KR20210145456A - 양극 스크랩을 이용한 활물질 재사용 방법 - Google Patents

양극 스크랩을 이용한 활물질 재사용 방법 Download PDF

Info

Publication number
KR20210145456A
KR20210145456A KR1020200062372A KR20200062372A KR20210145456A KR 20210145456 A KR20210145456 A KR 20210145456A KR 1020200062372 A KR1020200062372 A KR 1020200062372A KR 20200062372 A KR20200062372 A KR 20200062372A KR 20210145456 A KR20210145456 A KR 20210145456A
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
lithium
material layer
lithium precursor
Prior art date
Application number
KR1020200062372A
Other languages
English (en)
Inventor
박세호
김민서
양두경
김명환
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to KR1020200062372A priority Critical patent/KR20210145456A/ko
Priority to US17/788,705 priority patent/US20230045467A1/en
Priority to PCT/KR2020/015556 priority patent/WO2021241819A1/ko
Priority to JP2022540958A priority patent/JP7348405B2/ja
Priority to CN202080094205.4A priority patent/CN115004451A/zh
Priority to EP20938463.5A priority patent/EP4102618A4/en
Publication of KR20210145456A publication Critical patent/KR20210145456A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

양극 스크랩으로부터 활물질을 회수해 재사용하는 방법을 제공한다. 본 발명의 양극 활물질 재사용 방법은, (a)집전체 상에 리튬 코발트 산화물 양극 활물질층을 포함하는 양극 스크랩을 공기 중 열처리하여 상기 활물질층 안의 바인더와 도전재를 열분해함으로써, 상기 집전체를 상기 활물질층으로부터 분리하고 상기 활물질층 안의 활물질을 회수하는 단계; (b)회수된 활물질을 수용액 상태에서 염기성을 보이는 리튬 전구체 수용액을 이용하여 세척하고 건조하는 단계; 및 (c)세척된 활물질에 추가적인 리튬 전구체 첨가없이 어닐링하여 재사용 가능한 활물질을 얻는 단계를 포함한다.

Description

양극 스크랩을 이용한 활물질 재사용 방법 {Reuse method of active material of positive electrode scrap}
본 발명은 리튬 이차전지 제조시 자원을 재활용하는 방법에 관한 것이다. 본 발명은 특히 리튬 이차전지 제조 공정에서 발생하는 양극 스크랩 혹은 사용 후에 폐기되는 리튬 이차전지 양극 활물질을 회수하여 재사용하는 방법에 관한 것이다.
반복적인 충전과 방전이 가능한 리튬 이차전지가 화석 에너지의 대체 수단으로서 각광을 받고 있다. 리튬 이차전지는 휴대폰, 비디오 카메라, 전동 공구와 같은 전통적인 핸드 헬드 디바이스에 주로 사용되었다. 하지만, 최근에는 전기로 구동되는 자동차(EV, HEV, PHEV), 대용량의 전력 저장 장치(ESS), 무정전 전원 공급 시스템(UPS) 등으로 그 응용 분야가 점차 증가하는 추세이다.
리튬 이차전지는, 활물질이 집전체에 코팅된 양극판과 음극판이 분리막을 사이에 두고 배치된 구조를 가진 단위 셀을 집합시킨 전극 조립체와, 이 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다. 리튬 이차전지의 양극 활물질은 주로 리튬계 산화물을 사용하고 음극 활물질은 탄소재를 사용한다. 리튬계 산화물에는 코발트, 니켈, 또는 망간과 같은 금속이 함유되어 있다. 특히 코발트, 니켈, 망간은 매우 고가인 유가금속이고, 그 중에서도 코발트는 전략금속에 속하는 것으로서, 세계 각국별로 수급에 각별한 관심을 갖고 있으며, 코발트 생산국의 수가 한정되어 있어 세계적으로 그 수급이 불안정한 금속으로 알려져 있다. 전략금속의 원자재 수급 불균형이 초래되면 원자재 가격 상승 가능성이 크다.
기존에는 사용 후 수명이 완료되어 폐기되는 리튬 이차전지(폐전지)로부터 이러한 유가금속을 회수해 재활용(recycle)하는 연구가 주로 진행되어 왔다. 폐전지 이외에도 양극판 타발 후 버려지는 폐기물 또는 공정 중 불량이 발생한 양극으로부터 자원을 회수할 수 있으면 더 바람직하다.
현재 리튬 이차전지 제조 시에는 도 1과 같이 알루미늄(Al) 포일과 같은 긴 시트형 양극 집전체(10)에 양극 활물질, 도전재, 바인더, 용매 등을 믹싱한 양극 슬러리를 코팅해 양극 활물질층(20)을 형성함으로써 양극 시트(30)를 제조한 다음, 일정한 사이즈로 양극판(40)을 타발하고 있다. 타발 후 남은 부분은 양극 스크랩(scrap, 50)으로서 폐기되고 있다. 양극 스크랩(50)으로부터 양극 활물질을 회수해 다시 사용(reuse)할 수 있게 된다면 산업-경제적 측면 및 환경적 측면에서 매우 바람직할 것이다.
기존에 양극 활물질을 회수하는 방법은 양극을 염산, 황산, 질산 등으로 용해 후 코발트, 니켈, 망간 등 활물질 원소를 추출하여 다시 양극 활물질 합성을 위한 원료로 사용하는 경우가 대부분이다. 하지만 산을 이용한 활물질 원소의 추출법은 순수한 원료를 회수하기 위한 공정이 친환경적이지 못할 뿐만 아니라 중화 공정과 폐수 처리 공정이 필요하여 공정비가 상승하게 되는 단점을 가지고 있다. 또한, 양극 활물질 원소 중 주요 원소 중 하나인 리튬을 회수할 수 없는 단점을 가지고 있다. 이러한 단점을 해소하려면 양극 활물질을 용해시키지 않고 활물질을 원소 형태로 추출하지 않아 직접 재사용할 수 있는 방법이 필요하다.
본 발명이 해결하고자 하는 과제는 양극 스크랩으로부터 활물질을 회수해 재사용하는 방법을 제공하는 것이다.
상기 과제를 해결하기 위해 본 발명의 양극 활물질 재사용 방법은, (a)집전체 상에 리튬 코발트 산화물 양극 활물질층을 포함하는 양극 스크랩을 공기 중 열처리하여 상기 활물질층 안의 바인더와 도전재를 열분해함으로써, 상기 집전체를 상기 활물질층으로부터 분리하고 상기 활물질층 안의 활물질을 회수하는 단계; (b)회수된 활물질을 수용액 상태에서 염기성을 보이는 리튬 전구체 수용액을 이용하여 세척하고 건조하는 단계; 및 (c)세척된 활물질에 추가적인 리튬 전구체 첨가없이 어닐링하여 재사용 가능한 활물질을 얻는 단계를 포함한다.
상기 열처리는 300 ~ 650℃에서 1시간 이내로 수행할 수 있다.
상기 열처리는 온도 상승 속도 5℃/min로, 550℃에서 30분간 수행할 수 있다.
상기 세척은 상기 회수된 활물질을 상기 리튬 전구체 수용액 함침과 동시에 교반하여 수행하는 것일 수 있다.
상기 리튬 전구체 수용액은 0% 초과 15% 이하의 리튬 전구체를 함유하도록 제조되고, 상기 리튬 전구체로서 바람직하게는 LiOH를 포함하는 것을 사용한다. 상기 세척은 10분 이내로 수행함이 바람직하다.
상기 세척을 통해 상기 활물질층에 사용된 원재료 활물질 안의 리튬과 다른 금속의 비율 대비해서 손실된 리튬 비율 만큼이 첨가되는 것일 수 있다.
상기 어닐링은 400 ~ 1000℃, 공기 중에서 수행할 수 있다.
상기 어닐링하는 단계의 온도는 상기 리튬 전구체의 녹는점을 초과하는 온도일 수 있다.
상기 활물질층 안의 활물질은 분말 형태로 회수되며 상기 바인더나 도전재의 탄화로 생기는 탄소 성분이 표면에 남아 있지 않을 수 있다.
상기 재사용 가능한 활물질은 상기 활물질층 안의 활물질과 유사한 입도 분포를 가질 수 있다.
상기 재사용 가능한 활물질은 플루오린(F)의 함량이 100 ppm 이하일 수 있다.
본 발명에 따른 다른 양극 활물질 재사용 방법은, (a)집전체 상에 리튬 코발트 산화물 양극 활물질층을 포함하는 양극에서 양극판을 타발하고 남은 부분인 양극 스크랩을 공기 중 300 ~ 650℃에서 1시간 이내로 열처리하여 상기 활물질층 안의 바인더와 도전재를 열분해함으로써, 상기 집전체를 상기 활물질층으로부터 분리하고 상기 활물질층 안의 활물질을 회수하는 단계; (b)회수된 활물질을 수용액 상태에서 염기성을 보이며 0% 초과 15% 이하의 리튬 전구체를 함유하고 있는 리튬 전구체 수용액을 이용하여 10분 이내로 세척하고 건조하는 단계; 및 (c)세척된 활물질에 추가적인 리튬 전구체 첨가없이 400 ~ 1000℃ 공기 중에서 어닐링하는 단계를 포함한다.
본 발명에 따르면, 리튬 이차전지 제조 공정상 발생되는 양극 스크랩과 같은 폐 양극 활물질을 산을 이용하지 않고도 재사용할 수 있어 친환경적이다. 본 발명에 따른 방법은 중화 공정이나 폐수 처리 공정이 필요하지 않아 환경 이슈(issue)를 완화하고 공정비를 절감할 수 있다.
본 발명에 따르면, 회수하지 못하는 금속 원소 없이 양극 활물질을 회수할 수 있다. 집전체를 용해하지 않으므로 집전체도 회수할 수 있다. 활물질 원소를 추출하여 다시 양극 활물질 합성을 위한 원료로 사용하는 것이 아니고 분말 형태로 회수한 활물질을 직접 재사용할 수 있는 방법이기 때문에 경제적이다.
본 발명에 따르면, NMP, DMC, 아세톤, 메탄올과 같은 유독 및 폭발 위험의 용매를 사용하지 않아 안전하고, 열처리와 세척, 어닐링 등 단순한 공정을 이용하기 때문에 공정 관리가 쉽고 대량 생산에 적합하다.
또한, 본 발명에 따르면 열처리를 빠르게 처리(1시간 이내)하여 LiF와 Co3O4의 생성을 억제할 뿐만 아니라 리튬 전구체 수용액을 이용한 세척 과정에서의 표면 개질 시간을 짧게 하여(10분 이내) 표면 개질에 의한 리튬의 용출을 최소화 하고, 이후 고온 어닐링을 통해 결정구조를 회복하여 재생 활물질의 전지 특성을 회복할 수 있는 장점을 가지고 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 실시예를 예시하는 것이며, 후술하는 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면들에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 양극 시트에서 양극판 타발 후 폐기되는 양극 스크랩을 보여주는 도면이다.
도 2는 본 발명에 따른 활물질 재사용 방법의 순서도이다.
도 3은 실시예 및 비교예들 활물질을 사용하여 셀 평가를 진행한 결과이다.
도 4는 실시예 및 비교예들 활물질의 XPS(X-Ray Photoelectron Spectroscopy) 패턴이다.
도 5는 실시예 및 비교예들 활물질의 XRD(X-Ray Diffraction) 패턴이다.
도 6은 실시예 및 비교예 활물질의 SEM(Scanning Electron Microscope) 사진이다.
도 7은 실시예 및 비교예들 활물질의 입도 분포 그래프이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 출원을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 발명시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
후술하는 설명에서, 본원의 일부를 형성하는 첨부 도면들을 참조한다. 상세한 설명에 기술된 구현예들, 도면들, 및 청구항들은 제한하려는 의도가 없다. 여기에 개시된 주제물의 정신과 범위를 벗어나지 않으면서 다른 실시예들이 활용될 수 있으며, 다른 변경들도 이루어질 수 있다. 여기에 일반적으로 기술되고 도면들로 설명된 바와 같은, 본 발명의 양상들은, 다양한 다른 구성들로 배열, 대체, 조합, 분리, 및 디자인될 수 있으며, 그 모든 것들이 여기에서 분명히 고려되었다는 것을 즉각 이해할 수 있을 것이다.
다르게 정의되어 있지 않다면, 여기에 사용된 모든 기술적 과학적 용어들은 일반적으로 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자(이하, 당업자)에게 공통적으로 이해되는 바와 같은 의미를 가진다.
본 발명은 본원에 설명된 특정 실시예들에 관하여 한정되는 것은 아니다. 당업자에게 명백한 바와 같이, 본 발명의 정신과 범위를 벗어나지 않으면서, 많은 변경과 수정이 이루어질 수 있다. 여기에 열거한 것들에 추가하여, 본원의 범위 안에서 기능적으로 균등한 방법들이 앞서의 설명들로부터 당업자에게 명백할 것이다. 그러한 변경과 수정은 첨부한 청구항들의 범위 내에 놓여지게 된다. 그러한 청구항들이 자격을 주는 균등물의 전체 범위와 함께, 본 발명은 청구항들에 의해서만 한정되어질 것이다. 본 발명이, 물론, 변화될 수 있는, 특정한 방법들에 한정되는 것이 아니라는 점이 이해되어야 한다. 여기에 사용된 전문용어는 특정 실시예들을 설명하기 위한 목적으로만 사용된 것이지 제한하려는 의도는 없다는 것도 이해되어야 한다.
종래의 활물질 재활용 공정의 경우, 사용 후 성능이 퇴화된 리튬 이차전지 활물질 내에 유가금속(니켈, 코발트, 망간 등)을 원소로 추출하여 활물질을 재합성하는 것이 주된 것이었다면, 본 발명은 리튬 이차전지 제조 공정 중에서 발생하는 양극 스크랩으로부터도 활물질을 회수한다는 점에서 차별성이 있다.
뿐만 아니라, 기존에 알려진 활물질 재활용 공정의 경우, 산/염기 용해 또는 환원/첨가제를 이용한 용융을 통해 유가금속을 추출하고, 이를 금속(직접환원법) 또는 재합성한 활물질로 제조하는 등의 화학적 방법이 추가되어 공정의 복잡성 및 경제적 비용이 추가 발생한다. 그러나 본 발명은 양극 활물질을 용해시키지 않고 직접 재사용하는 방법에 관한 것이다.
양극 활물질을 직접 재사용하려면, 양극에서 집전체를 제거하기 위한 방법이 필요하다. 양극에서 집전체를 제거하는 데에는 고온 열처리를 통해 바인더를 제거하는 것, 용매를 이용해 바인더를 녹여내는 것, 집전체를 아예 녹여버리는 것, 건식분쇄와 체가름을 통해 활물질을 선별하는 것 등이 가능하다.
용매를 이용해 바인더를 녹여내는 데에는 용매의 안정성이 중요하다. NMP가 가장 효율적인 용매이겠으나 독성 및 높은 가격이라는 단점이 있다. 그리고, 폐용매를 재처리한다든가 하는 용매 회수 공정이 필요한 단점도 있다. 집전체를 녹여버리는 것은 용매를 이용하는 것보다는 공정비가 저렴할 것이다. 하지만 재사용 활물질 표면의 이물질 제거가 어렵고 집전체 제거 과정에서 수소 가스가 발생되기 때문에 폭발 위험이 있다. 건식분쇄와 체가름으로는 집전체와 활물질을 완벽하게 분리하기가 어렵다. 분쇄 과정에서 활물질의 입도 분포가 달라지며 바인더 제거가 어렵기 때문에 이를 재사용한 전지 특성이 퇴화되는 단점이 있다.
본 발명에서는 고온 열처리를 이용하여 활물질과 집전체를 분리한다. 특히 열처리를 공기 중에서 실시하기 때문에 특별한 장치 구성이 요구되지 않고 가열만 해주면 되는 비교적 단순한 공정이기 때문에 대량 생산 및 상업화에 유리하다. 하지만 재사용 활물질 표면에 이물질이 잔류해서는 안 된다. 본 발명에서는 재사용 활물질 표면의 이물질 제거 단계까지도 제안한다.
이하에서는 도 2를 참조해 본 발명의 일 실시예에 따른 활물질 재사용 방법을 설명한다. 도 2는 본 발명에 따른 활물질 재사용 방법의 순서도이다.
도 2를 참조하면, 먼저, 버려지는 양극 스크랩을 준비한다(단계 s10).
양극 스크랩은 앞의 도 1을 참조하여 설명한 바와 같이, 집전체 상에 양극 활물질층을 포함하는 양극 시트를 제조해 타발 후 남은 부분일 수 있다. 뿐만 아니라 공정 중 불량이 발생한 양극을 모아 양극 스크랩을 마련할 수 있다. 또한, 사용 후 폐기된 리튬 이차전지로부터 양극을 분리하여 양극 스크랩을 마련할 수도 있다.
예를 들어, LiCoO2(LCO) 같은 리튬 코발트 산화물인 활물질, 도전재로서 탄소계인 카본블랙, 및 바인더인 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF)에 NMP(N-methyl pyrrolidone)를 첨가해 믹싱 제조한 슬러리를 알루미늄 포일로 된 시트형 집전체 상에 코팅한 다음, 120℃ 정도의 진공오븐에서 건조하여 양극 시트를 제조하고 나서, 일정 크기의 양극판을 타발하고 남은 양극 스크랩을 준비하는 경우일 수 있다.
이와 같이 양극 스크랩은 알루미늄 포일과 같은 금속박의 집전체 위에 활물질층을 갖고 있다. 활물질층은 활물질, 도전재, 바인더, 용매 등을 믹싱한 슬러리를 코팅해 형성한 것이어서 용매 휘발 후 활물질과 도전재를 바인더가 연결해주는 구조로 되어 있다. 따라서, 바인더를 제거한다면 집전체로부터 활물질이 분리가 될 수 있다.
다음, 이러한 양극 스크랩을 적당한 크기로 파쇄한다(단계 s20). 파쇄는 양극 스크랩이 적당히 취급 용이한 크기로 조각이 나도록 절단 혹은 슈레딩(shredding)하는 것을 가리킨다. 파쇄하고 나면 양극 스크랩은 예를 들어 1cm x 1cm의 크기로 잘게 잘라진다. 파쇄에는 핸드-밀, 핀-밀, 디스크-밀, 커팅-밀, 해머-밀과 같은 다양한 건식 분쇄 장비를 이용할 수도 있고 고속절단기를 이용할 수도 있다.
파쇄는 양극 스크랩의 취급과 이후 공정들에서 이용하게 되는 장비 안에서 요구되는 특성을 고려하여 실시할 수 있다. 예를 들어 양극 스크랩 로딩과 언로딩에 있어 연속적인 처리가 필요한 장비를 이용하는 경우라면 양극 스크랩의 유동성이 좋아야 하므로 너무 큰 양극 스크랩은 파쇄하여야 하는 것이다.
이제, 양극 스크랩을 공기 중 열처리한다(단계 s30).
본 발명에서 열처리는 활물질층 안의 바인더를 열분해하기 위해 실시한다. 열처리는 300 ~ 650℃에서 수행할 수 있어 고온 열처리라고도 부를 수 있다. 300℃ 미만의 온도에서는 바인더의 제거가 어려워 집전체를 분리해 낼 수 없는 문제가 생기며 650℃ 이상의 온도에서는 집전체가 녹아 (Al 녹는점 : 660℃) 집전체를 분리할 수 없는 현상이 생긴다.
열처리 시간은 바인더가 충분히 열분해될 수 있을 정도로 유지한다. 예를 들어 30분 전후로 한다. 바람직하게는 30분 이상으로 한다. 열처리 시간이 길어질수록 바인더의 열분해가 일어나는 시간이 길어지겠으나, 일정 시간 이상이 되면 열분해 효과에 차이가 없다. 바람직하게 열처리 시간은 30분 이상 5시간 이내로 한다. 가장 바람직하기로는 1시간 이내로 한다. 고온 열처리 과정에서 바인더와 도전재가 CO2와 H2O로 제거되면서 양극 활물질 표면의 리튬과 반응하여 Li2CO3, LiOH가 형성되고 바인더에 존재하던 F와 반응하여 LiF 혹은 금속 불화물(metal fluoride)이 형성될 수 있다. 또한 LCO 활물질의 경우라면 표면에서 열분해로 Co3O4가 생성될 수 있다. Co3O4가 그대로 존재하는 채로 전지 제조를 한다면 전지 특성이 나빠질 수 있다. 열처리 시간을 1시간 이내로 함으로써 LiF와 같이 리튬을 손실시킬 뿐 아니라 잔류시 이차전지의 성능을 저하시키는 불순물의 생성을 억제하도록 한다. 특히 1시간 이내의 짧은 열처리는 Co3O4 생성을 억제하여 바람직하다.
열처리 장비는 다양한 형태의 퍼니스(furnace)일 수 있다. 예를 들어, 박스 타입 퍼니스일 수도 있고 생산성을 고려하면 연속적인 처리가 가능한 로터리 킬른(rotary kiln)일 수도 있다.
열처리 후에는 대기 중에서 서냉 또는 급냉할 수 있다.
예를 들어, 열처리는 온도 상승 속도 5℃/min로, 600℃에서 30분간 수행할 수 있다. 상기 온도 상승 속도는 예를 들어 박스 타입 퍼니스에서 무리하지 않게 구현할 수 있는 것이면서 양극 스크랩에 열충격 등을 발생시키지 않고 가열할 수 있는 정도이다. 600℃는 Al 집전체의 녹는점을 고려한 것이면서도 바인더의 열분해가 잘 일어날 수 있도록 하는 것이다. 이 온도에서는 10분 미만으로 열처리하면 열분해가 불충분하므로 10분 이상 열처리가 진행되어야 하며 되도록이면 30분 이상 열처리를 한다. 이 온도에서는 30분간 열처리하여도 바인더와 도전재의 열분해가 충분히 일어나며, LiF와 Co3O4 생성을 억제할 수 있다.
공기 중 열처리를 통해 활물질층 안의 바인더와 도전재가 열분해되면서 CO2와 H2O가 되어 제거가 된다. 바인더가 제거되기 때문에 집전체로부터 활물질이 분리되고, 회수하고자 하는 활물질은 분말 형태로 선별될 수 있다. 따라서, 단계 s30만으로도 집전체를 활물질층으로부터 분리하고 활물질층 안의 활물질을 회수할 수가 있다.
단계 s30의 열처리는 공기 중에서 수행하는 것이 중요하다. 환원기체 혹은 비활성기체 분위기에서 열처리를 수행하면 바인더와 도전재가 열분해되지 않고 탄화만 된다. 탄화만 되면 탄소 성분이 활물질 표면에 남게 되어 재사용 활물질의 성능을 저하시키게 된다. 공기 중에서 열처리를 하면 바인더나 도전재 중의 탄소 물질은 산소와 반응하여 CO, CO2 가스로 연소 제거되기 때문에 바인더와 도전재 잔류 없이 거의 모두 제거된다.
그러므로, 본 발명에 따르면 활물질은 분말 형태로 회수되며 바인더나 도전재의 탄화로 생기는 탄소 성분이 표면에 남아 있지 않을 수 있다.
다음으로, 회수된 활물질을 세척하고 건조한다(단계 s40). 세척시 수용액 상태에서 염기성을 보이는 리튬 전구체 수용액을 이용하여 세척하는 것이 중요하다. 이러한 리튬 전구체 수용액은 0% 초과 15% 이하의 리튬 전구체를 함유하도록 제조되고 리튬 전구체로서 바람직하게는 LiOH를 포함하는 것을 사용한다. LiOH의 양은 15% 이하로 함이 바람직하다. 과량의 LiOH의 사용은 세척 이후에도 활물질 표면에 과량의 LiOH가 남겨져 있을 수 있어 향후 어닐링 공정에 영향을 끼칠 수 있다. 최대한 어닐링 전 단계에서의 활물질 표면을 깨끗하게 하기 위해 과량의 LiOH 첨가는 공정상 좋지 않으므로 15% 이하로 제한한다.
세척은 이러한 리튬 전구체 수용액에 회수된 활물질을 침지하여 두는 것으로 실시할 수 있다. 세척은 수용액 상태에서 염기성을 보이는 리튬 전구체 수용액에 활물질을 침지해 두는 것, 침지한 상태에서 교반하는 것 등을 포함한다. 가급적 교반을 병행하는 것이 좋다. 리튬 전구체 수용액에서 교반을 하지 않고 침지만 한다면 세척 공정이 느리게 이뤄지고 리튬 용출의 원인이 될 수 있다. 교반을 병행하면 공정 시간을 최소화해 줄 수 있기 때문에 교반은 리튬 전구체 수용액 함침과 동시에 진행하는 것이 바람직하다.
세척이 길게 진행되면 리튬 과다 용출로 인해 용량 저하가 발생할 우려가 있다. 따라서, 1 시간 이내로 수행함이 바람직하다. 가장 바람직하게는 10분 이내로 매우 짧게 수행하여 리튬의 용출을 최소화하도록 한다.
건조는 여과 후 오븐(convection type)에서 공기 중 실시할 수 있다. 수용액 상태에서 염기성을 보이는 리튬 전구체 수용액을 이용하여 세척하는 이유는 회수된 활물질의 표면에 존재할 수도 있는 LiF와 금속 불화물을 제거하고 표면 개질을 하기 위해서이다. 단계 s30의 열처리 동안에는 활물질층 안의 바인더와 도전재가 CO2와 H2O가 되면서 기화되어 제거되는데 이 과정에서 CO2와 H2O가 활물질 표면의 리튬과 반응하여 Li2CO3, LiOH가 형성되기도 하고, PVdF와 같은 바인더에 존재하던 F가 양극 활물질을 구성하는 금속 원소와 반응하여 LiF 혹은 금속 불화물이 형성되기도 한다. LiF 혹은 금속 불화물이 남아 있으면, 활물질 재사용시 전지 특성이 열화된다. 본 발명에서는 단계 s40과 같이 세척하는 단계를 추가하여, 열처리 단계(s30) 중 재사용 활물질 표면에 생성되어 있을 수 있는 반응물을 제거함으로써, 재활용 활물질 표면에 이물질이 남지 않도록 한다.
단계 s40에서는 수용액 상태에서 염기성을 보이는 리튬 전구체 수용액을 이용하여 세척하는 것이 중요하다. 수용액 상태에서 염기성을 보이는 리튬 전구체 수용액이 아닌 황산이나 염산 수용액을 사용한다면 활물질 표면의 F를 세척할 수는 있겠지만 활물질에 존재하는 전이금속(Co, Mg) 등을 용출시켜 재사용 양극 활물질의 성능을 저하시킨다. 본 발명에서 사용하는 수용액 상태에서 염기성을 보이는 리튬 전구체 수용액은, 단계 s30의 열분해 후에도 혹시 미량 남겨져 있을 수도 있는 바인더를 제거할 수 있을 뿐만 아니라 활물질에 존재하는 전이금속 등을 용출시키기 않고, 세척 과정에서 용출될 수 있는 리튬의 양을 보충할 수 있는 역할도 병행할 수 있어 매우 바람직하다.
특히 단계 s40의 세척을 통해 상기 활물질층에 사용된 원재료 활물질 안의 리튬과 다른 금속의 비율 대비해서 소실된 리튬 비율을 첨가할 수 있도록 하는 것이 바람직하다. 이를 위해 앞서 언급한 리튬 전구체 수용액의 농도와 세척 시간을 유지하는 것이 중요하다.
앞의 단계 s30을 거치는 동안 열처리 시간을 1시간 이내로 수행하는 등의 구성을 통해, 활물질 안의 리튬 손실을 최대한 억제할 수 있으나, 세척을 하는 과정을 통해서도 미량의 추가 리튬 손실이 발생할 수가 있으므로, 열처리 또는 세척 과정에서 리튬 손실이 발생한 경우에는 단계 s40의 세척시 사용하는 리튬 전구체 수용액을 통해 보충하는 것이다.
다음으로, 세척된 활물질에 추가적인 리튬 전구체 첨가없이 어닐링한다(단계 s50). 단계 s50을 통하여, 재사용 가능한 활물질을 얻을 수 있다.
앞의 단계 s30, s40을 거치는 동안 열처리 시간을 1시간 이내로 수행하고, 세척도 10분 이내로 수행하는 등의 구성을 통해, 활물질 안의 리튬 손실을 최대한 억제할 수 있다. 그러므로 손실된 리튬 보충을 위한 추가적인 리튬 전구체의 첨가를 생략할 수 있다. 앞선 세척 단계(s40)에서 리튬 전구체 수용액을 이용한 리튬 보충도 이루어지기 때문에 더욱 추가적인 리튬 전구체의 첨가가 필요 없어진다.
단계 s50에서는 어닐링을 통해 활물질의 결정구조를 회복해 재사용 활물질의 특성을 한 번도 사용하지 않은 프레시한(fresh) 활물질 수준으로 회복하거나 개선한다.
앞의 단계 s30, s40을 거치는 동안 활물질 표면에 변형구조가 나타날 수 있다. 뿐만 아니라 LCO 활물질의 경우라면 표면에서 열분해로 Co3O4가 생성되어 있을 수 있다. Co3O4가 그대로 존재하는 채로 전지 제조를 한다면 전지 특성이 나빠질 수 있다. 본 발명에서는 단계 s50을 통해 결정구조를 회복하고 Co3O4를 제거하여 프레시한 활물질과 유사한 수준으로 초기 특성을 회복하거나 개선할 수 있다.
어닐링은 400 ~ 1000℃, 공기 중에서 수행할 수 있다. 어닐링 온도는 600 ~ 900℃일 수도 있다. 이 온도는 리튬 전구체의 종류에 따라 제한된 범위 내에서 변화하여야 한다. 어닐링 시간은 1시간 이상으로 하는 것이 좋다. 바람직하게는 5시간 전후이다. 어닐링 시간이 길면 결정구조 회복이 충분히 이루어질 수 있겠으나 장시간을 한다고 해도 성능에 큰 영향을 주지 않는다. 어닐링 시간은 예를 들어 15시간 이내로 한다. 어닐링 장비는 열처리 단계 s30에서와 동일 또는 유사한 장비를 이용할 수 있다.
예를 들어 단계 s40에서 리튬 전구체로서 LiOH를 사용하는 경우 단계 s50의 어닐링 온도는 400 ~ 600℃가 적절하며, 더 적절하게는 450 ~ 480℃가 적절하다. 이는 LiOH의 녹는점이 462℃이기 때문이다.
어닐링 온도는 리튬 전구체의 녹는점을 초과하는 온도임이 바람직하다. 다만 1000℃를 초과하는 온도에서는 양극 활물질의 열분해가 발생하여 활물질의 성능 저하가 발생하기 때문에 1000℃를 넘지 않도록 한다.
이와 같이 본 발명에 따르면, LiF 혹은 금속 불화물은 세척을 하는 단계 s40에서, Co3O4는 어닐링을 하는 단계 s50에서 제거가 된다. 수용액 상태에서 염기성을 보이는 리튬 전구체 수용액을 사용한 세척 및 건조 단계는 안전하고 저렴하면서도 다른 원소의 소실없이 LiF 혹은 금속 불화물을 제거할 수가 있고, 전이금속 등의 용출을 방지할 뿐 아니라, 공정 중 발생하는 리튬 손실을 보충할 수 있는 장점이 있다. 어닐링 단계도 안전하고 저렴하면서도 Co3O4를 효과적으로 제거할 수가 있고 결정구조 회복, 즉 결정성을 개선하여 재사용 활물질의 전지 특성을 회복할 수 있는 장점이 있다.
단계 s40을 통해, 본 발명에서는 회수된 활물질 표면에 LiF 함량을 500 ppm 미만으로 조절해 줄 수 있고, 이를 통해 용량 개선 효과를 볼 수 있다. 바람직하게는 F 함량을 100 ppm 이하로 할 수 있다. 더욱 바람직하게는 F 함량을 30 ppm 이하로 할 수 있다.
본 발명에 따라 얻어지는 재사용 가능한 활물질은 양극 스크랩 안의 활물질층 안에 존재하던 활물질과 유사한 입도 분포를 가질 수 있어, 별도의 처리가 필요없을 수 있다. 바인더나 도전재의 생기는 탄소 성분이 표면에 남아있지 않기 때문에, 이러한 탄소 성분을 제거하기 위한 단계 등이 필요하지 않다. 따라서, 이상의 도 2 방법을 통해 얻어진 활물질은 별도의 처리없이 그대로 재사용되어 양극 제조에 이용될 수 있다.
재사용 활물질을 조성 조절없이 그대로 100% 사용하거나 프레시한 LCO에 혼합해서 도전재와 바인더, 용매에 혼합해 슬러리로 제조, 사용할 수도 있다. 이와 같이 본 발명에 따르면, 어닐링을 통해 결정구조를 회복하여 재생 활물질의 전지 특성을 회복할 수 있는 장점을 가지고 있다. 또한, 이차전지 생산 단계에서 발생하는 폐 양극 스크랩에서 양극 활물질을 재활용하여 공정 단가를 낮출 수 있는 장점이 있다.
이하에서는 본 발명의 실험예에 관해 상세히 설명한다.
<실험예>
아래 실시예 및 비교예들과 같은 방법으로 각기 양극 활물질을 준비해, 전기화학 성능을 평가하였다.
실시예: 상술한 바와 같은 본 발명의 활물질 재사용 방법에 따라 재사용 활물질을 수거하였다. 양극판 타발 후 버려지는 양극 스크랩을 준비하여 단계 s30의 열처리는 600℃에서 30분간 실시하였다. 단계 s40의 세척은 LiOH를 이용해 10분간 실시하였다. 단계 s50에서는 추가적인 리튬 전구체 첨가없이 750℃ 공기 중에서 15시간동안 어닐링하였다.
비교예 1: 재사용 활물질이 아닌 프레시한 LCO를 사용하였다.
비교예 2: 상술한 바와 같은 본 발명의 활물질 재사용 방법 중 단계 s30의 열처리만 실시해 바인더, 도전재 제거 및 Al 집전체를 분리하고 LCO 활물질을 수거하였다. 단계 s30은 실시예에서와 동일한 조건으로 실시하였다. 본 발명의 활물질 재사용 방법 중 단계 s40의 표면 개질과 단계 s50의 결정구조 회복은 실시하지 않았다.
비교예 3: 비교예 2의 방법과 동일하나 열처리 단계 s30에서 열처리 시간만 5시간으로 실시하였다.
비교예 4: 비교예 2에서 더 나아가 상술한 바와 같은 본 발명의 활물질 재사용 방법 중 단계 s40의 표면개질을 실시해 LCO 활물질을 수거하였다. 즉, 표면개질은 하되 본 발명의 활물질 재사용 방법 중 단계 s50의 결정구조 회복은 실시하지 않았다. 단계 s40은 실시예에서와 동일한 조건으로 실시하였다.
상기 실시예 및 비교예들에서 각각 회수하거나 준비한 양극 활물질을 96wt%, 도전재인 카본블랙은 2wt%, 바인더인 PVdF는 2wt%로 칭량하고 NMP에 혼합해 슬러리를 만들어 양극을 제조한 후 셀(Coin Half Cell, CHC)을 제조하고 전기화학 성능을 평가하였다.
실시예와 비교예 2에서 회수된 활물질 내 LiF 잔존량을 알기 위하여 ICP로 F를 검출하여 분석하였다. 그 결과를 하기 표 1에 나타내었다.
[표 1]
Figure pat00001
ND는 30 ppm 이하 측정된 것을 의미한다. 상기 표 1을 참조하면, 회수된 양극 활물질 내 F 함량이 비교예 2에 비하여 실시예에서 현저히 저하된 것을 확인할 수 있다. 즉, 세척에 의해 LiF가 리튬 화합물 수용액에 완전히 녹아, ICP로 검출이 되지 않을 정도로까지 제거된 것을 확인할 수 있다. 따라서, 단계 s40에 의해 LiF 제거가 탁월하다는 것을 알 수 있다.
상기 실시예 및 비교예들에서 각각 회수하거나 준비한 양극 활물질에 대해 ICP 분석을 실시하여, 특정 원소의 양도 분석하였다. 그 결과를 하기 표 2에 나타내었다.
[표 2]
Figure pat00002
본 실험에 사용한 프레시한 활물질은 비교예 1에서 보는 바와 같이 Al을 더 포함하고 있는 것이었다. 비교예 2를 보면, 열처리를 거쳐도 Al 함량이 변화하지 않으며, 이후의 공정 단계를 더 포함하는 비교예 4 및 실시예에서도 Al 함량이 유지됨을 알 수 있다. 이와 같이 본 발명에 따르면, Al과 같은 다른 원소의 손실없이 LiF 혹은 금속 불화물을 제거할 수가 있고, 전이금속 등의 용출을 방지할 수 있다는 것을 알 수 있다.
도 3은 실시예 및 비교예들 활물질을 사용하여 셀 평가를 진행한 결과이다. 서로 다른 전류에서, 사이클 반복 횟수에 따른 용량을 평가해 레이트 성능(rate performance)을 살펴 보았다. 평가에 사용한 장비는 실험실에서 잘 사용하는 일반적인 충방전 실험장치이다. 측정 장치나 방법에 따른 편차는 없다. 도 3의 그래프에서 가로축은 사이클(cycle) 횟수이고 세로축은 용량(capacity)이다.
전압은 3~4.5V 조건으로 하였고, 초기 포메이션(formation) 충방전은 0.2C/0.2C 진행하였다. 셀을 구성하는 전해액은 카보네이트(carbonate)계로 Ethylene carbonate(EC):Ethyl methyl carbonate(EMC)=3:7이면서 첨가제가 일부 들어가 있는 것을 사용하였다.
도 3을 참조하면, 재사용 활물질이지만 본 발명에 따른 표면개질과 결정구조 회복을 실시하지 않은 비교예 2에서 가장 낮은 레이트 성능을 확인할 수 있다. 이는 단계 s30과 같은 고온 열처리 과정에서 바인더와 도전재가 CO2와 H2O로 제거되면서 양극 활물질 표면의 리튬과 반응하여 Li2CO3, LiOH가 형성될 뿐만 아니라, 바인더에 존재하던 F와 반응하여 LiF 혹은 금속 불화물이 재사용 활물질 표면에 형성되었기 때문이다. 뿐만 아니라 LCO 표면에서 열분해로 생성되는 Co3O4로 인해 낮은 전지 특성을 보이는 것으로 판단된다.
비교예 4는 비교예 2에 비해 표면개질은 실시한 것이다. 비교예 4는 표면에 생성된 반응물들을 세척을 통해 제거하였기 때문에 비교예 2에 비해 더 좋은 결과를 얻을 수 있었던 것으로 평가된다.
실시예는 비교예 4에 비해 어닐링까지 실시한 것이다. 재생 중에 활물질 표면에 나타날 수 있는 변형구조 및 Co3O4를 다시 LCO 결정구조로 환원시켜, 비교예 1의 프레시한 활물질 초기 특성보다 개선된 결과를 보이는 것으로 확인된다. 이와 같이 본 발명에 따르면 직접 재사용할 수 있는 수준으로 양극 스크랩으로부터 활물질을 회수할 수 있다. NMP, DMC, 아세톤, 메탄올과 같은 유독 및 폭발 위험의 용매를 사용하지도 않아 안전하고, 열처리, 세척 및 건조, 어닐링 등 간단하고 안전한 방법을 이용하므로 대량 생산에도 적합하다.
도 4는 실시예 및 비교예들 활물질의 XPS 패턴이다. XPS 패턴에서 가로축은 Binding energy(단위: eV)이다. XPS 패턴은 실험실에서 잘 활용하는 일반적인 XPS 측정 장치를 이용해 얻을 수 있다. 예를 들어 Thermo Fisher Scientific사의 K-Alpha를 사용하여 분석할 수 있다. 바인더에 존재하는 F가 열처리 과정에서 활물질의 Li과 반응하여 LiF를 형성하게 된다. 도 4에서 684 eV 근처에서의 피크는 LiF에 의해 나타나며 시료에 따른 세기(intensity)가 높을수록 더 많은 양의 LiF가 양극 활물질 표면에 존재하는 것을 나타낸다. 비교예 1의 XPS 패턴은 프레시한 LCO를 사용하여 측정하였기 때문에 LiF의 존재가 측정되지 않았다. 하지만 비교예 2에서는 열처리 과정에서 활물질 표면에 형성된 LiF의 존재를 확인할 수 있다. 비교예 3에서는 열처리 시간을 5시간으로 늘렸기 때문에 F의 생성이 비교예 2에 비해 늘어나게 되고 활물질 표면에 생성되는 LiF의 양이 많아지게 되었기 때문에 XPS의 LiF 피크 세기가 비교예 2에 비해 높게 측정된다. 활물질 표면에 존재하는 LiF의 양은 전극 특성 열화의 원인이 되기 때문에 LiF의 제거가 필요하다. 실시예는 비교예 2에 비해 세척을 통해 LiF를 제거하였으며, XPS 결과에서도 LiF의 피크가 나타나지 않음을 확인할 수 있다.
도 5는 실시예 및 비교예들 활물질의 XRD 패턴이다. XRD 패턴에서 가로축은 2θ(Theta)(degree, 도)이고, 세로축은 세기(intensity)이다. XRD 패턴은 실험실에서 잘 사용하는 일반적인 X선 회절 장치를 이용해 얻을 수 있었다. 예를 들어 Rigaku사의 X-선 회절분석기 XG-2100를 사용하여 분석할 수 있다. 하지만 장치나 방법에 따른 편차가 없다.
도 5의 (a)는 비교예 1, 즉 프레시한 LCO의 XRD 패턴이다. (b)는 비교예 2 활물질, (c)는 비교예 3 활물질의 XRD 패턴이다. (d)는 실시예 활물질의 XRD 패턴이다. (b), (c)를 (a)와 비교해 보면 열처리 과정에서 생성된 Co3O4 상이 확인된다. Co3O4는 열처리 과정에서 활물질 표면, 즉 LCO의 표면에서 생성된다. 이와 같이, 단계 s30의 열처리 과정에서 LCO의 표면에 Co3O4가 생성이 된다는 것을 확인할 수 있다.
도 5의 (d)는 실시예 활물질의 XRD 패턴이다. (b), (c)와 (d)를 비교하면, Co3O4 상의 제거가 확인된다. 이는, 단계 s40의 세척 과정에서 활물질 표면에 남겨진 LiOH가 단계 s50의 어닐링 과정에서 Co3O4와 반응하여 LCO를 형성하면서 Co3O4가 제거되기 때문이다.
이상의 XPS, XRD 패턴 분석을 통해 실시예의 결과가 비교예 1의 결과와 유사함을 확인할 수 있었다. 따라서, 본 발명의 실시예가 비교예 1의 프레시한 활물질 수준으로 회복된 것을 확인할 수 있다. 이와 같이 본 발명에 따르면 직접 재사용할 수 있는 수준으로 양극 스크랩으로부터 활물질을 회수할 수 있다.
도 6은 실시예 및 비교예 활물질의 SEM 사진이다. SEM 사진은 실험실에서 잘 사용하는 일반적인 SEM 장치로 촬영하였다. 하였다. 예를 들어 HITACHI사의 s-4200을 사용하여 촬영할 수 있다. 하지만 측정 측정 장치나 방법에 따른 편차가 없다.
도 6의 (a)는 비교예 1의 프레시한 LCO의 SEM 사진이고, (b)는 실시예의 재사용 활물질의 SEM 사진이다. 프레시한 LCO와 비교했을 때 실시예의 회수된 LCO도 동일한 형상을 보이고 있음을 확인할 수 있다. 뿐만 아니라, LCO만 관찰이 되고 있으므로 바인더 및 도전재가 고온 열처리 과정에서 제거되었음이 확인된다. 따라서, 공기 중에서의 열처리만으로도 집전체로부터 활물질이 분리되고 활물질 표면에 바인더나 도전재가 거의 남아있지 않다는 것을 알 수 있다. 이와 같이 본 발명에 따르면 복잡한 방법이나 유해한 물질을 사용하지 않고도 집전체와 활물질 분리가 가능해져 활물질을 환경친화적으로 회수할 수 있다. 산을 이용하지 않고도 재사용할 수 있어 중화 공정이나 폐수 처리 공정이 필요하지 않아 환경 이슈를 완화하고 공정비를 절감할 수 있다.
도 7은 실시예 및 비교예들 활물질의 입도 분포 그래프이다. 입도 분포는 실험실에서 잘 사용하는 일반적인 입도 분석기로 얻을 수 있다. 예를 들어 Horiba LA 950V2 입도분석기를 이용하여 측정할 수 있다. 하지만 측정 장치나 방법에 따른 편차가 없다. 도 6에서 가로축은 입자의 크기(particle size, um)이고 세로축은 부피(volume) %이다.
실시예 및 비교예 2, 3, 4에서 회수된 활물질 모두 비교예 1의 프레시한 LCO 대비 입도 분포가 유사하다. 동일한 입자의 크기를 가진 입자의 부피%가 +/- 2% 이내의 범위에서만 차이를 가지는 경우에 입도 분포가 유사하다고 정의한다. 이와 같이, 본 발명에 따르면, 활물질의 입도 분포가 달라지지 않아 초기 특성이 거의 그대로 유지가 되며 이를 재사용한 전지 특성이 프레시한 활물질을 사용한 전지 특성과 유사한 수준이 될 것으로 기대할 수 있다.
이와 같이 본 발명에 의하면, 단순하고, 친환경적이고, 경제적인 방법을 이용하여 양극 스크랩을 재사용할 수 있고, 이렇게 제조된 LCO 양극 활물질을 그대로 재사용하여 리튬 이차전지를 제조하더라도 전지의 성능에 문제가 없다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 당업자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
10: 집전체
20: 활물질층
30: 양극 시트
40: 양극판
50: 양극 스크랩

Claims (12)

  1. (a)집전체 상에 리튬 코발트 산화물 양극 활물질층을 포함하는 양극 스크랩을 공기 중 열처리하여 상기 활물질층 안의 바인더와 도전재를 열분해함으로써, 상기 집전체를 상기 활물질층으로부터 분리하고 상기 활물질층 안의 활물질을 회수하는 단계;
    (b)회수된 활물질을 수용액 상태에서 염기성을 보이는 리튬 전구체 수용액을 이용하여 세척하고 건조하는 단계; 및
    (c)세척된 활물질에 추가적인 리튬 전구체 첨가없이 어닐링하여 재사용 가능한 활물질을 얻는 단계를 포함하는 양극 활물질 재사용 방법.
  2. 제1항에 있어서, 상기 열처리는 300 ~ 650℃에서 1시간 이내로 수행하는 것을 특징으로 하는 양극 활물질 재사용 방법.
  3. 제1항에 있어서, 상기 리튬 전구체 수용액은 0% 초과 15% 이하의 리튬 전구체를 함유하도록 제조되고, 상기 세척은 10분 이내로 수행하는 것을 특징으로 하는 양극 활물질 재사용 방법.
  4. 제1항에 있어서, 상기 세척은 상기 회수된 활물질을 상기 리튬 전구체 수용액 함침과 동시에 교반하여 수행하는 것을 특징으로 하는 양극 활물질 재사용 방법.
  5. 제3항에 있어서, 상기 리튬 전구체는 LiOH를 포함하는 것을 특징으로 하는 양극 활물질 재사용 방법.
  6. 제1항에 있어서, 상기 세척을 통해 상기 활물질층에 사용된 원재료 활물질 안의 리튬과 다른 금속의 비율 대비해서 손실된 리튬 비율 만큼이 첨가되는 것을 특징으로 하는 양극 활물질 재사용 방법.
  7. 제1항에 있어서, 상기 어닐링은 400 ~ 1000℃, 공기 중에서 수행하는 것을 특징으로 하는 양극 활물질 재사용 방법.
  8. 제1항에 있어서, 상기 어닐링하는 단계의 온도는 상기 리튬 전구체의 녹는점을 초과하는 온도인 것을 특징으로 하는 양극 활물질 재사용 방법.
  9. 제1항에 있어서, 상기 활물질층 안의 활물질은 분말 형태로 회수되며 상기 바인더나 도전재의 탄화로 생기는 탄소 성분이 표면에 남아 있지 않는 것을 특징으로 하는 양극 활물질 재사용 방법.
  10. 제1항에 있어서, 상기 재사용 가능한 활물질은 상기 활물질층 안의 활물질과 유사한 입도 분포를 가지는 것을 특징으로 하는 양극 활물질 재사용 방법.
  11. 제1항에 있어서, 상기 재사용 가능한 활물질은 플루오린(F)의 함량이 100 ppm 이하인 것을 특징으로 하는 양극 활물질 재사용 방법.
  12. (a)집전체 상에 리튬 코발트 산화물 양극 활물질층을 포함하는 양극에서 양극판을 타발하고 남은 부분인 양극 스크랩을 공기 중 300 ~ 650℃에서 1시간 이내로 열처리하여 상기 활물질층 안의 바인더와 도전재를 열분해함으로써, 상기 집전체를 상기 활물질층으로부터 분리하고 상기 활물질층 안의 활물질을 회수하는 단계;
    (b)회수된 활물질을 수용액 상태에서 염기성을 보이며 0% 초과 15% 이하의 리튬 전구체를 함유하고 있는 리튬 전구체 수용액을 이용하여 10분 이내로 세척하고 건조하는 단계; 및
    (c)세척된 활물질에 추가적인 리튬 전구체 첨가없이 400 ~ 1000℃ 공기 중에서 어닐링하는 단계를 포함하는 양극 활물질 재사용 방법.
KR1020200062372A 2020-05-25 2020-05-25 양극 스크랩을 이용한 활물질 재사용 방법 KR20210145456A (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020200062372A KR20210145456A (ko) 2020-05-25 2020-05-25 양극 스크랩을 이용한 활물질 재사용 방법
US17/788,705 US20230045467A1 (en) 2020-05-25 2020-11-06 Method for reusing active material using positive electrode scrap
PCT/KR2020/015556 WO2021241819A1 (ko) 2020-05-25 2020-11-06 양극 스크랩을 이용한 활물질 재사용 방법
JP2022540958A JP7348405B2 (ja) 2020-05-25 2020-11-06 正極スクラップを用いた活物質の再使用方法
CN202080094205.4A CN115004451A (zh) 2020-05-25 2020-11-06 使用阴极废料再利用活性材料的方法
EP20938463.5A EP4102618A4 (en) 2020-05-25 2020-11-06 METHOD FOR REUSING AN ACTIVE MATERIAL USING CATHODE DEBRIS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200062372A KR20210145456A (ko) 2020-05-25 2020-05-25 양극 스크랩을 이용한 활물질 재사용 방법

Publications (1)

Publication Number Publication Date
KR20210145456A true KR20210145456A (ko) 2021-12-02

Family

ID=78744961

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200062372A KR20210145456A (ko) 2020-05-25 2020-05-25 양극 스크랩을 이용한 활물질 재사용 방법

Country Status (6)

Country Link
US (1) US20230045467A1 (ko)
EP (1) EP4102618A4 (ko)
JP (1) JP7348405B2 (ko)
KR (1) KR20210145456A (ko)
CN (1) CN115004451A (ko)
WO (1) WO2021241819A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273262A1 (zh) * 2021-06-30 2023-01-05 广东邦普循环科技有限公司 一种废旧锂电池安全热解除杂的方法和应用
WO2023220102A1 (en) * 2022-05-11 2023-11-16 Li Industries, Inc. Methods and systems for scalable direct recycling of battery waste

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473641B1 (ko) * 2002-06-03 2005-03-10 한국지질자원연구원 폐리튬이온전지로부터의 리튬코발트 산화물 회수장치 및방법
KR100503385B1 (ko) * 2002-12-10 2005-07-26 한규승 전기화학적 환류법을 이용한 리튬이차전지의 재활용방법 및 이를 위한 장치
JP4492223B2 (ja) * 2004-06-21 2010-06-30 トヨタ自動車株式会社 リチウム電池処理方法
JP2007194209A (ja) 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp リチウム二次電池及びそれを連結した組電池
JP5141970B2 (ja) * 2008-09-08 2013-02-13 トヨタ自動車株式会社 リチウム電池からの正極活物質の回収方法と再利用
JP5675452B2 (ja) 2011-03-15 2015-02-25 三井金属鉱業株式会社 再生材料の製造方法
EP2724413B1 (en) * 2011-06-21 2018-12-05 Warner Babcock Institute for Green Chemistry, LLC Method for the recovery of lithium cobalt oxide from lithium ion batteries
KR101328585B1 (ko) 2012-04-06 2013-11-12 한국과학기술연구원 양극활물질의 재활용을 통한 리튬이온 이차전지용 양극의 제조 방법 및 이에 따라 제조된 리튬이온 이차전지
US8616475B1 (en) * 2013-06-18 2013-12-31 Retriev Technologies Incorporated Recovery of lithium ion batteries
US9881094B2 (en) 2015-05-05 2018-01-30 Snap Inc. Systems and methods for automated local story generation and curation
KR101929961B1 (ko) * 2015-09-17 2018-12-18 주식회사 에코프로비엠 폐양극활물질을 재활용한 양극활물질 전구체의 제조 방법, 이에 의하여 제조된 양극활물질 전구체, 및 이를 이용한 양극활물질의 제조 방법, 이에 의하여 제조된 양극활물질
KR101919516B1 (ko) * 2015-12-23 2018-11-16 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20180100414A (ko) * 2016-01-07 2018-09-10 훌리코 엘엘씨 산화 조건에서의 재리튬화
KR101992715B1 (ko) 2017-01-25 2019-06-25 주식회사 엘지화학 리튬 이차전지에서의 양극 활물질 회수방법
JP7040196B2 (ja) * 2018-03-22 2022-03-23 三菱マテリアル株式会社 コバルトとアルミニウムの分離方法
JP6659893B1 (ja) 2019-04-12 2020-03-04 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273262A1 (zh) * 2021-06-30 2023-01-05 广东邦普循环科技有限公司 一种废旧锂电池安全热解除杂的方法和应用
GB2619190A (en) * 2021-06-30 2023-11-29 Guangdong Brunp Recycling Technology Co Ltd Method for safe pyrolysis and impurity removal of waste lithium battery and application
WO2023220102A1 (en) * 2022-05-11 2023-11-16 Li Industries, Inc. Methods and systems for scalable direct recycling of battery waste

Also Published As

Publication number Publication date
US20230045467A1 (en) 2023-02-09
JP2023509686A (ja) 2023-03-09
JP7348405B2 (ja) 2023-09-20
EP4102618A1 (en) 2022-12-14
CN115004451A (zh) 2022-09-02
EP4102618A4 (en) 2023-08-02
WO2021241819A1 (ko) 2021-12-02

Similar Documents

Publication Publication Date Title
JP7371263B2 (ja) 正極スクラップを用いた活物質の再使用方法
KR20210145454A (ko) 양극 스크랩을 이용한 활물질 재사용 방법
US20230062492A1 (en) Method for reusing active material by using positive electrode scrap
JP7348405B2 (ja) 正極スクラップを用いた活物質の再使用方法
JP7451683B2 (ja) 正極スクラップを用いた活物質の再使用方法
KR20220042659A (ko) 양극 스크랩을 이용한 활물질 재사용 방법
JP7357801B2 (ja) 正極スクラップを用いた活物質の再使用方法
EP4164027A1 (en) Active material reuse method using cathode scraps
JP7357800B2 (ja) 正極スクラップを用いた活物質の再使用方法
EP4178005A1 (en) Active material reuse method using cathode scraps
KR20220042663A (ko) 양극 스크랩을 이용한 활물질 재사용 방법
KR20230019723A (ko) 양극 스크랩을 이용한 활물질 재사용 방법
KR20230031075A (ko) 양극 활물질 재사용 방법