KR20210096102A - 구상 포스테라이트입자, 그의 제조방법, 및 구상 포스테라이트입자를 포함하는 수지 조성물 - Google Patents

구상 포스테라이트입자, 그의 제조방법, 및 구상 포스테라이트입자를 포함하는 수지 조성물 Download PDF

Info

Publication number
KR20210096102A
KR20210096102A KR1020217016077A KR20217016077A KR20210096102A KR 20210096102 A KR20210096102 A KR 20210096102A KR 1020217016077 A KR1020217016077 A KR 1020217016077A KR 20217016077 A KR20217016077 A KR 20217016077A KR 20210096102 A KR20210096102 A KR 20210096102A
Authority
KR
South Korea
Prior art keywords
group
forsterite
magnesium
particles
forsterite particles
Prior art date
Application number
KR1020217016077A
Other languages
English (en)
Inventor
마사히로 히다
슈헤이 야마다
Original Assignee
닛산 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛산 가가쿠 가부시키가이샤 filed Critical 닛산 가가쿠 가부시키가이샤
Publication of KR20210096102A publication Critical patent/KR20210096102A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/22Magnesium silicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

[과제] 낮은 유전정접과 입자형상이 구형인 포스테라이트를 제조하고, 고주파특성이 향상된 기판을 제공하는 것이다.
[해결수단] 0.1μm 내지 10μm의 평균입자경과, 0.0003 내지 0.0025의 유전정접을 갖는 포스테라이트입자이다. 구형도=(레이저회절식 입도분포측정장치에서의 평균입자경: μm)/(질소가스흡착법을 이용한 비표면적 환산에 의한 평균1차 입자경: μm)가 1.0 내지 3.3이다. (A)공정: 마그네슘원이 되는 마그네슘 화합물과 규소원이 되는 규소 화합물을 마그네슘과 규소가 MgO/SiO2몰비, 1.90 내지 2.10이 되도록 혼합하여 포스테라이트입자를 조제하는 공정, (B)공정: (A)공정에서 조제된 포스테라이트입자를, 탄화수소의 연소화염 내에 투입하고 포스테라이트입자를 회수하는 공정, (C)공정: (B)공정에서 얻어진 포스테라이트입자를 700℃ 내지 1100℃에서 소성하는 공정을 포함하는, 포스테라이트입자의 제조방법이다. 수지와 포스테라이트입자와의 비율이, 질량비로 1:0.001 내지 1000이다.

Description

구상 포스테라이트입자, 그의 제조방법, 및 구상 포스테라이트입자를 포함하는 수지 조성물
구상 포스테라이트입자, 그의 제조방법, 구상 포스테라이트입자를 포함하는 수지 조성물에 관한 것이다.
마이크로파를 이용한 통신기술에 의해 고주파수화에 의한 대용량, 고속 데이터 통신이 요구되고 있다. 휴대전화 등에서는 통신규격 4G(3GHz 내지 4GHz)로부터, 5G(28GHz)로 고주파수화가 진행되고 있다. 또한 자동운전장치를 적재한 자동차에서는, 주위의 장애물을 인식하는 레이더의 고주파로서 예를 들어 24GHz 내지 76GHz 정도의 밀리파 레이더를 탑재하는 자동차가 있으며, 최근 증가하고 있다.
부품이 실장된 후의 프린트배선 기판(PCB: printed circuit board)은 배선간의 절연에 수지가 이용되고 있다. 수지의 절연성 향상을 위해 수지와의 열팽창계수가 합치되어 있고, 게다가 고절연인 물질을 필러로서 함유하는 것이 요구되고 있다. 그의 하나로서 포스테라이트를 들 수 있다.
고주파수화에 의해 신호전달속도는 향상되지만, 전송로스도 증가한다. 유전체 손실은 주파수(f)와, 유전정접(tanδ)과, 비유전율(εr)에 비례하여 증가한다.
유전율은 분극의 크기를 나타내는 값이며, 비유전율은 매체의 유전율과 진공 중의 유전율과의 비율을 나타내고, 모두 콘덴서성분이 되는 특성의 크기를 나타내는 값이다.
유전체는 전자파에 노출되면 분극이 발생하여 전파의 교번(交番)에 의해 분극반전을 유기하며, 그의 반전시에 유전체 손실이 발생한다. 유전정접이란 유전체에 교류전장이 가해졌을 때에 유전체 중에서 전기에너지의 일부가 열이 되어 손실되는 것이며, 교류전장의 주파수가 높을수록 영향을 받기 쉽고, 유전정접에 의한 손실을 유전체 손실이라고 부른다.
따라서 고주파특성의 개선에는 낮은 유전정접을 갖는 낮은 비유전율재료가 요구된다. 절연재료를 필러로서 함유한 수지(복합절연재료)를 프린트배선 기판에 이용함에 있어서, 낮은 비유전율재료에 의한 낮은 유전정접을 갖는 기판재료가 요구되고 있다.
그러한 필러로서 사용되는 물질로는, 예를 들어 실리카가 대표적으로 알려져 있으며, 낮은 비유전율(4.5 정도)을 가지나, 유전정접은 0.003 내지 0.005 정도로 고주파특성의 개선으로 이어질 만한 것은 아니다. 특히, 유전체 손실의 저감에는 비유전율보다도 유전정접의 기여가 크므로, 실리카를 대신하는 재료로서 포스테라이트와 같은 저유전정접의 물질이 요구된다.
포스테라이트 미립자의 제조방법으로는, 수용성 마그네슘염 및 콜로이달실리카를 Mg/Si 몰비가 2로 함유되는 용액을 건조하고, 그 후에 800℃ 내지 1000℃에서 소성하여 1차 입자경이 1nm 내지 200nm인 포스테라이트입자를 얻는 방법이 개시되어 있다(특허문헌 1 참조).
또한, 포스테라이트입자 등의 절연재료를 수지와 혼합할 때에, 입자형상이 괴상(塊狀) 또는 각이 진 형상(角張った形狀)인 경우에는, 복합절연재료의 인성이 저하되는 것이 나타나고, 구상의 절연성 입자를 함유시키는 것이 기재되어 있다(특허문헌 2 참조).
일본특허공개 2016-222517호 공보 일본특허공개 2003-002640호 공보
본 발명은, 이러한 사정을 감안하여 이루어진 것으로, 낮은 유전정접을 갖는 포스테라이트입자를 제공하는 것을 과제로 한다. 또한, 기판의 절연체재료에 의한 신호열화를 억제하기 위해, 저유전정접인 기판재료를 제공하는 것을 과제로 한다. 또한, 포스테라이트입자는 낮은 유전정접을 갖고 있는 점에서, 구상화하여 수지와 블렌드하기 쉬운 구상 포스테라이트입자를 수지에 배합하여 기판재료로 함으로써, 유전특성이 향상된 전송로스(유전체 손실)가 적은 기판을 제공하는 것을 과제로 한다.
본 발명은 낮은 유전정접과 입자형상이 구상인 포스테라이트입자를 제조하고, 고주파특성이 향상된 기판을 제공하는 것을 과제로 한다.
즉, 본 발명은 제1 관점으로서, 0.1μm 내지 10μm의 평균입자경과, 0.0003 내지 0.0025의 유전정접을 갖는 포스테라이트입자,
제2 관점으로서, 하기 식(3)에 따라 산출되는 구형도가, 1.0 내지 3.3인 제1 관점에 기재된 포스테라이트입자,
구형도=Ls/Ns 식(3)
[식(3) 중, Ls는, 레이저회절식 입도분포측정장치로 측정된 평균입자경(μm)을 나타내고, Ns는, 질소가스흡착법에 따른 측정항의 비표면적 환산에 의해 산출된 평균1차 입자경(μm)을 나타낸다.]
제3 관점으로서, 포스테라이트입자에 대해 하기 식(4)에 따라 산출되는 수분흡착량이, 0.15% 이하인 제1 관점 또는 제2 관점에 기재된 포스테라이트입자,
수분흡착량(%)=[(m1-m2)/m2]×100 식(4)
[식(4) 중, m1은, 온도 150℃에서 24시간 건조한 후에 온도 25℃, 습도 50%에서 48시간 방치한 후의 포스테라이트입자의 질량(g)을 나타내고, m2는, 온도 150℃에서 24시간 건조한 후의 포스테라이트입자의 질량(g)을 나타낸다.]
제4 관점으로서, MgO/SiO2 몰비가 1.90 내지 2.10인 제1 관점 내지 제3 관점 중 어느 하나에 기재된 포스테라이트입자,
제5 관점으로서, 하기 식(1) 및 식(2)로 표시되는 가수분해성 실란으로 이루어지는 군으로부터 선택된 적어도 1종의 가수분해성 실란에 의해 입자의 표면이 피복된 제1 관점 내지 제4 관점 중 어느 하나에 기재된 포스테라이트입자
[화학식 1]
Figure pct00001
[식(1) 중, R1은 아크릴옥시기, 메타크릴옥시기, 아릴기, 알킬기, 글리시독시기, 또는 그들 관능기를 포함하는 탄소원자수 1 내지 10의 알킬렌기를 포함하고, Si원자에 Si-C결합으로 결합되어 있는 기이며, a는 1 내지 3의 정수를 나타낸다. R2는 알콕시기, 아실옥시기, 또는 할로겐원자로 이루어지는 가수분해기이며 적어도 1개의 R2의 가수분해기는 금속산화물입자 표면에서 M-O-Si의 결합을 형성하고, M은 Si원자 또는 Mg원자를 나타낸다.
식(2) 중, R3은 알킬기이고 또한 Si-C결합에 의해 규소원자와 결합되어 있는 것이며, R4는 알콕시기, 아실옥시기, 또는 할로겐원자로 이루어지는 가수분해기이며, 적어도 1개의 R4의 가수분해기는 금속산화물입자 표면에서 M-O-Si의 결합을 형성하고, M은 Si원자 또는 Mg원자를 나타낸다. Y는 알킬렌기, 아릴렌기, NH기, 또는 산소원자를 나타내고, d는 0 내지 3의 정수를 나타내고, e는 0 또는 1의 정수이다.],
제6 관점으로서, 하기 (A)공정 내지 하기 (C)공정:
(A)공정: 마그네슘원이 되는 마그네슘 화합물과, 규소원이 되는 규소 화합물을 마그네슘과 규소가 MgO/SiO2 몰비, 1.90 내지 2.10이 되도록 혼합하여 포스테라이트입자를 조제하는 공정,
(B)공정: (A)공정에서 조제된 포스테라이트입자를, 탄화수소의 연소화염 내에 투입하고 포스테라이트입자를 회수하는 공정,
(C)공정: (B)공정에서 얻어진 포스테라이트입자를 700℃ 내지 1100℃에서 소성하는 공정을 포함하는,
제1 관점 내지 제4 관점 중 어느 하나에 기재된 포스테라이트입자의 제조방법,
제7 관점으로서, (A)공정의 마그네슘원이 되는 마그네슘 화합물이 무기마그네슘 화합물 또는 마그네슘 유기산염인 제6 관점에 기재된 제조방법,
제8 관점으로서, 무기마그네슘 화합물이 산화마그네슘, 수산화마그네슘, 염기성 탄산마그네슘, 탄산수소마그네슘, 탄산마그네슘, 질산마그네슘, 또는 이들의 혼합물인 제7 관점에 기재된 제조방법,
제9 관점으로서, 마그네슘 유기산염이 탄소원자수 1 내지 4의 지방족 모노카르본산마그네슘, 탄소원자수 1 내지 4의 할로겐화지방족 모노카르본산마그네슘, 탄소원자수 1 내지 4의 지방족 다가카르본산마그네슘, 탄소원자수 1 내지 4의 지방족 하이드록시카르본산마그네슘, 탄소원자수 1 내지 4의 알콕시카르본산마그네슘, 탄소원자수 1 내지 4의 옥소카르본산마그네슘, 또는 이들의 혼합물인 제7 관점에 기재된 제조방법,
제10 관점으로서, (A)공정의 규소원이 되는 규소 화합물이 산화규소, 알콕시실란, 또는 이들의 혼합물인 제6 관점에 기재된 제조방법,
제11 관점으로서, (B)공정에서 탄화수소의 연소화염 내의 온도가 이론온도로 1900℃ 내지 3000℃인 제6 관점 내지 제10 관점 중 어느 하나에 기재된 제조방법,
제12 관점으로서, (C)공정에서 얻어진 포스테라이트입자를 해쇄(解碎)하는 공정(D)을 추가로 포함하는, 제6 관점 내지 제11 관점 중 어느 하나에 기재된 제조방법,
제13 관점으로서, (C)공정에서 얻어진 포스테라이트입자를 제5 관점에 기재된 가수분해성 실란으로 피복하는 공정(E)을 추가로 포함하는, 제6 관점 내지 제12 관점 중 어느 하나에 기재된 제조방법,
제14 관점으로서, 수지와 제1 관점 내지 제5 관점 중 어느 하나에 기재된 포스테라이트입자를 포함하는 수지 조성물,
제15 관점으로서, 상기 수지와 포스테라이트입자와의 비율이, 질량비로 1:0.001 내지 1000인 제14 관점에 기재된 수지 조성물, 및
제16 관점으로서, 유전정접이 0.0003 내지 0.01인 제14 관점 또는 제15 관점에 기재된 수지 조성물이다.
본 발명의 포스테라이트입자는 결정성이 높고, 저유전정접이다. 따라서, 수지와 블렌드하기 쉽고, 기판재료로서 이용한 경우에 양호한 고주파특성을 갖는 기판이 얻어진다는 효과를 나타낸다.
본 발명의 포스테라이트입자는, 0.1μm 내지 10μm의 평균1차 입자경과, 0.0003 내지 0.0025의 유전정접을 갖는다. 그리고 특정의 구형도를 갖는 구상 입자이며, 결정성이 높고 X선회절측정(CuKα)으로 2θ=52° 내지 53°의 회절피크에서의 적분강도가, 800counts·deg 이상, 또는 800counts·deg 내지 2000counts·deg, 또는 800counts·deg 내지 1000counts·deg가 된다.
본 발명에서는 (A)공정의 직후의 유전정접은 0.003 내지 0.02로 높은 값인데, (B)공정의 용사(溶射)에 의한 구상화와, (C)공정의 재소성(어닐링)에 의한 결정성의 회복에 의해 목적으로 하는 낮은 유전정접 0.0003 내지 0.0025에 달한다.
본 발명에서는 (A)공정에서의 포스테라이트입자에 있어서 MgO/SiO2의 몰비는, 1.90 내지 2.10이고, (B)공정, (C)공정, 더 나아가 (D)공정, (E)공정을 거쳐도 그 몰비는 변화하지 않고 1.90 내지 2.10이다.
본 발명의 포스테라이트입자는, 마그네슘원이 되는 마그네슘 화합물과, 규소원이 되는 규소 화합물을 MgO/SiO2 몰비, 1.90 내지 2.10(바람직하게는 2.0)으로 혼합한 마그네슘함유 규소 화합물로부터 소성에 의해 포스테라이트입자를 제조하고, 이 포스테라이트입자를 탄화수소의 연소화염 내에 투입하는 용사법에 의해 구상 포스테라이트입자로서 제조할 수 있다. 용사 전의 원료가 되는 포스테라이트입자는, 분체로서 연소화염에 투입하기 전에, 분쇄에 의한 파쇄상의 입자인데, 용사에 의해 구상 포스테라이트입자로 변화한다.
본 발명은 0.1μm 내지 10μm의 평균입자경과, 0.0003 내지 0.0025의 유전정접을 갖는 포스테라이트입자이다.
평균입자경의 값(μm)은, 레이저회절식 입도분포측정장치로 측정된 평균입자경(μm)을 적용할 수 있다.
유전정접의 값은 전송로법이나 공진기법 등의 방법에 의해 측정할 수 있다. 후술하는 바와 같이, 분말이나 필름의 형태에서의 측정에 있어서는, 공진기법 중에서도 섭동방식 공동공진기법에 의해 1GHz와, 10GHz의 값을 측정함으로써 평가를 할 수 있다.
본 발명의 포스테라이트입자는, 하기 식(3)에 따라 산출되는 구형도가 1.0 내지 3.3이다.
구형도=Ls/Ns 식(3)
[식(3) 중, Ls는, 레이저회절식 입도분포측정장치로 측정된 평균입자경(μm)을 나타내고, Ns는, 질소가스흡착법에 따른 측정항의 비표면적 환산에 의해 산출된 평균1차 입자경(μm)을 나타낸다.]
구형도가 1.0에 가까울수록 진구이며, 본 발명에서 얻어지는 포스테라이트입자는 구형도가 1.0 내지 3.3으로 할 수 있다.
본 발명의 포스테라이트입자는 CuKα선을 이용한 X선회절법에 의해 측정되는 2θ=52° 내지 53°의 회절피크의 적분강도가 800counts·deg 이상, 또는 800 내지 2000counts·deg, 또는 800 내지 1000counts·deg이다. 2θ=52° 내지 53°는 포스테라이트에 특유한 (222)면, (042)면, (321)면에서 유래하는 회절X선의 특성피크가 존재하고, 본 발명의 포스테라이트입자는 결정성이 높은 점에서 그들의 적분강도는, 그들을 합계하여 800counts·deg 이상, 또는 800 내지 2000counts·deg, 또는 800 내지 1000counts·deg의 범위에 있다. 한편, 2θ=52° 내지 53°의 X선회절의 측정에서는, 측정에 이용하는 X선회절장치 간의 기계적인 오차범위를 고려하여 플러스 마이너스 0.5°의 범위를 포함시킬 수 있다.
본 발명에서 얻어지는 포스테라이트입자는 용사법으로 얻어진 입자이므로, 원료를 일단 용융하여 구상화한 것이기 때문에, 입자 표면에 존재하는 하이드록시기량이 적으므로 수분의 흡착량도 낮다. 이들 성질로부터 수지에 혼합하여 기판용 재료에 이용한 경우에, 장기간에 걸쳐 높은 절연성을 유지하는 것이 가능하다. 포스테라이트입자 표면의 하이드록시기에 기인하는 수분흡착량의 측정은, 예를 들어 100g 정도의 포스테라이트입자를 이용하고, 하기 식(4)에 따라 산출된다.
수분흡착량(%)=[(m1-m2)/m2]×100 식(4)
[식(4) 중, m1은, 온도 150℃에서 24시간 건조한 후에 온도 25℃, 습도 50%에서 48시간 방치한 후의 포스테라이트입자의 질량(g)을 나타내고, m2는, 온도 150℃에서 24시간 건조한 후의 포스테라이트입자의 질량(g)을 나타낸다.]
상기 수분흡착량은, 0.15% 이하, 또는 0.001% 내지 0.15%, 또는 0.01% 내지 0.15%로 할 수 있다.
본 발명의 포스테라이트입자는 MgO/SiO2 몰비 1.90 내지 2.10으로 할 수 있다. 포스테라이트입자는 MgO/SiO2 몰비 2.0이고, MgO/SiO2 몰비는 2.0으로 이용하는 것이 바람직하나, 포스테라이트입자 중에 실리카나 마그네시아나 스테아타이트 등이 미량 함유되어 있어도, 동등한 효과를 나타내는 한 허용할 수 있다.
본 발명에서는 포스테라이트입자를 추가로 소수화하여 기판재료로 했을 때에 높은 절연성을 발휘하므로, 가수분해성 실란 화합물을 포스테라이트입자 표면에 반응시킬 수 있다.
또한, 본 발명은 하기 식(1) 및 식(2)로 표시되는 가수분해성 실란 화합물로 이루어지는 군으로부터 선택된 적어도 1종의 가수분해성 실란에 의해 입자의 표면이 피복된 포스테라이트입자이다.
이들 가수분해성 실란 화합물은 하기 식(1) 및 식(2)로 표시되는 가수분해성 실란 화합물로 이루어지는 군으로부터 선택된 적어도 1종의 가수분해성 실란 화합물을 이용할 수 있다.
[화학식 2]
Figure pct00002
식(1) 중, R1은 아크릴옥시기, 메타크릴옥시기, 아릴기, 알킬기, 글리시독시기, 또는 그들 관능기를 포함하는 탄소원자수 1 내지 10의 알킬렌기를 포함하고, Si원자에 Si-C결합으로 결합되어 있는 기이며, a는 1 내지 3의 정수를 나타낸다. R2는 알콕시기, 아실옥시기, 또는 할로겐원자로 이루어지는 가수분해기이며 적어도 1개의 R2의 가수분해기는 금속산화물입자 표면에서 M-O-Si의 결합을 형성하고, M은 Si원자 또는 Mg원자를 나타낸다.
식(2) 중, R3은 알킬기이고 또한 Si-C결합에 의해 규소원자와 결합되어 있는 것이며, R4는 알콕시기, 아실옥시기, 또는 할로겐원자로 이루어지는 가수분해기이며, 적어도 1개의 R4의 가수분해기는 금속산화물입자 표면에서 M-O-Si의 결합을 형성하고, M은 Si원자 또는 Mg원자를 나타낸다. Y는 알킬렌기, 아릴렌기, NH기, 또는 산소원자를 나타내고, d는 0 내지 3의 정수를 나타내고, e는 0 또는 1의 정수이다.
식(1) 및 식(2) 중에 복수의 가수분해기가 존재하는 경우에, 그들의 가수분해에 의해 발생한 실란올기는 금속산화물입자 표면(포스테라이트입자 표면)에, 임의의 비율로 결합하여, M-O-Si의 결합을 형성할 수 있다. M은 Si원자나 Mg원자를 나타낸다. 예를 들어, 3개의 가수분해기가 존재하고, 3개의 실란올기가 형성된 경우에, 3개의 M-O-Si의 결합을 형성하는 것도, 2개의 M-O-Si의 결합을 형성하는 것도, 1개의 M-O-Si의 결합을 형성하는 것도 가능하다. 나머지의 실란올기는 자유롭게 존재한다. 또한, 식(1), 및 식(2)로 표시되는 가수분해성 실란 화합물 중의 복수의 가수분해기는 모두 가수분해하는 것도, 일부는 가수분해되지 않은 상태의 가수분해기로서 잔존하는 것도 가능하다.
상기 알킬기는 직쇄 또는 분지를 갖는 탄소원자수 1 내지 10의 알킬기이며, 예를 들어 메틸기, 에틸기, n-프로필기, i-프로필기, n-부틸기, i-부틸기, s-부틸기, t-부틸기, n-펜틸기, 1-메틸-n-부틸기, 2-메틸-n-부틸기, 3-메틸-n-부틸기, 1,1-디메틸-n-프로필기, 1,2-디메틸-n-프로필기, 2,2-디메틸-n-프로필기, 1-에틸-n-프로필기, n-헥실, 1-메틸-n-펜틸기, 2-메틸-n-펜틸기, 3-메틸-n-펜틸기, 4-메틸-n-펜틸기, 1,1-디메틸-n-부틸기, 1,2-디메틸-n-부틸기, 1,3-디메틸-n-부틸기, 2,2-디메틸-n-부틸기, 2,3-디메틸-n-부틸기, 3,3-디메틸-n-부틸기, 1-에틸-n-부틸기, 2-에틸-n-부틸기, 1,1,2-트리메틸-n-프로필기, 1,2,2-트리메틸-n-프로필기, 1-에틸-1-메틸-n-프로필기 및 1-에틸-2-메틸-n-프로필기 등을 들 수 있다.
또한 환상 알킬기를 이용할 수도 있고, 예를 들어 탄소원자수 1 내지 10의 환상 알킬기로는, 시클로프로필기, 시클로부틸기, 1-메틸-시클로프로필기, 2-메틸-시클로프로필기, 시클로펜틸기, 1-메틸-시클로부틸기, 2-메틸-시클로부틸기, 3-메틸-시클로부틸기, 1,2-디메틸-시클로프로필기, 2,3-디메틸-시클로프로필기, 1-에틸-시클로프로필기, 2-에틸-시클로프로필기, 시클로헥실기, 1-메틸-시클로펜틸기, 2-메틸-시클로펜틸기, 3-메틸-시클로펜틸기, 1-에틸-시클로부틸기, 2-에틸-시클로부틸기, 3-에틸-시클로부틸기, 1,2-디메틸-시클로부틸기, 1,3-디메틸-시클로부틸기, 2,2-디메틸-시클로부틸기, 2,3-디메틸-시클로부틸기, 2,4-디메틸-시클로부틸기, 3,3-디메틸-시클로부틸기, 1-n-프로필-시클로프로필기, 2-n-프로필-시클로프로필기, 1-i-프로필-시클로프로필기, 2-i-프로필-시클로프로필기, 1,2,2-트리메틸-시클로프로필기, 1,2,3-트리메틸-시클로프로필기, 2,2,3-트리메틸-시클로프로필기, 1-에틸-2-메틸-시클로프로필기, 2-에틸-1-메틸-시클로프로필기, 2-에틸-2-메틸-시클로프로필기 및 2-에틸-3-메틸-시클로프로필기 등을 들 수 있다.
알킬렌기는 상기 알킬기에서 유래하는 알킬렌기를 들 수 있다. 예를 들어 메틸기이면 메틸렌기, 에틸기이면 에틸렌기, 프로필기이면 프로필렌기를 들 수 있다.
알케닐기로는 탄소원자수 2 내지 10의 알케닐기이며, 에테닐기, 1-프로페닐기, 2-프로페닐기, 1-메틸-1-에테닐기, 1-부테닐기, 2-부테닐기, 3-부테닐기, 2-메틸-1-프로페닐기, 2-메틸-2-프로페닐기, 1-에틸에테닐기, 1-메틸-1-프로페닐기, 1-메틸-2-프로페닐기, 1-펜테닐기, 2-펜테닐기, 3-펜테닐기, 4-펜테닐기, 1-n-프로필에테닐기, 1-메틸-1-부테닐기, 1-메틸-2-부테닐기, 1-메틸-3-부테닐기, 2-에틸-2-프로페닐기, 2-메틸-1-부테닐기, 2-메틸-2-부테닐기, 2-메틸-3-부테닐기, 3-메틸-1-부테닐기, 3-메틸-2-부테닐기, 3-메틸-3-부테닐기, 1,1-디메틸-2-프로페닐기, 1-i-프로필에테닐기, 1,2-디메틸-1-프로페닐기, 1,2-디메틸-2-프로페닐기, 1-시클로펜테닐기, 2-시클로펜테닐기, 3-시클로펜테닐기, 1-헥세닐기, 2-헥세닐기, 3-헥세닐기, 4-헥세닐기, 5-헥세닐기, 1-메틸-1-펜테닐기, 1-메틸-2-펜테닐기, 1-메틸-3-펜테닐기, 1-메틸-4-펜테닐기, 1-n-부틸에테닐기, 2-메틸-1-펜테닐기, 2-메틸-2-펜테닐기, 2-메틸-3-펜테닐기, 2-메틸-4-펜테닐기, 2-n-프로필-2-프로페닐기, 3-메틸-1-펜테닐기, 3-메틸-2-펜테닐기, 3-메틸-3-펜테닐기, 3-메틸-4-펜테닐기, 3-에틸-3-부테닐기, 4-메틸-1-펜테닐기, 4-메틸-2-펜테닐기, 4-메틸-3-펜테닐기, 4-메틸-4-펜테닐기, 1,1-디메틸-2-부테닐기, 1,1-디메틸-3-부테닐기, 1,2-디메틸-1-부테닐기, 1,2-디메틸-2-부테닐기, 1,2-디메틸-3-부테닐기, 1-메틸-2-에틸-2-프로페닐기, 1-s-부틸에테닐기, 1,3-디메틸-1-부테닐기, 1,3-디메틸-2-부테닐기, 1,3-디메틸-3-부테닐기, 1-i-부틸에테닐기, 2,2-디메틸-3-부테닐기, 2,3-디메틸-1-부테닐기, 2,3-디메틸-2-부테닐기, 2,3-디메틸-3-부테닐기, 2-i-프로필-2-프로페닐기, 3,3-디메틸-1-부테닐기, 1-에틸-1-부테닐기, 1-에틸-2-부테닐기, 1-에틸-3-부테닐기, 1-n-프로필-1-프로페닐기, 1-n-프로필-2-프로페닐기, 2-에틸-1-부테닐기, 2-에틸-2-부테닐기, 2-에틸-3-부테닐기, 1,1,2-트리메틸-2-프로페닐기, 1-t-부틸에테닐기, 1-메틸-1-에틸-2-프로페닐기, 1-에틸-2-메틸-1-프로페닐기, 1-에틸-2-메틸-2-프로페닐기, 1-i-프로필-1-프로페닐기, 1-i-프로필-2-프로페닐기, 1-메틸-2-시클로펜테닐기, 1-메틸-3-시클로펜테닐기, 2-메틸-1-시클로펜테닐기, 2-메틸-2-시클로펜테닐기, 2-메틸-3-시클로펜테닐기, 2-메틸-4-시클로펜테닐기, 2-메틸-5-시클로펜테닐기, 2-메틸렌-시클로펜틸기, 3-메틸-1-시클로펜테닐기, 3-메틸-2-시클로펜테닐기, 3-메틸-3-시클로펜테닐기, 3-메틸-4-시클로펜테닐기, 3-메틸-5-시클로펜테닐기, 3-메틸렌-시클로펜틸기, 1-시클로헥세닐기, 2-시클로헥세닐기 및 3-시클로헥세닐기 등을 들 수 있다.
아릴기로는 탄소원자수 6 내지 20의 아릴기를 들 수 있고, 예를 들어 페닐기, o-메틸페닐기, m-메틸페닐기, p-메틸페닐기, o-클로르페닐기, m-클로르페닐기, p-클로르페닐기, o-플루오로페닐기, p-메르캅토페닐기, o-메톡시페닐기, p-메톡시페닐기, p-아미노페닐기, p-시아노페닐기, α-나프틸기, β-나프틸기, o-비페닐릴기, m-비페닐릴기, p-비페닐릴기, 1-안트릴기, 2-안트릴기, 9-안트릴기, 1-페난트릴기, 2-페난트릴기, 3-페난트릴기, 4-페난트릴기 및 9-페난트릴기를 들 수 있다.
에폭시기를 갖는 유기기로는, 글리시독시메틸, 글리시독시에틸, 글리시독시프로필, 글리시독시부틸, 에폭시시클로헥실 등을 들 수 있다.
아크릴로일기를 갖는 유기기로는, 아크릴로일메틸, 아크릴로일에틸, 아크릴로일프로필 등을 들 수 있다.
메타크릴로일기를 갖는 유기기로는, 메타크릴로일메틸, 메타크릴로일에틸, 메타크릴로일프로필 등을 들 수 있다.
메르캅토기를 갖는 유기기로는, 에틸메르캅토, 부틸메르캅토, 헥실메르캅토, 옥틸메르캅토 등을 들 수 있다.
시아노기를 갖는 유기기로는, 시아노에틸, 시아노프로필 등을 들 수 있다.
상기 탄소원자수 1 내지 10의 알콕시기로는, 탄소원자수 1 내지 10의 직쇄, 분지, 환상의 알킬부분을 갖는 알콕시기를 들 수 있고, 예를 들어 메톡시기, 에톡시기, n-프로폭시기, i-프로폭시기, n-부톡시기, i-부톡시기, s-부톡시기, t-부톡시기, n-펜틸옥시기, 1-메틸-n-부톡시기, 2-메틸-n-부톡시기, 3-메틸-n-부톡시기, 1,1-디메틸-n-프로폭시기, 1,2-디메틸-n-프로폭시기, 2,2-디메틸-n-프로폭시기, 1-에틸-n-프로폭시기, n-헥실옥시기, 1-메틸-n-펜틸옥시기, 2-메틸-n-펜틸옥시기, 3-메틸-n-펜틸옥시기, 4-메틸-n-펜틸옥시기, 1,1-디메틸-n-부톡시기, 1,2-디메틸-n-부톡시기, 1,3-디메틸-n-부톡시기, 2,2-디메틸-n-부톡시기, 2,3-디메틸-n-부톡시기, 3,3-디메틸-n-부톡시기, 1-에틸-n-부톡시기, 2-에틸-n-부톡시기, 1,1,2-트리메틸-n-프로폭시기, 1,2,2-트리메틸-n-프로폭시기, 1-에틸-1-메틸-n-프로폭시기 및 1-에틸-2-메틸-n-프로폭시기 등을, 또한 환상의 알콕시기로는 시클로프로폭시기, 시클로부톡시기, 1-메틸-시클로프로폭시기, 2-메틸-시클로프로폭시기, 시클로펜틸옥시기, 1-메틸-시클로부톡시기, 2-메틸-시클로부톡시기, 3-메틸-시클로부톡시기, 1,2-디메틸-시클로프로폭시기, 2,3-디메틸-시클로프로폭시기, 1-에틸-시클로프로폭시기, 2-에틸-시클로프로폭시기, 시클로헥실옥시기, 1-메틸-시클로펜틸옥시기, 2-메틸-시클로펜틸옥시기, 3-메틸-시클로펜틸옥시기, 1-에틸-시클로부톡시기, 2-에틸-시클로부톡시기, 3-에틸-시클로부톡시기, 1,2-디메틸-시클로부톡시기, 1,3-디메틸-시클로부톡시기, 2,2-디메틸-시클로부톡시기, 2,3-디메틸-시클로부톡시기, 2,4-디메틸-시클로부톡시기, 3,3-디메틸-시클로부톡시기, 1-n-프로필-시클로프로폭시기, 2-n-프로필-시클로프로폭시기, 1-i-프로필-시클로프로폭시기, 2-i-프로필-시클로프로폭시기, 1,2,2-트리메틸-시클로프로폭시기, 1,2,3-트리메틸-시클로프로폭시기, 2,2,3-트리메틸-시클로프로폭시기, 1-에틸-2-메틸-시클로프로폭시기, 2-에틸-1-메틸-시클로프로폭시기, 2-에틸-2-메틸-시클로프로폭시기 및 2-에틸-3-메틸-시클로프로폭시기 등을 들 수 있다.
상기 탄소원자수 2 내지 20의 아실옥시기로는, 예를 들어 메틸카르보닐옥시기, 에틸카르보닐옥시기, n-프로필카르보닐옥시기, i-프로필카르보닐옥시기, n-부틸카르보닐옥시기, i-부틸카르보닐옥시기, s-부틸카르보닐옥시기, t-부틸카르보닐옥시기, n-펜틸카르보닐옥시기, 1-메틸-n-부틸카르보닐옥시기, 2-메틸-n-부틸카르보닐옥시기, 3-메틸-n-부틸카르보닐옥시기, 1,1-디메틸-n-프로필카르보닐옥시기, 1,2-디메틸-n-프로필카르보닐옥시기, 2,2-디메틸-n-프로필카르보닐옥시기, 1-에틸-n-프로필카르보닐옥시기, n-헥실카르보닐옥시기, 1-메틸-n-펜틸카르보닐옥시기, 2-메틸-n-펜틸카르보닐옥시기, 3-메틸-n-펜틸카르보닐옥시기, 4-메틸-n-펜틸카르보닐옥시기, 1,1-디메틸-n-부틸카르보닐옥시기, 1,2-디메틸-n-부틸카르보닐옥시기, 1,3-디메틸-n-부틸카르보닐옥시기, 2,2-디메틸-n-부틸카르보닐옥시기, 2,3-디메틸-n-부틸카르보닐옥시기, 3,3-디메틸-n-부틸카르보닐옥시기, 1-에틸-n-부틸카르보닐옥시기, 2-에틸-n-부틸카르보닐옥시기, 1,1,2-트리메틸-n-프로필카르보닐옥시기, 1,2,2-트리메틸-n-프로필카르보닐옥시기, 1-에틸-1-메틸-n-프로필카르보닐옥시기, 1-에틸-2-메틸-n-프로필카르보닐옥시기, 페닐카르보닐옥시기, 및 토실카르보닐옥시기 등을 들 수 있다.
상기 할로겐원자로는 불소원자, 염소원자, 브롬원자, 요오드원자 등을 들 수 있다.
식(1)로 표시되는 규소함유 화합물로는 예를 들어, 테트라메톡시실란, 테트라클로르실란, 테트라아세톡시실란, 테트라에톡시실란, 테트라-n-프로폭시실란, 테트라이소프로폭시실란, 테트라-n-부톡시실란, 테트라아세톡시실란, 메틸트리메톡시실란, 메틸트리클로로실란, 메틸트리아세톡시실란, 메틸트리프로폭시실란, 메틸트리아세틱시실란(メチルトリアセチキシシラン), 메틸트리부톡시실란, 메틸트리프로폭시실란, 메틸트리아밀옥시실란, 메틸트리페녹시실란, 메틸트리벤질옥시실란, 메틸트리페네틸옥시실란, 글리시독시메틸트리메톡시실란, 글리시독시메틸트리에톡시실란, α-글리시독시에틸트리메톡시실란, α-글리시독시에틸트리에톡시실란, β-글리시독시에틸트리메톡시실란, β-글리시독시에틸트리에톡시실란, α-글리시독시프로필트리메톡시실란, α-글리시독시프로필트리에톡시실란, β-글리시독시프로필트리메톡시실란, β-글리시독시프로필트리에톡시실란, γ-글리시독시프로필트리메톡시실란, γ-글리시독시프로필트리에톡시실란, γ-글리시독시프로필트리프로폭시실란, γ-글리시독시프로필트리부톡시실란, γ-글리시독시프로필트리페녹시실란, α-글리시독시부틸트리메톡시실란, α-글리시독시부틸트리에톡시실란, β-글리시독시부틸트리에톡시실란, γ-글리시독시부틸트리메톡시실란, γ-글리시독시부틸트리에톡시실란, δ-글리시독시부틸트리메톡시실란, δ-글리시독시부틸트리에톡시실란, (3,4-에폭시시클로헥실)메틸트리메톡시실란, (3,4-에폭시시클로헥실)메틸트리에톡시실란, β-(3,4-에폭시시클로헥실)에틸트리메톡시실란, β-(3,4-에폭시시클로헥실)에틸트리에톡시실란, β-(3,4-에폭시시클로헥실)에틸트리프로폭시실란, β-(3,4-에폭시시클로헥실)에틸트리부톡시실란, β-(3,4-에폭시시클로헥실)에틸트리페녹시실란, γ-(3,4-에폭시시클로헥실)프로필트리메톡시실란, γ-(3,4-에폭시시클로헥실)프로필트리에톡시실란, δ-(3,4-에폭시시클로헥실)부틸트리메톡시실란, δ-(3,4-에폭시시클로헥실)부틸트리에톡시실란, 글리시독시메틸메틸디메톡시실란, 글리시독시메틸메틸디에톡시실란, α-글리시독시에틸메틸디메톡시실란, α-글리시독시에틸메틸디에톡시실란, β-글리시독시에틸메틸디메톡시실란, β-글리시독시에틸에틸디메톡시실란, α-글리시독시프로필메틸디메톡시실란, α-글리시독시프로필메틸디에톡시실란, β-글리시독시프로필메틸디메톡시실란, β-글리시독시프로필에틸디메톡시실란, γ-글리시독시프로필메틸디메톡시실란, γ-글리시독시프로필메틸디에톡시실란, γ-글리시독시프로필메틸디프로폭시실란, γ-글리시독시프로필메틸디부톡시실란, γ-글리시독시프로필메틸디페녹시실란, γ-글리시독시프로필에틸디메톡시실란, γ-글리시독시프로필에틸디에톡시실란, γ-글리시독시프로필비닐디메톡시실란, γ-글리시독시프로필비닐디에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, 비닐트리메톡시실란, 비닐트리클로로실란, 비닐트리아세톡시실란, 비닐트리에톡시실란, 비닐트리아세톡시실란, 메톡시페닐트리메톡시실란, 메톡시페닐트리에톡시실란, 메톡시페닐트리아세톡시실란, 메톡시페닐트리클로로실란, 메톡시벤질트리메톡시실란, 메톡시벤질트리에톡시실란, 메톡시벤질트리아세톡시실란, 메톡시벤질트리클로로실란, 메톡시페네틸트리메톡시실란, 메톡시페네틸트리에톡시실란, 메톡시페네틸트리아세톡시실란, 메톡시페네틸트리클로로실란, 에톡시페닐트리메톡시실란, 에톡시페닐트리에톡시실란, 에톡시페닐트리아세톡시실란, 에톡시페닐트리클로로실란, 에톡시벤질트리메톡시실란, 에톡시벤질트리에톡시실란, 에톡시벤질트리아세톡시실란, 에톡시벤질트리클로로실란, 이소프로폭시페닐트리메톡시실란, 이소프로폭시페닐트리에톡시실란, 이소프로폭시페닐트리아세톡시실란, 이소프로폭시페닐트리클로로실란, 이소프로폭시벤질트리메톡시실란, 이소프로폭시벤질트리에톡시실란, 이소프로폭시벤질트리아세톡시실란, 이소프로폭시벤질트리클로로실란, t-부톡시페닐트리메톡시실란, t-부톡시페닐트리에톡시실란, t-부톡시페닐트리아세톡시실란, t-부톡시페닐트리클로로실란, t-부톡시벤질트리메톡시실란, t-부톡시벤질트리에톡시실란, t-부톡시벤질트리아세톡시실란, t-부톡시디벤질트리클로로실란, 메톡시나프틸트리메톡시실란, 메톡시나프틸트리에톡시실란, 메톡시나프틸트리아세톡시실란, 메톡시나프틸트리클로로실란, 에톡시나프틸트리메톡시실란, 에톡시나프틸트리에톡시실란, 에톡시나프틸트리아세톡시실란, 에톡시나프틸트리클로로실란, γ-클로로프로필트리메톡시실란, γ-클로로프로필트리에톡시실란, γ-클로로프로필트리아세톡시실란, 3,3,3-트리플로로프로필트리메톡시실란, γ-메타크릴옥시프로필트리메톡시실란, γ-메르캅토프로필트리메톡시실란, γ-메르캅토프로필트리에톡시실란, β-시아노에틸트리에톡시실란, 클로로메틸트리메톡시실란, 클로로메틸트리에톡시실란, 디메틸디메톡시실란, 페닐메틸디메톡시실란, 디메틸디에톡시실란, 페닐메틸디에톡시실란, γ-클로로프로필메틸디메톡시실란, γ-클로로프로필메틸디에톡시실란, 디메틸디아세톡시실란, γ-메타크릴옥시프로필메틸디메톡시실란, γ-메타크릴옥시프로필메틸디에톡시실란, γ-메르캅토프로필메틸디메톡시실란, γ-메르캅토메틸디에톡시실란, 메틸비닐디메톡시실란, 메틸비닐디에톡시실란 등을 들 수 있다.
식(2)로 표시되는 규소함유 화합물로는 예를 들어, 메틸렌비스트리메톡시실란, 메틸렌비스트리클로로실란, 메틸렌비스트리아세톡시실란, 에틸렌비스트리에톡시실란, 에틸렌비스트리클로로실란, 에틸렌비스트리아세톡시실란, 프로필렌비스트리에톡시실란, 부틸렌비스트리메톡시실란, 페닐렌비스트리메톡시실란, 페닐렌비스트리에톡시실란, 페닐렌비스메틸디에톡시실란, 페닐렌비스메틸디메톡시실란, 나프틸렌비스트리메톡시실란, 비스트리메톡시디실란, 비스트리에톡시디실란, 비스에틸디에톡시디실란, 비스메틸디메톡시디실란, 헥사메틸디실란, 헥사메틸디실라잔, 헥사메틸디실록산 등을 들 수 있다.
알콕시실릴기, 아실옥시실릴기, 또는 할로겐화실릴기의 가수분해에는, 가수분해성기의 1몰당, 0.5몰 내지 100몰, 바람직하게는 1몰 내지 10몰의 물을 이용한다.
또한, 가수분해성기의 1몰당 0.001몰 내지 10몰, 바람직하게는 0.001몰 내지 1몰의 가수분해촉매를 이용할 수 있다.
가수분해와 표면 피복을 행할 때의 반응온도는, 통상 20℃ 내지 80℃이다.
가수분해는 완전히 가수분해를 행하는 것도, 부분가수분해하는 것이어도 된다. 즉, 가수분해물 중에 미가수분해 모노머가 잔존하고 있을 수도 있다.
가수분해는 물을 첨가하고, 가열에 의해 행할 수 있다. 또한, 가수분해하고 표면 피복시킬 때에 촉매를 이용할 수 있다.
가수분해촉매로는 질산이 이용된다. 질산에 더하여 금속킬레이트 화합물, 유기산, 무기산, 유기염기, 또는 무기염기를 병용할 수 있다.
실란 화합물로 피복할 때에, 건식으로 행할 수도 있으나, 포스테라이트입자를 물 또는 유기용제에 분산하여 행할 수 있다. 분산액은 수성매체를 유기용제로 용제치환하여 행할 수 있다. 용매치환은 증발법이나 한외여과법으로 행할 수 있다. 유기용제로는 메탄올, 에탄올, 이소프로판올, 부탄올, 디아세톤알코올, 메틸셀로솔브아세테이트, 에틸셀로솔브아세테이트, 프로필렌글리콜, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 메틸이소부틸카르비놀, 프로필렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노에테르에테르아세테이트(プロピレングリコ-ルモノエテルエ-テルアセテ-ト), 프로필렌글리콜모노프로필에테르아세테이트, 프로필렌글리콜모노부틸에테르아세테이트, 톨루엔, 자일렌, 메틸에틸케톤, 시클로펜탄온, 시클로헥사논, 2-하이드록시프로피온산에틸, 2-하이드록시-2-메틸프로피온산에틸, 에톡시아세트산에틸, 하이드록시아세트산에틸, 2-하이드록시-3-메틸부탄산메틸, 3-메톡시프로피온산메틸, 3-메톡시프로피온산에틸, 3-에톡시프로피온산에틸, 3-에톡시프로피온산메틸, 피루브산메틸, 피루브산에틸, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노프로필에테르, 에틸렌글리콜모노부틸에테르, 에틸렌글리콜모노메틸에테르아세테이트, 에틸렌글리콜모노에틸에테르아세테이트, 에틸렌글리콜모노프로필에테르아세테이트, 에틸렌글리콜모노부틸에테르아세테이트, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜디에틸에테르, 디에틸렌글리콜디프로필에테르, 디에틸렌글리콜디부틸에테르, 프로필렌글리콜디메틸에테르, 프로필렌글리콜디에틸에테르, 프로필렌글리콜디프로필에테르, 프로필렌글리콜디부틸에테르, 유산에틸, 유산프로필, 유산이소프로필, 유산부틸, 유산이소부틸, 포름산메틸, 포름산에틸, 포름산프로필, 포름산이소프로필, 포름산부틸, 포름산이소부틸, 포름산아밀, 포름산이소아밀, 아세트산메틸, 아세트산에틸, 아세트산아밀, 아세트산이소아밀, 아세트산헥실, 프로피온산메틸, 프로피온산에틸, 프로피온산프로필, 프로피온산이소프로필, 프로피온산부틸, 프로피온산이소부틸, 부티르산메틸, 부티르산에틸, 부티르산프로필, 부티르산이소프로필, 부티르산부틸, 부티르산이소부틸, 하이드록시아세트산에틸, 2-하이드록시-2-메틸프로피온산에틸, 3-메톡시-2-메틸프로피온산메틸, 2-하이드록시-3-메틸부티르산메틸, 메톡시아세트산에틸, 에톡시아세트산에틸, 3-메톡시프로피온산메틸, 3-에톡시프로피온산에틸, 3-메톡시프로피온산에틸, 3-메톡시부틸아세테이트, 3-메톡시프로필아세테이트, 3-메틸-3-메톡시부틸아세테이트, 3-메틸-3-메톡시부틸프로피오네이트, 3-메틸-3-메톡시부틸부티레이트, 아세토아세트산메틸, 메틸프로필케톤, 메틸부틸케톤, 2-헵탄온, 3-헵탄온, 4-헵탄온, N,N-디메틸포름아미드, N-메틸아세트아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈, 4-메틸-2-헵탄올, 및 γ-부티로락톤 등을 들 수 있다.
이들 용제는 단독으로, 또는 2종 이상의 조합으로 사용할 수 있다.
본 발명의 포스테라이트입자의 제조방법은 하기 (A)공정 내지 하기 (C)공정:
(A)공정: 마그네슘원이 되는 마그네슘 화합물과, 규소원이 되는 규소 화합물을 마그네슘과 규소가 MgO/SiO2 몰비, 1.90 내지 2.10이 되도록 혼합하여 포스테라이트입자를 조제하는 공정,
(B)공정: (A)공정에서 조제된 포스테라이트입자를, 탄화수소의 연소화염 내에 투입하고 포스테라이트입자를 회수하는 공정,
(C)공정: (B)공정에서 얻어진 포스테라이트입자를 700℃ 내지 1100℃에서 소성하는 공정을 포함한다.
(A)공정의 마그네슘원이 되는 마그네슘 화합물은 무기마그네슘 화합물 또는 마그네슘 유기산염을 이용할 수 있다.
무기마그네슘 화합물로는, 예를 들어 산화마그네슘, 수산화마그네슘, 염기성 탄산마그네슘, 탄산수소마그네슘, 탄산마그네슘, 질산마그네슘, 또는 이들의 혼합물을 이용할 수 있다.
마그네슘 유기산염으로는, 예를 들어 포름산마그네슘, 아세트산마그네슘, 프로피온산마그네슘, 부티르산마그네슘, 이소부티르산마그네슘, 길초산마그네슘, 아크릴산마그네슘, 크로톤산마그네슘 등의 탄소원자수 1 내지 4의 지방족 모노카르본산마그네슘, 모노클로로아세트산마그네슘, 디클로로아세트산마그네슘, 트리클로로아세트산마그네슘 등의 탄소원자수 1 내지 4의 할로겐화지방족 모노카르본산마그네슘, 말론산마그네슘, 석신산마그네슘, 아디프산마그네슘, 말레산마그네슘 등의 탄소원자수 1 내지 4의 지방족 다가카르본산마그네슘, 글리콜산마그네슘, 유산마그네슘, 글리세린산마그네슘, 사과산마그네슘, 주석산마그네슘, 구연산마그네슘, 글루콘산마그네슘 등의 탄소원자수 1 내지 4의 지방족 하이드록시카르본산마그네슘, 메톡시아세트산마그네슘, 에톡시아세트산마그네슘 등의 탄소원자수 1 내지 4의 알콕시카르본산마그네슘, 아세토아세트산마그네슘 등의 탄소원자수 1 내지 4의 옥소카르본산마그네슘, 또는 이들의 혼합물을 이용할 수 있다.
(A)공정의 규소원이 되는 규소 화합물은 산화규소, 알콕시실란, 또는 이들의 혼합물을 이용할 수 있다.
산화규소로는, 예를 들어 콜로이달실리카, 실리카겔, 흄드실리카, 에어로실, 침강 실리카, 용융 실리카, 규석 등을 이용할 수 있다. 이들 입자경으로는 평균1차 입자경으로서 10nm 내지 100μm의 범위에서 이용할 수 있다.
규소원이 되는 규소 화합물로서의 알콕시실란은, 예를 들어 테트라메톡시실란, 테트라에톡시실란, 또는 그들의 가수분해물, 혹은 가수분해축합물, 또는 그들의 혼합물을 이용할 수 있다. 알콕시실란을 가수분해·축합하여 얻어진 실리카입자를 이용할 수 있다.
마그네슘원이 되는 마그네슘 화합물과 규소원이 되는 규소 화합물을 건식 또는 습식으로 혼합할 수 있다. 건식으로 혼합하는 경우는, 각각의 분체를 믹서 등으로 균일하게 혼합할 수 있다. 또한, 습식으로 혼합하는 경우는, 일방의 수성매체에 타방의 분말을 혼합하거나, 또는 양 수성매체를 디스퍼 등의 혼합분산기를 이용하여 혼합할 수 있다. 콜로이달실리카는 수성매체로서 실리카졸을 이용하는 것이 가능하며, 상기 수성매체로서 이용하는 것이 가능하다.
본 발명에 이용되는 포스테라이트입자는 마그네슘원이 되는 마그네슘 화합물과 규소원이 되는 규소 화합물을 MgO/SiO2 몰비, 1.90 내지 2.10(바람직하게는 2.0)이 되도록 혼합하고 소성하여 원료가 되는 포스테라이트입자를 조제하고, 후술의 (B)공정에 이용하는 원료로 할 수 있다. 또한 시판의 포스테라이트입자를 출발원료로 하여, 후술의 (B)공정에 이용하는 원료로 할 수도 있다.
마그네슘원이 되는 마그네슘 화합물과 규소원이 되는 규소 화합물을 혼합하고 소성하여 본 발명의 원료가 되는 포스테라이트입자를 합성하는 경우, 소성온도는 800℃ 내지 1800℃에서, 소성시간은 1시간 내지 10시간 정도의 소성을 행하는 것이 바람직하다. 이 (A)공정에서 얻어진 포스테라이트입자는 비구상 입자이며, 그 후 (B)공정에서 용사를 행하기 위해 분쇄에 의해 미세한 비구상(파쇄상) 분체로 할 수 있다.
본 발명에서는 (B)공정을 경유해도 파쇄상 입자가 입자경을 유지한 채 구상화할 수 있다. (A)공정의 입자경은 (C)공정에서 얻어지는 구상 입자의 입자경에 가까운 입자경으로 할 수 있다. 따라서, (A)공정에서의 파쇄상 포스테라이트의 입자경은 0.1μm 내지 10μm의 범위로 설정할 수 있다.
(B)공정은 비구상(파쇄상) 포스테라이트입자를 용사에 의해 구상 포스테라이트입자로 하는 공정이다. (A)공정에서 조제된 포스테라이트입자를 탄화수소의 연소화염 내에 투입하는 공정이다. 이들 용사법에서는 버너의 연소화염 내에 원료를 투입함으로써, 원료가 용융되며, 중력에 의해 낙하하는 도중에 표면장력에 의해 구상화시킬 수 있다. 이 때문에, 탄화수소의 연소화염 내에 투입된 파쇄상 입자의 포스테라이트는 용융되며, 중력에 의해 낙하하는 도중에 표면장력에 의해 구상화하여 구상 포스테라이트입자가 생성된다. 얻어진 구상 포스테라이트입자는, 표면이 용융되었기 때문에 표면 실란올기가 적고, 비표면적이 낮고, 융착을 발생시키기 어려운 입자이다. 파쇄상의 포스테라이트입자를 연소화염 내에 투입하는 경우는, 수용액이어도 분체상이어도 가능하나, 용융을 촉진하기 위해, 직접적으로 분체상의 포스테라이트입자를 연소화염 내에 투입하는 것이 바람직하다.
버너는 탄화수소를 연소하기 위한 기체(연소용 기체)로서 공기(산소농도 20.9%)와, 산소부화공기(산소농도가 20.9%를 초과하고, 100% 미만), 산소(산소농도 100%)를 이용할 수 있다. 탄화수소를 연소시키는 버너는, 공기 버너(이론온도 1800℃)와, 산소부화공기 버너(이론온도 1800℃ 내지 2800℃), 산소 버너(이론온도 2800℃ 내지 3000℃)가 있는데, 포스테라이트의 융점이 1880℃ 내지 1900℃인 점에서 (B)공정의 탄화수소의 연소화염 내의 이론온도는 1900℃ 내지 3000℃가 바람직하고, 산소 버너를 이용하는 것이 바람직하다.
버너에의 원료투입은, 원료 포스테라이트입자의 수성매체, 또는 원료 포스테라이트입자 자체를 분체로 취급하는 것이 가능하므로, 본 발명에서는 후자의 분체를 직접적으로 버너에 투입하는 방법을 채용할 수 있다. 연소로에서는 탄화수소가스(예를 들어 규격 13A의 공업용 도시가스나, 프로판가스를 탄화수소원으로서 이용한다.)와, 연소용 기체(산소)에 의해 발생한 화염 중에 원료 포스테라이트입자의 분체를 투입하고, 연소로 상부에서 용융되어 증기화 응집된 포스테라이트입자가, 연소로 하부에 낙하하는 과정에서 구상이 됨과 함께 냉각된다. 연소로 하부에 유도된 포스테라이트입자를 포함하는 연소 후의 기체는, 외부공기로 희석냉각되고, 팬에 의한 상기 기체의 흡인으로, 사이클론 집진장치와 필터장치를 거쳐 노 외로 취출된다. 배관의 도중에 사이클론과 필터를 설치함으로써 구상 포스테라이트입자를 분취할 수 있다. 회수율은 40% 내지 90%의 범위로 설정할 수 있다.
노 중의 연소량으로는 장치의 사이즈에 의존하는데, 예를 들어 5만kcal/시간 내지 20만kcal/시간의 범위 내에서, 예를 들어 12만kcal/시간, 노 내에의 원료분체의 공급속도는 예를 들어 1kg 내지 20kg/시간의 범위 내에서, 예를 들어 7.5kg/시간으로 설정할 수 있다.
(C)공정에서는 (B)공정에서 얻어진 포스테라이트입자를 700℃ 내지 1100℃에서 소성함으로써 결정화도를 향상시키는 것이다. 상기 포스테라이트입자는, 용사법에 의한 제조에 기인하여 표면적이 작고, 표면 하이드록시기량이 적으므로 수분의 흡습이 낮고, 또한 입자끼리의 융착을 발생시키기 어려운 등의 특징을 갖는 것이다. (C)공정에서의 재소성온도는 700℃ 내지 1100℃가 적절하다. 700℃ 이하에서는 충분한 결정성이 얻어지지 않고, 1100℃ 이상에서는 입자의 융착을 발생시키기 쉽다. 상기 포스테라이트입자는, 특히 800℃ 내지 1100℃, 또는 800℃ 내지 1000℃, 특히 800℃ 내지 900℃의 소성온도에서 높은 결정성을 가지며, 이 포스테라이트입자는 0.0011 이하, 예를 들어 0.0009 내지 0.0011의 낮은 유전정접값이 얻어지므로 바람직하다.
(A)공정의 원료 포스테라이트입자는 파쇄상 입자이며, CuKα선을 이용한 X선회절법에 의해 측정되는 2θ=52° 내지 53°의 회절피크의 적분강도가 800counts·deg 이하이고, 유전정접은 0.003 내지 0.02 정도의 값을 갖는다.
(B)공정에서 연소화염으로부터 낙하할 때에 급랭에 의해 결정성이 저하되므로, 이대로는 적절한 유전정접값을 갖지 않는다. 이 (B)공정에서 얻어진 구상 포스테라이트입자는, CuKα선을 이용한 X선회절법에 의해 측정되는 2θ=52° 내지 53°의 회절피크의 적분강도가 700counts·deg 이하이고, 유전정접은 0.005 내지 0.015 정도의 값이다.
(C)공정을 부가함으로써 구상 포스테라이트입자의 결정성이 회복되어, CuKα선을 이용한 X선회절법에 의해 측정되는 2θ=52° 내지 53°의 회절피크의 적분강도가 800counts·deg 이상이 되고, 0.0003 내지 0.0025의 유전정접을 갖는 구상 포스테라이트입자가 생성된다. 상기한 바와 같이 재소성온도는 700℃ 내지 1100℃가 적절하며, 700℃ 이하에서는 충분한 결정성이 얻어지지 않고, 1100℃ 이상에서는 입자의 융착을 발생시키기 쉽다.
상기한 바와 같이 (C)공정에서는 특히 800℃ 내지 1100℃, 또는 800℃ 내지 1000℃, 특히 800℃ 내지 900℃의 소성온도에서 높은 결정성을 가지며, 이 포스테라이트입자는 0.0011 이하, 예를 들어 0.0008 내지 0.0011의 유전정접값이 얻어지므로 바람직하다.
또한, 본 발명에서는 (A)공정의 포스테라이트입자는, (B)공정에서의 용사에 있어서, 입자의 형상은 비구상(파쇄상)에서 구상으로 변화하는데, 입자경을 유지한 상태로 구상 입자가 얻어진다. 포스테라이트입자는 입자경의 크기에 비례하여 유전정접값도 변화한다. 소입자에서는 유전정접값이 높아지는데, 본 발명에서는 (B)공정을 경유해도 입자경에 변화는 없으므로 유전정접값도 낮은 상태를 유지할 수 있다.
또한, 용사법에 의한 제조에 기인하여 표면적이 작고, 표면에 존재하는 Si원자나 Mg원자에 결합하는 하이드록시기량이 적으므로 수분의 흡습이 낮고, 또한 입자끼리의 융착을 발생시키기 어려운 등의 특징을 갖는 것이다.
(C)공정을 거친 포스테라이트입자는 가벼운 유착을 해소하기 위해 가벼운 해쇄하는 공정(輕い解碎する工程)(D)을 첨가할 수 있다.
또한, 포스테라이트입자 표면을 추가로 소수화하기 위해, 상기의 가수분해성 실란으로 피복할 수 있다.
본 발명에서는 상기 포스테라이트입자를 수지에 혼합하여 기판용 재료를 제조할 수 있다. 수지에의 혼합은, 용융상태의 수지에 상기 포스테라이트입자를 혼합하여 혼련함으로써 얻어진다. 혼련은 배치식 혼련기, 연속식 혼련기, 2축 압출기 등이 이용된다. 또한 용매에 용해되는 수지를 이용하는 경우는, 수지를 용해시킨 용매 중에 상기 포스테라이트입자를 첨가·혼합하고, 바니시화함으로써 얻어지며, 바니시를 기판에 도포 또는 함침한 후에 열처리나 광조사하여 경화함으로써 얻어진다.
기판용 수지로는, 예를 들어 폴리테트라플루오로에틸렌(PTFE), 올리고페닐렌에테르 수지(OPE), 폴리페닐렌에테르 수지(PPE), 폴리에틸렌 수지(PE), 비스말레이미드트리아진 수지(BT), 액정 수지(LCP), 폴리설폰 수지(PS), 폴리에테르설폰 수지(PES), 폴리카보네이트 수지(PC), 폴리이미드 수지(PI), 에폭시 수지(EP), 폴리아크릴레이트 수지(PA), 페놀 수지(PN) 등을 들 수 있다. 기판용 수지도 비유전율이나 유전정접값이 낮은 것이 바람직하고, 폴리테트라플루오로에틸렌(PTFE), 올리고페닐렌에테르 수지(OPE), 폴리페닐렌에테르 수지(PPE), 비스말레이미드트리아진 수지(BT), 액정 수지(LCP)는 저유전정접을 갖는 기판이 얻어진다.
기판용 수지는 상기 수지와 상기 포스테라이트입자의 비율이 질량비로, 1:0.001 내지 1000, 또는 1:0.01 내지 300, 또는 1:0.1 내지 100의 범위에서 이용할 수 있다.
수지와 상기 포스테라이트입자가 혼합된 기판용 수지의 유전정접은 0.0003 내지 0.01의 범위로 할 수 있다.
기판용 수지에의 포스테라이트입자의 혼합은, 수지의 열팽창이나 친소수(親疎水)의 영향으로, 포스테라이트입자 이외에도 상기 특성을 손상시키지 않는 한 실리카입자, 코디에라이트입자 등의 입자나, 유리클로스 등을 포함할 수 있다.
실시예
(평가방법)
·평균입자경의 측정
레이저회절식 입도분포계 상품명 MASTERSIZER2000(Malvern사제)으로 측정하였다.
·유전정접의 측정
측정주파수 1GHz용, 10GHz용의 공동공진기 지그(키콤(주)제)를 이용하여, PTFE제의 샘플튜브(길이 30mm, 내경 3mm(1GHz용), 1mm(10GHz용)) 내에 분말샘플을 충전 후, 벡터 네트워크 애널라이저 상품명 FieldFoxN6626A(KEYSIGHT TECHNOLOGIES제)로 측정하였다.
·BET법에 의한 비표면적의 측정
BET법에 의한 표면적측정장치 상품명 Monosorb(Quantachrome INSTRUMENTS사제)를 이용하여, BET법을 이용한 1점법(상대압 0.3)으로 측정. 한편 평균1차 입자경은, (3/(3.2(g/cm3)×BET법에 의한 비표면적(m2/g)))×2(μm)로 산출하였다.
·XRD(분말X선회절)의 측정
X선회절장치 상품명 MiniFlex600((주)리가쿠제)을 이용하여, 관전압 40kV, 관전류 15mA로 하여 측정하였다. 한편 적분강도는, 상기에서 측정한 데이터를 종합분말X선해석 소프트웨어 상품명 PDXL2를 이용하여 처리함으로써 counts·deg(또는 cps·deg)로서 산출하였다.
·수분흡착률의 측정
자성 도가니 내에 분말샘플을 칭량하고, 온도 150℃의 건조기 내에서 24시간 건조시켰다. 건조 후의 질량을 칭량한 후, 온도 25℃, 습도 50%로 설정한 항온항습조 내에서 48시간 유지하고, 재차 질량을 측정하였다. 수분흡수율(%)은, 하기 식(4)에 따라 산출하였다.
수분흡착량(%)=[(m1-m2)/m2]×100 식(4)
[식(4) 중, m1은, 온도 150℃에서 24시간 건조한 후에 온도 25℃, 습도 50%에서 48시간 방치한 후의 포스테라이트입자의 질량(g)을 나타내고, m2는, 온도 150℃에서 24시간 건조한 후의 포스테라이트입자의 질량(g)을 나타낸다.]
(포스테라이트분말의 합성)
(제조예 1)
(A)공정으로서, 염기성 탄산마그네슘분말(코노시마화학(주)제)과 실리카졸(상품명 스노텍스XS, 닛산화학(주)제)을 몰비로 MgO:SiO2=2:1이 되도록 혼합·건조하고, 건조물을 컷터밀로 분쇄한 후에, 전기로를 이용하여 1200℃에서 2시간 소성함으로써 포스테라이트분말을 조제하였다.
추가로 상기에서 얻어진 분말을 건식 젯트밀에 의해 압력: 0.64MPa로 하여 분쇄함으로써, 분쇄 포스테라이트분말(평균입자경 2.3μm)을 조제하였다.
(구상 포스테라이트분말의 합성)
(실시예 1)
(B)공정으로서, 제조예 1에서 조제한 분쇄 포스테라이트분말을, 프로판가스를 연료로 이용하고, 연소량을 12만kcal로 설정한 산소 버너의 화염 내(이론온도: 3000℃)에, 7.5kg/h의 공급속도로 투입함으로써 용사처리를 행하여, 사이클론 회수부에서 구형의 용사처리 포스테라이트분말을 얻었다. (C)공정으로서, (B)공정에서 얻어진 분말을, 전기로를 이용하여 700℃에서 2시간 소성함으로써 포스테라이트분말을 조제하였다.
소성으로 얻어진 분말은 구형을 유지하고 있음과 함께, 평균입자경은 5.9μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0015, 10GHz에 있어서 0.0017이었다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.4μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.5였다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 894counts·deg이며, 수분흡착률은 0.06%였다.
(실시예 2)
실시예 1에 있어서, (C)공정으로서 전기로에서의 소성온도를 800℃로 변경한 것 이외는 동일한 조작을 행하여, 포스테라이트분말을 조제하였다.
소성으로 얻어진 분말은 구형을 유지하고 있음과 함께, 평균입자경은 6.0μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0009, 10GHz에 있어서 0.0008이었다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.6μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.3이었다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 917counts·deg이며, 수분흡착률은 0.07%였다.
(실시예 3)
실시예 1에 있어서, (C)공정으로서 전기로에서의 소성온도를 900℃로 변경한 것 이외는 동일한 조작을 행하여, 포스테라이트분말을 조제하였다.
소성으로 얻어진 분말은 구형을 유지하고 있음과 함께, 평균입자경은 7.1μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0015, 10GHz에 있어서 0.0011이었다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.6μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.7이었다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 905counts·deg이며, 수분흡착률은 0.07%였다.
(실시예 4)
실시예 1에 있어서, (C)공정으로서 전기로에서의 소성온도를 1000℃로 변경한 것 이외는 동일한 조작을 행하여, 포스테라이트분말을 조제하였다.
소성으로 얻어진 분말은 소결에 수반하여 입자끼리의 응집이 근소하게 보이기는 하지만, 구형을 유지하고 있으며, 평균입자경은 6.3μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0020, 10GHz에 있어서 0.0012였다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.6μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.4였다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 899counts·deg이며, 수분흡착률은 0.06%였다.
(실시예 5)
실시예 1에 있어서, (C)공정으로서 전기로에서의 소성온도를 1100℃로 변경한 것 이외는 동일한 조작을 행하여, 포스테라이트분말을 조제하였다.
소성으로 얻어진 분말은 소결에 수반하여 입자끼리의 응집이 근소하게 보이기는 하지만, 구형을 유지하고 있으며, 평균입자경은 9.8μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0024, 10GHz에 있어서 0.0013이었다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 3.0μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 3.3이었다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 891counts·deg이며, 수분흡착률은 0.03%였다.
(비교예 1)
제조예 1에 있어서, (C)공정으로서 전기로를 이용하여 1200℃에서 2시간 소성함으로써 얻어진 포스테라이트분말의 평균입자경은 13.0μm로 크고, 유전정접은 측정주파수 1GHz에 있어서 0.0015, 10GHz에 있어서 0.0012였다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 1.6μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 8.6이었다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 877counts·deg이며, 수분흡착률은 0.12%였다.
(비교예 2)
실시예 1에 있어서 (B)공정의 용사와, (C)공정의 재소성을 행하지 않았다. 건식 젯트밀에 의한 분쇄 후에 얻어진 분쇄 포스테라이트분말의 평균입자경은 2.3μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0032, 10GHz에 있어서 0.0042였다.
또한, BET표면적으로부터 산출되는 1차 입자경(BET입자경)은 0.9μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.6이었다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 818counts·deg이며, 수분흡착률은 0.26%였다.
(비교예 3)
실시예 1에 있어서, (B)공정의 용사처리 후에 얻어진 용사처리 포스테라이트분말에 대하여 (C)공정의 재소성을 행하지 않았다. 얻어진 구형의 용사처리 포스테라이트분말의 평균입자경은 4.2μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0050, 10GHz에 있어서 0.0054였다.
또한, BET표면적으로부터 산출되는 1차 입자경(BET입자경)은 2.3μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 1.8이었다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 670이고, 수분흡착률은 0.16%였다.
(비교예 4)
실시예 1에 있어서, 용사처리에 사용하는 버너를 공기 버너(이론온도: 1800℃)로 변경하고, 분말의 공급속도를 5.0kg/h로 한 것 이외는, 실시예 1과 동일하게 조작하여 용사처리 포스테라이트분말을 얻었다. 얻어진 분말은 입자끼리의 현저한 응집이 보임과 함께, 평균입자경은 7.6μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0043, 10GHz에 있어서 0.0047이었다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.2이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 3.5였다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 870counts·deg이며, 수분흡착률은 0.07%였다.
(비교예 5)
비교예 2에 있어서 얻어진 (B)공정의 용사를 행하지 않은 포스테라이트분말을, (C)공정으로서 전기로를 이용하여 800℃에서 2시간 소성함으로써 포스테라이트분말을 조제하였다. 얻어진 분말은 입자끼리의 현저한 응집이 보임과 함께, 평균입자경은 10.2μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0017, 10GHz에 있어서 0.0019였다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.3μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 4.4였다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 872counts·deg이며, 수분흡착률은 0.06%였다.
(비교예 6)
실시예 1에 있어서, (C)공정에 있어서의 전기로에서의 소성온도를 1200℃로 변경한 것 이외는 동일한 조작을 행하여, 포스테라이트분말을 조제하였다.
소성으로 얻어진 분말은 소결에 수반하여 입자끼리의 응집이 현저하게 보임과 함께, 구형을 유지하지 않고, 평균입자경은 12.5μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0021, 10GHz에 있어서 0.0017이었다.
또한, BET표면적으로부터 산출되는 1차 입자경(BET입자경)은 3.5μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 3.6이었다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 874이며, 수분흡착률은 0.06%였다.
실시예 1 내지 실시예 5 및 비교예 1 내지 비교예 6의 결과를 하기 표에 나타낸다. 실시예 1 내지 실시예 5에서는, 평균입자경이 4.2μm 내지 9.8μm임과 동시에, 유전정접은 측정주파수 1GHz 및 10GHz에 있어서, 0.0008 내지 0.0024이며, 고주파 용도에 있어서의 필러로서 우수한 특성을 나타냈다. 또한 BET표면적으로부터 계산되는 1차 입자경(BET입자경)과 평균입자경의 비로부터 산출되는 구형도는 2.3 내지 3.3이며, 필러로서 이용함에 있어서 양호한 수치를 나타냈다.
나아가 XRD측정(CuKα1)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 891counts·deg 내지 917counts·deg로 높고, 포스테라이트 자신이 갖는 특성의 발현에 충분한 결정성을 갖는 것이 확인되었다. 또한 수분흡착률도 0.03% 내지 0.07%로 낮은 값을 나타내어, 고주파 용도에 있어서의 필러로서 양호하였다.
한편, 비교예 1 내지 비교예 6에서는, 평균입자경이 10μm 이상으로 큰 것(비교예 1, 비교예 5 및 비교예 6)이나, 평균입자경이 작은 경우에도 유전정접이 0.0026 이상으로 높은 것(비교예 2, 비교예 3 및 비교예 4)이 확인되어, 고주파 용도에 있어서의 필러로서 우수한 특성이라고 할 수 없었다. 또한 BET표면적으로부터 계산되는 1차 입자경(BET입자경)과 평균입자경의 비로부터 산출되는 구형도도 1.0 내지 3.3을 만족시키지 않고, 입자의 응집의 진행이 시사되는 값을 나타내는 경우가 있어(비교예 1, 비교예 4, 비교예 5 및 비교예 6), 필러로서 이용함에 있어서는 양호하지 않았다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 850counts·deg 이하로 낮고, 포스테라이트 자신이 갖는 특성의 발현에 충분한 결정성을 갖지 않는 것(비교예 3)이나, 적분강도가 850 내지 1000인 경우에도, 입자끼리의 응집이 진행되고 있어, 고주파 용도에 있어서의 필러로서는 부적합한 것이 확인되었다. 또한 수분흡착률도 0.1% 이상으로 높은 값을 나타내어(비교예 1, 비교예 2 및 비교예 3), 고주파 용도에 있어서의 필러로서는 부적합하였다.
(실시예 6)
실시예 1에 있어서, 용사처리에 이용하는 포스테라이트분말로서, 마루스유약합동회사제 포스테라이트 상품명 FF-200·M-40(평균입경 2.5μm)을 사용한 것 이외는, 실시예 1과 동일하게 조작하여 구형의 용사처리 포스테라이트분말을 얻었다. 얻어진 분말을, 전기로를 이용하여 800℃에서 2시간 소성함으로써, 포스테라이트분말을 조제하였다.
소성으로 얻어진 분말은 구형을 유지하고 있음과 함께, 평균입자경은 5.6μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0008, 10GHz에 있어서 0.0009였다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.3μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.4였다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 873counts·deg이며, 수분흡착률은 0.05%였다.
(실시예 7)
실시예 6에 있어서, 전기로에서의 소성온도를 900℃로 변경한 것 이외는 동일한 조작을 행하여, 포스테라이트분말을 조제하였다.
소성으로 얻어진 분말은 구형을 유지하고 있음과 함께, 평균입자경은 6.3μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0009, 10GHz에 있어서 0.0010이었다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.3μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.8이었다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 870counts·deg이며, 수분흡착률은 0.05%였다.
(실시예 8)
실시예 6에 있어서, 전기로에서의 소성온도를 1000℃로 변경한 것 이외는 동일한 조작을 행하여, 포스테라이트분말을 조제하였다.
소성으로 얻어진 분말은 소결에 수반하여 입자끼리의 응집이 근소하게 보이기는 하지만, 구형을 유지하고 있으며, 평균입자경은 5.7μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0009, 10GHz에 있어서 0.0010이었다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.3μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.5였다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 865counts·deg이며, 수분흡착률은 0.07%였다.
(실시예 9)
실시예 6에 있어서, 전기로에서의 소성온도를 1100℃로 변경한 것 이외는 동일한 조작을 행하여, 포스테라이트분말을 조제하였다.
소성으로 얻어진 분말은 소결에 수반하여 입자끼리의 응집이 근소하게 보이기는 하지만, 구형을 유지하고 있으며, 평균입자경은 6.1μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0011, 10GHz에 있어서 0.0011이었다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.5μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.4였다.
나아가 XRD측정(CuKα1)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 882counts·deg이며, 수분흡착률은 0.05%였다.
(비교예 7)
실시예 6에 있어서 (B)공정의 용사를 행하지 않고, 구입한 상태의 마루스유약합동회사제 포스테라이트, 상품명 FF-200·M-40의 평균입자경은 4.3μm이며, 유전정접은 측정주파수 1GHz에 있어서 0.0115, 10GHz에 있어서 0.0198이었다.
또한, BET표면적으로부터 산출되는 1차 입자경(BET입자경)은 0.1μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 31.9였다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 791counts·deg이며, 수분흡착률은 0.40%였다.
(비교예 8)
실시예 6에 있어서, (B)공정의 용사를 행한 후에, (C)공정의 소성을 행하지 않았다. 얻어진 구형의 용사처리 포스테라이트분말의 평균입자경은 5.2μm이며, 유전정접은 측정주파수 1GHz에 있어서 0.0095, 10GHz에 있어서 0.0130이었다.
또한, BET표면적으로부터 산출되는 1차 입자경(BET입자경)은 2.4μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.2였다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 361counts·deg이며, 수분흡착률은 0.09%였다.
실시예 6 내지 실시예 9 그리고 비교예 7 및 비교예 8의 결과를 하기 표에 나타낸다. 실시예 6 내지 실시예 9에서는, 평균입자경이 5.6μm 내지 6.3μm임과 동시에, 유전정접은 측정주파수 1GHz 및 10GHz에 있어서, 0.0008 내지 0.0011이며, 고주파 용도에 있어서의 필러로서 우수한 특성을 나타냈다. 또한 BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)과 평균입자경의 비로부터 산출되는 구형도는 2.4 내지 2.8이며, 필러로서 이용함에 있어서 양호한 수치를 나타냈다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 870counts·deg 내지 882counts·deg로 높고, 포스테라이트 자신이 갖는 특성의 발현에 충분한 결정성을 갖는 것이 확인되었다. 또한 수분흡착률도 0.05% 내지 0.07%로 적은 값을 나타내어, 고주파 용도에 있어서의 필러로서 양호하였다.
한편, 비교예 7 및 비교예 8에서는, 유전정접이 0.0026 이상으로 높은 것이 확인되어, 고주파 용도에 있어서의 필러로서 우수한 특성이라고 할 수 없었다.
게다가 수분흡착률도 0.1% 이상으로 높은 값을 나타내어(비교예 7), 고주파 용도에 있어서의 필러로서는 부적합하였다.
(구상 포스테라이트입자의 표면처리)
(실시예 10)
실시예 2에서 얻어진 포스테라이트분말을, 포스테라이트분말의 농도가 20질량%가 되도록 2-프로판올에 첨가하고, 추가로 수분농도가 1%가 되도록 물을 첨가하였다. 여기에, 페닐트리메톡시실란을 포스테라이트분말에 대하여 질량비로 0.01%가 되도록 첨가한 후, 용기 내에서 교반하면서 가열하고, 환류조건하에서 5시간 가열처리함으로써 표면처리를 행하였다. 냉각 후, 내용물을 평형의 용기에 옮기고, 용매를 제거한 후에, 150℃에서 하룻밤(대략 12시간) 건조함으로써 표면처리 포스테라이트분말을 조제하였다.
얻어진 분말의 평균입자경은 6.0μm이고, 유전정접은 측정주파수 1GHz에 있어서 0.0007, 10GHz에 있어서 0.0006이었다.
또한, BET법에 의한 비표면적으로부터 산출되는 평균1차 입자경(BET법에 의한 입자경)은 2.2μm이며, 상기의 평균입자경과의 비로부터 산출되는 구형도는 2.7이었다.
나아가 XRD측정(CuKα)에서의 52 내지 53°의 회절피크에 있어서의 적분강도는 917cps·deg이며, 수분흡착률은 0.05%였다.
(구상 포스테라이트입자를 포함하는 수지 조성물)
(폴리머용액의 배합예 1)
올리고페닐렌에테르로서, 미쯔비시가스화학(주)제, 상품명 OPE-2St2200/톨루엔(OPE, 톨루엔용액, 농도 63질량%) 31.6g과, 폴리스티렌-폴리(에틸렌-부틸렌)블록-폴리스티렌(PSEBS, 시그마-알드리치제, 중량평균분자량 118,000) 20.0g을, 질량비로 OPE:PSEBS=50:50이 되도록 혼합한 후, 폴리머농도 20질량%가 되도록 톨루엔 148.3g으로 희석하고, 실온에서 교반함으로써 모(母)폴리머용액 200g을 조제하였다.
(실시예 11)
배합예 1에서 조제한 모폴리머용액 8.0g(폴리머농도 20질량%)에 대하여, 실시예 6에서 조제한 포스테라이트분말을 0.4g 첨가한 후, 고형분농도가 20질량%가 되도록 톨루엔 1.6g을 첨가하고, 실온에서 1시간 교반혼합함으로써 폴리머/포스테라이트 혼합용액을 조제하였다. 한편 폴리머/포스테라이트의 비율은, 질량비로 80/20으로 하였다.
조제한 혼합용액을 셀룰로오스계 이형필름 상에 캐스트하고, 100℃에서 건조시킴으로써 용매를 제거하였다. 그 후, 셀룰로오스계 이형필름으로부터 박리하고, 200℃에서 2시간 가열하여 경화시킴으로써 복합필름(두께는 약 30μm)을 조제하였다.
조제한 복합필름으로부터 폭 30mm, 길이 60mm 내지 70mm의 시험편을 잘라내고, 통형상으로 둥글게 하여, 길이 30mm, 내경 3mm의 PTFE제 튜브에 충전한 후, 섭동방식 공동기공진법에 의해 측정한 주파수 1GHz에서의 유전정접은 0.0014였다.
(실시예 12)
배합예 1에서 조제한 모폴리머용액 6.0g(폴리머농도 20질량%)에 대하여, 실시예 6에서 조제한 포스테라이트분말을 0.8g 첨가한 후, 고형분농도가 20질량%가 되도록 톨루엔 3.2g을 첨가하고, 실온에서 1시간 교반혼합함으로써 폴리머/포스테라이트 혼합용액을 조제하였다. 한편 폴리머/포스테라이트의 비율은, 질량비로 60/40으로 하였다.
조제한 혼합용액을 이용하여, 실시예 11과 동일하게 조작함으로써 복합필름을 조제하고, 섭동방식 공동기공진법에 의해 주파수 1GHz에서의 유전정접을 측정한 결과, 0.0014였다.
(실시예 13)
배합예 1에서 조제한 모폴리머용액 4.0g(폴리머농도 20질량%)에 대하여, 실시예 6에서 조제한 포스테라이트분말을 1.2g 첨가한 후, 고형분농도가 20질량%가 되도록 톨루엔 4.8g을 첨가하고, 실온에서 1시간 교반혼합함으로써 폴리머/포스테라이트 혼합용액을 조제하였다. 한편 폴리머/포스테라이트의 비율은, 질량비로 40/60으로 하였다.
조제한 혼합용액을 이용하여, 실시예 11과 동일하게 조작함으로써 복합필름을 조제하고, 섭동방식 공동기공진법에 의해 주파수 1GHz에서의 유전정접을 측정한 결과, 0.0013이었다.
(비교예 9)
실시예 11에 있어서, 포스테라이트분말을 첨가하지 않고, 배합예 1에서 조제한 모폴리머용액을 이용하여, 마찬가지로 조작함으로써 폴리머필름을 조제하고, 섭동방식 공동기공진법에 의해 주파수 1GHz에서의 유전정접을 측정한 결과, 0.0015였다.
(비교예 10)
배합예 1에서 조제한 모폴리머용액 8.0g(폴리머농도 20질량%)에 대하여, 비교예 1에서 조제한 포스테라이트분말을 0.4g 첨가한 후, 고형분농도가 20질량%가 되도록 톨루엔 1.6g을 첨가하고, 실온에서 1시간 교반혼합함으로써 폴리머/포스테라이트 혼합용액을 조제하였다. 한편 폴리머/포스테라이트의 비율은, 질량비로 80/20으로 하였다.
조제한 혼합용액을 이용하여, 실시예 11과 동일하게 조작함으로써 복합필름을 조제하고, 섭동방식 공동기공진법에 의해 주파수 1GHz에서의 유전정접을 측정한 결과, 0.0015였다.
(비교예 11)
배합예 1에서 조제한 모폴리머용액 6.0g(폴리머농도 20질량%)에 대하여, 비교예 1에서 조제한 포스테라이트분말을 0.8g 첨가한 후, 고형분농도가 20질량%가 되도록 톨루엔 3.2g을 첨가하고, 실온에서 1시간 교반혼합함으로써 폴리머/포스테라이트 혼합용액을 조제하였다.
조제한 혼합용액을 이용하여, 실시예 11과 동일하게 조작함으로써 복합필름을 조제하고, 섭동방식 공동기공진법에 의해 주파수 1GHz에서의 유전정접을 측정한 결과, 0.0015였다. 한편 폴리머/포스테라이트의 비율은, 질량비로 60/40으로 하였다.
(비교예 12)
배합예 1에서 조제한 모폴리머용액 4.0g(폴리머농도 20질량%)에 대하여, 비교예 1에서 조제한 포스테라이트분말을 1.2g 첨가한 후, 고형분농도가 20질량%가 되도록 톨루엔 4.8g을 첨가하고, 실온에서 1시간 교반혼합함으로써 폴리머/포스테라이트 혼합용액을 조제하였다. 한편 폴리머/포스테라이트의 비율은, 질량비로 40/60으로 하였다.
조제한 혼합용액을 이용하여, 실시예 11과 동일하게 조작함으로써 복합필름을 조제하고, 섭동방식 공동기공진법에 의해 주파수 1GHz에서의 유전정접을 측정한 결과, 0.0015였다.
실시예 11 내지 실시예 13 및 비교예 9 내지 비교예 12의 결과를 하기 표에 나타낸다. 하기 표로부터 분명한 바와 같이, 폴리머필름만의 유전정접 0.0015(비교예 9)에 대하여, 본 발명의 포스테라이트분말을 배합한 폴리머/포스테라이트 복합필름에서는, 유전정접은 0.0013 내지 0.0014로 낮은 값을 나타내고(실시예 11 내지 실시예 13), 본 발명의 포스테라이트분말의 배합에 의한 유전정접의 저하효과가 확인되어, 고주파 용도에 있어서의 필러로서 우수한 특성을 나타내는 것을 확인할 수 있었다. 한편, 비교예 1에서 조제한 포스테라이트분말을 이용한 경우에서는, 폴리머/포스테라이트 복합필름의 유전정접은 0.0015(비교예 10 내지 비교예 12)로, 포스테라이트분말의 배합에 의한 유전정접의 저하효과는 확인할 수 없었다.
[표 1]
Figure pct00003
[표 2]
Figure pct00004
[표 3]
Figure pct00005
[표 4]
Figure pct00006
[표 5]
Figure pct00007
[표 6]
Figure pct00008
[표 7]
Figure pct00009
산업상 이용가능성
낮은 유전정접을 갖는 포스테라이트입자를 제공하는 것이며, 기판의 절연체재료에 의한 신호열화를 억제하기 위해, 저유전정접인 기판재료를 제공할 수 있다. 포스테라이트입자는 낮은 유전정접을 갖고 있는 점에서, 구상화하여 수지와 블렌드하기 쉬운 구상 포스테라이트입자를 수지에 함유하여 기판재료로 함으로써, 유전특성이 향상된 전송로스가 적은 기판을 제공할 수 있다. 낮은 유전정접과 입자형상이 구형인 포스테라이트를 제조하고, 고주파특성이 향상된 기판을 제공할 수 있다.

Claims (16)

  1. 0.1μm 내지 10μm의 평균입자경과, 0.0003 내지 0.0025의 유전정접을 갖는 포스테라이트입자.
  2. 제1항에 있어서,
    하기 식(3)에 따라 산출되는 구형도가, 1.0 내지 3.3인 포스테라이트입자.
    구형도=Ls/Ns 식(3)
    [식(3) 중, Ls는, 레이저회절식 입도분포측정장치로 측정된 평균입자경(μm)을 나타내고, Ns는, 질소가스흡착법에 따른 측정항의 비표면적 환산에 의해 산출된 평균1차 입자경(μm)을 나타낸다.]
  3. 제1항 또는 제2항에 있어서,
    포스테라이트입자에 대해 하기 식(4)에 따라 산출되는 수분흡착량이, 0.15% 이하인 포스테라이트입자.
    수분흡착량(%)=[(m1-m2)/m2]×100 식(4)
    [식(4) 중, m1은, 온도 150℃에서 24시간 건조한 후에 온도 25℃, 습도 50%에서 48시간 방치한 후의 포스테라이트입자의 질량(g)을 나타내고, m2는, 온도 150℃에서 24시간 건조한 후의 포스테라이트입자의 질량(g)을 나타낸다.]
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    MgO/SiO2 몰비가 1.90 내지 2.10인 포스테라이트입자.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    하기 식(1) 및 식(2)로 표시되는 가수분해성 실란으로 이루어지는 군으로부터 선택된 적어도 1종의 가수분해성 실란에 의해 입자의 표면이 피복된 포스테라이트입자.
    [화학식 1]
    Figure pct00010

    [식(1) 중, R1은 아크릴옥시기, 메타크릴옥시기, 아릴기, 알킬기, 글리시독시기, 또는 그들 관능기를 포함하는 탄소원자수 1 내지 10의 알킬렌기를 포함하고, Si원자에 Si-C결합으로 결합되어 있는 기이며, a는 1 내지 3의 정수를 나타낸다. R2는 알콕시기, 아실옥시기, 또는 할로겐원자로 이루어지는 가수분해기이며 적어도 1개의 R2의 가수분해기는 금속산화물입자 표면에서 M-O-Si의 결합을 형성하고, M은 Si원자 또는 Mg원자를 나타낸다.
    식(2) 중, R3은 알킬기이고 또한 Si-C결합에 의해 규소원자와 결합되어 있는 것이며, R4는 알콕시기, 아실옥시기, 또는 할로겐원자로 이루어지는 가수분해기이며, 적어도 1개의 R4의 가수분해기는 금속산화물입자 표면에서 M-O-Si의 결합을 형성하고, M은 Si원자 또는 Mg원자를 나타낸다. Y는 알킬렌기, 아릴렌기, NH기, 또는 산소원자를 나타내고, d는 0 내지 3의 정수를 나타내고, e는 0 또는 1의 정수이다.]
  6. 하기 (A)공정 내지 하기 (C)공정:
    (A)공정: 마그네슘원이 되는 마그네슘 화합물과, 규소원이 되는 규소 화합물을 마그네슘과 규소가 MgO/SiO2 몰비, 1.90 내지 2.10이 되도록 혼합하여 포스테라이트입자를 조제하는 공정,
    (B)공정: (A)공정에서 조제된 포스테라이트입자를, 탄화수소의 연소화염 내에 투입하고 포스테라이트입자를 회수하는 공정,
    (C)공정: (B)공정에서 얻어진 포스테라이트입자를 700℃ 내지 1100℃에서 소성하는 공정
    을 포함하는, 제1항 내지 제4항 중 어느 한 항에 기재된 포스테라이트입자의 제조방법.
  7. 제6항에 있어서,
    (A)공정의 마그네슘원이 되는 마그네슘 화합물이 무기마그네슘 화합물 또는 마그네슘 유기산염인 제조방법.
  8. 제7항에 있어서,
    무기마그네슘 화합물이 산화마그네슘, 수산화마그네슘, 염기성 탄산마그네슘, 탄산수소마그네슘, 탄산마그네슘, 질산마그네슘, 또는 이들의 혼합물인 제조방법.
  9. 제7항에 있어서,
    마그네슘 유기산염이 탄소원자수 1 내지 4의 지방족 모노카르본산마그네슘, 탄소원자수 1 내지 4의 할로겐화지방족 모노카르본산마그네슘, 탄소원자수 1 내지 4의 지방족 다가카르본산마그네슘, 탄소원자수 1 내지 4의 지방족 하이드록시카르본산마그네슘, 탄소원자수 1 내지 4의 알콕시카르본산마그네슘, 탄소원자수 1 내지 4의 옥소카르본산마그네슘, 또는 이들의 혼합물인 제조방법.
  10. 제6항에 있어서,
    (A)공정의 규소원이 되는 규소 화합물이 산화규소, 알콕시실란, 또는 이들의 혼합물인 제조방법.
  11. 제6항 내지 제10항 중 어느 한 항에 있어서,
    (B)공정에서 탄화수소의 연소화염 내의 온도가 이론온도로 1900℃ 내지 3000℃인 제조방법.
  12. 제6항 내지 제11항 중 어느 한 항에 있어서,
    (C)공정에서 얻어진 포스테라이트입자를 해쇄하는 공정(D)을 추가로 포함하는, 제조방법.
  13. 제6항 내지 제12항 중 어느 한 항에 있어서,
    (C)공정에서 얻어진 포스테라이트입자를 제5항에 기재된 가수분해성 실란으로 피복하는 공정(E)을 추가로 포함하는, 제조방법.
  14. 수지와 제1항 내지 제5항 중 어느 한 항에 기재된 포스테라이트입자를 포함하는 수지 조성물.
  15. 제14항에 있어서,
    상기 수지와 포스테라이트입자와의 비율이, 질량비로 1:0.001 내지 1000인 수지 조성물.
  16. 제14항 또는 제15항에 있어서,
    유전정접이 0.0003 내지 0.01인 수지 조성물.
KR1020217016077A 2018-11-29 2019-11-27 구상 포스테라이트입자, 그의 제조방법, 및 구상 포스테라이트입자를 포함하는 수지 조성물 KR20210096102A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018223166 2018-11-29
JPJP-P-2018-223166 2018-11-29
PCT/JP2019/046378 WO2020111126A1 (ja) 2018-11-29 2019-11-27 球状フォルステライト粒子、その製造方法、及び球状フォルステライト粒子を含む樹脂組成物

Publications (1)

Publication Number Publication Date
KR20210096102A true KR20210096102A (ko) 2021-08-04

Family

ID=70853917

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217016077A KR20210096102A (ko) 2018-11-29 2019-11-27 구상 포스테라이트입자, 그의 제조방법, 및 구상 포스테라이트입자를 포함하는 수지 조성물

Country Status (6)

Country Link
US (1) US20220017724A1 (ko)
JP (1) JP7406184B2 (ko)
KR (1) KR20210096102A (ko)
CN (1) CN113165888A (ko)
TW (1) TWI828809B (ko)
WO (1) WO2020111126A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002640A (ja) 2001-06-18 2003-01-08 Ube Material Industries Ltd マグネシウム含有酸化物粉末、及びその製造方法
JP2016222517A (ja) 2015-06-02 2016-12-28 日産化学工業株式会社 フォルステライト微粒子の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284830A (ja) 2003-03-19 2004-10-14 National Institute For Materials Science フォルステライト系セラミックス焼結体
JP2007039304A (ja) 2005-07-08 2007-02-15 Kao Corp フィラー
JP2007079309A (ja) * 2005-09-15 2007-03-29 Ricoh Co Ltd トナー、画像形成方法、画像形成装置及びプロセスカートリッジ
GB0526321D0 (en) * 2005-12-23 2006-02-01 Advanced Biotechnologies Inc Silicone composition
WO2007074606A1 (ja) * 2005-12-27 2007-07-05 Murata Manufacturing Co., Ltd. フォルステライト粉末の製造方法、フォルステライト粉末、フォルステライト焼結体、絶縁体セラミック組成物、および積層セラミック電子部品
US20120022087A1 (en) * 2008-08-11 2012-01-26 Ratiopharm Gmbh Amorphous ambrisentan
JP6532646B2 (ja) * 2013-12-06 2019-06-19 ロレアル パウダー状化粧用組成物
JP2015182934A (ja) 2014-03-25 2015-10-22 日産化学工業株式会社 フォルステライト微粒子の製造方法
CN113845119A (zh) * 2014-08-07 2021-12-28 日产化学工业株式会社 硅烷处理镁橄榄石微粒及其有机溶剂分散液、以及它们的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002640A (ja) 2001-06-18 2003-01-08 Ube Material Industries Ltd マグネシウム含有酸化物粉末、及びその製造方法
JP2016222517A (ja) 2015-06-02 2016-12-28 日産化学工業株式会社 フォルステライト微粒子の製造方法

Also Published As

Publication number Publication date
TW202037559A (zh) 2020-10-16
US20220017724A1 (en) 2022-01-20
CN113165888A (zh) 2021-07-23
JP7406184B2 (ja) 2023-12-27
JPWO2020111126A1 (ja) 2021-10-28
WO2020111126A1 (ja) 2020-06-04
TWI828809B (zh) 2024-01-11

Similar Documents

Publication Publication Date Title
US11168201B2 (en) Silica sol dispersed in ketone solvent and resin composition
JPWO2009008509A1 (ja) 無機粒子を含有した液状エポキシ樹脂形成用製剤
WO2020153352A1 (ja) 層状化合物の剥離層分散液及びそれを用いた透明基板
JP6892639B2 (ja) シラン処理フォルステライト微粒子及びその製造方法、並びにシラン処理フォルステライト微粒子の有機溶媒分散液及びその製造方法
JP7406184B2 (ja) 球状フォルステライト粒子、その製造方法、及び球状フォルステライト粒子を含む樹脂組成物
JP7494703B2 (ja) 酸無水物分散アルミナゾル、その用途およびその製造方法
US8193253B2 (en) Organosol of fluoride colloid particle and method for producing the same
KR20240042168A (ko) 표면처리 실리카함유 무기산화물 입자 분산액 및 그의 제조방법
WO2023136331A1 (ja) 粒度分布を有するシリカゾル及びその製造方法