja) * 2019-03-13 2022-05-02 ラム リサーチ コーポレーション 温度を近似させるための静電チャックヒータ抵抗測定

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196295B2 (en) * 2003-11-21 2007-03-27 Watlow Electric Manufacturing Company Two-wire layered heater system
US10163668B2 (en) * 2011-08-30 2018-12-25 Watlow Electric Manufacturing Company Thermal dynamic response sensing systems for heaters
EP3213598B1 (en) 2014-10-31 2023-07-05 Watlow Electric Manufacturing Company Thermal dynamic response sensing systems for heaters
US10763141B2 (en) * 2017-03-17 2020-09-01 Applied Materials, Inc. Non-contact temperature calibration tool for a substrate support and method of using the same
CN207283844U (zh) * 2017-09-25 2018-04-27 广东电网有限责任公司珠海供电局 一种高压电缆光纤测温系统现场标定装置的辅助加热装置
JP6874696B2 (ja) * 2018-01-09 2021-05-19 オムロン株式会社 加熱装置

Also Published As

Publication number Publication date
TWI796572B (zh) 2023-03-21
WO2020247787A1 (en) 2020-12-10
CN113966644A (zh) 2022-01-21
JP2024119958A (ja) 2024-09-03
US20200389939A1 (en) 2020-12-10
US20240267998A1 (en) 2024-08-08
EP3981222B1 (en) 2024-03-20
EP3981222A1 (en) 2022-04-13
US12004267B2 (en) 2024-06-04
JP2022534795A (ja) 2022-08-03
EP3981222C0 (en) 2024-03-20
TW202102054A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
US20240267998A1 (en) System and method for calibrating a control system operating an electric heater
WO2021173668A1 (en) Dynamic calibration of a control system controlling a heater
CN106092375B (zh) 机载设备地面温度传感器的校验方法及校验仪器
CN111108350A (zh) 用于测量和控制加热器系统性能的传感器系统和集成加热器-传感器
TW201712348A (zh) 溫度控制系統及其方法
US20210368584A1 (en) Passive and active calibration methods for a resistive heater
CN105868439B (zh) 一种电阻丝阻值拟合方法
CN104808041B (zh) 一种氮氧传感器芯片泵电流的测试方法及装置
EP3570046A1 (en) Terminal block for current measurement and related methods
JP4528954B1 (ja) 導電性試料の比熱容量及び半球全放射率の測定方法及び装置
RU2605787C1 (ru) Высокочувствительный микрорасходомер газа
RU2707757C1 (ru) Способ снижения погрешности измерения температуры электрическим мостом
US20150198496A1 (en) Pressure testing with controlled applied fluid
CN101493497A (zh) 一种可提高测试效率的应力迁移测试方法
TW202349012A (zh) 用來校準判定負載之電阻之控制器的方法及系統
US20230109326A1 (en) Method and system for calculating electrical characteristics of an electric heater
Williams A thermoelement comparator for automatic ac-dc difference measurements
RU2716466C1 (ru) Способ контроля теплофизических свойств материалов и устройство для его осуществления
JP2020134330A (ja) 熱伝導真空計
KR20230025397A (ko) 무용액 센서 캘리브레이션
CN117991849A (zh) 控温曲线的拟合方法、控温方法以及控温装置
US3252090A (en) Primary standard voltage and current source and method for use thereof
WO2024008353A1 (en) Drift invariant electronic sensor and corresponding method
GB2624330A (en) Pressure-sensitive pad with calibration unit
Bringert Clarence Kemper

Legal Events

Date Code Title Description
A201 Request for examination