KR20210148945A - 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품 - Google Patents

고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품 Download PDF

Info

Publication number
KR20210148945A
KR20210148945A KR1020210070287A KR20210070287A KR20210148945A KR 20210148945 A KR20210148945 A KR 20210148945A KR 1020210070287 A KR1020210070287 A KR 1020210070287A KR 20210070287 A KR20210070287 A KR 20210070287A KR 20210148945 A KR20210148945 A KR 20210148945A
Authority
KR
South Korea
Prior art keywords
polymer
microparticles
reactive functional
weight
polymer microparticles
Prior art date
Application number
KR1020210070287A
Other languages
English (en)
Other versions
KR102597505B1 (ko
Inventor
김윤섭
신정연
김찬중
김지선
김경오
유제영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/640,923 priority Critical patent/US20220331260A1/en
Priority to PCT/KR2021/006828 priority patent/WO2021246764A1/ko
Priority to CN202180005016.XA priority patent/CN114269813B/zh
Priority to JP2022510214A priority patent/JP7408217B2/ja
Priority to EP21818529.6A priority patent/EP3995531A4/en
Publication of KR20210148945A publication Critical patent/KR20210148945A/ko
Application granted granted Critical
Publication of KR102597505B1 publication Critical patent/KR102597505B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/65Collagen; Gelatin; Keratin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명에 따르면, 금속 이온에 의한 가교 이후 유기 가교제에 의한 추가 가교를 포함하는 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품이 제공될 수 있다.

Description

고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품 {A METHOD OF PREPARING POLYMERIC MICRO PARTICLES, POLYMERIC MICRO PARTICLES, MEDICAL COMPOSITION, COSMETIC COMPOSITION, MEDICAL ARTICLES AND COSMETIC ARTICLES USING THE SAME}
본 발명은 우수한 기계적 강도 및 안정성을 구현할 수 있는 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품에 관한 것이다.
바이오 의약품 및 재생 의료 분야가 확장됨에 따라, 세포, 조직, 미생물 등을 효율적으로 생산할 수 있는 세포 대량 배양 기술에 대한 요구가 증대하고 있다.
부착성을 갖는 세포는 3D 바이오리액터(bioreactor) 내에서 마이크로 캐리어를 이용하여 배양된다. 바이오리액터 내에 세포, 배양액 및 마이크로 캐리어를 넣고, 배양액을 교반하여 세포 및 마이크로 캐리어를 접촉시킴으로써, 세포를 마이크로 캐리어의 표면에 부착시켜 배양하게 된다. 이 때 사용하는 마이크로 캐리어는 세포가 부착하여 증식할 수 있는 높은 표면적 비율(surface area/volume)을 제공하기 때문에, 세포의 대량 배양에 적합하다. 그러나 마이크로 캐리어를 이용하여 부착성 세포를 확장 배양하는 경우, 배양이 종료된 이후 세포 탈착 과정을 통해 세포를 회수하는 과정이 필수적으로 수반된다. 상기 세포 탈착 과정은 단백질 분해효소를 사용하거나 온도를 변화시켜 세포의 탈착을 유도하는데, 이와 같은 탈착 공정이 추가될 경우 제조 비용이 증가하여 경제성이 떨어지고, 세포 손상이 유발될 수 있다는 문제점이 존재하였다.
이를 해결하기 위한 새로운 소재나 공정들의 개발들이 꾸준히 진행되고 있으며, 특히, 생체 내 세포를 주입하는 세포 치료제의 경우, 세포를 배양하는 마이크로 캐리어의 생체 적합성을 확보하여 분리 정제 과정을 생략하고자 하는 노력들이 있다. 이 경우 배양과정 및 생체 주입 후 캐리어 주변 유체에 의하여 가해지는 스트레스를 견딜 수 있는 강도를 구현하는 입자가 필요하다.
뿐만 아니라, 약물 혹은 생리 활성 물질을 포집한 마이크로 캐리어를 마이크로 니들에 탑재하여 전달하는 경피형 약물 전달 기술의 경우, 마이크로 캐리어는 생체에 적용하기에 적합한 고분자를 이용해야 하며, 피부의 각질층(stratum corneum layer)을 통과하는 과정에서 입자의 변형이 일어나지 않도록 충분한 강도를 지녀야 한다. 안정적으로 경피를 투과한 마이크로 캐리어는 탑재된 약물을 local 혹은 systemic delivery 되어 필요한 병소에 작용할 수 있게 된다.
생체 적합성 물질로 주로 이용되는 히알루론산은 N-아세틸-D-글루코사민과 D-글루쿠론산으로 구성되어 있고 상기 반복단위가 선형으로 연결되어 있는 생체고분자 물질이다. 안구의 유리액, 관절의 활액 및 닭벼슬 등에 많이 존재한다. 히알루론산은 우수한 생체적합성과 점탄성으로 인해 생체 주입형 물질로 흔히 사용되나, 그 자체만으로는 생체내(in vivo) 또는 산, 알칼리 등의 조건에서 쉽게 분해되어 사용이 제한적이다. 또한 마이크로 캐리어에 적용하는 경우 생체 pH 범위에서 히알루론산은 음전하를 나타내며, 이로 인하여 세포부착성이 현저히 저하되는 문제점이 있었다.
또한 젤라틴은 생체 결합조직인 콜라겐을 가수분해한 고분자로, 세포 배양용 스캐폴드로 활용된다. 세포를 포집하거나 배양할 수 있으나, 그 강도가 약하고, 온도에 민감하여 화학적 방법으로 관능기를 도입하여 그 강도를 향상시키려는 노력이 있다.
이에, 생체에 적합하면서도, 물리적 강도, 및 열과 효소에 대한 안정성 등 우수한 물성과 우수한 안정성을 가지는 마이크로 캐리어 또는 고분자 마이크로 입자의 개발이 필요한 실정이다.
본 발명은 우수한 기계적 강도 및 안정성을 구현할 수 있는 고분자 마이크로 입자의 제조방법을 제공하기 위한 것이다.
또한, 본 발명은 상기의 제조방법에 의하여 제조되는 고분자 마이크로 입자를 제공하기 위한 것이다.
또한, 본 발명은 상기의 고분자 마이크로 입자를 포함하는 의료용 조성물을 제공하기 위한 것이다.
또한, 본 발명은 상기의 고분자 마이크로 입자를 포함하는 미용 조성물을 제공하기 위한 것이다.
또한, 본 발명은 상기의 의료용 조성물을 포함하는 의료 용품을 제공하기 위한 것이다.
또한, 본 발명은 상기의 미용 조성물을 포함하는 미용 용품을 제공하기 위한 것이다.
본 명세서에서는, 생체 적합성 고분자 및 금속 이온을 포함한 혼합물을 반응하여 고분자 가교 입자를 형성하는 단계; 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함한 극성 용매 상에서 상기 고분자 가교입자를 추가 가교하는 단계;를 포함하는, 고분자 마이크로 입자의 제조방법이 제공된다.
본 명세서에서는 또한, 제1 생체 적합성 고분자, 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함하는 코어; 및 상기 코어의 전부 또는 일부를 둘러싸며, 제2 생체 적합성 고분자, 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함하는 쉘;을 포함하는, 코어-쉘 구조를 가지는, 고분자 마이크로 입자 가 제공된다.
본 명세서에서는 또한, 상기의 고분자 마이크로 입자 및 상기 고분자 마이크로 입자 내에 함유된 약학 유효물질을 포함하는, 의료용 조성물이 제공된다.
본 명세서에서는 또한, 상기의 고분자 마이크로 입자 및 상기 고분자 마이크로 입자 내에 함유된 미용적 유효 물질을 포함하는 미용 조성물이 제공된다.
본 명세서에서는 또한, 상기의 의료용 조성물을 포함하는 의료 용품이 제공된다.
본 명세서에서는 또한, 상기의 미용 조성물을 포함하는 미용 용품이 제공된다.
이하 발명의 구체적인 구현예에 따른 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품에 대하여 보다 상세하게 설명하기로 한다.
본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 '포함'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
그리고, 본 명세서에서 '제 1' 및 '제 2'와 같이 서수를 포함하는 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로 사용되며, 상기 서수에 의해 한정되지 않는다. 예를 들어, 본 발명의 권리 범위 내에서 제 1 구성요소는 제 2 구성요소로도 명명될 수 있고, 유사하게 제 2 구성요소는 제 1 구성요소로 명명될 수 있다.
본 명세서에서 (공)중합체는 중합체 또는 공중합체를 모두 포함하는 의미이며, 상기 중합체는 단일 반복단위로 이루어진 단독중합체를 의미하고, 공중합체는 2종 이상의 반복단위를 함유한 복합중합체를 의미한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 상기 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에서 마이크로 입자라 함은, 입자 단면이 원형 또는 타원형이고, 입자의 단축/장축의 비(구형화도)가 0.7 내지 1.0의 범위인 것을 의미한다. 입자의 단축 및 장축의 길이는 입자에 대한 광학 사진을 촬영하고, 광학 사진에서의 임의의 입자 30 개 내지 100개의 평균 값을 계산함으로써 도출될 수 있다.
본 명세서에서 직경(Dn)은, 직경에 따른 입자 개수 누적 분포의 n 부피% 지점에서의 직경을 의미한다. 즉, D50은 입자의 직경을 오름차순으로 누적시켰을 때, 입자 개수 누적 분포의 50% 지점에서의 직경이며, D90은 직경에 따른 입자 개수 누적 분포의 90% 지점에서의 직경이고, D10은 직경에 따른 입자 개수 누적 분포의 10% 지점에서의 직경이다.
상기 Dn은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(Horiba LA-960)에 도입하여 입자들이 레이저 빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 직경에 따른 입자 개수 누적 분포의 10%, 50% 및 90%가 되는 지점에서의 입자 직경을 산출함으로써, D10, D50 및 D90을 측정할 수 있다. 보다 구체적으로, 본 명세서에서 직경은, D50을 의미할 수 있다.
본 명세서에서, 에멀전이란, 유상 또는 수상의 섞이지 않는 액체 중 하나 이상을 미립자 상태(분산질)로 다른 액체(분산매)에 분산시켜 놓은 혼합상을 의미한다. 에멀전은 분산상의 입도 크기에 따라, 통상적으로, 마크로에멀전, 마이크로에멀전, 나노에멀전으로 나뉠 수 있다.
이하, 본 발명을 보다 상세히 설명한다.
1. 고분자 마이크로 입자의 제조 방법
발명의 일 구현예에 따르면, 생체 적합성 고분자 및 금속 이온을 포함한 혼합물을 반응하여 고분자 가교 입자를 형성하는 단계; 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함한 극성 용매 상에서 상기 고분자 가교입자를 추가 가교하는 단계;를 포함하는, 고분자 마이크로 입자의 제조방법이 제공될 수 있다.
종래의 고분자 마이크로 입자는, 오일을 이용하는 W/O 에멀전을 형성한 후, 가교됨에 따라 오일 세척 공정이 필수적으로 수반되어, 공정 효율성이 좋지 않을 뿐만 아니라, 잔여 오일의 제거가 어려운 기술적 문제가 있었다.
이에, 본 발명자들은 상기 일 구현예의 고분자 마이크로 입자의 제조방법과 같이, 금속 이온에 의하여 가교시킨 이후, 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 이용한 추가 가교 반응을 진행함에 따라 공정 효율성이 극대화되는 동시에, 마이크로 입자의 기계적 강도와 안정성이 현저하게 향상됨을 실험을 통해 확인하고 발명을 완성하였다.
구체적으로, 상기 생체 적합성 고분자란 인체에 적용되는 유효물질들을 전달하기 위하여, 인체 내에 직접 주입이 가능한 고분자를 의미한다. 구체적으로 상기 생체 적합성 고분자는, 히알루론산(Hyaluronic acid: HA), 카르복시메틸셀룰로오스(Carboxymethyl cellulose: CMC), 알긴산(alginic acid), 펙틴, 카라기난, 콘드로이틴(설페이트), 덱스트란(설페이트), 키토산, 폴리라이신(polylysine), 콜라겐, 젤라틴, 카르복시메틸 키틴(carboxymethyl chitin), 피브린, 아가로스, 풀루란, 폴리락타이드, 폴리글리코라이드(PGA), 폴리락타이드-글리코라이드 공중합체(PLGA), 폴리안하이드라이드(polyanhydride), 폴리오르쏘에스테르(polyorthoester), 폴리에테르에스테르(polyetherester), 폴리카프로락톤(polycaprolactone), 폴리에스테르아마이드(polyesteramide), 폴리(뷰티릭 산), 폴리(발레릭 산), 폴리우레탄, 폴리아크릴레이트, 에틸렌-비닐아세테이트 중합체, 아크릴 치환 셀룰로오스 아세테이트, 비-분해성 폴리우레탄, 폴리스티렌, 폴리비닐 클로라이드, 폴리비닐 풀루오라이드, 폴리(비닐 이미다졸), 클로로설포네이트 폴리올레핀(chlorosulphonate polyolefins),폴리에틸렌 옥사이드, 폴리비닐피롤리돈(PVP), 폴리에틸렌글리콜(PEG), 폴리메타크릴레이트, 하이드록시프로필메틸셀룰로오스(HPMC), 에틸셀룰로오스(EC), 하이드록시프로필셀룰로오스(HPC), 싸이클로덱스트린 및 이러한 고분자를 형성하는 단량체들의 공중합체 및 셀룰로오스로 구성된 군으로부터 선택된 1 개 이상의 고분자일 수 있다.
보다 구체적으로, 상기 생체 적합성 고분자는 히알루론산(Hyaluronic acid: HA) 및 젤라틴의 혼합물일 수 있다.
히알루론산만을 사용하여 제조된 고분자 마이크로 입자는 자체만으로는 생체내(in vivo) 또는 산, 알칼리 등의 조건에서 쉽게 분해되어 사용이 제한적일 뿐만 아니라, 세포 부착성이 현저히 저하되며, 젤라틴만을 사용하여 제조된 고분자 마이크로 입자는 기계적 물성이 현저히 저하된다.
이에, 생체 적합성 고분자로 히알루론산(Hyaluronic acid: HA) 및 젤라틴의 혼합물을 사용함에 따라 우수한 세포 부착성과 동시에 기계적 물성을 구현할 수 있다.
 본 명세서에서, 히알루론산은 히알루론산 자체와 히알루론산 염을 모두 포함하는 의미일 수 있다. 이에 따라, 히알루론산 수용액은 히알루론산의 수용액, 히알루론산 염의 수용액, 및 히알루론산과 히알루론산 염의 혼합 수용액을 모두 포함하는 개념일 수 있다. 상기 히알루론산 염은 히알루론산 나트륨, 히알루론산 칼륨, 히알루론산 칼슘, 히알루론산 마그네슘, 히알루론산 아연, 히알루론산 코발트 등의 무기염과, 히알루론산 테트라부틸암모늄 등의 유기염 및 그 혼합물일 수 있다.
발명의 일 구현예에서, 히알루론산의 분자량은 특별히 제한되는 것은 아니지만, 다양한 물성과 생체적합성을 구현하기 위해 10,000 g/mol 이상 5,000,000 g/mol 이하임이 바람직하다.
본 명세서에서, 젤라틴은 동물에서 유래된 콜라겐을 산 또는 알칼리로 처리하고 후속하여 추출하여 수득되는 단백질을 의미할 수 있다.
발명의 일 구현예에서, 젤라틴의 분자량은 특별히 제한되는 것은 아니지만, 다양한 물성과 생체적합성을 구현하기 위해 10,000 g/mol 이상 5,000,000 g/mol 이하임이 바람직하다.
상기 발명의 일 구현예에서 상기 히알루론산(Hyaluronic acid: HA) 및 젤라틴의 혼합물은, 히알루론산(Hyaluronic acid: HA) 100 중량부에 대하여, 젤라틴을 50 중량부 이상 500 중량부 이하, 100 중량부 이상 500 중량부 이하, 또는 100 중량부 이상 300 중량부 이하로 포함할 수 있다.
히알루론산(Hyaluronic acid: HA) 100 중량부에 대하여, 젤라틴을 50 중량부 미만으로 포함하는 경우, 제조되는 고분자 마이크로 입자의 세포 부착성이 불량할 수 있으며, 히알루론산(Hyaluronic acid: HA) 100 중량부에 대하여, 젤라틴을 500 중량부 초과로 포함하는 경우, 제조되는 고분자 마이크로 입자의 기계적 물성이 저하할 수 있다. 즉, 히알루론산(Hyaluronic acid: HA) 및 젤라틴의 혼합물은, 히알루론산(Hyaluronic acid: HA) 100 중량부에 대하여, 젤라틴을 50 중량부 이상 500 중량부 이하로 포함함에 따라 우수한 세포 부착성과 동시에 기계적 물성을 구현할 수 있는 고분자 마이크로 입자가 제조될 수 있다.
상기 발명의 일 구현예에서 금속이온은 철 이온(Fe3+), 알루미늄 이온(Al3+), 구리 이온(Cu2+), 철 이온(Fe2+), 마그네슘 이온(Mg2+), 바륨 이온(Ba2+), 칼슘 이온 (Ca2+) 등으로 이루어진 군에서 선택된 하나를 포함할 수 있다. 보다 구체적으로, 상기 금속이온은 철 이온, 알루미늄 이온 또는 그 혼합물일 수 있다.
발명의 일 구현예에서, 상기 생체 적합성 고분자 및 금속 이온을 포함한 혼합물을 반응하여 고분자 가교 입자를 형성하는 단계는, 상기 생체 적합성 고분자를 녹인 수용액을 형성하는 단계; 상기 금속이온을 포함하는 화합물을 극성 용매에 첨가하여 금속이온을 포함하는 용액을 형성하는 단계; 및 상기 생체 적합성 고분자를 녹인 수용액 액적과 상기 금속이온을 포함하는 용액을 혼합하여 혼합용액을 형성하는 단계;를 포함할 수 있다.
구체적으로, 상기 생체 적합성 고분자를 녹인 수용액을 형성하는 단계에서, 상기 생체 적합성 고분자를 녹인 수용액은 전체 생체 적합성 고분자를 녹인 수용액 중량에 대하여, 상기 생체 적합성 고분자를 0.01 중량 % 이상 10 중량% 이하, 0.01 중량 % 이상 5 중량% 이하, 1 중량 % 이상 5 중량% 이하, 1 중량 % 이상 3 중량% 이하, 2 중량 % 이상 3 중량% 이하, 2 중량 % 이상 2.5 중량% 이하로 포함할 수 있다.
발명의 일 구현예와 같이, 금속 이온에 의하여 가교반응 시킨 이후, 반응성 작용기를 1 개 이상 포함하는 유기 가교제에 의하여 추가 가교 반응을 진행함에 따라, 종래와 같이 W/O 에멀전을 형성한 후 가교반응 시키는 경우와 비교하여, 상기와 같이 0.01 중량 % 이상 10 중량% 이하의 적은 함량의 생체 적합성 고분자로도 기계적 강도와 안정성이 우수한 마이크로 입자를 제조할 수 있다.
상기 금속이온을 포함하는 화합물을 극성 용매에 첨가하여 금속이온을 포함하는 용액을 형성하는 단계는, 크게 제한 되지 않으나 예를 들어 금속 이온을 포함하는 화합물을 에탄올과 같은 극성 용매에 분산시켜 형성할 수 있다.
또한, 상기 생체 적합성 고분자를 녹인 수용액 액적과 상기 금속이온을 포함하는 용액을 혼합하여 혼합용액을 형성하는 단계에서, encapsulator (BUCHI, B-390) 기기를 이용하여, 입자의 크기를 적절히 제어할 수 있다.
상기 생체 적합성 고분자를 녹인 수용액 액적과 상기 금속이온을 포함하는 용액을 혼합하여 혼합용액을 형성하는 단계를 포함함에 따라, 상기 생체 적합성 고분자에 금속이온이 킬레이트되면서 금속이온을 매개로 생체 적합성 고분자가 가교구조를 형성할 수 있다.
상기 발명의 일구현예와 같이, 생체 적합성 고분자 및 금속 이온을 포함한 혼합물을 반응하여 고분자 가교 입자를 형성하는 단계를 포함함에 따라, 반응성 작용기를 1 개 이상 포함하는 유기 가교제만을 이용하여 가교반응을 진행하는 경우와 비교하여 오일 사용없이 극성 용매 상에서 마이크로 입자를 제조할 수 있어, 오일 세척 공정이 생략되어 공정 효율성이 우수해지는 효과가 구현될 수 있다.
즉, 생체 적합성 고분자에 금속이온이 킬레이트되면서 금속이온을 매개로 생체 적합성 고분자가 가교구조를 형성함에 따라 반응성 작용기를 1 개 이상 포함하는 유기 가교제만을 이용하여 가교반응을 진행하는 경우와 비교하여 오일 사용없이 극성 용매 상에서 마이크로 입자를 제조할 수 있어, 오일 세척 공정이 생략되어 공정 효율성이 우수해지는 효과가 구현될 수 있다.
또한, 상기 금속이온을 포함하는 화합물은 상기 생체 적합성 고분자 100 중량부에 대하여 200 중량부 이상 1000 중량부 이하, 300 중량부 이상 1000 중량부 이하, 또는 500 중량부 이상 1000 중량부 이하 로 포함될 수 있다.
발명의 일 구현예에 따른 고분자 마이크로 입자의 제조방법은, 상술한 바와 같이 금속 이온에 의한 가교반응 이후 추가 가교반응을 진행함에 따라, 상기 생체 적합성 고분자 100 중량부에 대하여 200 중량부 이상 1000 중량부 이하로 금속이온을 포함한 혼합물을 소량 첨가하여도 충분한 기계적 강도 및 구형화도를 구현하는 고분자 마이크로 입자를 제조할 수 있다.
상기 금속 이온을 포함하는 화합물의 함량이 상기 생체 적합성 고분자 100 중량부에 대하여 1000 중량부를 초과하여 첨가되는 경우, 잔량의 금속이온이 가교 입자에 잔존하는 기술적 문제점이 발생할 수 있다.
상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제는, 반응성 작용기를 1개 이상 포함하는 탄소수 1 내지 30의 가교제를 포함할 수 있다.
상술한 바와 같이, 금속 이온에 의하여 가교시킨 이후, 반응성 작용기를 1개 이상 포함하는 탄소수 1 내지 30의 가교제를 이용한 추가 가교 반응을 진행함에 따라 공정 효율성이 극대화되는 동시에, 마이크로 입자의 기계적 강도와 안정성이 현저하게 향상될 수 있다.
상기 반응성 작용기의 종류가 크게 제한되지는 않으나, 예를 들어 히드록시기, 에폭시기, 카르복시기, 아미노기, (메트)아크릴레이트기, 니트릴기, 싸이올기, 알데히드기, 또는 비닐기를 들 수 있다.
구체적으로, 상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제는, 포르밀기 또는 에폭시기를 1 개 이상, 또는 2 개 이상 포함할 수 있다. 상기 포르밀기 또는 에폭시기는 상술한 생체 적합성 고분자와 반응하여 가교 입자를 형성하는, 가교성 작용기일 수 있다.
상기 발명의 일 구현예에서 반응성 작용기를 1 개 이상 포함하는 유기 가교제는 그 예가 크게 제한되는 것은 아니다. 구체적으로 상기 가교제는 글루타르알데히드(glutaraldehyde), 부탄디올디글리시딜에테르(1,4-butandiol diglycidyl ether: BDDE), 에틸렌글리콜디글리시딜에테르(ethylene glycol diglycidyl ether: EGDGE), 헥산디올디글리시딜에테르(1,6-hexanediol diglycidyl ether), 프로필렌글리콜디글리시딜에테르(propylene glycol diglycidyl ether), 폴리프로필렌글리콜디글리시딜에테르(polypropylene glycol diglycidyl ether), 폴리테트라메틸렌글리콜디글리시딜에테르(polytetramethylene glycol diglycidyl ether), 네오펜틸글리콜디글리시딜에테르(neopentyl glycol diglycidyl ether), 폴리글리콜폴리글리시딜에테르(polyglycerol polyglycidyl ether), 디글리세롤폴리글리시딜에테르(diglycerol polyglycidyl ether), 글리세롤폴리글리시딜에테르(glycerol polyglycidyl ether), 트리메틸프로판폴리글리시딜에테르(tri-methylpropane polyglycidyl ether), 비스에폭시프로폭시에틸렌(1,2-(bis(2,3-epoxypropoxy)ethylene), 펜타에리쓰리톨폴리글리시딜에테르(pentaerythritol polyglycidyl ether) 및 소르비톨폴리글리시딜에테르(sorbitol polyglycidyl ether), 디비닐설폰(divinylsulfone), 에피클로로히드린(epichlorohydrin)으로 이루어진 군에서 선택된 하나를 포함할 수 있다.
보다 구체적으로, 상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제는 글루타르알데히드(glutaraldehyde) 또는 부탄디올디글리시딜에테르(1,4-butandiol diglycidyl ether: BDDE)일 수 있다.
한편, 상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함한 극성 용매 상에서 상기 고분자 가교입자를 추가 가교하는 단계에서, 상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제는 상기 생체 적합성 고분자 100 중량부에 대하여 150 중량부 이상 1000 중량부 이하, 200 중량부 이상 1000 중량부 이하, 300 중량부 이상 800 중량부 이하, 400 중량부 이상 500 중량부 이하로 포함될 수 있다.
발명의 일 구현예에 따른 고분자 마이크로 입자의 제조방법은, 상술한 바와 같이 가교반응 이후 추가 가교반응을 진행함에 따라, 상기 생체 적합성 고분자 100 중량부에 대하여 150 중량부 이상 1000 중량부 이하로 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 소량 첨가하여도 충분한 기계적 강도 및 구형화도를 구현하는 고분자 마이크로 입자를 제조할 수 있다.
반응성 작용기를 1 개 이상 포함하는 유기 가교제의 함량이 상기 생체 적합성 고분자 100 중량부에 대하여 1000 중량부를 초과하여 첨가되는 경우, 잔량의 미반응한 가교제가 가교 입자에 잔존하는 기술적 문제점이 발생할 수 있다.
한편, 상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함한 극성 용매 상에서 상기 고분자 가교입자를 추가 가교하는 단계에서, 상기 극성 용매는 크게 제한되지 않으나, 예를 들어 에탄올, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈, N-메틸카프로락탐, 2-피롤리돈, N-에틸피롤리돈, N-비닐피롤리돈, 디메틸술폭사이드, 테트라메틸우레아, 피리딘, 디메틸술폰, 헥사메틸술폭사이드, 감마-부티로락톤, 3-메톡시-N,N-디메틸프로판아미드, 3-에톡시-N,N-디메틸프로판아미드, 3-부톡시-N,N-디메틸프로판아미드, 1,3-디메틸-이미다졸리디논, 에틸아밀케톤, 메틸노닐케톤, 메틸에틸케톤, 메틸이소아밀케톤, 메틸이소프로필케톤, 사이클로헥사논, 에틸렌카보네이트, 프로필렌카보네이트, 디글라임, 4-하이드록시-4-메틸-2-펜타논, 에틸렌 글리콜 모노메틸 에테르, 에틸렌 글리콜 모노메틸 에테르 아세테이트, 에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노프로필 에테르, 에틸렌 글리콜 모노프로필 에테르 아세테이트, 에틸렌 글리콜 모노이소프로필 에테르, 에틸렌 글리콜 모노이소프로필 에테르 아세테이트, 에틸렌 글리콜 모노뷰틸 에테르, 에틸렌 글리콜 모노뷰틸 에테르 아세테이트로 이루어진 군에서 선택된 하나일 수 있다.
또한, 상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함한 극성 용매 상에서 상기 고분자 가교입자를 추가 가교하는 단계에서, 상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함한 극성 용매는 알칼리성 혼합 용매일 수 있다.
즉, 극성 용매에 알칼리 수용액을 혼합한 알칼리성 혼합용매 상에서 본 발명의 추가 가교반응이 진행될 수 있다. 상기 알칼리 수용액의 예는 크게 제한되지 않으나, 예를 들어 수산화나트륨 수용액 등일 수 있다.
상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함한 극성 용매가 알칼리성 혼합 용매임에 따라, 친핵성 치환 반응(SN reaction)에 유리한 환경을 조성하여 가교 반응의 효율을 증가시킬 수 있다.
2. 고분자 마이크로 입자
발명의 일 구현예에 따르면, 제1 생체 적합성 고분자, 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함하는 코어; 및 상기 코어의 전부 또는 일부를 둘러싸며, 제2 생체 적합성 고분자, 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함하는 쉘;을 포함하는, 코어-쉘 구조를 가지는, 고분자 마이크로 입자가 제공될 수 있다.
본 발명자들은, 고분자 마이크로 입자에 대한 연구를 진행하여, 상술한 바와 같이 금속 이온에 의하여 가교반응시킨 이후, 추가 가교 반응을 진행함에 따라 공정 효율성이 극대화되는 동시에, 마이크로 입자의 기계적 강도와 세포 부착성이 현저하게 향상됨을 실험을 통해 확인하고 발명을 완성하였다.
발명의 일 구현예에서, 상기 코어는 제1 생체 적합성 고분자가 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 포함하고, 상기 쉘은 제2 생체 적합성 고분자가 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 포함할 수 있다.
구체적으로, 상기 고분자 매트릭스는 생체 적합성 고분자가 금속이온을 매개로 가교된 제1 가교 영역; 및 생체 적합성 고분자가 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 제2 가교 영역;을 포함할 수 있다.
상기 제1 가교 영역은 생체 적합성 고분자와 금속이온의 가교반응이 진행되어 형성된 가교 영역을 의미하며, 상기 제2 가교 영역은 생체 적합성 고분자와 금속이온과의 가교반응 대신 반응성 작용기를 1 개 이상 포함하는 유기 가교제와 가교반응이 진행되어 형성된 가교 영역 및 제1 가교영역과 반응성 작용기를 1 개 이상 포함하는 유기 가교제가 추가 가교반응을 통하여 형성된 가교 영역을 의미할 수 있다. 즉, 상기 구현예의 고분자 마이크로 입자는 금속 이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 이용한 가교반응을 거쳐 제조될 수 있다.
구체적으로, 상기 생체 적합성 고분자란 인체에 적용되는 유효물질들을 전달하기 위하여, 인체 내에 직접 주입이 가능한 고분자를 의미한다. 구체적으로 상기 생체 적합성 고분자는, 히알루론산(Hyaluronic acid: HA), 카르복시메틸셀룰로오스(Carboxymethyl cellulose: CMC), 알긴산(alginic acid), 펙틴, 카라기난, 콘드로이틴(설페이트), 덱스트란(설페이트), 키토산, 폴리라이신(polylysine), 콜라겐, 젤라틴, 카르복시메틸 키틴(carboxymethyl chitin), 피브린, 아가로스, 풀루란, 폴리락타이드, 폴리글리코라이드(PGA), 폴리락타이드-글리코라이드 공중합체(PLGA), 폴리안하이드라이드(polyanhydride), 폴리오르쏘에스테르(polyorthoester), 폴리에테르에스테르(polyetherester), 폴리카프로락톤(polycaprolactone), 폴리에스테르아마이드(polyesteramide), 폴리(뷰티릭 산), 폴리(발레릭 산), 폴리우레탄, 폴리아크릴레이트, 에틸렌-비닐아세테이트 중합체, 아크릴 치환 셀룰로오스 아세테이트, 비-분해성 폴리우레탄, 폴리스티렌, 폴리비닐 클로라이드, 폴리비닐 풀루오라이드, 폴리(비닐 이미다졸), 클로로설포네이트 폴리올레핀(chlorosulphonate polyolefins),폴리에틸렌 옥사이드, 폴리비닐피롤리돈(PVP), 폴리에틸렌글리콜(PEG), 폴리메타크릴레이트, 하이드록시프로필메틸셀룰로오스(HPMC), 에틸셀룰로오스(EC), 하이드록시프로필셀룰로오스(HPC), 싸이클로덱스트린 및 이러한 고분자를 형성하는 단량체들의 공중합체 및 셀룰로오스로 구성된 군으로부터 선택된 1 개 이상의 고분자일 수 있다.
보다 구체적으로, 상기 생체 적합성 고분자는 히알루론산(Hyaluronic acid: HA) 및 젤라틴의 혼합물일 수 있다.
히알루론산만을 사용하여 제조된 고분자 마이크로 입자는 자체만으로는 생체내(in vivo) 또는 산, 알칼리 등의 조건에서 쉽게 분해되어 사용이 제한적일 뿐만 아니라, 세포 부착성이 현저히 저하되며, 젤라틴만을 사용하여 제조된 고분자 마이크로 입자는 기계적 물성이 현저히 저하된다.
이에, 생체 적합성 고분자로 히알루론산(Hyaluronic acid: HA) 및 젤라틴의 혼합물을 사용함에 따라 우수한 세포 부착성과 동시에 기계적 물성을 구현할 수 있다.
구체적으로, 상기 제1 생체 적합성 고분자는 히알루론산을 포함하고, 상기 제2 생체 적합성 고분자는 젤라틴을 포함할 수 있다.
 본 명세서에서, 히알루론산은 히알루론산 자체와 히알루론산 염을 모두 포함하는 의미일 수 있다. 이에 따라, 히알루론산 수용액은 히알루론산의 수용액, 히알루론산 염의 수용액, 및 히알루론산과 히알루론산 염의 혼합 수용액을 모두 포함하는 개념일 수 있다. 상기 히알루론산 염은 히알루론산 나트륨, 히알루론산 칼륨, 히알루론산 칼슘, 히알루론산 마그네슘, 히알루론산 아연, 히알루론산 코발트 등의 무기염과, 히알루론산 테트라부틸암모늄 등의 유기염 및 그 혼합물일 수 있다.
발명의 일 구현예에서, 히알루론산의 분자량은 특별히 제한되는 것은 아니지만, 다양한 물성과 생체적합성을 구현하기 위해 10,000 g/mol 이상 5,000,000 g/mol 이하임이 바람직하다.
본 명세서에서, 젤라틴은 동물에서 유래된 콜라겐을 산 또는 알칼리로 처리하고 후속하여 추출하여 수득되는 단백질을 의미할 수 있다.
발명의 일 구현예에서, 젤라틴의 분자량은 특별히 제한되는 것은 아니지만, 다양한 물성과 생체적합성을 구현하기 위해 10,000 g/mol 이상 5,000,000 g/mol 이하임이 바람직하다.
한편, 상기 고분자 마이크로 입자는 코어-쉘 구조를 가질 수 있다. 상기 코어-쉘 구조는 고분자 마이크로 입자에 포함되는 고분자 매트릭스가 2종 이상의 생체 적합성 고분자를 포함함에 따라, 생체 적합성 고분자와 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제 사이의 반응성 차이 등에 의하여 구현될 수 있다.
상기 코어-쉘 구조에서 상기 코어는, 코어에 포함되는 고분자 매트릭스 전체 부피에 대하여, 히알루론산이 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 50 부피% 초과, 60 부피% 이상, 70 부피% 이상, 또는 75 부피% 이상으로 포함할 수 있다. 또한, 100 부피% 이하, 100 부피% 미만, 95 부피% 이하, 또는 90 부피% 이하로 포함할 수 있다. 또한, 50 부피% 초과 100 부피% 이하, 50 부피% 초과 100 부피% 미만, 60 부피% 이상 100 부피% 미만, 60 부피% 이상 95 부피% 이하, 70 부피% 이상 95 부피% 이하, 70 부피% 이상 90 부피% 이하, 또는 75 부피% 이상 90 부피% 이하로 포함할 수 있다. 즉, 상기 코어는 젤라틴에 대하여 과량의 히알루론산을 포함할 수 있다.
코어에 포함되는 고분자 매트릭스 전체 부피에 대하여, 히알루론산이 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 50 부피% 초과로 포함하는 것은, 해당 영역이 전체 면적의 50 %를 초과하여 분포하는 것을 시각적 또는 측정 장비를 통하여 확인하여 알 수 있다.
구체적으로, 상기 코어에 포함되는 고분자 매트릭스 전체 부피에 대한 히알루론산이 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스의 부피 비율의 계산은 크게 제한되지 않고 통상의 측정 방법에 의하여 계산할 수 있다. 예를 들어, 제조된 고분자 마이크로 입자의 젤라틴의 특성 피크 (1650 cm-1)에 대해 상대화한 히알루론산 특성 피크 (1080 cm-1) 에 대한 IR 사진을 촬영하여 확인할 수 있다.
상기 코어-쉘 구조에서 상기 쉘은, 쉘에 포함되는 고분자 매트릭스 전체 부피에 대하여, 젤라틴이 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 50 부피% 초과, 60 부피% 이상, 70 부피% 이상, 또는 75 부피% 이상으로 포함할 수 있다. 또한, 100 부피% 이하, 100 부피% 미만, 95 부피% 이하, 또는 90 부피% 이하로 포함할 수 있다. 또한, 50 부피% 초과 100 부피% 이하, 50 부피% 초과 100 부피% 미만, 60 부피% 이상 100 부피% 미만, 60 부피% 이상 95 부피% 이하, 70 부피% 이상 95 부피% 이하, 70 부피% 이상 90 부피% 이하, 또는 75 부피% 이상 90 부피% 이하로 포함할 수 있다. 즉, 상기 쉘은 히알루론산에 대하여 과량의 젤라틴을 포함할 수 있다.
쉘에 포함되는 고분자 매트릭스 전체 부피에 대하여, 젤라틴이 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 50 부피% 초과로 포함하는 것은, 해당 영역이 전체 면적의 50 %를 초과하여 분포하는 것을 시각적 또는 측정 장비를 통하여 확인하여 알 수 있다.
상기 쉘에 포함되는 고분자 매트릭스 전체 부피에 대한 젤라틴이 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스의 부피 비율의 계산은 크게 제한되지 않고 통상의 측정 방법에 의하여 계산할 수 있다. 예를 들어, 제조된 고분자 마이크로 입자의 젤라틴의 특성 피크 (1650 cm-1)에 대한 IR 사진을 촬영하여 확인할 수 있다.
히알루론산이 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 50 부피% 이상으로 포함하는 코어 및 젤라틴이 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 50 부피% 이상으로 포함하는 쉘을 포함하는 코어-쉘 구조는 용해도, 온도 반응성, 이온 결합성 등 물리 화학적 원인에 따라 구현될 수 있다. 보다 구체적으로, 상기 고분자 마이크로 입자 제조 공정에서, 에탄올과 같은 극성 용매에 대한 용해도가 낮고 온도 반응성이 높은 젤라틴은 유동성이 저하되어 입자 표면에 고정하여 존재하게 되어 쉘을 형성할 수 있으며, 이에 따라 상대적으로 입자 내부에 히알루론산이 더 많이 분포하여 코어를 형성할 수 있다.
특히 상기 일 구현예의 고분자 마이크로 입자의 제조방법에서 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함한 극성 용매 상에서 고분자 가교입자를 추가 가교하는 단계 이전에, 생체 적합성 고분자 및 금속 이온을 포함한 혼합물을 반응하여 고분자 가교 입자를 형성하는 단계를 포함함에 따라, 금속 이온과 히알루론산에 포함되어 있는 카르복실기 간의 이온결합으로 인하여 코어-쉘 구조가 더 명확해질 수 있다.
한편, 상기 고분자 마이크로 입자는 증류수에서의 평균 직경이 1 ㎛ 이상, 1 ㎛ 이상 450 ㎛ 이하, 100 ㎛ 이상 450 ㎛ 이하, 또는 200 ㎛ 이상 400 ㎛ 이하, 또는 300 ㎛ 이상 400㎛ 이하일 수 있는데, 고분자 마이크로 입자의 평균 직경이 상술한 범위를 만족하는 경우 세포 부착 및 배양 성능이 우수하다.
상기 평균 직경이란, 직경에 따른 입자 개수 누적 분포의 50 부피% 지점에서의 직경을 의미 할 수 있다.
상기 일구현예의 고분자 마이크로 입자에서 상기 고분자 마이크로 입자의 최장 직경을 갖는 단면을 기준으로, 상기 쉘의 두께가 상기 고분자 마이크로 입자의 최장 직경의 95 % 이하, 90 % 이하, 80% 이하, 75% 이하, 50% 이하, 30 % 이하, 25 % 이하, 또는 20 % 이하일 수 있다. 또한, 상기 고분자 마이크로 입자의 최장 직경을 갖는 단면을 기준으로, 상기 쉘의 두께가 상기 고분자 마이크로 입자의 최장 직경의 0.01% 이상, 1% 이상, 또는 5% 이상일 수 있다.
또한, 상기 일구현예의 고분자 마이크로 입자에서 상기 고분자 마이크로 입자의 최장 직경을 갖는 단면을 기준으로, 상기 코어의 두께가 상기 고분자 마이크로 입자의 최장 직경의 5 % 이상, 10% 이상, 20 % 이상, 25 % 이상, 50% 이상, 70 % 이상, 75 % 이상, 또는 80 % 이상일 수 있다. 또한, 상기 고분자 마이크로 입자의 최장 직경을 갖는 단면을 기준으로, 상기 코어의 두께가 상기 고분자 마이크로 입자의 최장 직경의 99.99% 이하, 99% 이하, 또는 95% 이하일 수 있다.
또한, 상기 고분자 마이크로 입자는 0.9 이상 1.0 이하, 0.93 이상 1.0 이하, 0.94 이상 0.99 이하, 또는 0.94 이상 0.98 이하의 구형화도를 가질 수 있다.
상기 구형화도는, 고분자 마이크로 입자의 광학 사진을 촬영하고, 광학 사진에서의 임의의 입자 30 개 내지 100개의 평균 값을 계산함으로써 얻을 수 있다.
또한, 상기 고분자 마이크로 입자는 증류수로 24시간 이상 팽윤된 입자에 대하여 평균직경의 25% 수준으로 변형되었을 때의 평균 압축강도가 0.1 mN 이상, 0.1 mN 이상 100 mN 이하, 0.3 mN 이상 100 mN 이하, 0.35 mN 이상 100 mN 이하, 0.35 mN 이상 30 mN 이하, 0.35 mN 이상 10 mN 이하, 또는 0.35 mN 이상 3 mN 이하 일 수 있다.
상기 평균 압축 강도는 상기 고분자 마이크로 입자 n 개에 대하여, 평균 직경의 25% 수준으로 변형되었을 때의 압축강도를 n으로 나눈 값일 수 있다.
예를 들어, 본 명세서에서 상기 평균 압축 강도는 상기 고분자 마이크로 입자 30 개에 대하여, 평균직경의 25% 수준으로 변형되었을 때의 압축강도를 30으로 나눈 값일 수 있다.
상기 고분자 마이크로 입자의 평균 압축 강도가 0.1 mN 미만일 경우, 고분자 마이크로 입자의 기계적 강도가 열등하여 안정성이 저하되는 기술적 문제점이 발생할 수 있다.
3. 의료용 조성물
본 발명의 또 다른 구현예에 따르면, 상기 다른 구현예의 고분자 마이크로 입자 및 상기 고분자 마이크로 입자 내에 함유된 약학 유효물질을 포함하는 의료용 조성물이 제공될 수 있다. 상기 고분자 마이크로 입자에 관한 내용은 상기 다른 구현예에서 상술한 모든 내용을 포함할 수 있다.
상기 약학 유효물질은 상기 고분자 마이크로 입자 내에 함유된 상태로 존재할 수 있다.
상기 약학 유효 물질의 예는 크게 한정되지 않으며, 상기 일 구현예의 고분자 마이크로 입자의 적용 용도에 따라, 해당 용도에 적합한 유효 물질을 제한없이 적용할 수 있다. 즉, 상기 약학적 유효 물질의 구체적인 예는 한정되지 않고, 암페타미닐(ampetaminil), 아레콜린(arecolin), 아트로핀(atrophine), 부프라노롤(bupranolol), 부프레노핀(buprenorphine), 캡사이신(capsaicin), 카리소프로돌(carisoprodol), 클로르프로마진(chlorpromazine), 시클로피록스 올라민(ciclopirox olamine), 코카인(cocaine), 데시프라민(desipramine), 디클로닌(dyclonine), 에피네프린(epinephrine), 에토숙시미드(ethosuximide), 플록세틴(floxetine), 히드로모핀(hydromorphine), 이미프라민(imipramine), 리도카인(lidocaine), 메타암페타민(methamphetamine), 멜프로익산(melproic acid), 메틸페니데이트(methylpenidate), 모핀(morphine), 옥시부티닌(oxibutynin), 나도롤(nadolol), 니코틴(nicotine), 니트로글리세린(nitroglycerin), 핀도롤(pindolol), 프릴로카인(prilocaine), 프로카인(procaine), 프로파노롤(propanolol), 리바스티그민(rivastigmine), 스코폴라민(scopolamine), 셀레길린(selegiline), 툴로부테롤(tulobuterol), 발프로익산(valproic acid), 도네페질 (Donepezil) 등으로 이어지는 군으로부터 선택되는 약물 및 EPO(Erythropoietin), 인간성장호르몬(hGH), 엑세나타이드(Exenatide), GLP-1(Glucagon-like peptide-1), 인슐린, CSF(Granulocyte colony-stimulating factor), 에스트로겐, 프로게스테론 파라싸이로이드호르몬 (PTH) 등으로 이어지는 군으로부터 선택되는 펩타이드 또는 단백질 계열의 약물 등이 있으며, 약리 효과가 입증된 모든 약리 물질이 제한없이 적용가능하다.
상기 약학 유효물질의 첨가량 또한 크게 한정되지 않으며, 적용 용도와 대상에 따라 함량을 제한없이 사용할 수 있다. 예를 들어, 상기 유효물질은 상기 고분자 마이크로 입자 100 중량부 대비 0.0001 중량부 이상 1000000 중량부 이하로, 고분자 마이크로 입자 대비 소량, 과량 제한없이 포함될 수 있다.
4. 미용 조성물
본 발명의 또 다른 구현예에 따르면, 상기 다른 구현예의 고분자 마이크로 입자 및 상기 고분자 마이크로 입자 내에 함유된 미용 유효물질을 포함하는 미용 조성물이 제공될 수 있다. 상기 고분자 마이크로 입자에 관한 내용은 상기 다른 구현예에서 상술한 모든 내용을 포함할 수 있다.
상기 미용 유효물질은 상기 고분자 마이크로 입자 내에 함유된 상태로 존재할 수 있다.
상기 미용 유효 물질의 예는 크게 한정되지 않으며, 상기 일 구현예의 고분자 마이크로 입자의 적용 용도에 따라, 해당 용도에 적합한 유효 물질을 제한없이 적용할 수 있다. 즉, 상기 미용 유효 물질의 구체적인 예는 한정되지 않고, 천연 추출물, 단백질, 비타민, 효소, 항산화제 등이 있으며, 미용 효과가 입증된 모든 물질이 제한없이 적용가능하다.
상기 미용 유효물질의 첨가량 또한 크게 한정되지 않으며, 적용 용도와 대상에 따라 함량을 제한없이 사용할 수 있다. 예를 들어, 상기 미용 유효물질은 상기 고분자 마이크로 입자 100 중량부 대비 0.0001 중량부 이상 1000000 중량부 이하로, 고분자 마이크로 입자 대비 소량, 과량 제한없이 포함될 수 있다.
5. 의료 용품
본 발명의 또 다른 구현예에 따르면, 상기 다른 구현예의 의료용 조성물을 포함하는 의료 용품이 제공될 수 있다. 상기 의료용 조성물에 관한 내용은 상기 다른 구현예에서 상술한 모든 내용을 포함할 수 있다.
상기 의료 용품의 예가 크게 한정되지 않으나, 본 발명의 특성이 구현되기 위해서는 체내에 삽입되어 사용되거나 혹은 장기간 강도가 유지되어야 하는 경우에 적합하며, 예를 들어, 체내 보형물, 체내 삽입형 약물 전달체, 경피패치, 창상 치료제 등을 들 수 있다.
6. 미용 용품
본 발명의 또 다른 구현예에 따르면, 본 발명은 상기 다른 구현예의 미용 조성물을 포함하는 미용 용품이 제공될 수 있다. 상기 미용 조성물에 관한 내용은 상기 다른 구현예에서 상술한 모든 내용을 포함할 수 있다.
상기 미용 용품의 예가 크게 한정되지 않으나, 본 발명의 특성이 구현되기 위해서는 예를 들어, 미용 크림, 로션, 헤어 겔, 팩 등을 들 수 있다.
상기 미용 팩의 구조가 크게 한정되는 것은 아니나, 예를 들어, 지지체, 및 상기 지지체 상에 형성되며, 상기 다른 구현예의 고분자 마이크로 입자를 포함한 미용적 유효 물질 전달층을 포함할 수 있다. 상기 지지체의 예로는 직포, 부직포, 실리콘, 폴리에틸렌테레프탈레이트, 폴리에틸렌, 폴리프로필렌, 폴리우레탄, 금속 망사, 폴리에스테르 등을 들 수 있다.
본 발명에 따르면, 우수한 기계적 강도 및 세포 부착성을 구현할 수 있는 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품이 제공될 수 있다.
도1는 실시예 1의 고분자 마이크로 입자에 대한 광학현미경(OM)사진 이다.
도2는 실시예 1의 고분자 마이크로 입자의 젤라틴 특성 피크 (1650 cm-1)에 대한 IR 사진 이다.
도3은 실시예 1의 고분자 마이크로 입자의 젤라틴의 특성 피크 (1650 cm-1)에 대해 상대화한 히알루론산 특성 피크 (1080 cm-1) 에 대한 IR 사진 이다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
실시예 1: 고분자 마이크로 입자의 제조
0.1N NaOH 수용액에 히알루론산염(중량 평균분자량: 500 kDa, 제조사: SK바이오랜드) 200 mg을 2 wt.%로 녹이고, 증류수에 젤라틴(젤강도: 300 g Bloom, 제조사: Sigma, 제품명: G2500) 250 mg을 2.5 wt.%로 녹인 각각의 용액 10 mL을 혼합하여 20 mL을 제조한 다음, 이를 철 이온(Fe3+)을 포함하는 화합물인 FeCl3가 4 g 첨가된 에탄올 용액 80 mL에 encapsulator (BUCHI, B-390) 기기를 이용하여 형성된 액적을 첨가하고, 4 ℃ 에서 2 시간 동안 가교반응시킨 후, 에탄올로 세척하여 가교입자를 제조하였다.
0.1N NaOH 수용액을 20% 함유하고 있는 80% 에탄올 용액에 1,4-부탄디올 디글리시딜 에터(1,4-Butandiol diglycidyl ether, BDDE)를 2.2 g 혼합한 후, 상기 가교입자를 첨가하고, 상온에서 3일 동안 가교반응시켜, 고분자 마이크로 입자를 제조하였다. 제조된 입자를 에탄올, 증류수 순서로 세척한 후 체눈의 크기가 45 ㎛인 망체를 사용하여 제조된 가교입자를 회수하였다. 회수된 가교입자를 체눈의 크기가 500 ㎛인 망체에 걸러내고 남은 가교입자를 분석하였다.
제조된 고분자 마이크로 입자에 대한 촬영한 광학현미경(OM)사진을 도 1에 나타내었다.
제조된 고분자 마이크로 입자의 젤라틴 특성 피크 (1650 cm-1)에 대한 IR 사진을 도 2에 나타내었다. 젤라틴의 특성 피크(1650 cm-1)의 intensity 차이를 통해 젤라틴이 제조된 고분자 마이크로 입자의 쉘에 분포하는 것을 확인하였다.
제조된 고분자 마이크로 입자의 젤라틴의 특성 피크 (1650 cm-1)에 대해 상대화한 히알루론산 특성 피크 (1080 cm-1) 에 대한 IR 사진을 도 3에 나타내었다. 제조된 고분자 마이크로 입자의 코어에, 젤라틴과 비교하여 히알루론산이 높은 상대량으로 분포함을 확인하였다.
실시예 2: 고분자 마이크로 입자의 제조
철 이온(Fe3+)을 포함하는 화합물인 FeCl3가 4 g 첨가된 에탄올 용액 대신 알루미늄 이온(Al3+)을 포함하는 화합물인 AlCl3가 4 g 첨가된 에탄올 용액을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고분자 마이크로 입자를 제조하였다.
실시예 3: 고분자 마이크로 입자의 제조
1,4-부탄디올 디글리시딜 에터(1,4-Butandiol diglycidyl ether, BDDE) 2.2 g 대신 50% 글루타르알데히드(glutaraldehyde) 2.2 g을 첨가한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고분자 마이크로 입자를 제조하였다.
비교예 1: 고분자 마이크로 입자의 제조
히알루론산염(중량 평균분자량: 500kDa, 제조사: SK바이오랜드) 및 젤라틴(젤강도: 300g Bloom, 제조사: Sigma, 제품명: G2500)을 각각 증류수에 2 wt.%, 20 wt.%로 녹여 5 ml씩 제조한 다음, 이 두 용액을 혼합한 용액을 액체 파라핀 용액과 혼합하여 마이크로 에멀전을 포함하는 혼합액을 제조하였다. 이후, 상기 혼합액에 가교제로 1,4-부탄디올 디글리시딜 에터(1,4-Butandiol diglycidyl ether, BDDE)를 2.2 g 첨가하고, 상온에서 5일 동안 가교반응시켜, 고분자 마이크로 입자를 제조하였다. 제조된 입자를 아세톤, 디클로로메탄, 증류수 순서로 세척한 후 체눈의 크기가 45 ㎛인 망체를 사용하여 제조된 가교입자를 회수하였다. 회수된 가교입자를 체눈의 크기가 500 ㎛인 망체에 걸러내고 남은 가교입자를 분석하였다.
비교예 2: 고분자 마이크로 입자의 제조
0.1N NaOH 수용액에 히알루론산염(중량 평균분자량: 500 kDa, 제조사: SK바이오랜드)을 2 wt.%로 녹이고, 증류수에 젤라틴(젤강도: 300 g Bloom, 제조사: Sigma, 제품명: G2500)을 2.5 wt.%로 녹인 각각의 용액 10 mL을 혼합하여 20 mL을 제조한 다음, 이를 철 이온(Fe3+)을 포함하는 화합물인 FeCl3가 4 g 첨가된 에탄올 용액 80 mL에 encapsulator (BUCHI, B-390) 기기를 이용하여 형성된 액적을 첨가하고, 4 ℃ 에서 2 시간 동안 가교반응시킨 후, 에탄올 및 증류수로 세척하여 가교입자를 제조하였다. 제조된 가교입자를 체눈의 크기가 45 ㎛인 망체를 사용하여 제조된 가교입자를 회수하였다. 회수된 가교입자를 체눈의 크기가 500 ㎛인 망체에 걸러내고 남은 가교입자를 분석하였다.
비교예 3: 고분자 마이크로 입자의 제조
히알루론산염(중량 평균분자량: 500kDa, 제조사: SK바이오랜드) 200 mg 을 0.1 N NaOH 수용액에 2 wt.% 농도로, 젤라틴(젤강도: 300g Bloom, 제조사: Sigma, 제품명: G2500) 250 mg 을 증류수에 2.5 wt.% 농도로 각각 녹여 10 ml씩 제조한 다음, 이 두 용액을 혼합한 용액을 액체 파라핀 용액과 혼합하여 마이크로 에멀전을 포함하는 혼합액을 제조하였다. 이후, 상기 혼합액에 가교제로 1,4-부탄디올 디글리시딜 에터(1,4-Butandiol diglycidyl ether, BDDE)를 2.2 g 첨가하고, 상온에서 5일 동안 가교반응시켰다. 이를 아세톤, 디클로로메탄, 증류수 순서로 세척한 후 체눈의 크기가 45 ㎛인 망체를 사용하여 제조된 가교입자를 회수하였다. 회수된 가교입자를 체눈의 크기가 500 ㎛인 망체에 걸러내고 남은 가교입자를 분석하였다.
비교예 4: 고분자 마이크로 입자의 제조
히알루론산염(중량 평균분자량: 500 kDa, 제조사: SK바이오랜드)을 0.1 N NaOH 수용액에 2 wt.% 농도로, 젤라틴(젤강도: 300g Bloom, 제조사: Sigma, 제품명: G2500)을 증류수에 2.5 wt.% 농도로 각각 녹여 5 ml씩 제조한 다음, 이 두 용액을 혼합한 용액을 액체 파라핀 용액과 혼합하여 마이크로 에멀전을 포함하는 혼합액을 제조하였다. 이후, 상기 혼합액에 가교제로 1,4-부탄디올 디글리시딜 에터(1,4-Butandiol diglycidyl ether, BDDE)를 2.2 g 첨가하고, 상온에서 5일 동안 가교반응시켰다. 이를 아세톤, 디클로로메탄, 증류수 순서로 세척한 후 체눈의 크기가 45 ㎛인 망체를 사용하여 제조된 가교입자를 회수하였다. 회수된 가교입자를 체눈의 크기가 500 ㎛인 망체에 걸러내고 남은 가교입자를 분석하였다.
비교예 5: 고분자 마이크로 입자의 제조
히알루론산염(중량 평균분자량: 500kDa, 제조사: SK바이오랜드) 및 젤라틴(젤강도: 300g Bloom, 제조사: Sigma, 제품명: G2500)을 각각 증류수에 2 wt.%, 2.5 wt.%로 녹여 5 ml씩 제조한 다음, 이 두 용액을 혼합한 용액을 액체 파라핀 용액과 혼합하여 마이크로 에멀전을 포함하는 혼합액을 제조하였다. 이후, 상기 혼합액에 가교제로 1,4-부탄디올 디글리시딜 에터(1,4-Butandiol diglycidyl ether, BDDE)를 2.2 g 첨가하고, 상온에서 5일 동안 가교반응시켰다. 이를 아세톤, 디클로로메탄, 증류수 순서로 세척한 후 체눈의 크기가 45 ㎛인 망체를 사용하여 제조된 가교입자를 회수하였다. 회수된 가교입자를 체눈의 크기가 500 ㎛인 망체에 걸러내고 남은 가교입자를 분석하였다.
비교예 6: 고분자 마이크로 입자의 제조
알지네이트(제조사: Sigma, 제품명: 180947) 및 셀룰로오스(제조사: Sigma, 제품명: C5678)을 각각 증류수에 2.5 wt.%로 녹인 각각의 용액 10 mL을 혼합하여 20 mL을 제조한 다음, 이를 칼슘 이온(Ca2+)을 포함하는 화합물인 CaCl2가 4 g 첨가된 에탄올 용액 80 mL에 encapsulator (BUCHI, B-390) 기기를 이용하여 형성된 액적을 첨가하고, 상온에서 2 시간 동안 가교반응시킨 후, 에탄올로 세척하여 가교입자를 제조하였다.
0.1N NaOH 수용액을 20% 함유하고 있는 80% 에탄올 용액에 1,4-부탄디올 디글리시딜 에터(1,4-Butandiol diglycidyl ether, BDDE)를 2.2 g 혼합한 후, 상기 가교입자를 첨가하고, 상온에서 3일 동안 가교반응시켜, 고분자 마이크로 입자를 제조하였다. 제조된 입자를 에탄올, 증류수 순서로 세척한 후 체눈의 크기가 45 ㎛인 망체를 사용하여 제조된 가교입자를 회수하였다. 회수된 가교입자를 체눈의 크기가 500 ㎛인 망체에 걸러내고 남은 가교입자를 분석하였다.
비교예 7: 고분자 마이크로 입자의 제조
히알루론산염(중량 평균분자량: 500kDa, 제조사: SK바이오랜드) 200 mg 을 0.1 N NaOH 수용액에 2 wt.% 농도로, 젤라틴(젤강도: 300g Bloom, 제조사: Sigma, 제품명: G2500) 250 mg 을 증류수에 2.5 wt.% 농도로 녹인 각각의 용액 10 mL을 혼합하여 20 mL을 제조한 다음, 이를 철 이온(Fe3+)을 포함하는 화합물인 FeCl3가 4 g 첨가된 에탄올 용액 80 mL에 encapsulator (BUCHI, B-390) 기기를 이용하여 형성된 액적을 첨가하고, 4 ℃ 에서 2 시간 동안 가교반응시킨 후, 에탄올로 세척하여 가교입자를 제조하였다.
상기 가교 입자를 칼슘 이온(Ca2+)을 포함하는 화합물인 CaCl2가 4 g 첨가된 에탄올 용액 80 mL에 첨가하고, 4 ℃ 에서 2 시간 동안 가교반응시킨 후, 고분자 마이크로 입자를 제조하였다. 제조된 입자를 에탄올, 증류수 순서로 세척한 후 체눈의 크기가 45 ㎛인 망체를 사용하여 제조된 가교입자를 회수하였다. 회수된 가교입자를 체눈의 크기가 500 ㎛인 망체에 걸러내고 남은 가교입자를 분석하였다.
실험예: 고분자 마이크로 입자의 물성 측정
상기 실시예 및 비교예에서 제조된 고분자 마이크로 입자에 대하여 다음과 같은 방법으로 고분자 마이크로 입자의 평균직경, 구형화도, 강도, 세포 배양 적합성, 안정성을 평가하였다.
1. 평균 직경
상기 실시예 및 비교예의 고분자 마이크로 입자의 증류수에서의 평균직경은 레이저입도분석기(Horiba, Partica LA-960) 장비를 이용하여 측정하였다.
2. 구형화도
상기 실시예 및 비교예의 고분자 마이크로 입자의 광학(Olympus, BX53) 사진을 촬영하고, 이로부터 구형화도를 계산하였다.
본 발명에 따른 구형화도는 광학 사진에서의 임의의 30개 입자의 가장 긴 직경 대 가장 짧은 직경의 비율(장경비)의 평균 값으로 계산하였다.
이때, 구형화도 값이 1에 가까울수록 구형에 가까운 것을 의미한다.
3. 강도
상기 실시예 및 비교예의 고분자 마이크로 입자에 대하여, Texture analyzer 장비를 사용하여, 마이크로 입자의 강도를 측정하였다. 5 N load cell가 장착된 장비의 flat cylindrical probe 아래 영역에 증류수로 24 시간 팽윤된 마이크로 입자 30개를 단층으로 올려 놓았다. 초기 trigger force는 1 mN으로 설정하고, 1 mm/s 속도로 입자를 압축하였다. 입자 평균직경의 25% 수준으로 변형되었을 때의 힘을 압축력으로 정하였다.
평균 압축 강도는 상기 압축력을 측정 대상인 마이크로 입자의 개수인 30으로 나누어 계산하였다.
4. 세포 배양 적합성
6 well plate에 세포 배양액을 채우고, 고분자 마이크로 입자와 세포를 넣어 plate-rocking 방식으로 세포를 배양하였다. 이때 배양액의 온도는 37℃를 유지하였고, 3일간 배양하여 고분자 마이크로 입자에서 배양된 세포 수를 확인하였다.
이 때, 세포 배양 적합성은 아래 기준으로 평가하였다.
적합 : 투입된 세포 수 대비 배양된 세포 수가 100% 이상인 경우
부적합 : 투입된 세포 수 대비 배양된 세포 수가 100% 미만이거나, 배양 중 마이크로 입자가 분해되는 경우
5. 안정성
고온 고압 방식 멸균기 (Autoclave) 사용을 통해 phosphate-buffered saline 용액에 담긴 고분자 마이크로 입자의 멸균 처리 시 안정성 및 장기간 배양에 따른 입자 안정성을 아래 기준으로 평가하였다.
적합 : Autoclave 이용 전과 후의 건조된 고분자 마이크로 입자의 무게 감소율 20% 이하인 경우
부적합 : Autoclave 이용 전과 후의 건조된 고분자 마이크로 입자의 무게 감소율 20% 초과인 경우
구분 평균직경 (㎛) 구형화도 평균 압축강도 (mN) 세포 배양 적합성 안정성
실시예 1 317±21 0.95±0.08 2.10 적합 적합
실시예 2 346±26 0.96±0.13 1.37 적합 적합
실시예 3 319±32 0.95±0.05 0.37 적합 적합
비교예 1 385±13 0.98±0.09 0.23 적합 부적합
비교예 2 193±21 0.96±0.03 0.10 부적합 부적합
비교예 3 입자 제조 불가능
비교예 4 입자 제조 불가능
비교예 5 입자 제조 불가능
비교예 6 301±48 0.94±0.11 0.29 부적합 적합
비교예 7 194±17 0.95±0.04 0.12 부적합 부적합
상기 표 1에 나타난 바와 같이, 실시예의 고분자 마이크로 입자는, 먼저 투입된 세포 수 대비 배양된 세포 수가 100 % 이상으로 세포 배양에 적합할 뿐만 아니라, Autoclave 처리 전과 후의 건조된 고분자 마이크로 입자의 무게 감소율 20% 이하로 나타나 멸균 처리 및 장기간 배양에 적합함을 확인할 수 있었다. 뿐만 아니라 실시예의 고분자 마이크로 입자는, 평균 압축 강도가 0.37 mN 이상으로 나타나 우수한 기계적 물성을 구현함과 동시에, 높은 가교밀도를 나타내는 입자의 비율이 높음을 확인할 수 있었다.
즉, 실시예의 고분자 마이크로 입자는 세포 배양, 멸균 처리 및 장기간 배양에 적합하면서도 우수한 가교 밀도 및 기계적 물성을 구현함을 확인하였다.
반면, 비교예 1의 고분자 마이크로 입자는 Autoclave 처리 전과 후의 건조된 고분자 마이크로 입자의 무게 감소율 20 % 초과로 나타나 멸균 처리 및 장기간 배양에 부적합할 뿐만 아니라, 평균 압축 강도가 0.23 mN으로 나타나 열등한 기계적 물성을 나타내고, 낮은 가교밀도를 나타내는 입자의 비율이 높음을 확인할 수 있었다.
그리고, 비교예 2의 고분자 마이크로 입자는 증류수 세척 단계에서 가교되지 못한 고분자가 용해되어 입자가 수축되는 것이 관찰되었다. 또한, 세포 배양 중 마이크로 입자가 분해되어, 투입된 세포 수 대비 배양된 세포 수가 100 % 미만으로 세포 배양에 부적합할 뿐만 아니라, Autoclave 처리 전과 후의 건조된 고분자 마이크로 입자의 무게 감소율 20% 초과로 나타나 멸균 처리 및 장기간 배양에 부적합함을 확인할 수 있었다. 또한 평균 압축 강도가 0.1 mN으로 나타나 열등한 기계적 물성을 나타냄을 확인할 수 있었다.
또한, 비교예 3 내지 5의 고분자 마이크로 입자는 비교예 1과 달리 생체 적합성 고분자를 녹인 수용액의 농도를 실시예 1과 동일한 수준으로 조절함에 따라, 고분자 마이크로 입자가 형성되지 않아, 실시예의 경우에 낮은 생체 적합성 고분자 농도에도 고분자 마이크로 입자의 형성이 가능함을 확인할 수 있었다.
비교예 6의 고분자 마이크로 입자는 가교제에 의한 화학적 가교로 인해 증류수 상태에서 0.29 mN 의 평균 압축강도를 나타내었으나, 생체 적합성 고분자로 세포 부착성이 없는 알지네이트와 셀룰로오스를 사용함에 따라 세포 배양에 부적합함을 확인할 수 있었다. 또한, 금속이온으로 칼슘 이온(Ca2+)을 이용하여 가교함에 따라, 세포 배양액에 존재하는 칼슘 이온과 가역적으로 반응할 수 있어, 세포 배양시 입자 강도가 낮아질 수 있다.
비교예 7의 고분자 마이크로 입자는 이온 가교만을 거쳐 제조됨에 따라, 멸균 처리 및 세포 배양 중 일부 마이크로 입자가 분해되어 세포 배양에 부적합함을 확인할 수 있었다.

Claims (25)

  1. 생체 적합성 고분자 및 금속 이온을 포함한 혼합물을 반응하여 고분자 가교 입자를 형성하는 단계; 및
    반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함한 극성 용매 상에서 상기 고분자 가교입자를 추가 가교하는 단계;를 포함하는, 고분자 마이크로 입자의 제조방법.
  2. 제1항에 있어서,
    상기 생체 적합성 고분자 및 금속 이온을 포함한 혼합물을 반응하여 고분자 가교 입자를 형성하는 단계는, 극성 용매 상에서 이루어지는, 고분자 마이크로 입자의 제조방법.
  3. 제1항에 있어서,
    상기 생체 적합성 고분자 및 금속 이온을 포함한 혼합물을 반응하여 고분자 가교 입자를 형성하는 단계는,
    상기 생체 적합성 고분자를 녹인 수용액을 형성하는 단계;
    상기 금속이온을 포함하는 화합물을 극성 용매에 첨가하여 금속이온을 포함하는 용액을 형성하는 단계; 및
    상기 생체 적합성 고분자를 녹인 수용액 액적과 상기 금속이온을 포함하는 용액을 혼합하여 혼합용액을 형성하는 단계;를 포함하는 고분자 마이크로 입자의 제조방법.
  4. 제3항에 있어서,
    상기 생체 적합성 고분자를 녹인 수용액은
    전체 생체 적합성 고분자를 녹인 수용액 중량에 대하여, 상기 생체 적합성 고분자를 0.01 중량 % 이상 10 중량% 이하로 포함하는, 고분자 마이크로 입자의 제조방법.
  5. 제3항에 있어서,
    상기 금속이온을 포함하는 화합물은 상기 생체 적합성 고분자 100 중량부에 대하여 200 중량부 이상 1000 중량부 이하로 포함되는, 고분자 마이크로 입자의 제조방법.
  6. 제1항에 있어서,
    상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함한 극성 용매 상에서 상기 고분자 가교입자를 추가 가교하는 단계에서,
    상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제는 상기 생체 적합성 고분자 100 중량부에 대하여 150 중량부 이상 1000 중량부 이하로 포함되는, 고분자 마이크로 입자의 제조방법.
  7. 제1항에 있어서,
    상기 극성 용매는 에탄올, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈, N-메틸카프로락탐, 2-피롤리돈, N-에틸피롤리돈, N-비닐피롤리돈, 디메틸술폭사이드, 테트라메틸우레아, 피리딘, 디메틸술폰, 헥사메틸술폭사이드, 감마-부티로락톤, 3-메톡시-N,N-디메틸프로판아미드, 3-에톡시-N,N-디메틸프로판아미드, 3-부톡시-N,N-디메틸프로판아미드, 1,3-디메틸-이미다졸리디논, 에틸아밀케톤, 메틸노닐케톤, 메틸에틸케톤, 메틸이소아밀케톤, 메틸이소프로필케톤, 사이클로헥사논, 에틸렌카보네이트, 프로필렌카보네이트, 디글라임, 4-하이드록시-4-메틸-2-펜타논, 에틸렌 글리콜 모노메틸 에테르, 에틸렌 글리콜 모노메틸 에테르 아세테이트, 에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노프로필 에테르, 에틸렌 글리콜 모노프로필 에테르 아세테이트, 에틸렌 글리콜 모노이소프로필 에테르, 에틸렌 글리콜 모노이소프로필 에테르 아세테이트, 에틸렌 글리콜 모노뷰틸 에테르, 에틸렌 글리콜 모노뷰틸 에테르 아세테이트로 이루어진 군에서 선택된 하나인, 고분자 마이크로 입자의 제조방법.
  8. 제1항에 있어서,
    상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제는,
    포르밀기 또는 에폭시기를 1 개 이상 포함하는, 고분자 마이크로 입자의 제조방법.
  9. 제1항에 있어서,
    상기 금속 이온은, 철 이온, 알루미늄 이온, 구리 이온, 철 이온, 마그네슘 이온, 바륨 이온, 칼슘 이온 등으로 이루어진 군에서 선택된 하나를 포함하는, 고분자 마이크로 입자의 제조방법.
  10. 제1항에 있어서,
    상기 생체 적합성 고분자는, 히알루론산 및 젤라틴의 혼합물을 포함하는, 고분자 마이크로 입자의 제조방법.
  11. 제10항에 있어서,
    상기 히알루론산 및 젤라틴의 혼합물은,
    히알루론산 100 중량부에 대하여, 젤라틴을 50 중량부 이상 500 중량부 이하로 포함하는, 고분자 마이크로 입자의 제조방법.
  12. 제1 생체 적합성 고분자, 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함하는 코어; 및
    상기 코어의 전부 또는 일부를 둘러싸며, 제2 생체 적합성 고분자, 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 포함하는 쉘;을 포함하는,
    코어-쉘 구조를 가지는, 고분자 마이크로 입자.
  13. 제12항에 있어서,
    상기 코어는 제1 생체 적합성 고분자가 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 포함하고,
    상기 쉘은 제2 생체 적합성 고분자가 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 포함하는, 고분자 마이크로 입자.
  14. 제12항에 있어서,
    상기 제1 생체 적합성 고분자는 히알루론산을 포함하고,
    상기 제2 생체 적합성 고분자는 젤라틴을 포함하는,
    고분자 마이크로 입자.
  15. 제13항에 있어서,
    상기 코어는, 코어에 포함되는 고분자 매트릭스 전체 부피에 대하여,
    히알루론산이 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 50 부피% 초과로 포함하는, 고분자 마이크로 입자.
  16. 제13항에 있어서,
    상기 쉘은, 쉘에 포함되는 고분자 매트릭스 전체 부피에 대하여,
    젤라틴이 금속이온 및 반응성 작용기를 1 개 이상 포함하는 유기 가교제를 매개로 가교된 고분자 매트릭스를 50 부피% 초과로 포함하는, 고분자 마이크로 입자.
  17. 제12항에 있어서,
    상기 고분자 마이크로 입자는 증류수에서의 평균 직경이 1 ㎛ 이상인, 고분자 마이크로 입자.
  18. 제12항에 있어서,
    상기 고분자 마이크로 입자의 최장 직경을 갖는 단면을 기준으로,
    상기 쉘의 두께가 상기 고분자 마이크로 입자의 최장 직경의 95 % 이하인, 고분자 마이크로 입자.
  19. 제12항에 있어서,
    상기 반응성 작용기를 1 개 이상 포함하는 유기 가교제는,
    반응성 작용기를 1개 이상 포함하는 탄소수 1 내지 30의 가교제를 포함하는, 고분자 마이크로 입자.
  20. 제12항에 있어서,
    상기 고분자 마이크로 입자는
    입자 평균직경의 25% 수준으로 변형되었을 때의 평균 압축강도가 0.1 mN 이상인, 고분자 마이크로 입자.
  21. 제12항에 있어서,
    광학 사진에서의 임의의 입자의 가장 긴 직경 대 가장 짧은 직경의 비율(장경비)인 구형화도가 0.9 이상 1.0 이하인, 고분자 마이크로 입자.
  22. 제12항의 고분자 마이크로 입자 및 상기 고분자 마이크로 입자 내에 함유된 약학 유효물질을 포함하는, 의료용 조성물.
  23. 제12항의 고분자 마이크로 입자 및 상기 고분자 마이크로 입자 내에 함유된 미용적 유효 물질을 포함하는, 미용 조성물.
  24. 제22항의 의료용 조성물을 포함하는, 의료 용품.
  25. 제23항의 미용 조성물을 포함하는, 미용 용품.
KR1020210070287A 2020-06-01 2021-05-31 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품 KR102597505B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/640,923 US20220331260A1 (en) 2020-06-01 2021-06-01 A method of preparing polymeric microparticles, polymeric microparticles, medical composition, cosmetic composition, medical articles and cosmetic articles using the same
PCT/KR2021/006828 WO2021246764A1 (ko) 2020-06-01 2021-06-01 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품
CN202180005016.XA CN114269813B (zh) 2020-06-01 2021-06-01 制备聚合物微粒的方法,聚合物微粒,使用其的医用组合物、美容组合物、医用制品和美容制品
JP2022510214A JP7408217B2 (ja) 2020-06-01 2021-06-01 高分子マイクロ粒子の製造方法、高分子マイクロ粒子、それを含む医療用組成物、美容組成物、医療用品および美容用品
EP21818529.6A EP3995531A4 (en) 2020-06-01 2021-06-01 PROCESS FOR PRODUCTION OF POLYMER MICROPARTICLES, POLYMER MICROPARTICLES AND MEDICAL COMPOSITION, COSMETIC COMPOSITION, MEDICAL ARTICLE AND COSMETIC ARTICLE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200066053 2020-06-01
KR1020200066053 2020-06-01

Publications (2)

Publication Number Publication Date
KR20210148945A true KR20210148945A (ko) 2021-12-08
KR102597505B1 KR102597505B1 (ko) 2023-11-02

Family

ID=78867431

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210070287A KR102597505B1 (ko) 2020-06-01 2021-05-31 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품

Country Status (1)

Country Link
KR (1) KR102597505B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023172037A1 (ko) * 2022-03-11 2023-09-14 주식회사 제네웰 페이스트 조성물, 생분해성 주사용 페이스트 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990037094A (ko) * 1997-10-27 1999-05-25 타이도 나오카타 약물 방출 속도가 제어된 의약 조성물
KR20040021615A (ko) * 2001-06-27 2004-03-10 히사미쯔 제약 주식회사 시트 타입 팩제
KR20170090965A (ko) * 2016-01-29 2017-08-08 한미약품 주식회사 복합 히알루론산 가교물 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990037094A (ko) * 1997-10-27 1999-05-25 타이도 나오카타 약물 방출 속도가 제어된 의약 조성물
KR20040021615A (ko) * 2001-06-27 2004-03-10 히사미쯔 제약 주식회사 시트 타입 팩제
KR20170090965A (ko) * 2016-01-29 2017-08-08 한미약품 주식회사 복합 히알루론산 가교물 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023172037A1 (ko) * 2022-03-11 2023-09-14 주식회사 제네웰 페이스트 조성물, 생분해성 주사용 페이스트 및 이의 제조방법

Also Published As

Publication number Publication date
KR102597505B1 (ko) 2023-11-02

Similar Documents

Publication Publication Date Title
Kumar Giri et al. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications
US8052990B2 (en) Biocompatible crosslinked gel
EP2100914B1 (en) Method for producing modified biopolymer and method for crosslinking biopolymers
US20220331260A1 (en) A method of preparing polymeric microparticles, polymeric microparticles, medical composition, cosmetic composition, medical articles and cosmetic articles using the same
JP2022079725A (ja) アルギネートヒドロゲル組成物
US9683011B2 (en) Controlled cross-linking processing of proteins
KR102532697B1 (ko) 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품
CN112851983A (zh) 一种水凝胶的静电喷涂膜及其制备方法与应用
Salehi et al. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review
KR102597505B1 (ko) 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품
Madolia Preparation and evaluation of stomach specific IPN hydrogels for oral drug delivery: A review
EP4368643A1 (en) High-swelling hyaluronic acid bead gel
CN114206996B (zh) 制备聚合物微粒的方法,聚合物微粒,使用其的医用组合物、美容组合物、医用制品和美容制品
KR20210121576A (ko) 고분자 마이크로 입자, 고분자 마이크로 입자의 제조방법, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품
US20150335795A1 (en) Multilayer implants for delivery of therapeutic agents
Farrukh et al. Synthesis and applications of carbohydrate-based hydrogels
EP4332210A1 (en) Microcarrier, cell complex, and medical composition, cosmetic composition, medical product, and cosmetic product containing same
Khan et al. Biomedical applications of interpenetrating polymer network gels
EP4328293A1 (en) Microcarrier and cellular complex, and medical composition, cosmetic composition, medical product, and cosmetic product comprising same
Gharat et al. Compressive review on hydrogel
CA2219399A1 (en) Bulk formation of monolithic polysaccharide-based hydrogels
EP3986491B1 (en) Crosslinkable hydrogel compositions
Wiwatwongwana et al. Characterization on properties of modification gelatin films with carboxymethyl cellulose
Thomann et al. Nanoengineered hybrid silica/organic nanoparticles and ionized gases for bone regeneration through smart scaffolds
Aghelinejad et al. Electron Beam-Irradiated Crosslinked Hydrogel Scaffold form Natural and Synthetic Polymers: Synthesis and Characterization

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant