KR20210101133A - 반송장치 및 물품의 제조방법 - Google Patents

반송장치 및 물품의 제조방법 Download PDF

Info

Publication number
KR20210101133A
KR20210101133A KR1020210008569A KR20210008569A KR20210101133A KR 20210101133 A KR20210101133 A KR 20210101133A KR 1020210008569 A KR1020210008569 A KR 1020210008569A KR 20210008569 A KR20210008569 A KR 20210008569A KR 20210101133 A KR20210101133 A KR 20210101133A
Authority
KR
South Korea
Prior art keywords
mover
coil
yoke
coils
stator
Prior art date
Application number
KR1020210008569A
Other languages
English (en)
Inventor
토모히로 오노
히토시 스즈키
타케시 야마모토
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20210101133A publication Critical patent/KR20210101133A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • B65G23/22Arrangements or mountings of driving motors
    • B65G23/23Arrangements or mountings of driving motors of electric linear motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Linear Motors (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

반송장치는 제1 방향을 따라 배치된 복수의 코일을 포함하는 고정자와, 가동자를 구비한다. 가동자는 복수의 코일을 따라 이동하고, 1 방향을 따라 복수의 코일과 대향하도록 배치된 복수의 제1자석을 포함하는 제1 자석군과, 제1 방향과 교차하는 제2 방향을 따라 복수의 코일과 대향하도록 배치된 복수의 제2자석을 포함하는 제2 자석군을 갖는다. 복수의 코일 중 적어도 한개는, 코어, 코어에 감긴 권선부와, 요크를 갖는다. 요크는, 권선부의 제1 방향을 따른 부분의 외주에 인접하고, 제1 방향으로 뻗는다.

Description

반송장치 및 물품의 제조방법{CONVEYANCE APPARATUS AND METHOD OF MANUFACTURING ARTICLE}
본 발명은, 반송장치에 관한 것이다.
일반적으로, 공업제품을 조립하기 위한 생산 라인과 반도체 노광장치에서는, 반송장치가 사용되고 있다. 특히, 생산 라인에 있어서의 반송장치는, 공장 자동화된 생산 라인 내 또는 생산 라인 사이의 복수의 스테이션 사이에서, 부품 등의 워크를 반송한다. 또한, 프로세스 장치에서 반송장치로서 사용되는 경우도 있다. 가동 자석형 리니어 모터를 갖는 반송장치가 이미 제안되어 있다.
가동 자석형 리니어 모터를 갖는 반송장치는, 리니어 가이드 등의 기계적인 접촉을 수반하는 안내장치를 사용한다. 또한, 리니어 모터의 구성으로서, 반송 방향으로 자석의 열을 배치하고, 코일의 열을 자석의 열에 대향배치하여, 어느 한개를 가동자로 사용하고, 또 한쪽을 고정자로 사용하여 단축 구동을 행하는 구성이 일반적이다. 일본국 특개평 7-318699호에 나타낸 것과 같이, 반송 방향 및 이 반송 방형에 직교하는 방향으로의 2축 구동은, 자석과 코일을 2세트 직교하도록 배치함으로써 실현된다.
또한, 일본국 특허 제5240563호에는, 1개의 자석 열과 2종류의 코일 열을 사용하여 복수 축 방향으로의 반송을 행하는 반송장치가 기재되어 있다. 일본국 특허 제5240563호에 기재되어 있는 반송장치는, 가동자로서 3상 코일의 주변에 단상 코일을 배치하고, 가동자의 이동 통로의 양측에 자석 열을 배치함으로써, 2축 구동을 구현하고 있다.
그렇지만, 선행기술은 2축 구동을 행하기 위해서 2종류의 코일을 사용하여 있고, 또한 2열의 자석이 코일을 사이에 끼우기 위해 사용된다. 그 때문에, 장치 구성도 커지고, 그 만큼 코스트도 증가하고 있다.
본 발명의 일면에 따르면, 반송장치는, 제1 방향을 따라 배치된 복수의 코일을 포함하는 고정자와, 복수의 코일을 따라 이동하도록 구성되고, 제1 방향을 따라 복수의 코일과 대향하도록 배치된 복수의 제1자석을 포함하는 제1 자석군과, 제1 방향과 교차하는 제2 방향을 따라 복수의 코일과 대향하도록 배치된 복수의 제2자석을 포함하는 제2 자석군을 갖는 가동자를 구비하고, 복수의 코일 중 적어도 한개는, 코어, 코어에 감긴 권선부와, 요크를 갖고, 요크는, 권선부의 제1 방향을 따른 부분의 외주에 인접하고, 제1 방향으로 뻗는다.
본 발명의 또 다른 특징은 첨부도면을 참조하는 이하의 실시형태의 설명으로부터 명백해질 것이다.
도1a 및 도1b는 각각 본 발명의 제1실시형태를 나타낸 측면도 및 평면도다.
도2a 및 도2b는 각각 도1b의 (A)-(A)선 및 도1b의 (B)-(B)선에 따른 단면도다.
도3은 도1a의 고정자 부분의 단면도다.
도4a 및 도 4b는 일반적인 코일과 본 발명의 제1실시형태에 따른 코일을 설명하는 단면도다.
도5a 및 도5b는 본 발명의 제1실시형태에 따른 코일의 자기회로를 설명하는 개념도다.
도6은 본 발명의 제1실시형태에 따른 Y방향으로 힘을 인가하는 방법을 설명하는 개념도다.
도7은 본 발명의 제1실시형태에 따른 시스템 구성을 도시한 개략도다.
도8은 본 발명의 제1실시형태에 따른 자세 제어방법을 도시한 개략도다.
도9는 본 발명의 제1실시형태에 따른 가동자 위치 산출 함수를 사용한 처리를 설명하는 개략도다.
도10은 본 발명의 제1실시형태에 따른 가동자 자세 산출 함수를 사용한 처리를 설명하는 개략도다.
도11a는 횡측인 X축과 종축인 Y축을 갖는 영구자석에 대향하는 6개의 코일의 추출된 도면이다. 도11b는, 도11A를 Y방향에서 본 도면이다. 도11c는, 도11a 및 도 11b에 나타낸 코일에 대하여 단위전류를 인가했을 때에 발생하는 X방향의 힘의 크기를 모식적으로 나타낸 그래프다.
도12a 및 도12b는 본 발명의 제2실시형태를 나타낸 측면도 및 평면도다.
도13은 본 발명의 제2실시형태에 따른 Y방향의 추력(thrust force)을 나타낸 측면도 및 평면도다.
도14는 본 발명의 제2실시형태에 따른 Y방향의 추력을 나타낸 측면도 및 평면도다.
도15는 본 발명의 제2실시형태에 따른 Y방향의 추력을 나타낸 측면도 및 평면도다.
도16은 본 발명의 제2실시형태에 따른 가동자의 평면도다.
이하, 본 발명의 제1실시형태에 대해서 도1a 내지 도11c를 참조하여 설명한다.
도1a 및 도1b는, 본 실시형태에 따른 가동자(101) 및 고정자(201)를 포함하는 반송장치(1)의 전체 구성을 도시한 개략도다. 도1a 및 도1b는, 가동자(101) 및 고정자(201)의 추출된 주요 부분을 나타낸 것이다. 또한, 도1a는 가동자(101)를 후술하는 Y방향에서 본 도면이고, 도1b는 가동자(101)를 후술하는 Z방향에서 본 도면이다.
우선, 본 발명에서 사용하는 좌표축 및 방향을 정의한다. 가동자(101)의 반송 방향인 수평방향을 따라 X축을 정의하고, 가동자(101)의 반송 방향을 X방향으로 정의한다. 또한, X방향과 직교하는 방향인 연직방향을 따라 Z축을 정의하고, 연직방향을 Z방향으로 정의한다. 또한, X방향 및 Z방향에 직교하는 방향을 따라 Y축을 정의하고, X방향 및 Z방향에 직교하는 방향을 Y방향으로 정의한다. 더구나, Z축 주위의 회전을 "회전 Wz"로 부른다. 또한, 승산의 기호로서 기호 "*"을 사용한다.
본 실시형태에 따른 반송장치(1)의 전체 구성에 대해서 도1a 및 도1b를 참조하여 설명한다.
도1a 및 도1b에 나타낸 것과 같이, 본 실시형태에 따른 반송장치(1)는 가동자(101)와 고정자(201)를 갖고 있다. 가동자(102)는 대차, 슬라이더 또는 캐리지를 구성하고, 고정자(201)는 반송로를 구성한다. 반송장치(1)는, 가동 자석형 리니어 모터(무빙 영구자석형 리니어 모터, 가동 자계형 리니어 모터)를 채용하는 반송장치다.
반송장치(1)는, 예를 들면, 고정자(201)에 의해 가동자(101)를 반송함으로써, 가동자(101) 위의 워크(102)를, 워크(102)를 가공하는 공정장치에 반송한다. 워크(102)를 가공함으로써, 고정밀도로 물품이 제조된다. 도1a 및 도1b에서는, 고정자(201)에 대하여 1대의 가동자(101)를 나타내고 있지만, 이것에 도1a 및 도1b에 도시된 것에 한정되는 것은 아니다. 반송장치(1)에 있어서는, 복수대의 가동자(101)가 고정자(201) 위에 반송될 수 있다.
다음에, 본 실시형태에 따른 반송장치(1)의 반송 대상인 가동자(101)에 대해서 도1a, 도1b, 도2a 및 도2b를 참조하여 설명한다. 도1a 및 도1b는, 본 실시형태에 따른 반송장치(1)를 도시한 개략도다. 도2a 및 도2b는, 가동자(101) 및 고정자(201)를 X방향에서 본 도면이다. 또한, 도2a는, 도1b의 (A)-(A)선에 따른 단면을 나타내고 있다. 또한, 도2b는, 도1b의 (B)-(B)선에 따른 단면을 나타내고 있다.
도1a, 도1b, 도2a 및 도2b에 나타낸 것과 같이, 가동자(101)는, 영구자석(103)으로서, 영구자석 103a, 103b, 103c, 103d를 갖고 있다.
영구자석(103)은, 가동자(101)의 X방향을 따른 상면에 배치되어 부착되어 있다. 구체적으로는, 가동자(101)의 상면에, 영구자석 103a, 103b, 103c, 103d가 부착되어 있다. 가동자(101)의 각각의 영구자석을 서로 구별할 필요가 없는 한, 영구자석을 "영구자석(103)"으로 표기한다. 이것이 필요할 경우, "영구자석 103a", "영구자석 103b", "영구자석 103c" 또는 "영구자석 103d"의 항목으로 각각의 영구 자석 103을 개별적으로 특정한다.
영구자석 103a, 103d는, 가동자(101)의 X방향을 따른 상면의 양 단부에 각각 부착되어 있다. 영구자석 103b, 103c는, 가동자(101)의 상면의 영구자석 103a, 103d 사이에 부착되어 있다. 영구자석 103a, 103b, 103c, 103d는, 예를 들면, X방향으로 같은 피치에 배치되어 있다.
영구자석 103a, 103d는, 각각 가동자(101)의 중심인 원점 O로부터 X방향의 각각의 측에 거리 rz3의 위치에 부착되어 있다. 영구자석 103c, 103b는, 각각 원점 O로부터 X방향의 양측에 거리 ry3의 위치에 부착되어 있다.
영구자석 103a, 103d는, 각각 Y방향을 따라 배치된 2개의 영구자석의 세트이다. 각각의 영구자석 103a, 103d의 2개의 영구자석은, 고정자(201)측을 향하는 외측의 자극의 극성이 서로 다르도록 Y방향을 따라 배치된다. 영구자석 103a, 103d 각각의 Y방향을 따라 배치된 영구자석의 수는, 2개에 한정되는 것은 아니고, 1개보다 큰 수일 수 있다. 또한, 영구자석 103a, 103d의 영구자석이 배치되는 방향은 반드시 반송 방향인 X방향과 직교하는 Y방향일 필요는 없고, X방향과 교차하는 방향일 수 있다. 즉, 영구자석 103a, 103d는, 각각 자극이 교번하는 극성을 갖도록 X방향과 교차하는 방향을 따라 배치된 복수의 영구자석의 자석군일 수 있다.
한편, 영구자석 103b, 103c는, 각각 X방향을 따라 배치된 3개의 영구자석의 세트다. 영구자석 103b, 103c의 3개의 영구자석은, 고정자(201)측을 향하는 외측의 자극이 교번하는 극성을 갖도록 X방향을 따라 배치된다. 영구자석 103b, 103c 각각의 X방향을 따라 배치된 영구자석의 수는, 3개에 한정되는 것은 아니고, 1개보다 많은 모든 수일 수 있다. 즉, 영구자석 103b, 103c는 각각, 자극이 교번하는 극성을 갖도록 X방향을 따라 배치된 복수의 영구자석의 자석군일 수 있다.
본 명세서에 있어서, X방향을 따라 배치된 복수의 영구자석을 "제1 자석군"으로 칭하는 경우가 있다. 제1 자석군의 영구자석을 "제1 자석"으로 칭할 경우가 있다. X방향과 교차하는 방향을 따라 배치된 복수의 영구자석을 "제2 자석군"으로 칭하는 경우가 있다. 제2 자석군의 영구자석을 "제2 자석"으로 칭할 경우가 있다. 제1 자석군 및/또는 제2 자석군을 "자석군"으로 칭할 경우가 있다. 또한, 제1 자석 및 제2 자석은 영구자석에 한정되지 않고, 전자석이어도 된다.
각 영구자석(103)은, 가동자(101)의 상면의 자석용 요크(107)에 부착되어 있다. 자석용 요크(107)는, 자성체 혹은 투자율이 큰 재료, 예를 들면, 철로 구성되어 있다. 본 명세서에 있어서, "투자율이 큰 재료"라는 용어는 비투자율이 1000 이상인 재료를 칭한다.
영구자석(103)이 위에 배치된 가동자(101)는, 고정자(201)의 복수의 코일(202)에 전류를 흘리는 것에 의해 후술하는 바와 같이 영구자석(103)에 인가되는 전자력에 의해 가동자(101)의 자세가 3축 제어되면서 이동한다.
가동자(101)는, X방향을 따라 배치된 복수의 코일(202)을 따라 X방향으로 이동가능하다. 가동자(101)는, 가동자(101)의 상면, 측면, 혹은 하면에 반송해야 할 워크(102)를 적재 혹은 부착한 상태에서 반송된다. 가동자(101)는, 예를 들면, 워크홀더 등의 워크(102)를 가동자(101) 위에 유지하는 유지기구를 갖고 있어도 된다.
다음에, 본 실시형태에 따른 반송장치(1)의 고정자(201)에 대해서 도1a, 도2a, 도 2b 및 도3을 참조하여 설명한다.
도3은, 고정자(201)의 코일(202)을 도시한 개략도다. 도3은, 코일(202)을 Z방향에서 아래에서 위로 본 도면이다.
고정자(201)는, 가동자(101)의 반송 방향인 X방향을 따라 배치된 복수의 코일(202)을 갖고 있다. 고정자(201)에는, 복수의 코일(202)이 가동자(101)에 대향하게 부착되어 있다. 고정자(201)는, 반송 방향(제1 방향)인 X방향으로 뻗고, 가동자(101)의 반송로를 형성한다.
도1a, 도1b, 도2a 및 도2b에 나타낸 것과 같이, 고정자(201)를 따라 반송되는 가동자(101)는, 리니어 스케일(104)과, Y 타겟(105)을 갖고 있다. 리니어 스케일(104)과 Y 타겟(105)은, 각각 예를 들면 가동자(101)의 측면부에 X방향을 따라 부착되어 있다.
고정자(201)는, 복수의 코일(202)과, 복수의 리니어 인코더(204)와, 복수의 Y 센서(205)와, 복수의 볼 롤러(207)를 갖고 있다. 이 경우, 볼 롤러(207)는 반송시에 가동자(101)의 가이드로서 사용되지만, 반드시 볼 롤러가 사용될 필요는 없고, 에어로 미소하게 부상시킨 상태에서의 반송 방식이 채용되어도 된다.
복수의 코일(202)은, 가동자(101)의 상면의 영구자석(103)과 대향하도록, X방향을 따라 배치되고 고정자(201)에 부착되어 있다. 복수의 코일(202)은, 가동자(101)의 영구자석 103a, 103b, 103c, 103d와 대향하도록 X방향을 따라 배치되어 있다.
본 실시형태에서는, 가동자(101)에 대향하는 코일(202)의 열이, 영구자석들 103a 및 103b의 복수의 영구자석이 배치되는 방형과 다른 방향으로 배치된 복수의 영구자석을 포함하는 영구자석 103a, 103d 및 영구자석 103b, 103c에 대향하도록 배치되어 있다. 이 때문에, 적은 수의 열의 코일(202)로 후술하는 바와 같이 가동자(101)에 대하여 반송 방향 및 반송 방향과는 다른 방향으로 힘을 인가하므로, 가동자(101)의 반송 제어 및 자세 제어를 실현할 수 있다.
전술한 것과 같이, 복수의 코일(202)은 가동자(101)가 반송 방향을 따라 부착되어 있다. 복수의 코일(202)은, X방향으로 소정의 간격으로 배치되어 있다. 또한, 각 코일(202)은, 그것의 중심축이 Z방향을 향하도록 부착되어 있다. 각각의 코일(202)은, 코어 둘레에 권선이 감겨 있는 코어를 갖고, 본 실시형태에 있어서, 코일의 위치는 코어의 위치를 나타낸다.
복수의 코일(202)에 대한 전류는, 예를 들면, 3개의 코일(202) 단위로 제어된다. 코일(202)의 통전 제어되는 단위를 "코일 유닛(203)"으로 부른다. 코일(202)의 통전은 가동자(101)의 코일(202)과 영구자석(103) 사이에서 작용하는 전자력을 발생해서 가동자(101)에 힘이 인가된다.
코일 유닛(203)은, 복수의 코일(202), 단수의 코일 유닛(203), 혹은 복수의 코일 유닛(203)을 도1a에 나타낸 것과 같이 수용하도록 코일 박스(2031) 내에 수용되고, 코일 유닛(203)을 수용하는 코일 박스 2031a, 2031b는 X방향을 따라 배치되어 있어도 된다. 본 실시형태에서는, 각각의 코일 박스 내에 수용되는 복수의 코일(202), 단수의 코일 유닛(203), 혹은 복수의 코일 유닛(203)을 "코일 군"으로 칭할 경우가 있다.
다음에, 본 실시형태에 따른 코일(202)에 대해서 도4a 및 도 4b를 참조하여 설명한다. 도4b는, 본 발명의 본 실시형태에 따른 코일(202)을 설명하는 단면도다.
이해하기 쉽게 하기 위해서, 도4a에 일반적인 코일(202w)의 개념도를 나타낸다. 코일(202w)은, 코어(209w)와 전선이 감긴 권선부(210w)로 이루어진다.
도4b는, 본 실시형태에 따른 코일(202)의 개념도를 나타낸다. 도4b는, 도3에 나타낸 복수의 코일(202) 중 한개를 나타내고 있다. 본 실시형태에 따른 복수의 코일(202) 중 적어도 한개는, 도4b에 나타낸 것과 같이 코일용 요크(208)를 포함하고 있다. 더욱 구체적으로, 본 실시형태에 따른 코일(202)은, 코어(209), 권선부(210), 및 코일용 요크(208)로 이루어진다. 코일용 요크(208)는, 코어(209)와 접속되는 동시에, 권선부(210)에 전류를 흘리는 것에 의해 형성되는 자로 상에 배치된다. 일례로서, 도4b에 나타낸 것과 같이 코일용 요크(208)는 반송 방향(제1 방향)을 따라 권선부(210)의 외주에 인접해서 배치된다. 코일용 요크(208)는, 자성체 혹은 투자율이 큰 재료, 예를 들면, 철로 구성되어 있다. 본 명세서에 있어서, "투자율이 큰 재료"라는 용어는, 비투자율이 1000 이상인 재료를 말한다. 또한, 코일용 요크(208)와 권선부(210)는 반드시 접촉하고 있을 필요는 없다.
코일용 요크(208)의 형상은, 반드시 상기한 형상일 필요는 없고, 코일용 요크(208)와 코어(209)가 접속되지 않고 있어도 된다. 예를 들면, 코일(202)의 Y방향의 면의 양측을 끼우도록 반송 방향을 따라 코일용 요크(208)가 부착되어도 되고, 코일용 요크(208)의 형상이 특별히 한정되는 것은 아니다. 단, 코일용 요크(208)는, 코어(209)의 가동자(101)와 대향하는 면과 반대측의 코어(209)의 면 또는, 코어(209)의 측면과 접속되어 있는 것이 바람직하다.
다음에, 도5a 및 도 5b를 참조하여, 도4a에 기재한 코일(202w) 및 도4b에 기재한 코일(202)에 있어서의 자속의 변화에 대해 설명한다. 도5a는 코일용 요크(208)가 부착되지 않은 경우 자기회로의 개념도이고, 도5b는, 코일용 요크(208)를 부착한 경우의 자기회로의 개념도를 나타낸다. 도5a 및 도5b의 개념도는, 도4a 및 도4b의 일부를 확대한 도면이다.
도4a에 있어서는, 대기중 및 코어(209)에 자로(211)가 형성된다. 이 경우 도5a에 있어서 발생되는 자기회로의 자속 Φ[Wb]에 대해 설명한다. 간략을 위해, 코일(202)의 감은 수 N과 전류 I[A]와 단면적 S[㎡]는 일정하다고 정의하고, 대기중의 비투자율은 1에 근사한다. 또한, 코어(209)의 재료는 철인 것으로 가정한다.
대기중에 있어서, 간략을 위해, 도5a의 점선부에 의해 지정된 것과 같이 단면적 S[㎡]와 자로 길이 l1[m]과 l3[m]을 갖는 자로가 형성되고, 이 경우의 투자율을 μ0[H/m]으로 정의하고, 이 경우의 자기저항을 Rm1[1/H]로 정의한다.
마찬가지로, 코어(209)에서 자로 길이 l2[m]과 단면적 S[㎡]를 갖는 자로가 형성되고, 이 경우의 투자율을 μ0*μr1[H/m]으로 정의하고, 자기저항을 Rm2[1/H]로 정의한다. 또한, 기자력을 N*I로 정의한다.
자기저항 Rm1 및 Rm2와 자속 Φ은, 이하의 식 1a 내지 1c로 표시된다.
Rm1=(l1+l3)/(μ0*S) …(1a)
Rm2=l2/(μ0*μr1*S) …(lb)
Φ=N*I/(Rm1+Rm2) …(1c)
다음에, 도4b에 있어서는, 대기중에서, 코어(209) 및 코일용 요크(208) 중에 자로(212)가 형성된다. 이 경우 마찬가지로 도5b에 있어서 발생되는 자기회로의 자속 Φ[Wb]에 대해 설명한다. 간략을 위해, 코일의 감은 수 N과 전류 I[A]와 단면적 S[㎡]는 일정한 것으로 정의하고, 대기중의 비투자율은 1로 근사한다. 또한, 코어(209) 및 코일용 요크(208)의 재료는 철인 것으로 가정한다.
대기중에 있어서, 간략을 위해, 도5b의 점선부에 의해 지정된 것과 같이 단면적 S[㎡] 및 자로 길이 l1[m]을 갖는 자로가 형성되고, 이 경우의 투자율을 μ0[H/m]으로 정의하고, 자기저항을 Rm1[1/H]로 정의한다.
코어(209)에 있어서, 자로 길이 l2[m]과 단면적 S[㎡]를 갖는 자로가 형성되고, 이 경우의 투자율을 μ0*μr1[H/m]으로 정의하고, 이 경우의 자기저항을 Rm2[1/H]로 정의한다.
코일용 요크(208)에 있어서, 자로 길이 l3[m]과 단면적 S[㎡]를 갖는 자로가 형성되고, 이 경우의 투자율을 μ0*μr2[H/m]으로 정의하고, 자기저항을 Rm3[1/H]로 정의한다. 또한, 기자력을 N*I로 정의한다.
이 경우의 자기저항 Rm 및 자속 Φ은, 이하의 식 2a 내지 2d로 표시된다.
Rm1=l1/(μ0*S) …(2a)
Rm2=l2/(μ0*μr1*S) …(2b)
Rm3=l3/(μ0*μr2*S) …(2c)
Φ=N*I/(Rm1+Rm2+Rm3) …(2d)
일반적으로, 진공중의 투자율에 비해, 철의 투자율이 5000 내지 200000배 정도로서, 매우 크다. 또한, 진공중의 투자율은 대기중의 투자율과 거의 동일하기 때문에, μr2는 1로 근사할 수 있다. 그 때문에, 식 1a 내지 1c와 식 2a 내지 2d를 비교하면, 식 1a 내지 1c에 있어서 Rm1의 l3/(μ0*S)에 비해, 식 2a 내지 2d에 있어서의 l3/(μ0*μr2*S)이 매우 작은 것을 알 수 있다. 따라서, 도4b에 있어서, 코일용 요크(208)의 추가에 의해 자기저항이 감소한다.
전술한 내용으로부터, 도4a의 자속 Φ에 비해, 코일용 요크(208)를 추가한 도4b에 있어서의 자속 Φ이 증가한다는 것을 알 수 있다.
다음에, 자속 Φ과 Y방향의 추력 Fy의 관계에 대해서 도6을 참조하여 설명한다. 도6은 일반적인 코일(202w)과 가동자(101)의 단면도다. 간략을 위해, 영구자석(222)이 1개 부착되어 있는 가동자(101)에 대해 설명한다.
코일 코어(209)의 단면적을 S[㎡]로 정의하고, 대기중의 자속밀도를 μ0[H/m]으로 정의하고, 코일(202w)과 가동자(101) 사이의 공간 갭(221)의 자속밀도를 B[Wb/㎡]로 정의한다.
코일(202w)에 대하여 가동자(101)가 N극이 되도록 전류를 인가할 때, 가동자(101)와 코일(202w)에는, 자로(213)가 형성된다. 단위면적당 공간 갭(221)의 자기 에너지 Wm은 다음 식으로 표시할 수 있다.
Wm=B2/2μ0[N/㎡] …(3)
흡인력 Fm은 식 3에 단면적 S를 곱함으로써 얻어지는 이하의 식으로 표시된다.
Fm=S*B2/2μ0[N] …(4)
자속밀도 B는 단위면적당의 자속 Φ로 표시되므로, 이하와 같이 표시된다.
B=Φ/S[Wb/㎡] …(5)
식 4 및 5에서, 흡인력 Fm은 자속 Φ로 표시된다는 것을 알 수 있다.
Fm=Φ2/2*μ0*S[N] …(6)
이 경우, 흡인력 Fm은 코일 코어(209)와 영구자석 103d1 사이에 작용하는 힘 Fm1이고, 이 힘 Fm1은 Z방향의 힘 Fm1z와 Y방향의 힘 Fm1y로 분해할 수 있다. Y방향의 추력 Fy는, Y방향의 분력이며, Fm1y로 표시된다.
따라서, 자속 Φ이 증가한 경우에는, 추력 Fy도 증가하는 것을 알 수 있다. 이와 같은 사실로부터, 코일용 요크(208)의 설치는 자속 Φ을 증가시켜, Y방향의 추력이 증가될 수 있다는 것을 알 수 있다.
또한, 도1b의 영구자석 103d에 의해 지정된 것과 같이, 영구자석 222의 극성과 반대의 극성을 갖는 영구자석이 Y방향 음측에 인접하도록 부착된 경우에 대해 설명한다. 이 경우, 부착된 영구자석과 코일 코어(209) 사이에 작용하는 힘은 반발력이며, 추력 Fm1y와 함께 Y방향의 추력은 대략 배로 된다.
다음에, 본 실시형태에 따른 반송장치(1)를 제어하는 제어 시스템에 대해서 도7을 참조하여 더 설명한다. 도7은, 본 실시형태에 따른 반송장치(1)를 제어하는 제어 시스템(3)을 도시한 개략도다.
복수의 리니어 인코더(204)는, 가동자(101)의 리니어 스케일(104)과 대향하도록 X방향을 따라 고정자(201)에 부착되어 있다. 각 리니어 인코더(204)는, 가동자(101)에 부착된 리니어 스케일(104)을 판독함으로써, 가동자(101)의 리니어 인코더(204)에 대한 상대적인 위치를 검출해서 검출된 상대적인 위치를 출력한다.
복수의 Y 센서(205)는, 가동자(101)의 Y 타겟(105)과 대향하도록 X방향을 따라 고정자(201)에 부착되어 있다. 각 Y 센서(205)는, 가동자(101)의 Y 타겟(105) 사이의 Y방향의 상대 거리를 검출해서 검출된 상대 거리를 출력한다. Y 타겟(105)은, 가동자의 목표가 되는 반송 방향과 평행한 면을 갖는 볼록부이며, 이 가동자(101)의 목표가 되는 반송 방향과 평행한 면을 고정자(201)에 고정된 Y 센서(205)로 측정한다. 이에 따라, 가동자(101)의 Y방향의 자세를 검지한다. 가동자(101)에 대한 상대 거리를 직접 검출하는 것도 가능하지만, 가동자(101)를 고정밀도로 가공하는 것이 곤란한 경우가 있기 때문에, 이와 같은 경우에는 Y 타겟(105)을 사용할 수 있다.
도7에 나타낸 것과 같이, 제어 시스템(3)은, 통합 콘트롤러(301), 코일 콘트롤러(302)와, 센서 콘트롤러(304)를 갖고, 가동자(101)와 고정자(201)를 포함하는 반송장치(1)를 제어하는 제어장치로서 기능한다. 통합 콘트롤러(301)에는 코일 콘트롤러(302)가 통신 가능하게 접속되어 있다. 또한, 통합 콘트롤러(301)에는, 센서 콘트롤러(304)가 통신 가능하게 접속되어 있다.
코일 콘트롤러(302)에는, 복수의 전류 콘트롤러(303)가 통신 가능하게 접속되어 있다. 코일 콘트롤러(302) 및 이 코일 콘트롤러(302)에 접속된 복수의 전류 콘트롤러(303)는, 1열의 코일(202)에 대응해서 배치되어 있다. 각 전류 콘트롤러(303)에는 코일(202)이 접속되고 있어도 되고, 각 전류 콘트롤러(303)에 복수의 코일(202)이 접속되어 있어도 되고, 각 전류 콘트롤러(303)에 코일 유닛(203)(미도시)이 접속되어 있어도 되고, 또는 각 전류 콘트롤러(303)에 복수의 코일 유닛(203)이 접속되어 있어도 된다. 전류 콘트롤러(303)는, 접속된 코일 유닛(203)의 각각의 코일(202)에 인가할 전류의 크기를 제어할 수 있다.
코일 콘트롤러(302)는, 접속된 각각의 전류 콘트롤러(303)에 대하여 목표가 되는 전류값의 지령을 제공한다. 전류 콘트롤러(303)는 각각의 접속된 코일(202)의 전류량을 제어한다.
센서 콘트롤러(304)에는, 복수의 리니어 인코더(204) 및 복수의 Y 센서(205)가 통신 가능하게 접속되어 있다.
복수의 리니어 인코더(204)는, 가동자(101)가 반송중에도 복수의 리니어 인코더(204) 중 1개가 1대의 가동자(101)의 위치를 측정할 수 있는 간격으로 고정자(201)에 부착되어 있다. 또한, 복수의 Y 센서(205)는, 복수의 Y 센서(205) 중 2개가 1대의 가동자(101)의 Y 타겟(105)을 측정할 수 있는 간격으로 고정자(201)에 부착되어 있다.
통합 콘트롤러(301)는, 리니어 인코더(204) 및 Y 센서(205)로부터의 출력에 근거하여, 복수의 코일(202)에 인가할 전류 지령값을 결정하여, 결정된 전류 지령값을 코일 콘트롤러(302)에 송신한다. 코일 콘트롤러(302)는, 통합 콘트롤러(301)로부터의 전류 지령값에 근거하여, 전술한 바와 같이 전류 콘트롤러(303)에 대하여 전류값을 제공한다. 이에 따라, 통합 콘트롤러(301)는, 제어장치로서 기능하여, 고정자(201)를 따라 가동자(101)를 반송하는 동시에, 가동자(101)의 자세의 3축 제어를 행한다.
통합 콘트롤러(301)에 의해 실행되는 가동자(101)의 자세 제어방법에 대해서 도7 및 도8을 참조하여 설명한다. 도8은, 본 실시형태에 따른 반송장치(1)에 있어서의 가동자(101)의 자세 제어방법을 도시한 개략도다. 도8은, 가동자(101)의 자세 제어방법에 대해 주로 그 데이터의 흐름에 주목해서 나타내고 있다. 통합 콘트롤러(301)는, 이하에서 설명한 바와 같이, 가동자 위치 산출 함수(401), 가동자 자세 산출 함수(402), 가동자 자세 제어 함수(403) 및 코일 전류 산출 함수(404)를 사용한 처리를 실행한다. 이와 같은 처리에 의해, 통합 콘트롤러(301)는, 가동자(101)의 자세의 3축 제어를 행하면서, 가동자(101)의 반송을 제어한다. 통합 콘트롤러(301) 대신에, 코일 콘트롤러(302)가 통합 콘트롤러(301)와 유사한 처리를 실행하도록 구성할 수도 있다.
우선, 가동자 위치 산출 함수(401)는, 복수의 리니어 인코더(204)로부터의 측정값 및 복수의 리니어 인코더(204)에 대한 부착 위치 정보에 근거하여, 반송로를 구성하는 고정자(201) 위에 있는 가동자(101)의 대수 및 각 가동자(101)의 위치를 계산한다. 이 처리에 의해, 가동자 위치 산출 함수(401)는, 가동자(101)에 관한 정보인 가동자 정보(406)의 가동자 위치 정보(X) 및 가동자 대수 정보를 갱신한다. 가동자 위치 정보(X)는, 고정자(201) 위의 가동자(101)의 반송 방향인 X방향에 있어서의 위치를 나타내고 있다. 가동자 정보(406)는, 예를 들면, 도8 중에 POS-1, POS-2, …로 명시한 바와 같이 고정자(201) 위의 가동자(101)마다 준비된다.
다음에, 가동자 자세 산출 함수(402)는, 가동자 위치 산출 함수(401)에 의해 갱신된 가동자 정보(406)의 가동자 위치 정보(X)에 근거하여, 각각의 가동자(101)를 측정가능한 Y 센서(205)를 가동자(101)마다 특정한다. 다음에, 가동자 자세 산출 함수(402)는, 특정된 Y 센서(205)로부터 출력되는 값에 근거하여, 각각의 가동자(101)의 자세에 관한 정보인 자세 정보(Y, Wz)을 산출해서, 가동자 정보(406)를 갱신한다. 가동자 자세 산출 함수(402)에 의해 갱신된 가동자 정보(406)는, 가동자 위치 정보(X) 및 자세 정보(Y, Wz)를 포함하고 있다.
다음에, 가동자 자세 제어 함수(403)는, 가동자 위치 정보(X) 및 자세 정보(Y, Wz)를 포함하는 현재의 가동자 정보(406) 및 자세 목표값에 근거하여, 각각의 가동자(101)에 대한 인가력 정보(408)를 산출한다. 인가력 정보(408)는, 각각의 가동자(101)에 인가해야 할 힘의 크기에 관한 정보다. 인가력 정보(408)는, 후술하는 인가해야 할 힘 T의 2축 힘 성분(Tx, Ty) 및 1축 토크 성분(Twz)에 관한 정보를 포함하고 있다. 인가력 정보(408)는, 예를 들면, 도8 중에 TRQ-1, TRQ-2, …으로 명시한 바와 같이 고정자(201) 위의 가동자(101)마다 준비된다.
다음에, 코일 전류 산출 함수(404)는, 인가력 정보(408) 및 가동자 정보(406)에 근거하여, 각 코일(202)에 인가할 전류 지령값(409)을 결정한다.
전술한 것과 같이 통합 콘트롤러(301)는, 가동자 위치 산출 함수(401), 가동자 자세 산출 함수(402), 가동자 자세 제어 함수(403) 및 코일 전류 산출 함수(404)를 사용한 처리를 실행함으로써, 전류 지령값(409)을 결정한다. 통합 콘트롤러(301)는, 결정된 전류 지령값(409)을 코일 콘트롤러(302)에 송신한다.
가동자 위치 산출 함수(401)에 의해 행해진 처리에 대해서 도9를 참조하여 설명한다. 도9는, 가동자 위치 산출 함수에 의한 처리를 설명하는 개략도다.
도9에 있어서, 기준점 Oe는, 리니어 인코더(204)가 부착되어 있는 고정자(201)의 위치 기준이다. 또한, 기준점 Os는, 가동자(101)에 부착되어 있는 리니어 스케일(104)의 위치 기준이다. 도9는, 가동자(101)로서 2대의 가동자 101a, 101b가 반송되고, 리니어 인코더(204)로서 3개의 리니어 인코더 204a, 204b, 204c가 배치되어 있는 경우를 나타내고 있다. 리니어 스케일(104)은, 각각 가동자 101a, 101b의 대응하는 위치에 X방향을 따라 부착되어 있다.
예를 들면, 도9에 나타낸 가동자 101b의 리니어 스케일(104)에는 1개의 리니어 인코더 204c가 대향하고 있다. 리니어 인코더 204c는, 가동자 101b의 리니어 스케일(104)을 판독해서 거리 Pc을 출력한다. 또한, 기준점 Oe를 원점으로 하는 X축 상의 리니어 인코더 204c의 위치는 위치 Sc이다. 따라서, 가동자 101b의 위치 Pos(101b)는 다음 식 7에 의해 산출된다.
Pos(101b)=Sc-Pc …(7)
예를 들면, 도9에 나타낸 가동자 101a의 리니어 스케일(104)에는, 2개의 리니어 인코더 204a, 204b가 대향하고 있다. 리니어 인코더 204a는, 가동자 101a의 리니어 스케일(104)을 판독해서 거리 Pa를 출력한다. 또한, 기준점 Oe를 원점으로 하는 리니어 인코더 204a의 X축 상의 위치는 위치 Sa이다. 따라서, 리니어 인코더 204a의 출력에 근거한 가동자 101a의 X축 상의 위치 Pos(101a)는 다음 식 8에 의해 산출된다.
Pos(101a)=Sa-Pa …(8)
또한, 리니어 인코더 204b는, 가동자 101b의 리니어 스케일(104)을 판독해서 거리 Pb을 출력한다. 또한, 기준점 Oe를 원점으로 하는 리니어 인코더 204b의 X축 상의 위치는 위치 Sb이다. 따라서, 리니어 인코더 204b의 출력에 근거한 가동자 101a의 X축 상의 위치 Pos(101a)'은, 다음 식 9에 의해 산출된다.
Pos(101a)'=Sb-Pb …(9)
리니어 인코더 204a, 204b의 위치는 미리 정확하게 측정되므로, 2개의 값 Pos(101a), Pos(101a)'의 차이는 충분히 작다. 2개의 리니어 인코더(204)의 출력에 근거한 가동자(101)의 X축 상의 위치의 차이가 충분히 작은 이와 같은 경우에는, 이들 2개의 리니어 인코더(204)에 의해 동일한 가동자(101)의 리니어 스케일(104)이 관측되고 있다고 판정된다.
복수의 리니어 인코더(204)가 동일한 가동자(101)와 대향하는 경우에는, 복수의 리니어 인코더(204)의 출력에 근거한 위치의 평균값을 산출함으로써 관측된 가동자(101)의 위치가 고유하게 결정된다.
가동자 위치 산출 함수(401)는, 전술한 바와 같이 리니어 인코더(204)의 출력에 근거하여, 가동자(101)의 X방향에 있어서의 위치 X를 산출해서 산출된 위치 X를 가동자 위치 정보로서 결정한다.
다음에, 가동자 자세 산출 함수(402)에 의한 처리에 대해서 도10을 참조하여 설명한다.
도10은, 가동자(101)로서 가동자 101c가 반송되고, Y 센서(205)로서 Y 센서 205a, 205b가 배치되어 있는 경우를 나타내고 있다. 도10에 나타낸 가동자 101c의 Y 타겟(105)에는, 2개의 Y 센서 205a, 205b가 대향하고 있다. 가동자 101c의 Z축 주위의 회전량 Wz는 다음 식 10에 의해 산출된다.
Wz=(Ya-Yb)/Ly …(10)
식 10에서, Ya 및 Yb는 2개의 Y 센서 205a, 205b에 의해 각각 출력되는 상대 거리의 값이고, Ly는 Y 센서 205a, 205b 사이의 간격이다.
가동자(101)의 위치에 따라서는 3개 이상의 Y 센서(205)가 가동자 101c의 Y 타겟(101)과 대향하는 경우도 있을 수 있다. 이 경우, 최소 제곱법을 사용해서 Y 타겟(105)의 기울기, 즉 Z축 주위의 회전량 Wz를 산출할 수 있다.
가동자 자세 산출 함수(402)는, 전술한 바와 같이, 가동자(101)의 자세 정보로서 Z축 주위의 회전량 Wz를 산출한다.
또한, 가동자 자세 산출 함수(402)는, 후술하는 것과 같이 가동자(101)의 자세 정보로서 가동자(101)의 Y방향의 위치 Y를 산출할 수 있다.
우선, 가동자(101)의 Y방향의 위치 Y의 산출에 대해서 도10을 참조하여 설명한다. 도10에 있어서, 가동자 101c와 대향하는 2개의 Y 센서(205)는 Y 센서 205a, 205b이다. 또한, Y 센서 205a, 205b의 측정값은 각각 Ya, Yb로 표시한다. 또한, Y 센서 205a 및 205b의 위치 사이의 중점을 Oe'으로 표시한다. 더구나, 식 7 내지 10에서 얻어진 가동자 101c의 위치를 Os'로 표시하고, Oe'으로부터 Os'까지의 거리를 dX'으로 표시한다. 이 경우, 가동자 101c의 Y방향의 위치 Y는 다음 식에 의해 근사적으로 산출된다.
Y=(Ya+Yb)/2-Wz*dX'
위치 Y에 대해서 회전량 Wz가 큰 경우에는, 더욱 더 계산시의 근사의 정밀도가 높아진다.
다음에, 코일 전류 산출 함수(404)에 의한 처리에 대해서 도1a 및 도 1b를 참조하여 설명한다. 이하에서 사용하는 힘의 설명에 있어서, X방향 및 Y방향의 힘이 작용하는 방향을 각각 x, y로 나타내고, 도1a 및 도 1b에 있어서 X+측을 f로 표시하고, X- 방향을 b로 표시한다.
도1a 및 도 1b에 있어서, 영구자석(103)에 작용하는 힘을 다음과 같이 표기한다. 영구자석(103)에 작용하는 힘은, 전류가 인가된 복수의 코일(202)에 의해 영구자석(103)에 인가된 전자력이다. 영구자석(103)에는, 전류가 인가된 복수의 코일(202)에 의해, 가동자(101)의 반송 방향인 X방향의 전자력과, X방향과는 다른 방향인 Y방향의 전자력이 가해진다. 영구자석(103)에 작용하는 힘은 다음과 같이 표시된다.
Fxf: 영구자석 103b에 작용하는 X방향의 힘
Fyf: 영구자석 103a에 작용하는 Y방향의 힘
Fxb: 영구자석 103c에 작용하는 X방향의 힘
Fyb: 영구자석 103d에 작용하는 Y방향의 힘
또한, 가동자(101)에 인가되는 힘 T은 후술하는 식 11에 의해 표시된다. 이 식 (11)에서, Tx, Ty는, 힘 T의 2축 성분이며, 각각 힘 T의 X방향 성분 및 Y방향 성분이다. 또한, Twz는, 모멘트의 1축 성분이며, Z축 주위의 모멘트 성분이다. 본 실시형태에 따른 반송장치(1)는, 힘 T의 3축 성분(Tx, Ty, Twz)을 제어함으로써, 가동자(101)의 자세의 3축 제어를 행하면서, 가동자(101)의 반송을 제어한다.
T=(Tx, Ty, Twz) …(11)
그러면, Tx, Ty, Twz는, 각각 다음 식 (12a), (12b) 및 (12c)에 의해 산출된다.
Tx=Fxf+Fxb …(12a)
Ty=Fyf+Fyb …(12b)
Twz=(Fyf-Fyb)*rz3 … (12c)
다음에, 코일 전류 산출 함수(404)에 의해 영구자석(103)에 작용하는 힘으로부터 코일(202)에 인가할 전류량을 결정하는 방법에 대해 설명한다.
우선, N극 및 S극의 극성이 Y방향으로 교대로 배열한 영구자석 103a, 103d에 Y방향의 힘을 인가하는 경우에 대해 설명한다. 코일(202)은, Y방향의 코일(202)의 중심이 영구자석 103a, 103d의 Y방향의 중심에 위치하도록 배치되어 있다. 이에 따라, 영구자석 103a, 103d에 대하여 X방향 및 Z방향으로 작용하는 힘은 거의 발생하지 않는다.
가동자(101)의 위치를 X로 표시하고, 열로 배열된 코일(202)의 번호를 j로 표시한다. 또한, 단위전류당의 코일(202)(j)의 Y방향으로 작용하는 힘의 크기를 Fy(j, X)로 표시하고, 코일(202)(j)에 인가된 전류를 i(j)로 표시한다. 코일(202)(j)은 j번째의 코일(202)이다. 이 경우, 전류 i(j)는, 후술하는 식 (13)을 만족하도록 결정된다. 식 (13)은, 영구자석 103d에 작용하는 힘의 크기 Fyb를 나타내는 식이다. 다른 영구자석 103a에 대해서도, 마찬가지로 코일(202)에 인가할 전류가 결정된다.
ΣFy(j, X)*i(j)=Fyb …(13)
복수의 코일(202)이 영구자석(103)에 힘을 가하는 경우에는, 각각 코일(202)에 의해 가해진 힘에 근거한 단위전류당의 힘의 크기에 따라 전류를 할당함으로써 영구자석(103)에 작용하는 힘이 고유하게 결정된다.
다음에, N극, S극 및 N극의 극성이 X방향을 따라 교대로 배열된 영구자석 103b에 대하여 X방향으로 힘을 인가하는 방법에 대해 설명한다. 도11a 내지 도 11c는, 영구자석 103b에 대하여 X방향으로 힘을 인가하는 방법을 설명하는 개략도다. 코일 전류 산출 함수(404)는, 후술하는 것과 같이, 영구자석 103b에 대하여 X방향으로여 힘을 인가하기 위해서 코일(202)에 인가할 전류 지령값을 결정한다. 영구자석 103c에 대해서도, 영구자석 103b와 마찬가지로 X방향으로 힘을 인가할 수 있다.
가동자(101)의 위치를 X로 표시하고, 열로 배치된 코일(202)의 번호를 j로 표시한다. 또한, 단위전류당 X방향으로 코일(202)(j)에 작용하는 힘의 크기를 Fx(j, X)로 표시한다. 또한, 코일(202)(j)의 전류의 크기를 i(j)로 표시한다. 코일(202)(j)은 j번째의 코일(202)이다.
도11a는, X축이 횡축이고 Y축이 종축일 때 영구자석 103b에 대향하는 6개의 코일(202)의 추출된 도면이다. 도11b는, 도11a에 도시된 구성요소를 Y방향에서 본 도면이다. 코일(202)에는, X방향으로 배열된 순서로 1로부터 6까지의 번호 j를 부여하고, 이하에서는 예를 들면 코일(202)을 코일(202)(1)로서 표기해서 각 코일(202)을 특정한다.
도11a 및 도11b에 나타낸 것과 같이, 코일(202)은 거리 L의 피치에 배치되어 있다. 한편, 가동자(101)의 영구자석(103)은 거리 3/2*L의 피치에 배치되어 있다.
도11c는, 도11a 및 도 11b에 나타낸 코일(202)에 대하여 단위전류를 인가했을 때에 발생하는 X방향의 힘 Fx의 크기를 모식적으로 나타낸 그래프다.
간략을 위해, 도11a, 도 11b 및 도 11c에서는, 코일(202)의 X방향의 위치의 원점 Oc을 코일 202(3)와 202(4) 사이의 중간점으로 정의하고, 영구자석 103b의 X방향의 중심 Om을 원점으로 정의하고 있다. 이때문에, 도11a, 도 11b 및 도11c는, 원점 Oc과 중심 Om이 일치한 경우, 즉 X=0인 경우를 나타내고 있다.
이 경우, 예를 들면, 코일(202)(4)에 대하여 작용하는 단위전류당의 힘은, X방향으로 Fx(4,0)의 크기를 갖는다. 또한, 코일(202)(5)에 대하여 작용하는 단위전류당의 힘은 X방향으로 Fx(5,0)의 크기를 갖는다.
코일 202(1) 내지 202(6)에 인가할 전류값을 각각 I(1) 내지 i(6)로 표시한다. 영구자석 103b에 대하여 X방향으로 작용하는 힘의 크기 Fxf는 일반적으로 다음 식 (14)에 의해 표시된다.
Fxf=Fx(1,X)*i(1)+Fx(2,X)*i(2)+Fx(3,X)*i(3)+Fx(4,X)*i(4)+Fx(5,X)*i(5)+Fx(6,X)*i(6) …(14)
식 14를 만족하는 전류값 I(1) 내지 i(6)를 각각 코일 202(1) 내지 202(6)에 인가하도록 전류 지령값을 결정함으로써, 영구자석 103b에 대하여 X방향으로 독립적으로 힘이 인가된다. 코일 전류 산출 함수(404)는, 영구자석(103)에 대하여 X방향으로 독립적으로 힘을 인가하기 위해, 전술한 바와 같이 코일 202(j)에 인가할 전류 지령값을 결정할 수 있다.
전술한 것과 같이 결정된 전류 지령값에 근거하여 가동자(101)에 X방향으로 힘이 인가된다. 가동자(101)에 X방향으로 인가되는 힘으로부터, 가동자(101)는 X방향으로 이동하기 위해 추력을 얻어서 X방향으로 이동한다.
전술한 것과 같이, 통합 콘트롤러(301)는, 복수의 코일(202)에 인가할 전류를 제어함으로써, 가동자(101)에 인가할 힘의 3축 성분의 각각을 제어한다.
가동자(101)의 반송의 결과로써 영구자석 103b의 중심 Om에 대하여 코일(202)의 중심 Oc이 이동한 경우, 즉 X≠0의 경우에는, 이동한 위치에 근거하여 코일(202)이 선택된다. 더구나, 코일(202)에 대해 단위전류당 발생된 힘에 근거하여, 상기와 유사한 계산을 실행할 수 있다.
전술한 바와 같이, 통합 콘트롤러(301)는, 복수의 코일(202)에 인가할 전류의 전류 지령값을 결정해서 전류 지령값을 제어함으로써, 고정자(201) 위에서의 가동자(101)의 자세의 3축 제어를 행하면서, 고정자(201) 위에서의 가동자(101)의 비접촉 반송을 제어한다. 즉, 통합 콘트롤러(301)는, 가동자(101)의 반송을 제어하는 반송 제어부로서 기능하고, 복수의 코일(202)에 의해 영구자석(103)에 인가된 전자력을 제어함으로써, 고정자(201) 위에 있어서의 가동자(101)의 비접촉 반송을 제어한다. 또한, 통합 콘트롤러(301)는, 가동자(101)의 자세를 제어하는 자세 제어부로서 기능하여, 고정자(201) 위에 있어서의 가동자(101)의 자세의 3축 제어를 행한다. 제어장치로서의 통합 콘트롤러(301)의 기능의 전부 또는 일부는, 코일 콘트롤러(302) 또는 기타 제어장치에 의해 대체될 수 있다.
전술한 것과 같이, 본 실시형태에 따르면, 1열로 배치된 복수의 코일(202)이, 가동자(101)에 대하여, 2축의 힘 성분(Tx, Ty) 및 1축의 모멘트 성분(Twz)을 포함하는 3축의 힘을 인가할 수 있다. 이에 따라, 가동자(101)의 자세를 3축 방식으로 제어하면서, 가동자(101)의 반송을 제어할 수 있다. 본 실시형태에 따르면, 제어해야 할 변수인 힘의 3축 성분의 수보다도 적은 1열의 코일(202)에 의해, 가동자(101)의 자세를 3축 방식으로 제어하면서, 가동자(101)의 반송을 제어할 수 있다.
따라서, 본 실시형태에 따르면, 코일(202)의 열 수를 줄일 수 있으므로, 시스템의 대형화와 복잡화를 수반하지 않고, 가동자(101)의 자세를 제어하면서, 가동자(101)를 반송할 수 있다. 더구나, 본 실시형태에 따르면, 코일(202)의 열 수를 줄일 수 있으므로, 저렴하게 소형의 반송장치를 구성할 수 있다.
본 실시형태에서는 열 수를 줄인 구성(1열의 코일)을 일례로서 나타냈지만, X방향을 따라 복수의 코일(202)로 이루어진 복수의 코일 열을 갖고 있어도 된다.
도12a 및 도 12b는, 본 발명의 제2실시형태에 따른 가동자(101) 및 고정자(201)를 포함하는 반송장치의 전체 구성을 도시한 개략도다. 도12a 및 도12b는, 가동자(101) 및 고정자(201)의 주요 부분의 추출된 도면이다. 또한, 도12a는 도12b의 (C)-(C) 단면을 Y방향에서 본 도면이며, 도12b는 가동자(101)를 Z방향에서 본 도면이다. 본 실시형태에 있어서는, 제1실시형태에 따른 가동자(101)의 영구자석 103a, 103d, 103b 및 103c가, 가동자(101)의 상부면에 별개로 설치된 자석용 요크(107)에 부착되어 있는 예를 설명한다. 더욱 구체적으로는, 일례로서, 영구자석 103a가 제1 요크에 부착되고, 영구자석 103b 및 103c가 제2 요크에 부착되고, 영구자석 103d가 제3 요크에 부착되고, 요크들은 소정 거리만큼 떨어져 배치되어 있는 구성에 대해 설명한다. 제1실시형태와 유사한 작용을 갖는 구성에 대해서는 동일한 부호를 붙이고 중복 설명을 생략한다.
우선, 제1실시형태에 따른, 영구자석 103a, 103b, 103c, 103d가 동일한 자석용 요크(107)에 부착되어 있는 경우의, 영구자석 103c와 103d 사이에 형성되는 자기회로에 대해서 도13을 참조하여 설명한다. 도13은 도1의 일부를 확대한 도면이며, 가동자(101)를 Y방향 음측을 향해 도시하는 화살표에 의해 지정된 소정량만큼 움직였을 경우의 예를 나타낸 개념도다.
도13에 나타낸 것과 같이, 영구자석 103c에 있어서는, 영구자석 103d에 가까운 측으로부터, 영구자석 103c1, 103c2 및 103c3이 이 순서대로 배치되어 있다. 또한, 영구자석 103d에 있어서, Y방향 양의 방향으로부터, 영구자석 103d1 및 영구자석 103d2가 이 순서대로 배치되어 있다.
또한, 영구자석 103c, 103d에 대향하고 있는 코일(202)에 대해서는, 영구자석 103d1에 대향하는 코일(202)을 "코일 202a"로 부르고, 영구자석 103c1에 대향하는 코일(202)을 "코일 202b"로 부르고, 영구자석 103c2에 대항하는 코일(202)을 "코일 202c"로 부른다.
이 경우 코일(202)에 전류를 인가하지 않고 있는 상태에서, 가동자(101)에 작용하는 Y방향의 추력에 대해 설명한다.
도13에 나타낸 것과 같이, 가동자(101)와 고정자(201) 사이에 있어서, 자로 231a 및 자로 231b가 형성된다. 도13은, 대표적인 자로를 나타낸 것이며, 실제로 형성되는 자로는 도 13에 나타낸 것에 한정되는 것은 아니다. 자로 231a는, 영구자석 103c1, 코일 202b, 코일 202a, 영구자석 103d1 및 자석용 요크(107)에 의해 형성된다. 자로 231b는, 영구자석 103c1, 코일 202b, 코일 202c, 영구자석 103c2 및 자석용 요크(107)에 의해 형성된다.
자로 231a 및 231b에 의해, 코일 202b의 가동자(101)측은 S극으로 작용하고, 코일 202a의 가동자(101)측은 N극으로서 작용하게 된다. X방향에는 마찬가지로 자로가 형성되고, 고정자(201)측에는 대항하는 영구자석에 대응한 자극이 발생한다.
이 경우, 영구자석 103c1의 고정자(201)측이 N극이 되고, 코일 202b의 가동자(101)측이 S극이 되므로, 고정자(201)와 가동자(101) 사이에는 인력이 작용한다. 이에 따라, 가동자(101)에는 Y방향 양측을 향해 추력 Fa1이 작용한다. 이것은 고정자(201)와 가동자(101)의 중심이 일치하는 방향으로의 추력이 된다.
또한, 자로 231a에 의해, 영구자석 103d1의 고정자(201)측이 S극이 되고, 코일 202a의 가동자(101)가 N극이 되므로, 고정자(201)와 가동자(101) 사이에는 인력이 작용한다. 이에 따라, 영구자석 103d1에는 Y방향 음측을 향해 추력 Fb1이 작용한다.
마찬가지로, 자로 231b에 의해, 영구자석 103c2의 고정자(201)측이 S극이 되고, 코일 202c의 가동자(101)측이 N극이 되므로, 고정자(201)와 가동자(101) 사이에는 인력이 작용한다. 이에 따라, 영구자석 103c2에는 Y방향 양측을 향해 추력 Fc1이 작용한다.
이 경우, 추력 a1과 Fc1은 동일한 방향으로 작용하지만, 추력 Fb1은 역방향으로 작용하여 고정자(201)와 가동자(101)의 중심이 일치하는 방향의 추력을 감소시키도록 작용한다.
다음에, 가동자(101)를 Y방향 양측을 향해 도13에서의 이동량과 같은 소정량만큼 이동한 예를 나타낸 개념도를 도14에 나타낸다. 도14는 도12a 및 도12b의 일부를 확대한 도면이다.
도14에 나타낸 것과 같이, 가동자(101)와 고정자(201) 사이에는 자로 231c 및 자로 231d가 형성된다. 도14는, 대표적인 자로를 나타낸 것이며, 실제로 형성되는 자로는 도 14에 나타낸 것에 한정되는 것은 아니다. 자로 231c는, 영구자석 103c1, 코일 202b, 코일 202a, 영구자석 103d2 및 자석용 요크(107)에 의해 형성된다. 자로 231d는, 영구자석 103c1, 코일 202b, 코일 202c, 영구자석 103c2 및 자석용 요크(107)에 의해 형성된다.
자로 231c 및 자로 231d에 의해, 코일 202b의 가동자(101)측은 S극으로서 작용하고, 코일 202a의 가동자(101)측은 N극으로서 작용하게 된다. X방향에는 마찬가지로 자로가 형성되고, 고정자(201)측에는 대항하는 영구자석에 대응하는 자극이 발생한다.
이 경우, 영구자석 103c1의 고정자(201)측이 N극이 되고, 코일 202b의 가동자(101)측이 S극이 되기 때문에, 고정자(201)와 가동자(101) 사이에는 인력이 작용한다. 이에 따라, 영구자석 103c1에는 Y방향 양측으로 추력 Fa2가 작용한다. 이것은 고정자(201)와 가동자(101)의 중심이 일치하는 방향의 추력이 된다.
또한, 자로 231c에 의해, 영구자석 103d2의 고정자(201)측이 N극이 되고, 코일 202a의 가동자(101)가 N극이 되기 때문에, 고정자(201)와 가동자(101) 사이에는 반발력이 작용한다. 이에 따라, 영구자석 103d2에는 Y방향 양측으로 추력 Fb2가 작용한다.
마찬가지로, 자로 231d에 의해, 영구자석 103c2의 고정자(201)측이 S극이 되고, 코일 202c의 가동자(101)가 N극이 되기 때문에, 고정자(201)와 가동자(101) 사이에는 인력이 작용한다. 이에 따라, 영구자석 103c2에는 Y방향 양측으로의 추력 Fc2가 작용한다.
이 경우, 추력 Fa2, Fb2 및 Fc2은 동일한 방향으로 작용하는 힘이기 때문에, 추력 Fb2 및 Fb1과 달리, 추력 Fa2, Fb2 및 Fc2은 고정자(201)와 가동자(101)의 중심이 일치하는 방향의 추력을 증가시키는 작용을 한다.
이상의 설명으로부터, 가동자(101)가 Y방향 양측으로 소정량만큼 이동한 위치에서의 Y방향의 추력과 가동자(101)가 Y방향 음측으로 소정량만큼 이동한 위치에서의 Y방향의 추력 사이에는 불일치가 발생한다는 것을 알 수 있다.
다음에, 영구자석 103a, 103b, 103c 및 103d가 별개로 설치된 자석용 요크(107)에 부착되어 있는 본 실시형태에 따른 자기회로에 대해서 도15를 참조하여 설명한다. 본 실시형태에서는, 도15에 나타낸 것과 같이, 영구자석 103a, 103b, 103c 및 103d가, 가동자(101)의 상면에 별개로 설치된 자석용 요크(107)에 부착되어 있다. 영구자석 103b 및 103c도 다른 자석용 요크(107)에 부착되어 있어도 된다. 각각의 자석용 요크(107)는, 투자율이 큰 재료, 예를 들면, 철로 구성되어 있다.
전술한 구성에 따르면, X방향을 따라 배치된 영구자석 103a와 103b 사이와 영구자석 103c와 103d 사이에, 자석용 요크(107)에 갭을 설치함으로써 형성된 자기저항이 큰 갭(108)이 형성된다.
영구자석 103c와 103d 사이의 갭(108)은 상당히 큰 자기저항을 가지므로, 자로 231a 및 도14에서 나타낸 자로 231c를 통과하는 자속이 감소한다.
이 경우, 도13에서와 마찬가지로 영구자석 103c1에 힘 Fa3가 작용하고, 영구자석 103c2에 힘 Fc3이 작용한다. 그러나, 자로 231a를 통과하는 자속이 감소하기 때문에, 영구자석 103d2에 작용하는 힘 Fb3이 힘 Fb1에 비해 감소한다.
마찬가지로, 자로 231c를 통과하는 자속이 감소하면, 도14에 나타낸 힘 Fb2이 감소한다. 이에 따라, Y방향의 추력의 불일치가 줄어든다.
또한, 가동 자석형 리니어 모터를 갖는 반송장치는, 도16에 나타낸 것과 같이 반송 방향에 대하여 영구자석을 소정의 각도로 기울임으로써, 코깅(cogging)을 억제할 수 있다.
그러나, 영구자석이 소정의 각도로 기울어진 경우에는, 영구자석 103d와 103c 사이의 거리가 가까워진다. 그 결과, 영구자석 103d와 103c 사이에 형성되는 자로에 의한 추력의 불일치가 보다 크게 발생한다. 이 경우에 있어서도, 본 실시형태의 이점 또는 효과에 의해, 추력의 불일치를 억제할 수 있다.
기타 실시형태
본 발명의 실시형태는, 본 발명의 전술한 실시형태(들)의 1개 이상의 기능을 수행하기 위해 기억매체('비일시적인 컴퓨터 판독가능한 기억매체'로서 더 상세히 언급해도 된다)에 기록된 컴퓨터 실행가능한 명령(예를 들어, 1개 이상의 프로그램)을 판독하여 실행하거나 및/또는 전술한 실시예(들)의 1개 이상의 기능을 수행하는 1개 이상의 회로(예를 들어, 주문형 반도체 회로(ASIC)를 포함하는 시스템 또는 장치의 컴퓨터나, 예를 들면, 전술한 실시형태(들)의 1개 이상의 기능을 수행하기 위해 기억매체로부터 컴퓨터 실행가능한 명령을 판독하여 실행함으로써, 시스템 또는 장치의 컴퓨터에 의해 수행되는 방법에 의해 구현될 수도 있다. 컴퓨터는, 1개 이상의 중앙처리장치(CPU), 마이크로 처리장치(MPU) 또는 기타 회로를 구비하고, 별개의 컴퓨터들의 네트워크 또는 별개의 컴퓨터 프로세서들을 구비해도 된다. 컴퓨터 실행가능한 명령은, 예를 들어, 기억매체의 네트워크로부터 컴퓨터로 주어져도 된다. 기록매체는, 예를 들면, 1개 이상의 하드디스크, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 분산 컴퓨팅 시스템의 스토리지, 광 디스크(콤팩트 디스크(CD), 디지털 다기능 디스크(DVD), 또는 블루레이 디스크(BD)TM 등), 플래시 메모리소자, 메모리 카드 등을 구비해도 된다.
본 발명은, 상기한 실시형태의 1개 이상의 기능을 실현하는 프로그램을, 네트워크 또는 기억매체를 개입하여 시스템 혹은 장치에 공급하고, 그 시스템 혹은 장치의 컴퓨터에 있어서 1개 이상의 프로세서가 프로그램을 읽어 실행하는 처리에서도 실행가능하다. 또한, 1개 이상의 기능을 실현하는 회로(예를 들어, ASIC)에 의해서도 실행가능하다.
예시적인 실시형태들을 참조하여 본 발명을 설명하였지만, 본 발명이 이러한 실시형태에 한정되지 않는다는 것은 자명하다. 이하의 청구범위의 보호범위는 가장 넓게 해석되어 모든 변형, 동등물 구조 및 기능을 포괄하여야 한다.

Claims (9)

  1. 제1 방향을 따라 배치된 복수의 코일을 포함하는 고정자와,
    복수의 코일을 따라 이동하도록 구성되고, 제1 방향을 따라 복수의 코일과 대향하도록 배치된 복수의 제1자석을 포함하는 제1 자석군과, 제1 방향과 교차하는 제2 방향을 따라 복수의 코일과 대향하도록 배치된 복수의 제2자석을 포함하는 제2 자석군을 갖는 가동자를 구비하고,
    복수의 코일 중 적어도 한개는, 코어, 코어에 감긴 권선부와, 요크를 갖고,
    요크는, 권선부의 제1 방향을 따른 부분의 외주에 인접하고, 제1 방향으로 뻗는 반송장치.
  2. 제 1항에 있어서,
    요크는 제2방향에 있어서 복수의 코일 중에서 적어도 한개를 사이에 끼우도록 구성된 반송장치.
  3. 제 1항에 있어서,
    요크는 코어에 접속되고,
    요크와 코어의 접속 개소는, 코어의 가동자와 대향하는 면과 반대측에 있는 코어의 면, 또는 코어의 제2방향을 향하는 측면인 반송장치.
  4. 제 1항에 있어서,
    요크는, 자성체 혹은 비투자율이 1000 이상인 재료로 이루어진 반송장치.
  5. 제 1항에 있어서,
    가동자는, 제1 자석군이 배치되어 있는 제1 요크와, 제2 자석군이 배치되어 있는 제2 요크를 갖고,
    제1 요크와 제2 요크는 떨어져 배치되어 있는 반송장치.
  6. 제 5항에 있어서,
    제1 요크 및 제2 요크는, 자성체 혹은 비투자율이 1000 이상인 재료로 이루어진 반송장치.
  7. 제1 방향을 따라 배치된 복수의 코일을 포함하는 고정자와,
    복수의 코일을 따라 이동하도록 구성되고, 제1 방향을 따라 복수의 코일과 대향하도록 배치된 복수의 제1자석을 포함하는 제1 자석군과, 제1 방향과 교차하는 제2 방향을 따라 복수의 코일과 대향하도록 배치된 복수의 제2자석을 포함하는 제2 자석군을 갖는 가동자와,
    제1 자석군이 배치되어 있는 제1 요크와,
    제2 자석군이 배치되어 있는 제2 요크를 구비하고,
    제1 요크와 제2 요크는 소정 거리만큼 떨어져 배치되어 있는 반송장치.
  8. 청구항 1에 기재된 반송장치에 의해 반송된 워크를 가공하는 단계와, 워크의 가공으로부터 물품을 제조하는 단계를 포함하는 물품의 제조방법.
  9. 청구항 7에 기재된 반송장치에 의해 반송된 워크를 가공하는 단계와, 워크의 가공으로부터 물품을 제조하는 단계를 포함하는 물품의 제조방법.
KR1020210008569A 2020-02-07 2021-01-21 반송장치 및 물품의 제조방법 KR20210101133A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020019513A JP7451205B2 (ja) 2020-02-07 2020-02-07 搬送装置および物品の製造方法
JPJP-P-2020-019513 2020-02-07

Publications (1)

Publication Number Publication Date
KR20210101133A true KR20210101133A (ko) 2021-08-18

Family

ID=77176935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210008569A KR20210101133A (ko) 2020-02-07 2021-01-21 반송장치 및 물품의 제조방법

Country Status (4)

Country Link
US (1) US11670998B2 (ko)
JP (1) JP7451205B2 (ko)
KR (1) KR20210101133A (ko)
CN (1) CN113315336A (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7479835B2 (ja) * 2019-12-24 2024-05-09 キヤノン株式会社 搬送装置及び物品の製造方法
JP7462855B1 (ja) 2022-11-11 2024-04-05 三菱電機株式会社 搬送システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318699A (ja) 1994-05-27 1995-12-08 Canon Inc ステージ装置及びこれを有する露光装置とデバイス製造方法
JP3863429B2 (ja) * 2002-01-04 2006-12-27 学校法人東京電機大学 リニア振動アクチュエータ
JP4314555B2 (ja) 2002-12-03 2009-08-19 株式会社ニコン リニアモータ装置、ステージ装置、及び露光装置
JP4725910B2 (ja) * 2004-09-07 2011-07-13 日本パルスモーター株式会社 リニアアクチュエータ
JP5240563B2 (ja) * 2008-09-19 2013-07-17 株式会社安川電機 Xy軸コアレスリニアモータ及びそれを用いたステージ装置
JP2010148233A (ja) * 2008-12-18 2010-07-01 Jtekt Corp リニアモータ駆動送り装置
KR101531656B1 (ko) * 2013-10-16 2015-06-25 한국전기연구원 자기 부상 이송 장치
KR102192244B1 (ko) * 2013-12-30 2020-12-17 삼성디스플레이 주식회사 기판 이송장치
JP6444238B2 (ja) 2015-03-27 2018-12-26 キヤノン株式会社 駆動ユニット、レンズ鏡筒、及び光学機器
KR102652589B1 (ko) * 2016-06-23 2024-04-01 엘지전자 주식회사 횡자속형 왕복동 모터 및 이를 구비한 왕복동식 압축기

Also Published As

Publication number Publication date
JP7451205B2 (ja) 2024-03-18
JP2021126002A (ja) 2021-08-30
US11670998B2 (en) 2023-06-06
CN113315336A (zh) 2021-08-27
US20210249944A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
CN110829781B (zh) 运输系统、动子、控制设备及控制方法
KR20210101133A (ko) 반송장치 및 물품의 제조방법
US20210249943A1 (en) Transport system
US20230421037A1 (en) Transport system, mover, control apparatus, and control method
KR20210082088A (ko) 반송 장치 및 물품 제조 방법
US20230382662A1 (en) Transport system, film forming apparatus, and method of manufacturing article
US20220376596A1 (en) Motor and article
US20220014084A1 (en) Transport system, mover, control device, and control method
KR20210071844A (ko) 반송 시스템, 가동 요소, 제어 장치, 제어 방법 및 물품의 제조 방법
KR20210100013A (ko) 반송 시스템, 가공 시스템 및 물품의 제조방법
US20220224255A1 (en) Transport system, processing system, and article manufacturing method
KR20200070108A (ko) 반송 장치 및 물품의 제조 방법
US20220388786A1 (en) Transport system and control method of transport system
US20230188062A1 (en) Transport apparatus
US20230035514A1 (en) Transport system, processing system, method for manufacturing article, and motor
JP2021126040A (ja) 搬送装置、生産システム、及び物品の製造方法
JP2020167929A (ja) 搬送システム、可動子、制御装置及び制御方法
JP2022108256A (ja) 搬送システム、加工システム及び物品の製造方法

Legal Events

Date Code Title Description
A201 Request for examination